1 /* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for 3 * licensing and copyright details 4 */ 5 6 #include <linux/reiserfs_fs.h> 7 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/sched.h> 11 #include <linux/bug.h> 12 #include <linux/workqueue.h> 13 #include <asm/unaligned.h> 14 #include <linux/bitops.h> 15 #include <linux/proc_fs.h> 16 #include <linux/buffer_head.h> 17 18 /* the 32 bit compat definitions with int argument */ 19 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 20 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 21 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 22 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 23 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 24 25 struct reiserfs_journal_list; 26 27 /* bitmasks for i_flags field in reiserfs-specific part of inode */ 28 typedef enum { 29 /* 30 * this says what format of key do all items (but stat data) of 31 * an object have. If this is set, that format is 3.6 otherwise - 3.5 32 */ 33 i_item_key_version_mask = 0x0001, 34 35 /* 36 * If this is unset, object has 3.5 stat data, otherwise, 37 * it has 3.6 stat data with 64bit size, 32bit nlink etc. 38 */ 39 i_stat_data_version_mask = 0x0002, 40 41 /* file might need tail packing on close */ 42 i_pack_on_close_mask = 0x0004, 43 44 /* don't pack tail of file */ 45 i_nopack_mask = 0x0008, 46 47 /* 48 * If either of these are set, "safe link" was created for this 49 * file during truncate or unlink. Safe link is used to avoid 50 * leakage of disk space on crash with some files open, but unlinked. 51 */ 52 i_link_saved_unlink_mask = 0x0010, 53 i_link_saved_truncate_mask = 0x0020, 54 55 i_has_xattr_dir = 0x0040, 56 i_data_log = 0x0080, 57 } reiserfs_inode_flags; 58 59 struct reiserfs_inode_info { 60 __u32 i_key[4]; /* key is still 4 32 bit integers */ 61 62 /* 63 * transient inode flags that are never stored on disk. Bitmasks 64 * for this field are defined above. 65 */ 66 __u32 i_flags; 67 68 /* offset of first byte stored in direct item. */ 69 __u32 i_first_direct_byte; 70 71 /* copy of persistent inode flags read from sd_attrs. */ 72 __u32 i_attrs; 73 74 /* first unused block of a sequence of unused blocks */ 75 int i_prealloc_block; 76 int i_prealloc_count; /* length of that sequence */ 77 78 /* per-transaction list of inodes which have preallocated blocks */ 79 struct list_head i_prealloc_list; 80 81 /* 82 * new_packing_locality is created; new blocks for the contents 83 * of this directory should be displaced 84 */ 85 unsigned new_packing_locality:1; 86 87 /* 88 * we use these for fsync or O_SYNC to decide which transaction 89 * needs to be committed in order for this inode to be properly 90 * flushed 91 */ 92 unsigned int i_trans_id; 93 94 struct reiserfs_journal_list *i_jl; 95 atomic_t openers; 96 struct mutex tailpack; 97 #ifdef CONFIG_REISERFS_FS_XATTR 98 struct rw_semaphore i_xattr_sem; 99 #endif 100 struct inode vfs_inode; 101 }; 102 103 typedef enum { 104 reiserfs_attrs_cleared = 0x00000001, 105 } reiserfs_super_block_flags; 106 107 /* 108 * struct reiserfs_super_block accessors/mutators since this is a disk 109 * structure, it will always be in little endian format. 110 */ 111 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 112 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 113 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 114 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 115 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 116 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 117 118 #define sb_jp_journal_1st_block(sbp) \ 119 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 120 #define set_sb_jp_journal_1st_block(sbp,v) \ 121 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 122 #define sb_jp_journal_dev(sbp) \ 123 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 124 #define set_sb_jp_journal_dev(sbp,v) \ 125 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 126 #define sb_jp_journal_size(sbp) \ 127 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 128 #define set_sb_jp_journal_size(sbp,v) \ 129 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 130 #define sb_jp_journal_trans_max(sbp) \ 131 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 132 #define set_sb_jp_journal_trans_max(sbp,v) \ 133 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 134 #define sb_jp_journal_magic(sbp) \ 135 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 136 #define set_sb_jp_journal_magic(sbp,v) \ 137 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 138 #define sb_jp_journal_max_batch(sbp) \ 139 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 140 #define set_sb_jp_journal_max_batch(sbp,v) \ 141 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 142 #define sb_jp_jourmal_max_commit_age(sbp) \ 143 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 144 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 145 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 146 147 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 148 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 149 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 150 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 151 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 152 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 153 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 154 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 155 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 156 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 157 #define sb_hash_function_code(sbp) \ 158 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 159 #define set_sb_hash_function_code(sbp,v) \ 160 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 161 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 162 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 163 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 164 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 165 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 166 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 167 168 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 169 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 170 171 #define sb_reserved_for_journal(sbp) \ 172 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 173 #define set_sb_reserved_for_journal(sbp,v) \ 174 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 175 176 /* LOGGING -- */ 177 178 /* 179 * These all interelate for performance. 180 * 181 * If the journal block count is smaller than n transactions, you lose speed. 182 * I don't know what n is yet, I'm guessing 8-16. 183 * 184 * typical transaction size depends on the application, how often fsync is 185 * called, and how many metadata blocks you dirty in a 30 second period. 186 * The more small files (<16k) you use, the larger your transactions will 187 * be. 188 * 189 * If your journal fills faster than dirty buffers get flushed to disk, it 190 * must flush them before allowing the journal to wrap, which slows things 191 * down. If you need high speed meta data updates, the journal should be 192 * big enough to prevent wrapping before dirty meta blocks get to disk. 193 * 194 * If the batch max is smaller than the transaction max, you'll waste space 195 * at the end of the journal because journal_end sets the next transaction 196 * to start at 0 if the next transaction has any chance of wrapping. 197 * 198 * The large the batch max age, the better the speed, and the more meta 199 * data changes you'll lose after a crash. 200 */ 201 202 /* don't mess with these for a while */ 203 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 204 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 205 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 206 #define JOURNAL_HASH_SIZE 8192 207 208 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 209 #define JOURNAL_NUM_BITMAPS 5 210 211 /* 212 * One of these for every block in every transaction 213 * Each one is in two hash tables. First, a hash of the current transaction, 214 * and after journal_end, a hash of all the in memory transactions. 215 * next and prev are used by the current transaction (journal_hash). 216 * hnext and hprev are used by journal_list_hash. If a block is in more 217 * than one transaction, the journal_list_hash links it in multiple times. 218 * This allows flush_journal_list to remove just the cnode belonging to a 219 * given transaction. 220 */ 221 struct reiserfs_journal_cnode { 222 struct buffer_head *bh; /* real buffer head */ 223 struct super_block *sb; /* dev of real buffer head */ 224 225 /* block number of real buffer head, == 0 when buffer on disk */ 226 __u32 blocknr; 227 228 unsigned long state; 229 230 /* journal list this cnode lives in */ 231 struct reiserfs_journal_list *jlist; 232 233 struct reiserfs_journal_cnode *next; /* next in transaction list */ 234 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 235 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 236 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 237 }; 238 239 struct reiserfs_bitmap_node { 240 int id; 241 char *data; 242 struct list_head list; 243 }; 244 245 struct reiserfs_list_bitmap { 246 struct reiserfs_journal_list *journal_list; 247 struct reiserfs_bitmap_node **bitmaps; 248 }; 249 250 /* 251 * one of these for each transaction. The most important part here is the 252 * j_realblock. this list of cnodes is used to hash all the blocks in all 253 * the commits, to mark all the real buffer heads dirty once all the commits 254 * hit the disk, and to make sure every real block in a transaction is on 255 * disk before allowing the log area to be overwritten 256 */ 257 struct reiserfs_journal_list { 258 unsigned long j_start; 259 unsigned long j_state; 260 unsigned long j_len; 261 atomic_t j_nonzerolen; 262 atomic_t j_commit_left; 263 264 /* all commits older than this on disk */ 265 atomic_t j_older_commits_done; 266 267 struct mutex j_commit_mutex; 268 unsigned int j_trans_id; 269 time_t j_timestamp; 270 struct reiserfs_list_bitmap *j_list_bitmap; 271 struct buffer_head *j_commit_bh; /* commit buffer head */ 272 struct reiserfs_journal_cnode *j_realblock; 273 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 274 /* time ordered list of all active transactions */ 275 struct list_head j_list; 276 277 /* 278 * time ordered list of all transactions we haven't tried 279 * to flush yet 280 */ 281 struct list_head j_working_list; 282 283 /* list of tail conversion targets in need of flush before commit */ 284 struct list_head j_tail_bh_list; 285 286 /* list of data=ordered buffers in need of flush before commit */ 287 struct list_head j_bh_list; 288 int j_refcount; 289 }; 290 291 struct reiserfs_journal { 292 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 293 /* newest journal block */ 294 struct reiserfs_journal_cnode *j_last; 295 296 /* oldest journal block. start here for traverse */ 297 struct reiserfs_journal_cnode *j_first; 298 299 struct block_device *j_dev_bd; 300 fmode_t j_dev_mode; 301 302 /* first block on s_dev of reserved area journal */ 303 int j_1st_reserved_block; 304 305 unsigned long j_state; 306 unsigned int j_trans_id; 307 unsigned long j_mount_id; 308 309 /* start of current waiting commit (index into j_ap_blocks) */ 310 unsigned long j_start; 311 unsigned long j_len; /* length of current waiting commit */ 312 313 /* number of buffers requested by journal_begin() */ 314 unsigned long j_len_alloc; 315 316 atomic_t j_wcount; /* count of writers for current commit */ 317 318 /* batch count. allows turning X transactions into 1 */ 319 unsigned long j_bcount; 320 321 /* first unflushed transactions offset */ 322 unsigned long j_first_unflushed_offset; 323 324 /* last fully flushed journal timestamp */ 325 unsigned j_last_flush_trans_id; 326 327 struct buffer_head *j_header_bh; 328 329 time_t j_trans_start_time; /* time this transaction started */ 330 struct mutex j_mutex; 331 struct mutex j_flush_mutex; 332 333 /* wait for current transaction to finish before starting new one */ 334 wait_queue_head_t j_join_wait; 335 336 atomic_t j_jlock; /* lock for j_join_wait */ 337 int j_list_bitmap_index; /* number of next list bitmap to use */ 338 339 /* no more journal begins allowed. MUST sleep on j_join_wait */ 340 int j_must_wait; 341 342 /* next journal_end will flush all journal list */ 343 int j_next_full_flush; 344 345 /* next journal_end will flush all async commits */ 346 int j_next_async_flush; 347 348 int j_cnode_used; /* number of cnodes on the used list */ 349 int j_cnode_free; /* number of cnodes on the free list */ 350 351 /* max number of blocks in a transaction. */ 352 unsigned int j_trans_max; 353 354 /* max number of blocks to batch into a trans */ 355 unsigned int j_max_batch; 356 357 /* in seconds, how old can an async commit be */ 358 unsigned int j_max_commit_age; 359 360 /* in seconds, how old can a transaction be */ 361 unsigned int j_max_trans_age; 362 363 /* the default for the max commit age */ 364 unsigned int j_default_max_commit_age; 365 366 struct reiserfs_journal_cnode *j_cnode_free_list; 367 368 /* orig pointer returned from vmalloc */ 369 struct reiserfs_journal_cnode *j_cnode_free_orig; 370 371 struct reiserfs_journal_list *j_current_jl; 372 int j_free_bitmap_nodes; 373 int j_used_bitmap_nodes; 374 375 int j_num_lists; /* total number of active transactions */ 376 int j_num_work_lists; /* number that need attention from kreiserfsd */ 377 378 /* debugging to make sure things are flushed in order */ 379 unsigned int j_last_flush_id; 380 381 /* debugging to make sure things are committed in order */ 382 unsigned int j_last_commit_id; 383 384 struct list_head j_bitmap_nodes; 385 struct list_head j_dirty_buffers; 386 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 387 388 /* list of all active transactions */ 389 struct list_head j_journal_list; 390 391 /* lists that haven't been touched by writeback attempts */ 392 struct list_head j_working_list; 393 394 /* hash table for real buffer heads in current trans */ 395 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; 396 397 /* hash table for all the real buffer heads in all the transactions */ 398 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; 399 400 /* array of bitmaps to record the deleted blocks */ 401 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; 402 403 /* list of inodes which have preallocated blocks */ 404 struct list_head j_prealloc_list; 405 int j_persistent_trans; 406 unsigned long j_max_trans_size; 407 unsigned long j_max_batch_size; 408 409 int j_errno; 410 411 /* when flushing ordered buffers, throttle new ordered writers */ 412 struct delayed_work j_work; 413 struct super_block *j_work_sb; 414 atomic_t j_async_throttle; 415 }; 416 417 enum journal_state_bits { 418 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 419 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 420 J_ABORTED, /* set when log is aborted */ 421 }; 422 423 /* ick. magic string to find desc blocks in the journal */ 424 #define JOURNAL_DESC_MAGIC "ReIsErLB" 425 426 typedef __u32(*hashf_t) (const signed char *, int); 427 428 struct reiserfs_bitmap_info { 429 __u32 free_count; 430 }; 431 432 struct proc_dir_entry; 433 434 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 435 typedef unsigned long int stat_cnt_t; 436 typedef struct reiserfs_proc_info_data { 437 spinlock_t lock; 438 int exiting; 439 int max_hash_collisions; 440 441 stat_cnt_t breads; 442 stat_cnt_t bread_miss; 443 stat_cnt_t search_by_key; 444 stat_cnt_t search_by_key_fs_changed; 445 stat_cnt_t search_by_key_restarted; 446 447 stat_cnt_t insert_item_restarted; 448 stat_cnt_t paste_into_item_restarted; 449 stat_cnt_t cut_from_item_restarted; 450 stat_cnt_t delete_solid_item_restarted; 451 stat_cnt_t delete_item_restarted; 452 453 stat_cnt_t leaked_oid; 454 stat_cnt_t leaves_removable; 455 456 /* 457 * balances per level. 458 * Use explicit 5 as MAX_HEIGHT is not visible yet. 459 */ 460 stat_cnt_t balance_at[5]; /* XXX */ 461 /* sbk == search_by_key */ 462 stat_cnt_t sbk_read_at[5]; /* XXX */ 463 stat_cnt_t sbk_fs_changed[5]; 464 stat_cnt_t sbk_restarted[5]; 465 stat_cnt_t items_at[5]; /* XXX */ 466 stat_cnt_t free_at[5]; /* XXX */ 467 stat_cnt_t can_node_be_removed[5]; /* XXX */ 468 long int lnum[5]; /* XXX */ 469 long int rnum[5]; /* XXX */ 470 long int lbytes[5]; /* XXX */ 471 long int rbytes[5]; /* XXX */ 472 stat_cnt_t get_neighbors[5]; 473 stat_cnt_t get_neighbors_restart[5]; 474 stat_cnt_t need_l_neighbor[5]; 475 stat_cnt_t need_r_neighbor[5]; 476 477 stat_cnt_t free_block; 478 struct __scan_bitmap_stats { 479 stat_cnt_t call; 480 stat_cnt_t wait; 481 stat_cnt_t bmap; 482 stat_cnt_t retry; 483 stat_cnt_t in_journal_hint; 484 stat_cnt_t in_journal_nohint; 485 stat_cnt_t stolen; 486 } scan_bitmap; 487 struct __journal_stats { 488 stat_cnt_t in_journal; 489 stat_cnt_t in_journal_bitmap; 490 stat_cnt_t in_journal_reusable; 491 stat_cnt_t lock_journal; 492 stat_cnt_t lock_journal_wait; 493 stat_cnt_t journal_being; 494 stat_cnt_t journal_relock_writers; 495 stat_cnt_t journal_relock_wcount; 496 stat_cnt_t mark_dirty; 497 stat_cnt_t mark_dirty_already; 498 stat_cnt_t mark_dirty_notjournal; 499 stat_cnt_t restore_prepared; 500 stat_cnt_t prepare; 501 stat_cnt_t prepare_retry; 502 } journal; 503 } reiserfs_proc_info_data_t; 504 #else 505 typedef struct reiserfs_proc_info_data { 506 } reiserfs_proc_info_data_t; 507 #endif 508 509 /* reiserfs union of in-core super block data */ 510 struct reiserfs_sb_info { 511 /* Buffer containing the super block */ 512 struct buffer_head *s_sbh; 513 514 /* Pointer to the on-disk super block in the buffer */ 515 struct reiserfs_super_block *s_rs; 516 struct reiserfs_bitmap_info *s_ap_bitmap; 517 518 /* pointer to journal information */ 519 struct reiserfs_journal *s_journal; 520 521 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 522 523 /* Serialize writers access, replace the old bkl */ 524 struct mutex lock; 525 526 /* Owner of the lock (can be recursive) */ 527 struct task_struct *lock_owner; 528 529 /* Depth of the lock, start from -1 like the bkl */ 530 int lock_depth; 531 532 struct workqueue_struct *commit_wq; 533 534 /* Comment? -Hans */ 535 void (*end_io_handler) (struct buffer_head *, int); 536 537 /* 538 * pointer to function which is used to sort names in directory. 539 * Set on mount 540 */ 541 hashf_t s_hash_function; 542 543 /* reiserfs's mount options are set here */ 544 unsigned long s_mount_opt; 545 546 /* This is a structure that describes block allocator options */ 547 struct { 548 /* Bitfield for enable/disable kind of options */ 549 unsigned long bits; 550 551 /* 552 * size started from which we consider file 553 * to be a large one (in blocks) 554 */ 555 unsigned long large_file_size; 556 557 int border; /* percentage of disk, border takes */ 558 559 /* 560 * Minimal file size (in blocks) starting 561 * from which we do preallocations 562 */ 563 int preallocmin; 564 565 /* 566 * Number of blocks we try to prealloc when file 567 * reaches preallocmin size (in blocks) or prealloc_list 568 is empty. 569 */ 570 int preallocsize; 571 } s_alloc_options; 572 573 /* Comment? -Hans */ 574 wait_queue_head_t s_wait; 575 /* increased by one every time the tree gets re-balanced */ 576 atomic_t s_generation_counter; 577 578 /* File system properties. Currently holds on-disk FS format */ 579 unsigned long s_properties; 580 581 /* session statistics */ 582 int s_disk_reads; 583 int s_disk_writes; 584 int s_fix_nodes; 585 int s_do_balance; 586 int s_unneeded_left_neighbor; 587 int s_good_search_by_key_reada; 588 int s_bmaps; 589 int s_bmaps_without_search; 590 int s_direct2indirect; 591 int s_indirect2direct; 592 593 /* 594 * set up when it's ok for reiserfs_read_inode2() to read from 595 * disk inode with nlink==0. Currently this is only used during 596 * finish_unfinished() processing at mount time 597 */ 598 int s_is_unlinked_ok; 599 600 reiserfs_proc_info_data_t s_proc_info_data; 601 struct proc_dir_entry *procdir; 602 603 /* amount of blocks reserved for further allocations */ 604 int reserved_blocks; 605 606 607 /* this lock on now only used to protect reserved_blocks variable */ 608 spinlock_t bitmap_lock; 609 struct dentry *priv_root; /* root of /.reiserfs_priv */ 610 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 611 int j_errno; 612 613 int work_queued; /* non-zero delayed work is queued */ 614 struct delayed_work old_work; /* old transactions flush delayed work */ 615 spinlock_t old_work_lock; /* protects old_work and work_queued */ 616 617 #ifdef CONFIG_QUOTA 618 char *s_qf_names[MAXQUOTAS]; 619 int s_jquota_fmt; 620 #endif 621 char *s_jdev; /* Stored jdev for mount option showing */ 622 #ifdef CONFIG_REISERFS_CHECK 623 624 /* 625 * Detects whether more than one copy of tb exists per superblock 626 * as a means of checking whether do_balance is executing 627 * concurrently against another tree reader/writer on a same 628 * mount point. 629 */ 630 struct tree_balance *cur_tb; 631 #endif 632 }; 633 634 /* Definitions of reiserfs on-disk properties: */ 635 #define REISERFS_3_5 0 636 #define REISERFS_3_6 1 637 #define REISERFS_OLD_FORMAT 2 638 639 /* Mount options */ 640 enum reiserfs_mount_options { 641 /* large tails will be created in a session */ 642 REISERFS_LARGETAIL, 643 /* 644 * small (for files less than block size) tails will 645 * be created in a session 646 */ 647 REISERFS_SMALLTAIL, 648 649 /* replay journal and return 0. Use by fsck */ 650 REPLAYONLY, 651 652 /* 653 * -o conv: causes conversion of old format super block to the 654 * new format. If not specified - old partition will be dealt 655 * with in a manner of 3.5.x 656 */ 657 REISERFS_CONVERT, 658 659 /* 660 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting 661 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this 662 * option is not required. If the normal autodection code can't 663 * determine which hash to use (because both hashes had the same 664 * value for a file) use this option to force a specific hash. 665 * It won't allow you to override the existing hash on the FS, so 666 * if you have a tea hash disk, and mount with -o hash=rupasov, 667 * the mount will fail. 668 */ 669 FORCE_TEA_HASH, /* try to force tea hash on mount */ 670 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 671 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 672 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 673 674 REISERFS_DATA_LOG, 675 REISERFS_DATA_ORDERED, 676 REISERFS_DATA_WRITEBACK, 677 678 /* 679 * used for testing experimental features, makes benchmarking new 680 * features with and without more convenient, should never be used by 681 * users in any code shipped to users (ideally) 682 */ 683 684 REISERFS_NO_BORDER, 685 REISERFS_NO_UNHASHED_RELOCATION, 686 REISERFS_HASHED_RELOCATION, 687 REISERFS_ATTRS, 688 REISERFS_XATTRS_USER, 689 REISERFS_POSIXACL, 690 REISERFS_EXPOSE_PRIVROOT, 691 REISERFS_BARRIER_NONE, 692 REISERFS_BARRIER_FLUSH, 693 694 /* Actions on error */ 695 REISERFS_ERROR_PANIC, 696 REISERFS_ERROR_RO, 697 REISERFS_ERROR_CONTINUE, 698 699 REISERFS_USRQUOTA, /* User quota option specified */ 700 REISERFS_GRPQUOTA, /* Group quota option specified */ 701 702 REISERFS_TEST1, 703 REISERFS_TEST2, 704 REISERFS_TEST3, 705 REISERFS_TEST4, 706 REISERFS_UNSUPPORTED_OPT, 707 }; 708 709 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 710 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 711 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 712 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 713 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 714 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 715 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 716 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 717 718 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 719 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 720 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 721 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 722 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 723 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 724 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 725 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 726 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 727 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 728 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 729 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 730 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 731 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 732 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 733 734 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 735 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 736 737 void reiserfs_file_buffer(struct buffer_head *bh, int list); 738 extern struct file_system_type reiserfs_fs_type; 739 int reiserfs_resize(struct super_block *, unsigned long); 740 741 #define CARRY_ON 0 742 #define SCHEDULE_OCCURRED 1 743 744 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 745 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 746 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 747 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 748 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 749 750 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 751 752 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 753 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 754 *journal) 755 { 756 return test_bit(J_ABORTED, &journal->j_state); 757 } 758 759 /* 760 * Locking primitives. The write lock is a per superblock 761 * special mutex that has properties close to the Big Kernel Lock 762 * which was used in the previous locking scheme. 763 */ 764 void reiserfs_write_lock(struct super_block *s); 765 void reiserfs_write_unlock(struct super_block *s); 766 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 767 void reiserfs_write_lock_nested(struct super_block *s, int depth); 768 769 #ifdef CONFIG_REISERFS_CHECK 770 void reiserfs_lock_check_recursive(struct super_block *s); 771 #else 772 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 773 #endif 774 775 /* 776 * Several mutexes depend on the write lock. 777 * However sometimes we want to relax the write lock while we hold 778 * these mutexes, according to the release/reacquire on schedule() 779 * properties of the Bkl that were used. 780 * Reiserfs performances and locking were based on this scheme. 781 * Now that the write lock is a mutex and not the bkl anymore, doing so 782 * may result in a deadlock: 783 * 784 * A acquire write_lock 785 * A acquire j_commit_mutex 786 * A release write_lock and wait for something 787 * B acquire write_lock 788 * B can't acquire j_commit_mutex and sleep 789 * A can't acquire write lock anymore 790 * deadlock 791 * 792 * What we do here is avoiding such deadlock by playing the same game 793 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 794 * we release the write lock, wait a bit and then retry. 795 * 796 * The mutexes concerned by this hack are: 797 * - The commit mutex of a journal list 798 * - The flush mutex 799 * - The journal lock 800 * - The inode mutex 801 */ 802 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 803 struct super_block *s) 804 { 805 int depth; 806 807 depth = reiserfs_write_unlock_nested(s); 808 mutex_lock(m); 809 reiserfs_write_lock_nested(s, depth); 810 } 811 812 static inline void 813 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 814 struct super_block *s) 815 { 816 int depth; 817 818 depth = reiserfs_write_unlock_nested(s); 819 mutex_lock_nested(m, subclass); 820 reiserfs_write_lock_nested(s, depth); 821 } 822 823 static inline void 824 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 825 { 826 int depth; 827 depth = reiserfs_write_unlock_nested(s); 828 down_read(sem); 829 reiserfs_write_lock_nested(s, depth); 830 } 831 832 /* 833 * When we schedule, we usually want to also release the write lock, 834 * according to the previous bkl based locking scheme of reiserfs. 835 */ 836 static inline void reiserfs_cond_resched(struct super_block *s) 837 { 838 if (need_resched()) { 839 int depth; 840 841 depth = reiserfs_write_unlock_nested(s); 842 schedule(); 843 reiserfs_write_lock_nested(s, depth); 844 } 845 } 846 847 struct fid; 848 849 /* 850 * in reading the #defines, it may help to understand that they employ 851 * the following abbreviations: 852 * 853 * B = Buffer 854 * I = Item header 855 * H = Height within the tree (should be changed to LEV) 856 * N = Number of the item in the node 857 * STAT = stat data 858 * DEH = Directory Entry Header 859 * EC = Entry Count 860 * E = Entry number 861 * UL = Unsigned Long 862 * BLKH = BLocK Header 863 * UNFM = UNForMatted node 864 * DC = Disk Child 865 * P = Path 866 * 867 * These #defines are named by concatenating these abbreviations, 868 * where first comes the arguments, and last comes the return value, 869 * of the macro. 870 */ 871 872 #define USE_INODE_GENERATION_COUNTER 873 874 #define REISERFS_PREALLOCATE 875 #define DISPLACE_NEW_PACKING_LOCALITIES 876 #define PREALLOCATION_SIZE 9 877 878 /* n must be power of 2 */ 879 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 880 881 /* 882 * to be ok for alpha and others we have to align structures to 8 byte 883 * boundary. 884 * FIXME: do not change 4 by anything else: there is code which relies on that 885 */ 886 #define ROUND_UP(x) _ROUND_UP(x,8LL) 887 888 /* 889 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 890 * messages. 891 */ 892 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 893 894 void __reiserfs_warning(struct super_block *s, const char *id, 895 const char *func, const char *fmt, ...); 896 #define reiserfs_warning(s, id, fmt, args...) \ 897 __reiserfs_warning(s, id, __func__, fmt, ##args) 898 /* assertions handling */ 899 900 /* always check a condition and panic if it's false. */ 901 #define __RASSERT(cond, scond, format, args...) \ 902 do { \ 903 if (!(cond)) \ 904 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 905 __FILE__ ":%i:%s: " format "\n", \ 906 in_interrupt() ? -1 : task_pid_nr(current), \ 907 __LINE__, __func__ , ##args); \ 908 } while (0) 909 910 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 911 912 #if defined( CONFIG_REISERFS_CHECK ) 913 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 914 #else 915 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 916 #endif 917 918 #define CONSTF __attribute_const__ 919 /* 920 * Disk Data Structures 921 */ 922 923 /*************************************************************************** 924 * SUPER BLOCK * 925 ***************************************************************************/ 926 927 /* 928 * Structure of super block on disk, a version of which in RAM is often 929 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger 930 * structure containing fields never written to disk. 931 */ 932 #define UNSET_HASH 0 /* Detect hash on disk */ 933 #define TEA_HASH 1 934 #define YURA_HASH 2 935 #define R5_HASH 3 936 #define DEFAULT_HASH R5_HASH 937 938 struct journal_params { 939 /* where does journal start from on its * device */ 940 __le32 jp_journal_1st_block; 941 942 /* journal device st_rdev */ 943 __le32 jp_journal_dev; 944 945 /* size of the journal */ 946 __le32 jp_journal_size; 947 948 /* max number of blocks in a transaction. */ 949 __le32 jp_journal_trans_max; 950 951 /* 952 * random value made on fs creation 953 * (this was sb_journal_block_count) 954 */ 955 __le32 jp_journal_magic; 956 957 /* max number of blocks to batch into a trans */ 958 __le32 jp_journal_max_batch; 959 960 /* in seconds, how old can an async commit be */ 961 __le32 jp_journal_max_commit_age; 962 963 /* in seconds, how old can a transaction be */ 964 __le32 jp_journal_max_trans_age; 965 }; 966 967 /* this is the super from 3.5.X, where X >= 10 */ 968 struct reiserfs_super_block_v1 { 969 __le32 s_block_count; /* blocks count */ 970 __le32 s_free_blocks; /* free blocks count */ 971 __le32 s_root_block; /* root block number */ 972 struct journal_params s_journal; 973 __le16 s_blocksize; /* block size */ 974 975 /* max size of object id array, see get_objectid() commentary */ 976 __le16 s_oid_maxsize; 977 __le16 s_oid_cursize; /* current size of object id array */ 978 979 /* this is set to 1 when filesystem was umounted, to 2 - when not */ 980 __le16 s_umount_state; 981 982 /* 983 * reiserfs magic string indicates that file system is reiserfs: 984 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" 985 */ 986 char s_magic[10]; 987 988 /* 989 * it is set to used by fsck to mark which 990 * phase of rebuilding is done 991 */ 992 __le16 s_fs_state; 993 /* 994 * indicate, what hash function is being use 995 * to sort names in a directory 996 */ 997 __le32 s_hash_function_code; 998 __le16 s_tree_height; /* height of disk tree */ 999 1000 /* 1001 * amount of bitmap blocks needed to address 1002 * each block of file system 1003 */ 1004 __le16 s_bmap_nr; 1005 1006 /* 1007 * this field is only reliable on filesystem with non-standard journal 1008 */ 1009 __le16 s_version; 1010 1011 /* 1012 * size in blocks of journal area on main device, we need to 1013 * keep after making fs with non-standard journal 1014 */ 1015 __le16 s_reserved_for_journal; 1016 } __attribute__ ((__packed__)); 1017 1018 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 1019 1020 /* this is the on disk super block */ 1021 struct reiserfs_super_block { 1022 struct reiserfs_super_block_v1 s_v1; 1023 __le32 s_inode_generation; 1024 1025 /* Right now used only by inode-attributes, if enabled */ 1026 __le32 s_flags; 1027 1028 unsigned char s_uuid[16]; /* filesystem unique identifier */ 1029 unsigned char s_label[16]; /* filesystem volume label */ 1030 __le16 s_mnt_count; /* Count of mounts since last fsck */ 1031 __le16 s_max_mnt_count; /* Maximum mounts before check */ 1032 __le32 s_lastcheck; /* Timestamp of last fsck */ 1033 __le32 s_check_interval; /* Interval between checks */ 1034 1035 /* 1036 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() 1037 * so any additions must be updated there as well. */ 1038 char s_unused[76]; 1039 } __attribute__ ((__packed__)); 1040 1041 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 1042 1043 #define REISERFS_VERSION_1 0 1044 #define REISERFS_VERSION_2 2 1045 1046 /* on-disk super block fields converted to cpu form */ 1047 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 1048 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 1049 #define SB_BLOCKSIZE(s) \ 1050 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 1051 #define SB_BLOCK_COUNT(s) \ 1052 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 1053 #define SB_FREE_BLOCKS(s) \ 1054 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 1055 #define SB_REISERFS_MAGIC(s) \ 1056 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 1057 #define SB_ROOT_BLOCK(s) \ 1058 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 1059 #define SB_TREE_HEIGHT(s) \ 1060 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 1061 #define SB_REISERFS_STATE(s) \ 1062 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 1063 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 1064 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 1065 1066 #define PUT_SB_BLOCK_COUNT(s, val) \ 1067 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 1068 #define PUT_SB_FREE_BLOCKS(s, val) \ 1069 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 1070 #define PUT_SB_ROOT_BLOCK(s, val) \ 1071 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 1072 #define PUT_SB_TREE_HEIGHT(s, val) \ 1073 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 1074 #define PUT_SB_REISERFS_STATE(s, val) \ 1075 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 1076 #define PUT_SB_VERSION(s, val) \ 1077 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 1078 #define PUT_SB_BMAP_NR(s, val) \ 1079 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 1080 1081 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 1082 #define SB_ONDISK_JOURNAL_SIZE(s) \ 1083 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 1084 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 1085 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 1086 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 1087 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 1088 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 1089 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 1090 1091 #define is_block_in_log_or_reserved_area(s, block) \ 1092 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 1093 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 1094 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 1095 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 1096 1097 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 1098 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 1099 int is_reiserfs_jr(struct reiserfs_super_block *rs); 1100 1101 /* 1102 * ReiserFS leaves the first 64k unused, so that partition labels have 1103 * enough space. If someone wants to write a fancy bootloader that 1104 * needs more than 64k, let us know, and this will be increased in size. 1105 * This number must be larger than than the largest block size on any 1106 * platform, or code will break. -Hans 1107 */ 1108 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 1109 #define REISERFS_FIRST_BLOCK unused_define 1110 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 1111 1112 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 1113 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 1114 1115 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 1116 #define CARRY_ON 0 1117 #define REPEAT_SEARCH -1 1118 #define IO_ERROR -2 1119 #define NO_DISK_SPACE -3 1120 #define NO_BALANCING_NEEDED (-4) 1121 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 1122 #define QUOTA_EXCEEDED -6 1123 1124 typedef __u32 b_blocknr_t; 1125 typedef __le32 unp_t; 1126 1127 struct unfm_nodeinfo { 1128 unp_t unfm_nodenum; 1129 unsigned short unfm_freespace; 1130 }; 1131 1132 /* there are two formats of keys: 3.5 and 3.6 */ 1133 #define KEY_FORMAT_3_5 0 1134 #define KEY_FORMAT_3_6 1 1135 1136 /* there are two stat datas */ 1137 #define STAT_DATA_V1 0 1138 #define STAT_DATA_V2 1 1139 1140 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 1141 { 1142 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 1143 } 1144 1145 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 1146 { 1147 return sb->s_fs_info; 1148 } 1149 1150 /* 1151 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 1152 * which overflows on large file systems. 1153 */ 1154 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 1155 { 1156 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 1157 } 1158 1159 static inline int bmap_would_wrap(unsigned bmap_nr) 1160 { 1161 return bmap_nr > ((1LL << 16) - 1); 1162 } 1163 1164 /* 1165 * this says about version of key of all items (but stat data) the 1166 * object consists of 1167 */ 1168 #define get_inode_item_key_version( inode ) \ 1169 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 1170 1171 #define set_inode_item_key_version( inode, version ) \ 1172 ({ if((version)==KEY_FORMAT_3_6) \ 1173 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 1174 else \ 1175 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 1176 1177 #define get_inode_sd_version(inode) \ 1178 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 1179 1180 #define set_inode_sd_version(inode, version) \ 1181 ({ if((version)==STAT_DATA_V2) \ 1182 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1183 else \ 1184 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1185 1186 /* 1187 * This is an aggressive tail suppression policy, I am hoping it 1188 * improves our benchmarks. The principle behind it is that percentage 1189 * space saving is what matters, not absolute space saving. This is 1190 * non-intuitive, but it helps to understand it if you consider that the 1191 * cost to access 4 blocks is not much more than the cost to access 1 1192 * block, if you have to do a seek and rotate. A tail risks a 1193 * non-linear disk access that is significant as a percentage of total 1194 * time cost for a 4 block file and saves an amount of space that is 1195 * less significant as a percentage of space, or so goes the hypothesis. 1196 * -Hans 1197 */ 1198 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1199 (\ 1200 (!(n_tail_size)) || \ 1201 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1202 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1203 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1204 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1205 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1206 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1207 ( ( (n_file_size) >= (n_block_size) ) && \ 1208 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1209 ) 1210 1211 /* 1212 * Another strategy for tails, this one means only create a tail if all the 1213 * file would fit into one DIRECT item. 1214 * Primary intention for this one is to increase performance by decreasing 1215 * seeking. 1216 */ 1217 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1218 (\ 1219 (!(n_tail_size)) || \ 1220 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1221 ) 1222 1223 /* 1224 * values for s_umount_state field 1225 */ 1226 #define REISERFS_VALID_FS 1 1227 #define REISERFS_ERROR_FS 2 1228 1229 /* 1230 * there are 5 item types currently 1231 */ 1232 #define TYPE_STAT_DATA 0 1233 #define TYPE_INDIRECT 1 1234 #define TYPE_DIRECT 2 1235 #define TYPE_DIRENTRY 3 1236 #define TYPE_MAXTYPE 3 1237 #define TYPE_ANY 15 /* FIXME: comment is required */ 1238 1239 /*************************************************************************** 1240 * KEY & ITEM HEAD * 1241 ***************************************************************************/ 1242 1243 /* * directories use this key as well as old files */ 1244 struct offset_v1 { 1245 __le32 k_offset; 1246 __le32 k_uniqueness; 1247 } __attribute__ ((__packed__)); 1248 1249 struct offset_v2 { 1250 __le64 v; 1251 } __attribute__ ((__packed__)); 1252 1253 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1254 { 1255 __u8 type = le64_to_cpu(v2->v) >> 60; 1256 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1257 } 1258 1259 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1260 { 1261 v2->v = 1262 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1263 } 1264 1265 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1266 { 1267 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1268 } 1269 1270 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1271 { 1272 offset &= (~0ULL >> 4); 1273 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1274 } 1275 1276 /* 1277 * Key of an item determines its location in the S+tree, and 1278 * is composed of 4 components 1279 */ 1280 struct reiserfs_key { 1281 /* packing locality: by default parent directory object id */ 1282 __le32 k_dir_id; 1283 1284 __le32 k_objectid; /* object identifier */ 1285 union { 1286 struct offset_v1 k_offset_v1; 1287 struct offset_v2 k_offset_v2; 1288 } __attribute__ ((__packed__)) u; 1289 } __attribute__ ((__packed__)); 1290 1291 struct in_core_key { 1292 /* packing locality: by default parent directory object id */ 1293 __u32 k_dir_id; 1294 __u32 k_objectid; /* object identifier */ 1295 __u64 k_offset; 1296 __u8 k_type; 1297 }; 1298 1299 struct cpu_key { 1300 struct in_core_key on_disk_key; 1301 int version; 1302 /* 3 in all cases but direct2indirect and indirect2direct conversion */ 1303 int key_length; 1304 }; 1305 1306 /* 1307 * Our function for comparing keys can compare keys of different 1308 * lengths. It takes as a parameter the length of the keys it is to 1309 * compare. These defines are used in determining what is to be passed 1310 * to it as that parameter. 1311 */ 1312 #define REISERFS_FULL_KEY_LEN 4 1313 #define REISERFS_SHORT_KEY_LEN 2 1314 1315 /* The result of the key compare */ 1316 #define FIRST_GREATER 1 1317 #define SECOND_GREATER -1 1318 #define KEYS_IDENTICAL 0 1319 #define KEY_FOUND 1 1320 #define KEY_NOT_FOUND 0 1321 1322 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1323 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 1324 1325 /* return values for search_by_key and clones */ 1326 #define ITEM_FOUND 1 1327 #define ITEM_NOT_FOUND 0 1328 #define ENTRY_FOUND 1 1329 #define ENTRY_NOT_FOUND 0 1330 #define DIRECTORY_NOT_FOUND -1 1331 #define REGULAR_FILE_FOUND -2 1332 #define DIRECTORY_FOUND -3 1333 #define BYTE_FOUND 1 1334 #define BYTE_NOT_FOUND 0 1335 #define FILE_NOT_FOUND -1 1336 1337 #define POSITION_FOUND 1 1338 #define POSITION_NOT_FOUND 0 1339 1340 /* return values for reiserfs_find_entry and search_by_entry_key */ 1341 #define NAME_FOUND 1 1342 #define NAME_NOT_FOUND 0 1343 #define GOTO_PREVIOUS_ITEM 2 1344 #define NAME_FOUND_INVISIBLE 3 1345 1346 /* 1347 * Everything in the filesystem is stored as a set of items. The 1348 * item head contains the key of the item, its free space (for 1349 * indirect items) and specifies the location of the item itself 1350 * within the block. 1351 */ 1352 1353 struct item_head { 1354 /* 1355 * Everything in the tree is found by searching for it based on 1356 * its key. 1357 */ 1358 struct reiserfs_key ih_key; 1359 union { 1360 /* 1361 * The free space in the last unformatted node of an 1362 * indirect item if this is an indirect item. This 1363 * equals 0xFFFF iff this is a direct item or stat data 1364 * item. Note that the key, not this field, is used to 1365 * determine the item type, and thus which field this 1366 * union contains. 1367 */ 1368 __le16 ih_free_space_reserved; 1369 1370 /* 1371 * Iff this is a directory item, this field equals the 1372 * number of directory entries in the directory item. 1373 */ 1374 __le16 ih_entry_count; 1375 } __attribute__ ((__packed__)) u; 1376 __le16 ih_item_len; /* total size of the item body */ 1377 1378 /* an offset to the item body within the block */ 1379 __le16 ih_item_location; 1380 1381 /* 1382 * 0 for all old items, 2 for new ones. Highest bit is set by fsck 1383 * temporary, cleaned after all done 1384 */ 1385 __le16 ih_version; 1386 } __attribute__ ((__packed__)); 1387 /* size of item header */ 1388 #define IH_SIZE (sizeof(struct item_head)) 1389 1390 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1391 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1392 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1393 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1394 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1395 1396 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1397 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1398 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1399 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1400 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1401 1402 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1403 1404 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1405 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1406 1407 /* 1408 * these operate on indirect items, where you've got an array of ints 1409 * at a possibly unaligned location. These are a noop on ia32 1410 * 1411 * p is the array of __u32, i is the index into the array, v is the value 1412 * to store there. 1413 */ 1414 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1415 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1416 1417 /* * in old version uniqueness field shows key type */ 1418 #define V1_SD_UNIQUENESS 0 1419 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1420 #define V1_DIRECT_UNIQUENESS 0xffffffff 1421 #define V1_DIRENTRY_UNIQUENESS 500 1422 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ 1423 1424 /* here are conversion routines */ 1425 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1426 static inline int uniqueness2type(__u32 uniqueness) 1427 { 1428 switch ((int)uniqueness) { 1429 case V1_SD_UNIQUENESS: 1430 return TYPE_STAT_DATA; 1431 case V1_INDIRECT_UNIQUENESS: 1432 return TYPE_INDIRECT; 1433 case V1_DIRECT_UNIQUENESS: 1434 return TYPE_DIRECT; 1435 case V1_DIRENTRY_UNIQUENESS: 1436 return TYPE_DIRENTRY; 1437 case V1_ANY_UNIQUENESS: 1438 default: 1439 return TYPE_ANY; 1440 } 1441 } 1442 1443 static inline __u32 type2uniqueness(int type) CONSTF; 1444 static inline __u32 type2uniqueness(int type) 1445 { 1446 switch (type) { 1447 case TYPE_STAT_DATA: 1448 return V1_SD_UNIQUENESS; 1449 case TYPE_INDIRECT: 1450 return V1_INDIRECT_UNIQUENESS; 1451 case TYPE_DIRECT: 1452 return V1_DIRECT_UNIQUENESS; 1453 case TYPE_DIRENTRY: 1454 return V1_DIRENTRY_UNIQUENESS; 1455 case TYPE_ANY: 1456 default: 1457 return V1_ANY_UNIQUENESS; 1458 } 1459 } 1460 1461 /* 1462 * key is pointer to on disk key which is stored in le, result is cpu, 1463 * there is no way to get version of object from key, so, provide 1464 * version to these defines 1465 */ 1466 static inline loff_t le_key_k_offset(int version, 1467 const struct reiserfs_key *key) 1468 { 1469 return (version == KEY_FORMAT_3_5) ? 1470 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1471 offset_v2_k_offset(&(key->u.k_offset_v2)); 1472 } 1473 1474 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1475 { 1476 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1477 } 1478 1479 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1480 { 1481 if (version == KEY_FORMAT_3_5) { 1482 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); 1483 return uniqueness2type(val); 1484 } else 1485 return offset_v2_k_type(&(key->u.k_offset_v2)); 1486 } 1487 1488 static inline loff_t le_ih_k_type(const struct item_head *ih) 1489 { 1490 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1491 } 1492 1493 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1494 loff_t offset) 1495 { 1496 if (version == KEY_FORMAT_3_5) 1497 key->u.k_offset_v1.k_offset = cpu_to_le32(offset); 1498 else 1499 set_offset_v2_k_offset(&key->u.k_offset_v2, offset); 1500 } 1501 1502 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, 1503 loff_t offset) 1504 { 1505 set_le_key_k_offset(version, key, 1506 le_key_k_offset(version, key) + offset); 1507 } 1508 1509 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) 1510 { 1511 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1512 } 1513 1514 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1515 { 1516 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1517 } 1518 1519 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1520 int type) 1521 { 1522 if (version == KEY_FORMAT_3_5) { 1523 type = type2uniqueness(type); 1524 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); 1525 } else 1526 set_offset_v2_k_type(&key->u.k_offset_v2, type); 1527 } 1528 1529 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1530 { 1531 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1532 } 1533 1534 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1535 { 1536 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1537 } 1538 1539 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1540 { 1541 return le_key_k_type(version, key) == TYPE_DIRECT; 1542 } 1543 1544 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1545 { 1546 return le_key_k_type(version, key) == TYPE_INDIRECT; 1547 } 1548 1549 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1550 { 1551 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1552 } 1553 1554 /* item header has version. */ 1555 static inline int is_direntry_le_ih(struct item_head *ih) 1556 { 1557 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1558 } 1559 1560 static inline int is_direct_le_ih(struct item_head *ih) 1561 { 1562 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1563 } 1564 1565 static inline int is_indirect_le_ih(struct item_head *ih) 1566 { 1567 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1568 } 1569 1570 static inline int is_statdata_le_ih(struct item_head *ih) 1571 { 1572 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1573 } 1574 1575 /* key is pointer to cpu key, result is cpu */ 1576 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1577 { 1578 return key->on_disk_key.k_offset; 1579 } 1580 1581 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1582 { 1583 return key->on_disk_key.k_type; 1584 } 1585 1586 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1587 { 1588 key->on_disk_key.k_offset = offset; 1589 } 1590 1591 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1592 { 1593 key->on_disk_key.k_type = type; 1594 } 1595 1596 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1597 { 1598 key->on_disk_key.k_offset--; 1599 } 1600 1601 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1602 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1603 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1604 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1605 1606 /* are these used ? */ 1607 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1608 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1609 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1610 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1611 1612 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1613 (!COMP_SHORT_KEYS(ih, key) && \ 1614 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1615 1616 /* maximal length of item */ 1617 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1618 #define MIN_ITEM_LEN 1 1619 1620 /* object identifier for root dir */ 1621 #define REISERFS_ROOT_OBJECTID 2 1622 #define REISERFS_ROOT_PARENT_OBJECTID 1 1623 1624 extern struct reiserfs_key root_key; 1625 1626 /* 1627 * Picture represents a leaf of the S+tree 1628 * ______________________________________________________ 1629 * | | Array of | | | 1630 * |Block | Object-Item | F r e e | Objects- | 1631 * | head | Headers | S p a c e | Items | 1632 * |______|_______________|___________________|___________| 1633 */ 1634 1635 /* 1636 * Header of a disk block. More precisely, header of a formatted leaf 1637 * or internal node, and not the header of an unformatted node. 1638 */ 1639 struct block_head { 1640 __le16 blk_level; /* Level of a block in the tree. */ 1641 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1642 __le16 blk_free_space; /* Block free space in bytes. */ 1643 __le16 blk_reserved; 1644 /* dump this in v4/planA */ 1645 1646 /* kept only for compatibility */ 1647 struct reiserfs_key blk_right_delim_key; 1648 }; 1649 1650 #define BLKH_SIZE (sizeof(struct block_head)) 1651 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1652 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1653 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1654 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1655 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1656 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1657 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1658 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1659 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1660 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1661 1662 /* values for blk_level field of the struct block_head */ 1663 1664 /* 1665 * When node gets removed from the tree its blk_level is set to FREE_LEVEL. 1666 * It is then used to see whether the node is still in the tree 1667 */ 1668 #define FREE_LEVEL 0 1669 1670 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1671 1672 /* 1673 * Given the buffer head of a formatted node, resolve to the 1674 * block head of that node. 1675 */ 1676 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1677 /* Number of items that are in buffer. */ 1678 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1679 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1680 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1681 1682 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1683 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1684 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1685 1686 /* Get right delimiting key. -- little endian */ 1687 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1688 1689 /* Does the buffer contain a disk leaf. */ 1690 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1691 1692 /* Does the buffer contain a disk internal node */ 1693 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1694 && B_LEVEL(bh) <= MAX_HEIGHT) 1695 1696 /*************************************************************************** 1697 * STAT DATA * 1698 ***************************************************************************/ 1699 1700 /* 1701 * old stat data is 32 bytes long. We are going to distinguish new one by 1702 * different size 1703 */ 1704 struct stat_data_v1 { 1705 __le16 sd_mode; /* file type, permissions */ 1706 __le16 sd_nlink; /* number of hard links */ 1707 __le16 sd_uid; /* owner */ 1708 __le16 sd_gid; /* group */ 1709 __le32 sd_size; /* file size */ 1710 __le32 sd_atime; /* time of last access */ 1711 __le32 sd_mtime; /* time file was last modified */ 1712 1713 /* 1714 * time inode (stat data) was last changed 1715 * (except changes to sd_atime and sd_mtime) 1716 */ 1717 __le32 sd_ctime; 1718 union { 1719 __le32 sd_rdev; 1720 __le32 sd_blocks; /* number of blocks file uses */ 1721 } __attribute__ ((__packed__)) u; 1722 1723 /* 1724 * first byte of file which is stored in a direct item: except that if 1725 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no 1726 * direct item. The existence of this field really grates on me. 1727 * Let's replace it with a macro based on sd_size and our tail 1728 * suppression policy. Someday. -Hans 1729 */ 1730 __le32 sd_first_direct_byte; 1731 } __attribute__ ((__packed__)); 1732 1733 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1734 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1735 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1736 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1737 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1738 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1739 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1740 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1741 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1742 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1743 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1744 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1745 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1746 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1747 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1748 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1749 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1750 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1751 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1752 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1753 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1754 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1755 #define sd_v1_first_direct_byte(sdp) \ 1756 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1757 #define set_sd_v1_first_direct_byte(sdp,v) \ 1758 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1759 1760 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1761 1762 /* 1763 * we want common flags to have the same values as in ext2, 1764 * so chattr(1) will work without problems 1765 */ 1766 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1767 #define REISERFS_APPEND_FL FS_APPEND_FL 1768 #define REISERFS_SYNC_FL FS_SYNC_FL 1769 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1770 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1771 #define REISERFS_SECRM_FL FS_SECRM_FL 1772 #define REISERFS_UNRM_FL FS_UNRM_FL 1773 #define REISERFS_COMPR_FL FS_COMPR_FL 1774 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1775 1776 /* persistent flags that file inherits from the parent directory */ 1777 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1778 REISERFS_SYNC_FL | \ 1779 REISERFS_NOATIME_FL | \ 1780 REISERFS_NODUMP_FL | \ 1781 REISERFS_SECRM_FL | \ 1782 REISERFS_COMPR_FL | \ 1783 REISERFS_NOTAIL_FL ) 1784 1785 /* 1786 * Stat Data on disk (reiserfs version of UFS disk inode minus the 1787 * address blocks) 1788 */ 1789 struct stat_data { 1790 __le16 sd_mode; /* file type, permissions */ 1791 __le16 sd_attrs; /* persistent inode flags */ 1792 __le32 sd_nlink; /* number of hard links */ 1793 __le64 sd_size; /* file size */ 1794 __le32 sd_uid; /* owner */ 1795 __le32 sd_gid; /* group */ 1796 __le32 sd_atime; /* time of last access */ 1797 __le32 sd_mtime; /* time file was last modified */ 1798 1799 /* 1800 * time inode (stat data) was last changed 1801 * (except changes to sd_atime and sd_mtime) 1802 */ 1803 __le32 sd_ctime; 1804 __le32 sd_blocks; 1805 union { 1806 __le32 sd_rdev; 1807 __le32 sd_generation; 1808 } __attribute__ ((__packed__)) u; 1809 } __attribute__ ((__packed__)); 1810 1811 /* this is 44 bytes long */ 1812 #define SD_SIZE (sizeof(struct stat_data)) 1813 #define SD_V2_SIZE SD_SIZE 1814 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1815 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1816 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1817 /* sd_reserved */ 1818 /* set_sd_reserved */ 1819 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1820 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1821 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1822 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1823 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1824 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1825 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1826 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1827 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1828 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1829 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1830 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1831 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1832 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1833 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1834 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1835 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1836 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1837 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1838 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1839 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1840 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1841 1842 /*************************************************************************** 1843 * DIRECTORY STRUCTURE * 1844 ***************************************************************************/ 1845 /* 1846 * Picture represents the structure of directory items 1847 * ________________________________________________ 1848 * | Array of | | | | | | 1849 * | directory |N-1| N-2 | .... | 1st |0th| 1850 * | entry headers | | | | | | 1851 * |_______________|___|_____|________|_______|___| 1852 * <---- directory entries ------> 1853 * 1854 * First directory item has k_offset component 1. We store "." and ".." 1855 * in one item, always, we never split "." and ".." into differing 1856 * items. This makes, among other things, the code for removing 1857 * directories simpler. 1858 */ 1859 #define SD_OFFSET 0 1860 #define SD_UNIQUENESS 0 1861 #define DOT_OFFSET 1 1862 #define DOT_DOT_OFFSET 2 1863 #define DIRENTRY_UNIQUENESS 500 1864 1865 #define FIRST_ITEM_OFFSET 1 1866 1867 /* 1868 * Q: How to get key of object pointed to by entry from entry? 1869 * 1870 * A: Each directory entry has its header. This header has deh_dir_id 1871 * and deh_objectid fields, those are key of object, entry points to 1872 */ 1873 1874 /* 1875 * NOT IMPLEMENTED: 1876 * Directory will someday contain stat data of object 1877 */ 1878 1879 struct reiserfs_de_head { 1880 __le32 deh_offset; /* third component of the directory entry key */ 1881 1882 /* 1883 * objectid of the parent directory of the object, that is referenced 1884 * by directory entry 1885 */ 1886 __le32 deh_dir_id; 1887 1888 /* objectid of the object, that is referenced by directory entry */ 1889 __le32 deh_objectid; 1890 __le16 deh_location; /* offset of name in the whole item */ 1891 1892 /* 1893 * whether 1) entry contains stat data (for future), and 1894 * 2) whether entry is hidden (unlinked) 1895 */ 1896 __le16 deh_state; 1897 } __attribute__ ((__packed__)); 1898 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1899 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1900 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1901 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1902 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1903 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1904 1905 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1906 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1907 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1908 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1909 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1910 1911 /* empty directory contains two entries "." and ".." and their headers */ 1912 #define EMPTY_DIR_SIZE \ 1913 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 1914 1915 /* old format directories have this size when empty */ 1916 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1917 1918 #define DEH_Statdata 0 /* not used now */ 1919 #define DEH_Visible 2 1920 1921 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1922 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1923 # define ADDR_UNALIGNED_BITS (3) 1924 #endif 1925 1926 /* 1927 * These are only used to manipulate deh_state. 1928 * Because of this, we'll use the ext2_ bit routines, 1929 * since they are little endian 1930 */ 1931 #ifdef ADDR_UNALIGNED_BITS 1932 1933 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1934 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1935 1936 # define set_bit_unaligned(nr, addr) \ 1937 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1938 # define clear_bit_unaligned(nr, addr) \ 1939 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1940 # define test_bit_unaligned(nr, addr) \ 1941 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1942 1943 #else 1944 1945 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1946 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1947 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1948 1949 #endif 1950 1951 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1952 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1953 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1954 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1955 1956 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1957 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1958 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1959 1960 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1961 __le32 par_dirid, __le32 par_objid); 1962 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1963 __le32 par_dirid, __le32 par_objid); 1964 1965 /* two entries per block (at least) */ 1966 #define REISERFS_MAX_NAME(block_size) 255 1967 1968 /* 1969 * this structure is used for operations on directory entries. It is 1970 * not a disk structure. 1971 * 1972 * When reiserfs_find_entry or search_by_entry_key find directory 1973 * entry, they return filled reiserfs_dir_entry structure 1974 */ 1975 struct reiserfs_dir_entry { 1976 struct buffer_head *de_bh; 1977 int de_item_num; 1978 struct item_head *de_ih; 1979 int de_entry_num; 1980 struct reiserfs_de_head *de_deh; 1981 int de_entrylen; 1982 int de_namelen; 1983 char *de_name; 1984 unsigned long *de_gen_number_bit_string; 1985 1986 __u32 de_dir_id; 1987 __u32 de_objectid; 1988 1989 struct cpu_key de_entry_key; 1990 }; 1991 1992 /* 1993 * these defines are useful when a particular member of 1994 * a reiserfs_dir_entry is needed 1995 */ 1996 1997 /* pointer to file name, stored in entry */ 1998 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ 1999 (ih_item_body(bh, ih) + deh_location(deh)) 2000 2001 /* length of name */ 2002 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 2003 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 2004 2005 /* hash value occupies bits from 7 up to 30 */ 2006 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 2007 /* generation number occupies 7 bits starting from 0 up to 6 */ 2008 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 2009 #define MAX_GENERATION_NUMBER 127 2010 2011 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 2012 2013 /* 2014 * Picture represents an internal node of the reiserfs tree 2015 * ______________________________________________________ 2016 * | | Array of | Array of | Free | 2017 * |block | keys | pointers | space | 2018 * | head | N | N+1 | | 2019 * |______|_______________|___________________|___________| 2020 */ 2021 2022 /*************************************************************************** 2023 * DISK CHILD * 2024 ***************************************************************************/ 2025 /* 2026 * Disk child pointer: 2027 * The pointer from an internal node of the tree to a node that is on disk. 2028 */ 2029 struct disk_child { 2030 __le32 dc_block_number; /* Disk child's block number. */ 2031 __le16 dc_size; /* Disk child's used space. */ 2032 __le16 dc_reserved; 2033 }; 2034 2035 #define DC_SIZE (sizeof(struct disk_child)) 2036 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 2037 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 2038 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 2039 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 2040 2041 /* Get disk child by buffer header and position in the tree node. */ 2042 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 2043 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 2044 2045 /* Get disk child number by buffer header and position in the tree node. */ 2046 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 2047 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 2048 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 2049 2050 /* maximal value of field child_size in structure disk_child */ 2051 /* child size is the combined size of all items and their headers */ 2052 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 2053 2054 /* amount of used space in buffer (not including block head) */ 2055 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 2056 2057 /* max and min number of keys in internal node */ 2058 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 2059 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 2060 2061 /*************************************************************************** 2062 * PATH STRUCTURES AND DEFINES * 2063 ***************************************************************************/ 2064 2065 /* 2066 * search_by_key fills up the path from the root to the leaf as it descends 2067 * the tree looking for the key. It uses reiserfs_bread to try to find 2068 * buffers in the cache given their block number. If it does not find 2069 * them in the cache it reads them from disk. For each node search_by_key 2070 * finds using reiserfs_bread it then uses bin_search to look through that 2071 * node. bin_search will find the position of the block_number of the next 2072 * node if it is looking through an internal node. If it is looking through 2073 * a leaf node bin_search will find the position of the item which has key 2074 * either equal to given key, or which is the maximal key less than the 2075 * given key. 2076 */ 2077 2078 struct path_element { 2079 /* Pointer to the buffer at the path in the tree. */ 2080 struct buffer_head *pe_buffer; 2081 /* Position in the tree node which is placed in the buffer above. */ 2082 int pe_position; 2083 }; 2084 2085 /* 2086 * maximal height of a tree. don't change this without 2087 * changing JOURNAL_PER_BALANCE_CNT 2088 */ 2089 #define MAX_HEIGHT 5 2090 2091 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 2092 #define EXTENDED_MAX_HEIGHT 7 2093 2094 /* Must be equal to at least 2. */ 2095 #define FIRST_PATH_ELEMENT_OFFSET 2 2096 2097 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 2098 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 2099 2100 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 2101 #define MAX_FEB_SIZE 6 2102 2103 /* 2104 * We need to keep track of who the ancestors of nodes are. When we 2105 * perform a search we record which nodes were visited while 2106 * descending the tree looking for the node we searched for. This list 2107 * of nodes is called the path. This information is used while 2108 * performing balancing. Note that this path information may become 2109 * invalid, and this means we must check it when using it to see if it 2110 * is still valid. You'll need to read search_by_key and the comments 2111 * in it, especially about decrement_counters_in_path(), to understand 2112 * this structure. 2113 * 2114 * Paths make the code so much harder to work with and debug.... An 2115 * enormous number of bugs are due to them, and trying to write or modify 2116 * code that uses them just makes my head hurt. They are based on an 2117 * excessive effort to avoid disturbing the precious VFS code.:-( The 2118 * gods only know how we are going to SMP the code that uses them. 2119 * znodes are the way! 2120 */ 2121 2122 #define PATH_READA 0x1 /* do read ahead */ 2123 #define PATH_READA_BACK 0x2 /* read backwards */ 2124 2125 struct treepath { 2126 int path_length; /* Length of the array above. */ 2127 int reada; 2128 /* Array of the path elements. */ 2129 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; 2130 int pos_in_item; 2131 }; 2132 2133 #define pos_in_item(path) ((path)->pos_in_item) 2134 2135 #define INITIALIZE_PATH(var) \ 2136 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 2137 2138 /* Get path element by path and path position. */ 2139 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 2140 2141 /* Get buffer header at the path by path and path position. */ 2142 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 2143 2144 /* Get position in the element at the path by path and path position. */ 2145 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 2146 2147 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 2148 2149 /* 2150 * you know, to the person who didn't write this the macro name does not 2151 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or 2152 * maybe we should just focus on dumping paths... -Hans 2153 */ 2154 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 2155 2156 /* 2157 * in do_balance leaf has h == 0 in contrast with path structure, 2158 * where root has level == 0. That is why we need these defines 2159 */ 2160 2161 /* tb->S[h] */ 2162 #define PATH_H_PBUFFER(path, h) \ 2163 PATH_OFFSET_PBUFFER(path, path->path_length - (h)) 2164 2165 /* tb->F[h] or tb->S[0]->b_parent */ 2166 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) 2167 2168 #define PATH_H_POSITION(path, h) \ 2169 PATH_OFFSET_POSITION(path, path->path_length - (h)) 2170 2171 /* tb->S[h]->b_item_order */ 2172 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) 2173 2174 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 2175 2176 static inline void *reiserfs_node_data(const struct buffer_head *bh) 2177 { 2178 return bh->b_data + sizeof(struct block_head); 2179 } 2180 2181 /* get key from internal node */ 2182 static inline struct reiserfs_key *internal_key(struct buffer_head *bh, 2183 int item_num) 2184 { 2185 struct reiserfs_key *key = reiserfs_node_data(bh); 2186 2187 return &key[item_num]; 2188 } 2189 2190 /* get the item header from leaf node */ 2191 static inline struct item_head *item_head(const struct buffer_head *bh, 2192 int item_num) 2193 { 2194 struct item_head *ih = reiserfs_node_data(bh); 2195 2196 return &ih[item_num]; 2197 } 2198 2199 /* get the key from leaf node */ 2200 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, 2201 int item_num) 2202 { 2203 return &item_head(bh, item_num)->ih_key; 2204 } 2205 2206 static inline void *ih_item_body(const struct buffer_head *bh, 2207 const struct item_head *ih) 2208 { 2209 return bh->b_data + ih_location(ih); 2210 } 2211 2212 /* get item body from leaf node */ 2213 static inline void *item_body(const struct buffer_head *bh, int item_num) 2214 { 2215 return ih_item_body(bh, item_head(bh, item_num)); 2216 } 2217 2218 static inline struct item_head *tp_item_head(const struct treepath *path) 2219 { 2220 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2221 } 2222 2223 static inline void *tp_item_body(const struct treepath *path) 2224 { 2225 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2226 } 2227 2228 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 2229 #define get_item_pos(path) PATH_LAST_POSITION(path) 2230 #define item_moved(ih,path) comp_items(ih, path) 2231 #define path_changed(ih,path) comp_items (ih, path) 2232 2233 /* array of the entry headers */ 2234 /* get item body */ 2235 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) 2236 2237 /* 2238 * length of the directory entry in directory item. This define 2239 * calculates length of i-th directory entry using directory entry 2240 * locations from dir entry head. When it calculates length of 0-th 2241 * directory entry, it uses length of whole item in place of entry 2242 * location of the non-existent following entry in the calculation. 2243 * See picture above. 2244 */ 2245 static inline int entry_length(const struct buffer_head *bh, 2246 const struct item_head *ih, int pos_in_item) 2247 { 2248 struct reiserfs_de_head *deh; 2249 2250 deh = B_I_DEH(bh, ih) + pos_in_item; 2251 if (pos_in_item) 2252 return deh_location(deh - 1) - deh_location(deh); 2253 2254 return ih_item_len(ih) - deh_location(deh); 2255 } 2256 2257 /*************************************************************************** 2258 * MISC * 2259 ***************************************************************************/ 2260 2261 /* Size of pointer to the unformatted node. */ 2262 #define UNFM_P_SIZE (sizeof(unp_t)) 2263 #define UNFM_P_SHIFT 2 2264 2265 /* in in-core inode key is stored on le form */ 2266 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 2267 2268 #define MAX_UL_INT 0xffffffff 2269 #define MAX_INT 0x7ffffff 2270 #define MAX_US_INT 0xffff 2271 2272 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 2273 static inline loff_t max_reiserfs_offset(struct inode *inode) 2274 { 2275 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 2276 return (loff_t) U32_MAX; 2277 2278 return (loff_t) ((~(__u64) 0) >> 4); 2279 } 2280 2281 #define MAX_KEY_OBJECTID MAX_UL_INT 2282 2283 #define MAX_B_NUM MAX_UL_INT 2284 #define MAX_FC_NUM MAX_US_INT 2285 2286 /* the purpose is to detect overflow of an unsigned short */ 2287 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 2288 2289 /* 2290 * The following defines are used in reiserfs_insert_item 2291 * and reiserfs_append_item 2292 */ 2293 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ 2294 #define REISERFS_USER_MEM 1 /* user memory mode */ 2295 2296 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 2297 #define get_generation(s) atomic_read (&fs_generation(s)) 2298 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 2299 #define __fs_changed(gen,s) (gen != get_generation (s)) 2300 #define fs_changed(gen,s) \ 2301 ({ \ 2302 reiserfs_cond_resched(s); \ 2303 __fs_changed(gen, s); \ 2304 }) 2305 2306 /*************************************************************************** 2307 * FIXATE NODES * 2308 ***************************************************************************/ 2309 2310 #define VI_TYPE_LEFT_MERGEABLE 1 2311 #define VI_TYPE_RIGHT_MERGEABLE 2 2312 2313 /* 2314 * To make any changes in the tree we always first find node, that 2315 * contains item to be changed/deleted or place to insert a new 2316 * item. We call this node S. To do balancing we need to decide what 2317 * we will shift to left/right neighbor, or to a new node, where new 2318 * item will be etc. To make this analysis simpler we build virtual 2319 * node. Virtual node is an array of items, that will replace items of 2320 * node S. (For instance if we are going to delete an item, virtual 2321 * node does not contain it). Virtual node keeps information about 2322 * item sizes and types, mergeability of first and last items, sizes 2323 * of all entries in directory item. We use this array of items when 2324 * calculating what we can shift to neighbors and how many nodes we 2325 * have to have if we do not any shiftings, if we shift to left/right 2326 * neighbor or to both. 2327 */ 2328 struct virtual_item { 2329 int vi_index; /* index in the array of item operations */ 2330 unsigned short vi_type; /* left/right mergeability */ 2331 2332 /* length of item that it will have after balancing */ 2333 unsigned short vi_item_len; 2334 2335 struct item_head *vi_ih; 2336 const char *vi_item; /* body of item (old or new) */ 2337 const void *vi_new_data; /* 0 always but paste mode */ 2338 void *vi_uarea; /* item specific area */ 2339 }; 2340 2341 struct virtual_node { 2342 /* this is a pointer to the free space in the buffer */ 2343 char *vn_free_ptr; 2344 2345 unsigned short vn_nr_item; /* number of items in virtual node */ 2346 2347 /* 2348 * size of node , that node would have if it has 2349 * unlimited size and no balancing is performed 2350 */ 2351 short vn_size; 2352 2353 /* mode of balancing (paste, insert, delete, cut) */ 2354 short vn_mode; 2355 2356 short vn_affected_item_num; 2357 short vn_pos_in_item; 2358 2359 /* item header of inserted item, 0 for other modes */ 2360 struct item_head *vn_ins_ih; 2361 const void *vn_data; 2362 2363 /* array of items (including a new one, excluding item to be deleted) */ 2364 struct virtual_item *vn_vi; 2365 }; 2366 2367 /* used by directory items when creating virtual nodes */ 2368 struct direntry_uarea { 2369 int flags; 2370 __u16 entry_count; 2371 __u16 entry_sizes[1]; 2372 } __attribute__ ((__packed__)); 2373 2374 /*************************************************************************** 2375 * TREE BALANCE * 2376 ***************************************************************************/ 2377 2378 /* 2379 * This temporary structure is used in tree balance algorithms, and 2380 * constructed as we go to the extent that its various parts are 2381 * needed. It contains arrays of nodes that can potentially be 2382 * involved in the balancing of node S, and parameters that define how 2383 * each of the nodes must be balanced. Note that in these algorithms 2384 * for balancing the worst case is to need to balance the current node 2385 * S and the left and right neighbors and all of their parents plus 2386 * create a new node. We implement S1 balancing for the leaf nodes 2387 * and S0 balancing for the internal nodes (S1 and S0 are defined in 2388 * our papers.) 2389 */ 2390 2391 /* size of the array of buffers to free at end of do_balance */ 2392 #define MAX_FREE_BLOCK 7 2393 2394 /* maximum number of FEB blocknrs on a single level */ 2395 #define MAX_AMOUNT_NEEDED 2 2396 2397 /* someday somebody will prefix every field in this struct with tb_ */ 2398 struct tree_balance { 2399 int tb_mode; 2400 int need_balance_dirty; 2401 struct super_block *tb_sb; 2402 struct reiserfs_transaction_handle *transaction_handle; 2403 struct treepath *tb_path; 2404 2405 /* array of left neighbors of nodes in the path */ 2406 struct buffer_head *L[MAX_HEIGHT]; 2407 2408 /* array of right neighbors of nodes in the path */ 2409 struct buffer_head *R[MAX_HEIGHT]; 2410 2411 /* array of fathers of the left neighbors */ 2412 struct buffer_head *FL[MAX_HEIGHT]; 2413 2414 /* array of fathers of the right neighbors */ 2415 struct buffer_head *FR[MAX_HEIGHT]; 2416 /* array of common parents of center node and its left neighbor */ 2417 struct buffer_head *CFL[MAX_HEIGHT]; 2418 2419 /* array of common parents of center node and its right neighbor */ 2420 struct buffer_head *CFR[MAX_HEIGHT]; 2421 2422 /* 2423 * array of empty buffers. Number of buffers in array equals 2424 * cur_blknum. 2425 */ 2426 struct buffer_head *FEB[MAX_FEB_SIZE]; 2427 struct buffer_head *used[MAX_FEB_SIZE]; 2428 struct buffer_head *thrown[MAX_FEB_SIZE]; 2429 2430 /* 2431 * array of number of items which must be shifted to the left in 2432 * order to balance the current node; for leaves includes item that 2433 * will be partially shifted; for internal nodes, it is the number 2434 * of child pointers rather than items. It includes the new item 2435 * being created. The code sometimes subtracts one to get the 2436 * number of wholly shifted items for other purposes. 2437 */ 2438 int lnum[MAX_HEIGHT]; 2439 2440 /* substitute right for left in comment above */ 2441 int rnum[MAX_HEIGHT]; 2442 2443 /* 2444 * array indexed by height h mapping the key delimiting L[h] and 2445 * S[h] to its item number within the node CFL[h] 2446 */ 2447 int lkey[MAX_HEIGHT]; 2448 2449 /* substitute r for l in comment above */ 2450 int rkey[MAX_HEIGHT]; 2451 2452 /* 2453 * the number of bytes by we are trying to add or remove from 2454 * S[h]. A negative value means removing. 2455 */ 2456 int insert_size[MAX_HEIGHT]; 2457 2458 /* 2459 * number of nodes that will replace node S[h] after balancing 2460 * on the level h of the tree. If 0 then S is being deleted, 2461 * if 1 then S is remaining and no new nodes are being created, 2462 * if 2 or 3 then 1 or 2 new nodes is being created 2463 */ 2464 int blknum[MAX_HEIGHT]; 2465 2466 /* fields that are used only for balancing leaves of the tree */ 2467 2468 /* number of empty blocks having been already allocated */ 2469 int cur_blknum; 2470 2471 /* number of items that fall into left most node when S[0] splits */ 2472 int s0num; 2473 2474 /* 2475 * number of bytes which can flow to the left neighbor from the left 2476 * most liquid item that cannot be shifted from S[0] entirely 2477 * if -1 then nothing will be partially shifted 2478 */ 2479 int lbytes; 2480 2481 /* 2482 * number of bytes which will flow to the right neighbor from the right 2483 * most liquid item that cannot be shifted from S[0] entirely 2484 * if -1 then nothing will be partially shifted 2485 */ 2486 int rbytes; 2487 2488 2489 /* 2490 * index into the array of item headers in 2491 * S[0] of the affected item 2492 */ 2493 int item_pos; 2494 2495 /* new nodes allocated to hold what could not fit into S */ 2496 struct buffer_head *S_new[2]; 2497 2498 /* 2499 * number of items that will be placed into nodes in S_new 2500 * when S[0] splits 2501 */ 2502 int snum[2]; 2503 2504 /* 2505 * number of bytes which flow to nodes in S_new when S[0] splits 2506 * note: if S[0] splits into 3 nodes, then items do not need to be cut 2507 */ 2508 int sbytes[2]; 2509 2510 int pos_in_item; 2511 int zeroes_num; 2512 2513 /* 2514 * buffers which are to be freed after do_balance finishes 2515 * by unfix_nodes 2516 */ 2517 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; 2518 2519 /* 2520 * kmalloced memory. Used to create virtual node and keep 2521 * map of dirtied bitmap blocks 2522 */ 2523 char *vn_buf; 2524 2525 int vn_buf_size; /* size of the vn_buf */ 2526 2527 /* VN starts after bitmap of bitmap blocks */ 2528 struct virtual_node *tb_vn; 2529 2530 /* 2531 * saved value of `reiserfs_generation' counter see 2532 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h 2533 */ 2534 int fs_gen; 2535 2536 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2537 /* 2538 * key pointer, to pass to block allocator or 2539 * another low-level subsystem 2540 */ 2541 struct in_core_key key; 2542 #endif 2543 }; 2544 2545 /* These are modes of balancing */ 2546 2547 /* When inserting an item. */ 2548 #define M_INSERT 'i' 2549 /* 2550 * When inserting into (directories only) or appending onto an already 2551 * existent item. 2552 */ 2553 #define M_PASTE 'p' 2554 /* When deleting an item. */ 2555 #define M_DELETE 'd' 2556 /* When truncating an item or removing an entry from a (directory) item. */ 2557 #define M_CUT 'c' 2558 2559 /* used when balancing on leaf level skipped (in reiserfsck) */ 2560 #define M_INTERNAL 'n' 2561 2562 /* 2563 * When further balancing is not needed, then do_balance does not need 2564 * to be called. 2565 */ 2566 #define M_SKIP_BALANCING 's' 2567 #define M_CONVERT 'v' 2568 2569 /* modes of leaf_move_items */ 2570 #define LEAF_FROM_S_TO_L 0 2571 #define LEAF_FROM_S_TO_R 1 2572 #define LEAF_FROM_R_TO_L 2 2573 #define LEAF_FROM_L_TO_R 3 2574 #define LEAF_FROM_S_TO_SNEW 4 2575 2576 #define FIRST_TO_LAST 0 2577 #define LAST_TO_FIRST 1 2578 2579 /* 2580 * used in do_balance for passing parent of node information that has 2581 * been gotten from tb struct 2582 */ 2583 struct buffer_info { 2584 struct tree_balance *tb; 2585 struct buffer_head *bi_bh; 2586 struct buffer_head *bi_parent; 2587 int bi_position; 2588 }; 2589 2590 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2591 { 2592 return tb ? tb->tb_sb : NULL; 2593 } 2594 2595 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2596 { 2597 return bi ? sb_from_tb(bi->tb) : NULL; 2598 } 2599 2600 /* 2601 * there are 4 types of items: stat data, directory item, indirect, direct. 2602 * +-------------------+------------+--------------+------------+ 2603 * | | k_offset | k_uniqueness | mergeable? | 2604 * +-------------------+------------+--------------+------------+ 2605 * | stat data | 0 | 0 | no | 2606 * +-------------------+------------+--------------+------------+ 2607 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | 2608 * | non 1st directory | hash value | UNIQUENESS | yes | 2609 * | item | | | | 2610 * +-------------------+------------+--------------+------------+ 2611 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | 2612 * +-------------------+------------+--------------+------------+ 2613 * | direct item | offset + 1 |TYPE_DIRECT | [2] | 2614 * +-------------------+------------+--------------+------------+ 2615 * 2616 * [1] if this is not the first indirect item of the object 2617 * [2] if this is not the first direct item of the object 2618 */ 2619 2620 struct item_operations { 2621 int (*bytes_number) (struct item_head * ih, int block_size); 2622 void (*decrement_key) (struct cpu_key *); 2623 int (*is_left_mergeable) (struct reiserfs_key * ih, 2624 unsigned long bsize); 2625 void (*print_item) (struct item_head *, char *item); 2626 void (*check_item) (struct item_head *, char *item); 2627 2628 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2629 int is_affected, int insert_size); 2630 int (*check_left) (struct virtual_item * vi, int free, 2631 int start_skip, int end_skip); 2632 int (*check_right) (struct virtual_item * vi, int free); 2633 int (*part_size) (struct virtual_item * vi, int from, int to); 2634 int (*unit_num) (struct virtual_item * vi); 2635 void (*print_vi) (struct virtual_item * vi); 2636 }; 2637 2638 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2639 2640 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2641 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2642 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2643 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2644 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2645 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2646 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2647 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2648 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2649 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2650 2651 #define COMP_SHORT_KEYS comp_short_keys 2652 2653 /* number of blocks pointed to by the indirect item */ 2654 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2655 2656 /* 2657 * the used space within the unformatted node corresponding 2658 * to pos within the item pointed to by ih 2659 */ 2660 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2661 2662 /* 2663 * number of bytes contained by the direct item or the 2664 * unformatted nodes the indirect item points to 2665 */ 2666 2667 /* following defines use reiserfs buffer header and item header */ 2668 2669 /* get stat-data */ 2670 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2671 2672 /* this is 3976 for size==4096 */ 2673 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2674 2675 /* 2676 * indirect items consist of entries which contain blocknrs, pos 2677 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2678 * blocknr contained by the entry pos points to 2679 */ 2680 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ 2681 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) 2682 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ 2683 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) 2684 2685 struct reiserfs_iget_args { 2686 __u32 objectid; 2687 __u32 dirid; 2688 }; 2689 2690 /*************************************************************************** 2691 * FUNCTION DECLARATIONS * 2692 ***************************************************************************/ 2693 2694 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2695 2696 #define journal_trans_half(blocksize) \ 2697 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 2698 2699 /* journal.c see journal.c for all the comments here */ 2700 2701 /* first block written in a commit. */ 2702 struct reiserfs_journal_desc { 2703 __le32 j_trans_id; /* id of commit */ 2704 2705 /* length of commit. len +1 is the commit block */ 2706 __le32 j_len; 2707 2708 __le32 j_mount_id; /* mount id of this trans */ 2709 __le32 j_realblock[1]; /* real locations for each block */ 2710 }; 2711 2712 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2713 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2714 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2715 2716 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2717 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2718 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2719 2720 /* last block written in a commit */ 2721 struct reiserfs_journal_commit { 2722 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2723 __le32 j_len; /* ditto */ 2724 __le32 j_realblock[1]; /* real locations for each block */ 2725 }; 2726 2727 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2728 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2729 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2730 2731 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2732 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2733 2734 /* 2735 * this header block gets written whenever a transaction is considered 2736 * fully flushed, and is more recent than the last fully flushed transaction. 2737 * fully flushed means all the log blocks and all the real blocks are on 2738 * disk, and this transaction does not need to be replayed. 2739 */ 2740 struct reiserfs_journal_header { 2741 /* id of last fully flushed transaction */ 2742 __le32 j_last_flush_trans_id; 2743 2744 /* offset in the log of where to start replay after a crash */ 2745 __le32 j_first_unflushed_offset; 2746 2747 __le32 j_mount_id; 2748 /* 12 */ struct journal_params jh_journal; 2749 }; 2750 2751 /* biggest tunable defines are right here */ 2752 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2753 2754 /* biggest possible single transaction, don't change for now (8/3/99) */ 2755 #define JOURNAL_TRANS_MAX_DEFAULT 1024 2756 #define JOURNAL_TRANS_MIN_DEFAULT 256 2757 2758 /* 2759 * max blocks to batch into one transaction, 2760 * don't make this any bigger than 900 2761 */ 2762 #define JOURNAL_MAX_BATCH_DEFAULT 900 2763 #define JOURNAL_MIN_RATIO 2 2764 #define JOURNAL_MAX_COMMIT_AGE 30 2765 #define JOURNAL_MAX_TRANS_AGE 30 2766 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2767 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2768 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2769 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2770 2771 #ifdef CONFIG_QUOTA 2772 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2773 /* We need to update data and inode (atime) */ 2774 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2775 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2776 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2777 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2778 /* same as with INIT */ 2779 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2780 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2781 #else 2782 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2783 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2785 #endif 2786 2787 /* 2788 * both of these can be as low as 1, or as high as you want. The min is the 2789 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2790 * as needed, and released when transactions are committed. On release, if 2791 * the current number of nodes is > max, the node is freed, otherwise, 2792 * it is put on a free list for faster use later. 2793 */ 2794 #define REISERFS_MIN_BITMAP_NODES 10 2795 #define REISERFS_MAX_BITMAP_NODES 100 2796 2797 /* these are based on journal hash size of 8192 */ 2798 #define JBH_HASH_SHIFT 13 2799 #define JBH_HASH_MASK 8191 2800 2801 #define _jhashfn(sb,block) \ 2802 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2803 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2804 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2805 2806 /* We need these to make journal.c code more readable */ 2807 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2808 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2809 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2810 2811 enum reiserfs_bh_state_bits { 2812 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2813 BH_JDirty_wait, 2814 /* 2815 * disk block was taken off free list before being in a 2816 * finished transaction, or written to disk. Can be reused immed. 2817 */ 2818 BH_JNew, 2819 BH_JPrepared, 2820 BH_JRestore_dirty, 2821 BH_JTest, /* debugging only will go away */ 2822 }; 2823 2824 BUFFER_FNS(JDirty, journaled); 2825 TAS_BUFFER_FNS(JDirty, journaled); 2826 BUFFER_FNS(JDirty_wait, journal_dirty); 2827 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2828 BUFFER_FNS(JNew, journal_new); 2829 TAS_BUFFER_FNS(JNew, journal_new); 2830 BUFFER_FNS(JPrepared, journal_prepared); 2831 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2832 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2833 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2834 BUFFER_FNS(JTest, journal_test); 2835 TAS_BUFFER_FNS(JTest, journal_test); 2836 2837 /* transaction handle which is passed around for all journal calls */ 2838 struct reiserfs_transaction_handle { 2839 /* 2840 * super for this FS when journal_begin was called. saves calls to 2841 * reiserfs_get_super also used by nested transactions to make 2842 * sure they are nesting on the right FS _must_ be first 2843 * in the handle 2844 */ 2845 struct super_block *t_super; 2846 2847 int t_refcount; 2848 int t_blocks_logged; /* number of blocks this writer has logged */ 2849 int t_blocks_allocated; /* number of blocks this writer allocated */ 2850 2851 /* sanity check, equals the current trans id */ 2852 unsigned int t_trans_id; 2853 2854 void *t_handle_save; /* save existing current->journal_info */ 2855 2856 /* 2857 * if new block allocation occurres, that block 2858 * should be displaced from others 2859 */ 2860 unsigned displace_new_blocks:1; 2861 2862 struct list_head t_list; 2863 }; 2864 2865 /* 2866 * used to keep track of ordered and tail writes, attached to the buffer 2867 * head through b_journal_head. 2868 */ 2869 struct reiserfs_jh { 2870 struct reiserfs_journal_list *jl; 2871 struct buffer_head *bh; 2872 struct list_head list; 2873 }; 2874 2875 void reiserfs_free_jh(struct buffer_head *bh); 2876 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2877 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2878 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2879 struct buffer_head *bh); 2880 2881 static inline int reiserfs_file_data_log(struct inode *inode) 2882 { 2883 if (reiserfs_data_log(inode->i_sb) || 2884 (REISERFS_I(inode)->i_flags & i_data_log)) 2885 return 1; 2886 return 0; 2887 } 2888 2889 static inline int reiserfs_transaction_running(struct super_block *s) 2890 { 2891 struct reiserfs_transaction_handle *th = current->journal_info; 2892 if (th && th->t_super == s) 2893 return 1; 2894 if (th && th->t_super == NULL) 2895 BUG(); 2896 return 0; 2897 } 2898 2899 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2900 { 2901 return th->t_blocks_allocated - th->t_blocks_logged; 2902 } 2903 2904 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2905 super_block 2906 *, 2907 int count); 2908 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2909 void reiserfs_vfs_truncate_file(struct inode *inode); 2910 int reiserfs_commit_page(struct inode *inode, struct page *page, 2911 unsigned from, unsigned to); 2912 void reiserfs_flush_old_commits(struct super_block *); 2913 int reiserfs_commit_for_inode(struct inode *); 2914 int reiserfs_inode_needs_commit(struct inode *); 2915 void reiserfs_update_inode_transaction(struct inode *); 2916 void reiserfs_wait_on_write_block(struct super_block *s); 2917 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2918 void reiserfs_allow_writes(struct super_block *s); 2919 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2920 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2921 int wait); 2922 void reiserfs_restore_prepared_buffer(struct super_block *, 2923 struct buffer_head *bh); 2924 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2925 unsigned int); 2926 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2927 int journal_release_error(struct reiserfs_transaction_handle *, 2928 struct super_block *); 2929 int journal_end(struct reiserfs_transaction_handle *); 2930 int journal_end_sync(struct reiserfs_transaction_handle *); 2931 int journal_mark_freed(struct reiserfs_transaction_handle *, 2932 struct super_block *, b_blocknr_t blocknr); 2933 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2934 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2935 int bit_nr, int searchall, b_blocknr_t *next); 2936 int journal_begin(struct reiserfs_transaction_handle *, 2937 struct super_block *sb, unsigned long); 2938 int journal_join_abort(struct reiserfs_transaction_handle *, 2939 struct super_block *sb); 2940 void reiserfs_abort_journal(struct super_block *sb, int errno); 2941 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2942 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2943 struct reiserfs_list_bitmap *, unsigned int); 2944 2945 void reiserfs_schedule_old_flush(struct super_block *s); 2946 void add_save_link(struct reiserfs_transaction_handle *th, 2947 struct inode *inode, int truncate); 2948 int remove_save_link(struct inode *inode, int truncate); 2949 2950 /* objectid.c */ 2951 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2952 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2953 __u32 objectid_to_release); 2954 int reiserfs_convert_objectid_map_v1(struct super_block *); 2955 2956 /* stree.c */ 2957 int B_IS_IN_TREE(const struct buffer_head *); 2958 extern void copy_item_head(struct item_head *to, 2959 const struct item_head *from); 2960 2961 /* first key is in cpu form, second - le */ 2962 extern int comp_short_keys(const struct reiserfs_key *le_key, 2963 const struct cpu_key *cpu_key); 2964 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2965 2966 /* both are in le form */ 2967 extern int comp_le_keys(const struct reiserfs_key *, 2968 const struct reiserfs_key *); 2969 extern int comp_short_le_keys(const struct reiserfs_key *, 2970 const struct reiserfs_key *); 2971 2972 /* * get key version from on disk key - kludge */ 2973 static inline int le_key_version(const struct reiserfs_key *key) 2974 { 2975 int type; 2976 2977 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2978 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2979 && type != TYPE_DIRENTRY) 2980 return KEY_FORMAT_3_5; 2981 2982 return KEY_FORMAT_3_6; 2983 2984 } 2985 2986 static inline void copy_key(struct reiserfs_key *to, 2987 const struct reiserfs_key *from) 2988 { 2989 memcpy(to, from, KEY_SIZE); 2990 } 2991 2992 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 2993 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 2994 const struct super_block *sb); 2995 int search_by_key(struct super_block *, const struct cpu_key *, 2996 struct treepath *, int); 2997 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 2998 int search_for_position_by_key(struct super_block *sb, 2999 const struct cpu_key *cpu_key, 3000 struct treepath *search_path); 3001 extern void decrement_bcount(struct buffer_head *bh); 3002 void decrement_counters_in_path(struct treepath *search_path); 3003 void pathrelse(struct treepath *search_path); 3004 int reiserfs_check_path(struct treepath *p); 3005 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 3006 3007 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 3008 struct treepath *path, 3009 const struct cpu_key *key, 3010 struct item_head *ih, 3011 struct inode *inode, const char *body); 3012 3013 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 3014 struct treepath *path, 3015 const struct cpu_key *key, 3016 struct inode *inode, 3017 const char *body, int paste_size); 3018 3019 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 3020 struct treepath *path, 3021 struct cpu_key *key, 3022 struct inode *inode, 3023 struct page *page, loff_t new_file_size); 3024 3025 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 3026 struct treepath *path, 3027 const struct cpu_key *key, 3028 struct inode *inode, struct buffer_head *un_bh); 3029 3030 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 3031 struct inode *inode, struct reiserfs_key *key); 3032 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 3033 struct inode *inode); 3034 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 3035 struct inode *inode, struct page *, 3036 int update_timestamps); 3037 3038 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 3039 #define file_size(inode) ((inode)->i_size) 3040 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 3041 3042 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 3043 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 3044 3045 void padd_item(char *item, int total_length, int length); 3046 3047 /* inode.c */ 3048 /* args for the create parameter of reiserfs_get_block */ 3049 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 3050 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 3051 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 3052 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 3053 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 3054 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 3055 3056 void reiserfs_read_locked_inode(struct inode *inode, 3057 struct reiserfs_iget_args *args); 3058 int reiserfs_find_actor(struct inode *inode, void *p); 3059 int reiserfs_init_locked_inode(struct inode *inode, void *p); 3060 void reiserfs_evict_inode(struct inode *inode); 3061 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3062 int reiserfs_get_block(struct inode *inode, sector_t block, 3063 struct buffer_head *bh_result, int create); 3064 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3065 int fh_len, int fh_type); 3066 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 3067 int fh_len, int fh_type); 3068 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 3069 struct inode *parent); 3070 3071 int reiserfs_truncate_file(struct inode *, int update_timestamps); 3072 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 3073 int type, int key_length); 3074 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 3075 int version, 3076 loff_t offset, int type, int length, int entry_count); 3077 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 3078 3079 struct reiserfs_security_handle; 3080 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 3081 struct inode *dir, umode_t mode, 3082 const char *symname, loff_t i_size, 3083 struct dentry *dentry, struct inode *inode, 3084 struct reiserfs_security_handle *security); 3085 3086 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 3087 struct inode *inode, loff_t size); 3088 3089 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 3090 struct inode *inode) 3091 { 3092 reiserfs_update_sd_size(th, inode, inode->i_size); 3093 } 3094 3095 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 3096 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 3097 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 3098 3099 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 3100 3101 /* namei.c */ 3102 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 3103 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 3104 struct treepath *path, struct reiserfs_dir_entry *de); 3105 struct dentry *reiserfs_get_parent(struct dentry *); 3106 3107 #ifdef CONFIG_REISERFS_PROC_INFO 3108 int reiserfs_proc_info_init(struct super_block *sb); 3109 int reiserfs_proc_info_done(struct super_block *sb); 3110 int reiserfs_proc_info_global_init(void); 3111 int reiserfs_proc_info_global_done(void); 3112 3113 #define PROC_EXP( e ) e 3114 3115 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 3116 #define PROC_INFO_MAX( sb, field, value ) \ 3117 __PINFO( sb ).field = \ 3118 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 3119 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 3120 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 3121 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 3122 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 3123 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 3124 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 3125 #else 3126 static inline int reiserfs_proc_info_init(struct super_block *sb) 3127 { 3128 return 0; 3129 } 3130 3131 static inline int reiserfs_proc_info_done(struct super_block *sb) 3132 { 3133 return 0; 3134 } 3135 3136 static inline int reiserfs_proc_info_global_init(void) 3137 { 3138 return 0; 3139 } 3140 3141 static inline int reiserfs_proc_info_global_done(void) 3142 { 3143 return 0; 3144 } 3145 3146 #define PROC_EXP( e ) 3147 #define VOID_V ( ( void ) 0 ) 3148 #define PROC_INFO_MAX( sb, field, value ) VOID_V 3149 #define PROC_INFO_INC( sb, field ) VOID_V 3150 #define PROC_INFO_ADD( sb, field, val ) VOID_V 3151 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 3152 #endif 3153 3154 /* dir.c */ 3155 extern const struct inode_operations reiserfs_dir_inode_operations; 3156 extern const struct inode_operations reiserfs_symlink_inode_operations; 3157 extern const struct inode_operations reiserfs_special_inode_operations; 3158 extern const struct file_operations reiserfs_dir_operations; 3159 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 3160 3161 /* tail_conversion.c */ 3162 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 3163 struct treepath *, struct buffer_head *, loff_t); 3164 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 3165 struct page *, struct treepath *, const struct cpu_key *, 3166 loff_t, char *); 3167 void reiserfs_unmap_buffer(struct buffer_head *); 3168 3169 /* file.c */ 3170 extern const struct inode_operations reiserfs_file_inode_operations; 3171 extern const struct file_operations reiserfs_file_operations; 3172 extern const struct address_space_operations reiserfs_address_space_operations; 3173 3174 /* fix_nodes.c */ 3175 3176 int fix_nodes(int n_op_mode, struct tree_balance *tb, 3177 struct item_head *ins_ih, const void *); 3178 void unfix_nodes(struct tree_balance *); 3179 3180 /* prints.c */ 3181 void __reiserfs_panic(struct super_block *s, const char *id, 3182 const char *function, const char *fmt, ...) 3183 __attribute__ ((noreturn)); 3184 #define reiserfs_panic(s, id, fmt, args...) \ 3185 __reiserfs_panic(s, id, __func__, fmt, ##args) 3186 void __reiserfs_error(struct super_block *s, const char *id, 3187 const char *function, const char *fmt, ...); 3188 #define reiserfs_error(s, id, fmt, args...) \ 3189 __reiserfs_error(s, id, __func__, fmt, ##args) 3190 void reiserfs_info(struct super_block *s, const char *fmt, ...); 3191 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 3192 void print_indirect_item(struct buffer_head *bh, int item_num); 3193 void store_print_tb(struct tree_balance *tb); 3194 void print_cur_tb(char *mes); 3195 void print_de(struct reiserfs_dir_entry *de); 3196 void print_bi(struct buffer_info *bi, char *mes); 3197 #define PRINT_LEAF_ITEMS 1 /* print all items */ 3198 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 3199 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 3200 void print_block(struct buffer_head *bh, ...); 3201 void print_bmap(struct super_block *s, int silent); 3202 void print_bmap_block(int i, char *data, int size, int silent); 3203 /*void print_super_block (struct super_block * s, char * mes);*/ 3204 void print_objectid_map(struct super_block *s); 3205 void print_block_head(struct buffer_head *bh, char *mes); 3206 void check_leaf(struct buffer_head *bh); 3207 void check_internal(struct buffer_head *bh); 3208 void print_statistics(struct super_block *s); 3209 char *reiserfs_hashname(int code); 3210 3211 /* lbalance.c */ 3212 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 3213 int mov_bytes, struct buffer_head *Snew); 3214 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 3215 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 3216 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 3217 int del_num, int del_bytes); 3218 void leaf_insert_into_buf(struct buffer_info *bi, int before, 3219 struct item_head *inserted_item_ih, 3220 const char *inserted_item_body, int zeros_number); 3221 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 3222 int pos_in_item, int paste_size, const char *body, 3223 int zeros_number); 3224 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 3225 int pos_in_item, int cut_size); 3226 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 3227 int new_entry_count, struct reiserfs_de_head *new_dehs, 3228 const char *records, int paste_size); 3229 /* ibalance.c */ 3230 int balance_internal(struct tree_balance *, int, int, struct item_head *, 3231 struct buffer_head **); 3232 3233 /* do_balance.c */ 3234 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 3235 struct buffer_head *bh, int flag); 3236 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 3237 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 3238 3239 void do_balance(struct tree_balance *tb, struct item_head *ih, 3240 const char *body, int flag); 3241 void reiserfs_invalidate_buffer(struct tree_balance *tb, 3242 struct buffer_head *bh); 3243 3244 int get_left_neighbor_position(struct tree_balance *tb, int h); 3245 int get_right_neighbor_position(struct tree_balance *tb, int h); 3246 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 3247 struct buffer_head *, int); 3248 void make_empty_node(struct buffer_info *); 3249 struct buffer_head *get_FEB(struct tree_balance *); 3250 3251 /* bitmap.c */ 3252 3253 /* 3254 * structure contains hints for block allocator, and it is a container for 3255 * arguments, such as node, search path, transaction_handle, etc. 3256 */ 3257 struct __reiserfs_blocknr_hint { 3258 /* inode passed to allocator, if we allocate unf. nodes */ 3259 struct inode *inode; 3260 3261 sector_t block; /* file offset, in blocks */ 3262 struct in_core_key key; 3263 3264 /* 3265 * search path, used by allocator to deternine search_start by 3266 * various ways 3267 */ 3268 struct treepath *path; 3269 3270 /* 3271 * transaction handle is needed to log super blocks 3272 * and bitmap blocks changes 3273 */ 3274 struct reiserfs_transaction_handle *th; 3275 3276 b_blocknr_t beg, end; 3277 3278 /* 3279 * a field used to transfer search start value (block number) 3280 * between different block allocator procedures 3281 * (determine_search_start() and others) 3282 */ 3283 b_blocknr_t search_start; 3284 3285 /* 3286 * is set in determine_prealloc_size() function, 3287 * used by underlayed function that do actual allocation 3288 */ 3289 int prealloc_size; 3290 3291 /* 3292 * the allocator uses different polices for getting disk 3293 * space for formatted/unformatted blocks with/without preallocation 3294 */ 3295 unsigned formatted_node:1; 3296 unsigned preallocate:1; 3297 }; 3298 3299 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 3300 3301 int reiserfs_parse_alloc_options(struct super_block *, char *); 3302 void reiserfs_init_alloc_options(struct super_block *s); 3303 3304 /* 3305 * given a directory, this will tell you what packing locality 3306 * to use for a new object underneat it. The locality is returned 3307 * in disk byte order (le). 3308 */ 3309 __le32 reiserfs_choose_packing(struct inode *dir); 3310 3311 void show_alloc_options(struct seq_file *seq, struct super_block *s); 3312 int reiserfs_init_bitmap_cache(struct super_block *sb); 3313 void reiserfs_free_bitmap_cache(struct super_block *sb); 3314 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 3315 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 3316 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 3317 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 3318 b_blocknr_t, int for_unformatted); 3319 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 3320 int); 3321 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 3322 b_blocknr_t * new_blocknrs, 3323 int amount_needed) 3324 { 3325 reiserfs_blocknr_hint_t hint = { 3326 .th = tb->transaction_handle, 3327 .path = tb->tb_path, 3328 .inode = NULL, 3329 .key = tb->key, 3330 .block = 0, 3331 .formatted_node = 1 3332 }; 3333 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 3334 0); 3335 } 3336 3337 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 3338 *th, struct inode *inode, 3339 b_blocknr_t * new_blocknrs, 3340 struct treepath *path, 3341 sector_t block) 3342 { 3343 reiserfs_blocknr_hint_t hint = { 3344 .th = th, 3345 .path = path, 3346 .inode = inode, 3347 .block = block, 3348 .formatted_node = 0, 3349 .preallocate = 0 3350 }; 3351 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3352 } 3353 3354 #ifdef REISERFS_PREALLOCATE 3355 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 3356 *th, struct inode *inode, 3357 b_blocknr_t * new_blocknrs, 3358 struct treepath *path, 3359 sector_t block) 3360 { 3361 reiserfs_blocknr_hint_t hint = { 3362 .th = th, 3363 .path = path, 3364 .inode = inode, 3365 .block = block, 3366 .formatted_node = 0, 3367 .preallocate = 1 3368 }; 3369 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3370 } 3371 3372 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 3373 struct inode *inode); 3374 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 3375 #endif 3376 3377 /* hashes.c */ 3378 __u32 keyed_hash(const signed char *msg, int len); 3379 __u32 yura_hash(const signed char *msg, int len); 3380 __u32 r5_hash(const signed char *msg, int len); 3381 3382 #define reiserfs_set_le_bit __set_bit_le 3383 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 3384 #define reiserfs_clear_le_bit __clear_bit_le 3385 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 3386 #define reiserfs_test_le_bit test_bit_le 3387 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 3388 3389 /* 3390 * sometimes reiserfs_truncate may require to allocate few new blocks 3391 * to perform indirect2direct conversion. People probably used to 3392 * think, that truncate should work without problems on a filesystem 3393 * without free disk space. They may complain that they can not 3394 * truncate due to lack of free disk space. This spare space allows us 3395 * to not worry about it. 500 is probably too much, but it should be 3396 * absolutely safe 3397 */ 3398 #define SPARE_SPACE 500 3399 3400 /* prototypes from ioctl.c */ 3401 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3402 long reiserfs_compat_ioctl(struct file *filp, 3403 unsigned int cmd, unsigned long arg); 3404 int reiserfs_unpack(struct inode *inode, struct file *filp); 3405