1 /* 2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for 3 * licensing and copyright details 4 */ 5 6 #include <linux/reiserfs_fs.h> 7 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/sched.h> 11 #include <linux/bug.h> 12 #include <linux/workqueue.h> 13 #include <asm/unaligned.h> 14 #include <linux/bitops.h> 15 #include <linux/proc_fs.h> 16 #include <linux/buffer_head.h> 17 18 /* the 32 bit compat definitions with int argument */ 19 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 20 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 21 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 22 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 23 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 24 25 struct reiserfs_journal_list; 26 27 /* bitmasks for i_flags field in reiserfs-specific part of inode */ 28 typedef enum { 29 /* 30 * this says what format of key do all items (but stat data) of 31 * an object have. If this is set, that format is 3.6 otherwise - 3.5 32 */ 33 i_item_key_version_mask = 0x0001, 34 35 /* 36 * If this is unset, object has 3.5 stat data, otherwise, 37 * it has 3.6 stat data with 64bit size, 32bit nlink etc. 38 */ 39 i_stat_data_version_mask = 0x0002, 40 41 /* file might need tail packing on close */ 42 i_pack_on_close_mask = 0x0004, 43 44 /* don't pack tail of file */ 45 i_nopack_mask = 0x0008, 46 47 /* 48 * If either of these are set, "safe link" was created for this 49 * file during truncate or unlink. Safe link is used to avoid 50 * leakage of disk space on crash with some files open, but unlinked. 51 */ 52 i_link_saved_unlink_mask = 0x0010, 53 i_link_saved_truncate_mask = 0x0020, 54 55 i_has_xattr_dir = 0x0040, 56 i_data_log = 0x0080, 57 } reiserfs_inode_flags; 58 59 struct reiserfs_inode_info { 60 __u32 i_key[4]; /* key is still 4 32 bit integers */ 61 62 /* 63 * transient inode flags that are never stored on disk. Bitmasks 64 * for this field are defined above. 65 */ 66 __u32 i_flags; 67 68 /* offset of first byte stored in direct item. */ 69 __u32 i_first_direct_byte; 70 71 /* copy of persistent inode flags read from sd_attrs. */ 72 __u32 i_attrs; 73 74 /* first unused block of a sequence of unused blocks */ 75 int i_prealloc_block; 76 int i_prealloc_count; /* length of that sequence */ 77 78 /* per-transaction list of inodes which have preallocated blocks */ 79 struct list_head i_prealloc_list; 80 81 /* 82 * new_packing_locality is created; new blocks for the contents 83 * of this directory should be displaced 84 */ 85 unsigned new_packing_locality:1; 86 87 /* 88 * we use these for fsync or O_SYNC to decide which transaction 89 * needs to be committed in order for this inode to be properly 90 * flushed 91 */ 92 unsigned int i_trans_id; 93 94 struct reiserfs_journal_list *i_jl; 95 atomic_t openers; 96 struct mutex tailpack; 97 #ifdef CONFIG_REISERFS_FS_XATTR 98 struct rw_semaphore i_xattr_sem; 99 #endif 100 struct inode vfs_inode; 101 }; 102 103 typedef enum { 104 reiserfs_attrs_cleared = 0x00000001, 105 } reiserfs_super_block_flags; 106 107 /* 108 * struct reiserfs_super_block accessors/mutators since this is a disk 109 * structure, it will always be in little endian format. 110 */ 111 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 112 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 113 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 114 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 115 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 116 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 117 118 #define sb_jp_journal_1st_block(sbp) \ 119 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 120 #define set_sb_jp_journal_1st_block(sbp,v) \ 121 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 122 #define sb_jp_journal_dev(sbp) \ 123 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 124 #define set_sb_jp_journal_dev(sbp,v) \ 125 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 126 #define sb_jp_journal_size(sbp) \ 127 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 128 #define set_sb_jp_journal_size(sbp,v) \ 129 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 130 #define sb_jp_journal_trans_max(sbp) \ 131 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 132 #define set_sb_jp_journal_trans_max(sbp,v) \ 133 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 134 #define sb_jp_journal_magic(sbp) \ 135 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 136 #define set_sb_jp_journal_magic(sbp,v) \ 137 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 138 #define sb_jp_journal_max_batch(sbp) \ 139 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 140 #define set_sb_jp_journal_max_batch(sbp,v) \ 141 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 142 #define sb_jp_jourmal_max_commit_age(sbp) \ 143 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 144 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 145 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 146 147 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 148 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 149 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 150 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 151 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 152 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 153 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 154 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 155 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 156 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 157 #define sb_hash_function_code(sbp) \ 158 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 159 #define set_sb_hash_function_code(sbp,v) \ 160 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 161 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 162 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 163 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 164 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 165 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 166 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 167 168 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 169 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 170 171 #define sb_reserved_for_journal(sbp) \ 172 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 173 #define set_sb_reserved_for_journal(sbp,v) \ 174 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 175 176 /* LOGGING -- */ 177 178 /* 179 * These all interelate for performance. 180 * 181 * If the journal block count is smaller than n transactions, you lose speed. 182 * I don't know what n is yet, I'm guessing 8-16. 183 * 184 * typical transaction size depends on the application, how often fsync is 185 * called, and how many metadata blocks you dirty in a 30 second period. 186 * The more small files (<16k) you use, the larger your transactions will 187 * be. 188 * 189 * If your journal fills faster than dirty buffers get flushed to disk, it 190 * must flush them before allowing the journal to wrap, which slows things 191 * down. If you need high speed meta data updates, the journal should be 192 * big enough to prevent wrapping before dirty meta blocks get to disk. 193 * 194 * If the batch max is smaller than the transaction max, you'll waste space 195 * at the end of the journal because journal_end sets the next transaction 196 * to start at 0 if the next transaction has any chance of wrapping. 197 * 198 * The large the batch max age, the better the speed, and the more meta 199 * data changes you'll lose after a crash. 200 */ 201 202 /* don't mess with these for a while */ 203 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 204 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 205 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 206 #define JOURNAL_HASH_SIZE 8192 207 208 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 209 #define JOURNAL_NUM_BITMAPS 5 210 211 /* 212 * One of these for every block in every transaction 213 * Each one is in two hash tables. First, a hash of the current transaction, 214 * and after journal_end, a hash of all the in memory transactions. 215 * next and prev are used by the current transaction (journal_hash). 216 * hnext and hprev are used by journal_list_hash. If a block is in more 217 * than one transaction, the journal_list_hash links it in multiple times. 218 * This allows flush_journal_list to remove just the cnode belonging to a 219 * given transaction. 220 */ 221 struct reiserfs_journal_cnode { 222 struct buffer_head *bh; /* real buffer head */ 223 struct super_block *sb; /* dev of real buffer head */ 224 225 /* block number of real buffer head, == 0 when buffer on disk */ 226 __u32 blocknr; 227 228 unsigned long state; 229 230 /* journal list this cnode lives in */ 231 struct reiserfs_journal_list *jlist; 232 233 struct reiserfs_journal_cnode *next; /* next in transaction list */ 234 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 235 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 236 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 237 }; 238 239 struct reiserfs_bitmap_node { 240 int id; 241 char *data; 242 struct list_head list; 243 }; 244 245 struct reiserfs_list_bitmap { 246 struct reiserfs_journal_list *journal_list; 247 struct reiserfs_bitmap_node **bitmaps; 248 }; 249 250 /* 251 * one of these for each transaction. The most important part here is the 252 * j_realblock. this list of cnodes is used to hash all the blocks in all 253 * the commits, to mark all the real buffer heads dirty once all the commits 254 * hit the disk, and to make sure every real block in a transaction is on 255 * disk before allowing the log area to be overwritten 256 */ 257 struct reiserfs_journal_list { 258 unsigned long j_start; 259 unsigned long j_state; 260 unsigned long j_len; 261 atomic_t j_nonzerolen; 262 atomic_t j_commit_left; 263 264 /* all commits older than this on disk */ 265 atomic_t j_older_commits_done; 266 267 struct mutex j_commit_mutex; 268 unsigned int j_trans_id; 269 time_t j_timestamp; 270 struct reiserfs_list_bitmap *j_list_bitmap; 271 struct buffer_head *j_commit_bh; /* commit buffer head */ 272 struct reiserfs_journal_cnode *j_realblock; 273 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 274 /* time ordered list of all active transactions */ 275 struct list_head j_list; 276 277 /* 278 * time ordered list of all transactions we haven't tried 279 * to flush yet 280 */ 281 struct list_head j_working_list; 282 283 /* list of tail conversion targets in need of flush before commit */ 284 struct list_head j_tail_bh_list; 285 286 /* list of data=ordered buffers in need of flush before commit */ 287 struct list_head j_bh_list; 288 int j_refcount; 289 }; 290 291 struct reiserfs_journal { 292 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 293 /* newest journal block */ 294 struct reiserfs_journal_cnode *j_last; 295 296 /* oldest journal block. start here for traverse */ 297 struct reiserfs_journal_cnode *j_first; 298 299 struct block_device *j_dev_bd; 300 fmode_t j_dev_mode; 301 302 /* first block on s_dev of reserved area journal */ 303 int j_1st_reserved_block; 304 305 unsigned long j_state; 306 unsigned int j_trans_id; 307 unsigned long j_mount_id; 308 309 /* start of current waiting commit (index into j_ap_blocks) */ 310 unsigned long j_start; 311 unsigned long j_len; /* length of current waiting commit */ 312 313 /* number of buffers requested by journal_begin() */ 314 unsigned long j_len_alloc; 315 316 atomic_t j_wcount; /* count of writers for current commit */ 317 318 /* batch count. allows turning X transactions into 1 */ 319 unsigned long j_bcount; 320 321 /* first unflushed transactions offset */ 322 unsigned long j_first_unflushed_offset; 323 324 /* last fully flushed journal timestamp */ 325 unsigned j_last_flush_trans_id; 326 327 struct buffer_head *j_header_bh; 328 329 time_t j_trans_start_time; /* time this transaction started */ 330 struct mutex j_mutex; 331 struct mutex j_flush_mutex; 332 333 /* wait for current transaction to finish before starting new one */ 334 wait_queue_head_t j_join_wait; 335 336 atomic_t j_jlock; /* lock for j_join_wait */ 337 int j_list_bitmap_index; /* number of next list bitmap to use */ 338 339 /* no more journal begins allowed. MUST sleep on j_join_wait */ 340 int j_must_wait; 341 342 /* next journal_end will flush all journal list */ 343 int j_next_full_flush; 344 345 /* next journal_end will flush all async commits */ 346 int j_next_async_flush; 347 348 int j_cnode_used; /* number of cnodes on the used list */ 349 int j_cnode_free; /* number of cnodes on the free list */ 350 351 /* max number of blocks in a transaction. */ 352 unsigned int j_trans_max; 353 354 /* max number of blocks to batch into a trans */ 355 unsigned int j_max_batch; 356 357 /* in seconds, how old can an async commit be */ 358 unsigned int j_max_commit_age; 359 360 /* in seconds, how old can a transaction be */ 361 unsigned int j_max_trans_age; 362 363 /* the default for the max commit age */ 364 unsigned int j_default_max_commit_age; 365 366 struct reiserfs_journal_cnode *j_cnode_free_list; 367 368 /* orig pointer returned from vmalloc */ 369 struct reiserfs_journal_cnode *j_cnode_free_orig; 370 371 struct reiserfs_journal_list *j_current_jl; 372 int j_free_bitmap_nodes; 373 int j_used_bitmap_nodes; 374 375 int j_num_lists; /* total number of active transactions */ 376 int j_num_work_lists; /* number that need attention from kreiserfsd */ 377 378 /* debugging to make sure things are flushed in order */ 379 unsigned int j_last_flush_id; 380 381 /* debugging to make sure things are committed in order */ 382 unsigned int j_last_commit_id; 383 384 struct list_head j_bitmap_nodes; 385 struct list_head j_dirty_buffers; 386 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 387 388 /* list of all active transactions */ 389 struct list_head j_journal_list; 390 391 /* lists that haven't been touched by writeback attempts */ 392 struct list_head j_working_list; 393 394 /* hash table for real buffer heads in current trans */ 395 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; 396 397 /* hash table for all the real buffer heads in all the transactions */ 398 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; 399 400 /* array of bitmaps to record the deleted blocks */ 401 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; 402 403 /* list of inodes which have preallocated blocks */ 404 struct list_head j_prealloc_list; 405 int j_persistent_trans; 406 unsigned long j_max_trans_size; 407 unsigned long j_max_batch_size; 408 409 int j_errno; 410 411 /* when flushing ordered buffers, throttle new ordered writers */ 412 struct delayed_work j_work; 413 struct super_block *j_work_sb; 414 atomic_t j_async_throttle; 415 }; 416 417 enum journal_state_bits { 418 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 419 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 420 J_ABORTED, /* set when log is aborted */ 421 }; 422 423 /* ick. magic string to find desc blocks in the journal */ 424 #define JOURNAL_DESC_MAGIC "ReIsErLB" 425 426 typedef __u32(*hashf_t) (const signed char *, int); 427 428 struct reiserfs_bitmap_info { 429 __u32 free_count; 430 }; 431 432 struct proc_dir_entry; 433 434 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 435 typedef unsigned long int stat_cnt_t; 436 typedef struct reiserfs_proc_info_data { 437 spinlock_t lock; 438 int exiting; 439 int max_hash_collisions; 440 441 stat_cnt_t breads; 442 stat_cnt_t bread_miss; 443 stat_cnt_t search_by_key; 444 stat_cnt_t search_by_key_fs_changed; 445 stat_cnt_t search_by_key_restarted; 446 447 stat_cnt_t insert_item_restarted; 448 stat_cnt_t paste_into_item_restarted; 449 stat_cnt_t cut_from_item_restarted; 450 stat_cnt_t delete_solid_item_restarted; 451 stat_cnt_t delete_item_restarted; 452 453 stat_cnt_t leaked_oid; 454 stat_cnt_t leaves_removable; 455 456 /* 457 * balances per level. 458 * Use explicit 5 as MAX_HEIGHT is not visible yet. 459 */ 460 stat_cnt_t balance_at[5]; /* XXX */ 461 /* sbk == search_by_key */ 462 stat_cnt_t sbk_read_at[5]; /* XXX */ 463 stat_cnt_t sbk_fs_changed[5]; 464 stat_cnt_t sbk_restarted[5]; 465 stat_cnt_t items_at[5]; /* XXX */ 466 stat_cnt_t free_at[5]; /* XXX */ 467 stat_cnt_t can_node_be_removed[5]; /* XXX */ 468 long int lnum[5]; /* XXX */ 469 long int rnum[5]; /* XXX */ 470 long int lbytes[5]; /* XXX */ 471 long int rbytes[5]; /* XXX */ 472 stat_cnt_t get_neighbors[5]; 473 stat_cnt_t get_neighbors_restart[5]; 474 stat_cnt_t need_l_neighbor[5]; 475 stat_cnt_t need_r_neighbor[5]; 476 477 stat_cnt_t free_block; 478 struct __scan_bitmap_stats { 479 stat_cnt_t call; 480 stat_cnt_t wait; 481 stat_cnt_t bmap; 482 stat_cnt_t retry; 483 stat_cnt_t in_journal_hint; 484 stat_cnt_t in_journal_nohint; 485 stat_cnt_t stolen; 486 } scan_bitmap; 487 struct __journal_stats { 488 stat_cnt_t in_journal; 489 stat_cnt_t in_journal_bitmap; 490 stat_cnt_t in_journal_reusable; 491 stat_cnt_t lock_journal; 492 stat_cnt_t lock_journal_wait; 493 stat_cnt_t journal_being; 494 stat_cnt_t journal_relock_writers; 495 stat_cnt_t journal_relock_wcount; 496 stat_cnt_t mark_dirty; 497 stat_cnt_t mark_dirty_already; 498 stat_cnt_t mark_dirty_notjournal; 499 stat_cnt_t restore_prepared; 500 stat_cnt_t prepare; 501 stat_cnt_t prepare_retry; 502 } journal; 503 } reiserfs_proc_info_data_t; 504 #else 505 typedef struct reiserfs_proc_info_data { 506 } reiserfs_proc_info_data_t; 507 #endif 508 509 /* Number of quota types we support */ 510 #define REISERFS_MAXQUOTAS 2 511 512 /* reiserfs union of in-core super block data */ 513 struct reiserfs_sb_info { 514 /* Buffer containing the super block */ 515 struct buffer_head *s_sbh; 516 517 /* Pointer to the on-disk super block in the buffer */ 518 struct reiserfs_super_block *s_rs; 519 struct reiserfs_bitmap_info *s_ap_bitmap; 520 521 /* pointer to journal information */ 522 struct reiserfs_journal *s_journal; 523 524 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 525 526 /* Serialize writers access, replace the old bkl */ 527 struct mutex lock; 528 529 /* Owner of the lock (can be recursive) */ 530 struct task_struct *lock_owner; 531 532 /* Depth of the lock, start from -1 like the bkl */ 533 int lock_depth; 534 535 struct workqueue_struct *commit_wq; 536 537 /* Comment? -Hans */ 538 void (*end_io_handler) (struct buffer_head *, int); 539 540 /* 541 * pointer to function which is used to sort names in directory. 542 * Set on mount 543 */ 544 hashf_t s_hash_function; 545 546 /* reiserfs's mount options are set here */ 547 unsigned long s_mount_opt; 548 549 /* This is a structure that describes block allocator options */ 550 struct { 551 /* Bitfield for enable/disable kind of options */ 552 unsigned long bits; 553 554 /* 555 * size started from which we consider file 556 * to be a large one (in blocks) 557 */ 558 unsigned long large_file_size; 559 560 int border; /* percentage of disk, border takes */ 561 562 /* 563 * Minimal file size (in blocks) starting 564 * from which we do preallocations 565 */ 566 int preallocmin; 567 568 /* 569 * Number of blocks we try to prealloc when file 570 * reaches preallocmin size (in blocks) or prealloc_list 571 is empty. 572 */ 573 int preallocsize; 574 } s_alloc_options; 575 576 /* Comment? -Hans */ 577 wait_queue_head_t s_wait; 578 /* increased by one every time the tree gets re-balanced */ 579 atomic_t s_generation_counter; 580 581 /* File system properties. Currently holds on-disk FS format */ 582 unsigned long s_properties; 583 584 /* session statistics */ 585 int s_disk_reads; 586 int s_disk_writes; 587 int s_fix_nodes; 588 int s_do_balance; 589 int s_unneeded_left_neighbor; 590 int s_good_search_by_key_reada; 591 int s_bmaps; 592 int s_bmaps_without_search; 593 int s_direct2indirect; 594 int s_indirect2direct; 595 596 /* 597 * set up when it's ok for reiserfs_read_inode2() to read from 598 * disk inode with nlink==0. Currently this is only used during 599 * finish_unfinished() processing at mount time 600 */ 601 int s_is_unlinked_ok; 602 603 reiserfs_proc_info_data_t s_proc_info_data; 604 struct proc_dir_entry *procdir; 605 606 /* amount of blocks reserved for further allocations */ 607 int reserved_blocks; 608 609 610 /* this lock on now only used to protect reserved_blocks variable */ 611 spinlock_t bitmap_lock; 612 struct dentry *priv_root; /* root of /.reiserfs_priv */ 613 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 614 int j_errno; 615 616 int work_queued; /* non-zero delayed work is queued */ 617 struct delayed_work old_work; /* old transactions flush delayed work */ 618 spinlock_t old_work_lock; /* protects old_work and work_queued */ 619 620 #ifdef CONFIG_QUOTA 621 char *s_qf_names[REISERFS_MAXQUOTAS]; 622 int s_jquota_fmt; 623 #endif 624 char *s_jdev; /* Stored jdev for mount option showing */ 625 #ifdef CONFIG_REISERFS_CHECK 626 627 /* 628 * Detects whether more than one copy of tb exists per superblock 629 * as a means of checking whether do_balance is executing 630 * concurrently against another tree reader/writer on a same 631 * mount point. 632 */ 633 struct tree_balance *cur_tb; 634 #endif 635 }; 636 637 /* Definitions of reiserfs on-disk properties: */ 638 #define REISERFS_3_5 0 639 #define REISERFS_3_6 1 640 #define REISERFS_OLD_FORMAT 2 641 642 /* Mount options */ 643 enum reiserfs_mount_options { 644 /* large tails will be created in a session */ 645 REISERFS_LARGETAIL, 646 /* 647 * small (for files less than block size) tails will 648 * be created in a session 649 */ 650 REISERFS_SMALLTAIL, 651 652 /* replay journal and return 0. Use by fsck */ 653 REPLAYONLY, 654 655 /* 656 * -o conv: causes conversion of old format super block to the 657 * new format. If not specified - old partition will be dealt 658 * with in a manner of 3.5.x 659 */ 660 REISERFS_CONVERT, 661 662 /* 663 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting 664 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this 665 * option is not required. If the normal autodection code can't 666 * determine which hash to use (because both hashes had the same 667 * value for a file) use this option to force a specific hash. 668 * It won't allow you to override the existing hash on the FS, so 669 * if you have a tea hash disk, and mount with -o hash=rupasov, 670 * the mount will fail. 671 */ 672 FORCE_TEA_HASH, /* try to force tea hash on mount */ 673 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 674 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 675 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 676 677 REISERFS_DATA_LOG, 678 REISERFS_DATA_ORDERED, 679 REISERFS_DATA_WRITEBACK, 680 681 /* 682 * used for testing experimental features, makes benchmarking new 683 * features with and without more convenient, should never be used by 684 * users in any code shipped to users (ideally) 685 */ 686 687 REISERFS_NO_BORDER, 688 REISERFS_NO_UNHASHED_RELOCATION, 689 REISERFS_HASHED_RELOCATION, 690 REISERFS_ATTRS, 691 REISERFS_XATTRS_USER, 692 REISERFS_POSIXACL, 693 REISERFS_EXPOSE_PRIVROOT, 694 REISERFS_BARRIER_NONE, 695 REISERFS_BARRIER_FLUSH, 696 697 /* Actions on error */ 698 REISERFS_ERROR_PANIC, 699 REISERFS_ERROR_RO, 700 REISERFS_ERROR_CONTINUE, 701 702 REISERFS_USRQUOTA, /* User quota option specified */ 703 REISERFS_GRPQUOTA, /* Group quota option specified */ 704 705 REISERFS_TEST1, 706 REISERFS_TEST2, 707 REISERFS_TEST3, 708 REISERFS_TEST4, 709 REISERFS_UNSUPPORTED_OPT, 710 }; 711 712 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 713 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 714 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 715 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 716 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 717 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 718 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 719 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 720 721 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 722 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 723 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 724 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 725 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 726 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 727 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 728 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 729 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 730 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 731 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 732 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 733 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 734 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 735 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 736 737 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 738 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 739 740 void reiserfs_file_buffer(struct buffer_head *bh, int list); 741 extern struct file_system_type reiserfs_fs_type; 742 int reiserfs_resize(struct super_block *, unsigned long); 743 744 #define CARRY_ON 0 745 #define SCHEDULE_OCCURRED 1 746 747 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 748 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 749 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 750 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 751 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 752 753 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 754 755 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 756 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 757 *journal) 758 { 759 return test_bit(J_ABORTED, &journal->j_state); 760 } 761 762 /* 763 * Locking primitives. The write lock is a per superblock 764 * special mutex that has properties close to the Big Kernel Lock 765 * which was used in the previous locking scheme. 766 */ 767 void reiserfs_write_lock(struct super_block *s); 768 void reiserfs_write_unlock(struct super_block *s); 769 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 770 void reiserfs_write_lock_nested(struct super_block *s, int depth); 771 772 #ifdef CONFIG_REISERFS_CHECK 773 void reiserfs_lock_check_recursive(struct super_block *s); 774 #else 775 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 776 #endif 777 778 /* 779 * Several mutexes depend on the write lock. 780 * However sometimes we want to relax the write lock while we hold 781 * these mutexes, according to the release/reacquire on schedule() 782 * properties of the Bkl that were used. 783 * Reiserfs performances and locking were based on this scheme. 784 * Now that the write lock is a mutex and not the bkl anymore, doing so 785 * may result in a deadlock: 786 * 787 * A acquire write_lock 788 * A acquire j_commit_mutex 789 * A release write_lock and wait for something 790 * B acquire write_lock 791 * B can't acquire j_commit_mutex and sleep 792 * A can't acquire write lock anymore 793 * deadlock 794 * 795 * What we do here is avoiding such deadlock by playing the same game 796 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 797 * we release the write lock, wait a bit and then retry. 798 * 799 * The mutexes concerned by this hack are: 800 * - The commit mutex of a journal list 801 * - The flush mutex 802 * - The journal lock 803 * - The inode mutex 804 */ 805 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 806 struct super_block *s) 807 { 808 int depth; 809 810 depth = reiserfs_write_unlock_nested(s); 811 mutex_lock(m); 812 reiserfs_write_lock_nested(s, depth); 813 } 814 815 static inline void 816 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 817 struct super_block *s) 818 { 819 int depth; 820 821 depth = reiserfs_write_unlock_nested(s); 822 mutex_lock_nested(m, subclass); 823 reiserfs_write_lock_nested(s, depth); 824 } 825 826 static inline void 827 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 828 { 829 int depth; 830 depth = reiserfs_write_unlock_nested(s); 831 down_read(sem); 832 reiserfs_write_lock_nested(s, depth); 833 } 834 835 /* 836 * When we schedule, we usually want to also release the write lock, 837 * according to the previous bkl based locking scheme of reiserfs. 838 */ 839 static inline void reiserfs_cond_resched(struct super_block *s) 840 { 841 if (need_resched()) { 842 int depth; 843 844 depth = reiserfs_write_unlock_nested(s); 845 schedule(); 846 reiserfs_write_lock_nested(s, depth); 847 } 848 } 849 850 struct fid; 851 852 /* 853 * in reading the #defines, it may help to understand that they employ 854 * the following abbreviations: 855 * 856 * B = Buffer 857 * I = Item header 858 * H = Height within the tree (should be changed to LEV) 859 * N = Number of the item in the node 860 * STAT = stat data 861 * DEH = Directory Entry Header 862 * EC = Entry Count 863 * E = Entry number 864 * UL = Unsigned Long 865 * BLKH = BLocK Header 866 * UNFM = UNForMatted node 867 * DC = Disk Child 868 * P = Path 869 * 870 * These #defines are named by concatenating these abbreviations, 871 * where first comes the arguments, and last comes the return value, 872 * of the macro. 873 */ 874 875 #define USE_INODE_GENERATION_COUNTER 876 877 #define REISERFS_PREALLOCATE 878 #define DISPLACE_NEW_PACKING_LOCALITIES 879 #define PREALLOCATION_SIZE 9 880 881 /* n must be power of 2 */ 882 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 883 884 /* 885 * to be ok for alpha and others we have to align structures to 8 byte 886 * boundary. 887 * FIXME: do not change 4 by anything else: there is code which relies on that 888 */ 889 #define ROUND_UP(x) _ROUND_UP(x,8LL) 890 891 /* 892 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 893 * messages. 894 */ 895 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 896 897 void __reiserfs_warning(struct super_block *s, const char *id, 898 const char *func, const char *fmt, ...); 899 #define reiserfs_warning(s, id, fmt, args...) \ 900 __reiserfs_warning(s, id, __func__, fmt, ##args) 901 /* assertions handling */ 902 903 /* always check a condition and panic if it's false. */ 904 #define __RASSERT(cond, scond, format, args...) \ 905 do { \ 906 if (!(cond)) \ 907 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 908 __FILE__ ":%i:%s: " format "\n", \ 909 in_interrupt() ? -1 : task_pid_nr(current), \ 910 __LINE__, __func__ , ##args); \ 911 } while (0) 912 913 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 914 915 #if defined( CONFIG_REISERFS_CHECK ) 916 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 917 #else 918 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 919 #endif 920 921 #define CONSTF __attribute_const__ 922 /* 923 * Disk Data Structures 924 */ 925 926 /*************************************************************************** 927 * SUPER BLOCK * 928 ***************************************************************************/ 929 930 /* 931 * Structure of super block on disk, a version of which in RAM is often 932 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger 933 * structure containing fields never written to disk. 934 */ 935 #define UNSET_HASH 0 /* Detect hash on disk */ 936 #define TEA_HASH 1 937 #define YURA_HASH 2 938 #define R5_HASH 3 939 #define DEFAULT_HASH R5_HASH 940 941 struct journal_params { 942 /* where does journal start from on its * device */ 943 __le32 jp_journal_1st_block; 944 945 /* journal device st_rdev */ 946 __le32 jp_journal_dev; 947 948 /* size of the journal */ 949 __le32 jp_journal_size; 950 951 /* max number of blocks in a transaction. */ 952 __le32 jp_journal_trans_max; 953 954 /* 955 * random value made on fs creation 956 * (this was sb_journal_block_count) 957 */ 958 __le32 jp_journal_magic; 959 960 /* max number of blocks to batch into a trans */ 961 __le32 jp_journal_max_batch; 962 963 /* in seconds, how old can an async commit be */ 964 __le32 jp_journal_max_commit_age; 965 966 /* in seconds, how old can a transaction be */ 967 __le32 jp_journal_max_trans_age; 968 }; 969 970 /* this is the super from 3.5.X, where X >= 10 */ 971 struct reiserfs_super_block_v1 { 972 __le32 s_block_count; /* blocks count */ 973 __le32 s_free_blocks; /* free blocks count */ 974 __le32 s_root_block; /* root block number */ 975 struct journal_params s_journal; 976 __le16 s_blocksize; /* block size */ 977 978 /* max size of object id array, see get_objectid() commentary */ 979 __le16 s_oid_maxsize; 980 __le16 s_oid_cursize; /* current size of object id array */ 981 982 /* this is set to 1 when filesystem was umounted, to 2 - when not */ 983 __le16 s_umount_state; 984 985 /* 986 * reiserfs magic string indicates that file system is reiserfs: 987 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" 988 */ 989 char s_magic[10]; 990 991 /* 992 * it is set to used by fsck to mark which 993 * phase of rebuilding is done 994 */ 995 __le16 s_fs_state; 996 /* 997 * indicate, what hash function is being use 998 * to sort names in a directory 999 */ 1000 __le32 s_hash_function_code; 1001 __le16 s_tree_height; /* height of disk tree */ 1002 1003 /* 1004 * amount of bitmap blocks needed to address 1005 * each block of file system 1006 */ 1007 __le16 s_bmap_nr; 1008 1009 /* 1010 * this field is only reliable on filesystem with non-standard journal 1011 */ 1012 __le16 s_version; 1013 1014 /* 1015 * size in blocks of journal area on main device, we need to 1016 * keep after making fs with non-standard journal 1017 */ 1018 __le16 s_reserved_for_journal; 1019 } __attribute__ ((__packed__)); 1020 1021 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 1022 1023 /* this is the on disk super block */ 1024 struct reiserfs_super_block { 1025 struct reiserfs_super_block_v1 s_v1; 1026 __le32 s_inode_generation; 1027 1028 /* Right now used only by inode-attributes, if enabled */ 1029 __le32 s_flags; 1030 1031 unsigned char s_uuid[16]; /* filesystem unique identifier */ 1032 unsigned char s_label[16]; /* filesystem volume label */ 1033 __le16 s_mnt_count; /* Count of mounts since last fsck */ 1034 __le16 s_max_mnt_count; /* Maximum mounts before check */ 1035 __le32 s_lastcheck; /* Timestamp of last fsck */ 1036 __le32 s_check_interval; /* Interval between checks */ 1037 1038 /* 1039 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() 1040 * so any additions must be updated there as well. */ 1041 char s_unused[76]; 1042 } __attribute__ ((__packed__)); 1043 1044 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 1045 1046 #define REISERFS_VERSION_1 0 1047 #define REISERFS_VERSION_2 2 1048 1049 /* on-disk super block fields converted to cpu form */ 1050 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 1051 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 1052 #define SB_BLOCKSIZE(s) \ 1053 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 1054 #define SB_BLOCK_COUNT(s) \ 1055 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 1056 #define SB_FREE_BLOCKS(s) \ 1057 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 1058 #define SB_REISERFS_MAGIC(s) \ 1059 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 1060 #define SB_ROOT_BLOCK(s) \ 1061 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 1062 #define SB_TREE_HEIGHT(s) \ 1063 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 1064 #define SB_REISERFS_STATE(s) \ 1065 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 1066 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 1067 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 1068 1069 #define PUT_SB_BLOCK_COUNT(s, val) \ 1070 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 1071 #define PUT_SB_FREE_BLOCKS(s, val) \ 1072 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 1073 #define PUT_SB_ROOT_BLOCK(s, val) \ 1074 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 1075 #define PUT_SB_TREE_HEIGHT(s, val) \ 1076 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 1077 #define PUT_SB_REISERFS_STATE(s, val) \ 1078 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 1079 #define PUT_SB_VERSION(s, val) \ 1080 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 1081 #define PUT_SB_BMAP_NR(s, val) \ 1082 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 1083 1084 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 1085 #define SB_ONDISK_JOURNAL_SIZE(s) \ 1086 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 1087 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 1088 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 1089 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 1090 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 1091 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 1092 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 1093 1094 #define is_block_in_log_or_reserved_area(s, block) \ 1095 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 1096 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 1097 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 1098 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 1099 1100 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 1101 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 1102 int is_reiserfs_jr(struct reiserfs_super_block *rs); 1103 1104 /* 1105 * ReiserFS leaves the first 64k unused, so that partition labels have 1106 * enough space. If someone wants to write a fancy bootloader that 1107 * needs more than 64k, let us know, and this will be increased in size. 1108 * This number must be larger than than the largest block size on any 1109 * platform, or code will break. -Hans 1110 */ 1111 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 1112 #define REISERFS_FIRST_BLOCK unused_define 1113 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 1114 1115 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 1116 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 1117 1118 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 1119 #define CARRY_ON 0 1120 #define REPEAT_SEARCH -1 1121 #define IO_ERROR -2 1122 #define NO_DISK_SPACE -3 1123 #define NO_BALANCING_NEEDED (-4) 1124 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 1125 #define QUOTA_EXCEEDED -6 1126 1127 typedef __u32 b_blocknr_t; 1128 typedef __le32 unp_t; 1129 1130 struct unfm_nodeinfo { 1131 unp_t unfm_nodenum; 1132 unsigned short unfm_freespace; 1133 }; 1134 1135 /* there are two formats of keys: 3.5 and 3.6 */ 1136 #define KEY_FORMAT_3_5 0 1137 #define KEY_FORMAT_3_6 1 1138 1139 /* there are two stat datas */ 1140 #define STAT_DATA_V1 0 1141 #define STAT_DATA_V2 1 1142 1143 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 1144 { 1145 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 1146 } 1147 1148 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 1149 { 1150 return sb->s_fs_info; 1151 } 1152 1153 /* 1154 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 1155 * which overflows on large file systems. 1156 */ 1157 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 1158 { 1159 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 1160 } 1161 1162 static inline int bmap_would_wrap(unsigned bmap_nr) 1163 { 1164 return bmap_nr > ((1LL << 16) - 1); 1165 } 1166 1167 /* 1168 * this says about version of key of all items (but stat data) the 1169 * object consists of 1170 */ 1171 #define get_inode_item_key_version( inode ) \ 1172 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 1173 1174 #define set_inode_item_key_version( inode, version ) \ 1175 ({ if((version)==KEY_FORMAT_3_6) \ 1176 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 1177 else \ 1178 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 1179 1180 #define get_inode_sd_version(inode) \ 1181 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 1182 1183 #define set_inode_sd_version(inode, version) \ 1184 ({ if((version)==STAT_DATA_V2) \ 1185 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1186 else \ 1187 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1188 1189 /* 1190 * This is an aggressive tail suppression policy, I am hoping it 1191 * improves our benchmarks. The principle behind it is that percentage 1192 * space saving is what matters, not absolute space saving. This is 1193 * non-intuitive, but it helps to understand it if you consider that the 1194 * cost to access 4 blocks is not much more than the cost to access 1 1195 * block, if you have to do a seek and rotate. A tail risks a 1196 * non-linear disk access that is significant as a percentage of total 1197 * time cost for a 4 block file and saves an amount of space that is 1198 * less significant as a percentage of space, or so goes the hypothesis. 1199 * -Hans 1200 */ 1201 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1202 (\ 1203 (!(n_tail_size)) || \ 1204 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1205 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1206 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1207 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1208 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1209 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1210 ( ( (n_file_size) >= (n_block_size) ) && \ 1211 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1212 ) 1213 1214 /* 1215 * Another strategy for tails, this one means only create a tail if all the 1216 * file would fit into one DIRECT item. 1217 * Primary intention for this one is to increase performance by decreasing 1218 * seeking. 1219 */ 1220 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1221 (\ 1222 (!(n_tail_size)) || \ 1223 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1224 ) 1225 1226 /* 1227 * values for s_umount_state field 1228 */ 1229 #define REISERFS_VALID_FS 1 1230 #define REISERFS_ERROR_FS 2 1231 1232 /* 1233 * there are 5 item types currently 1234 */ 1235 #define TYPE_STAT_DATA 0 1236 #define TYPE_INDIRECT 1 1237 #define TYPE_DIRECT 2 1238 #define TYPE_DIRENTRY 3 1239 #define TYPE_MAXTYPE 3 1240 #define TYPE_ANY 15 /* FIXME: comment is required */ 1241 1242 /*************************************************************************** 1243 * KEY & ITEM HEAD * 1244 ***************************************************************************/ 1245 1246 /* * directories use this key as well as old files */ 1247 struct offset_v1 { 1248 __le32 k_offset; 1249 __le32 k_uniqueness; 1250 } __attribute__ ((__packed__)); 1251 1252 struct offset_v2 { 1253 __le64 v; 1254 } __attribute__ ((__packed__)); 1255 1256 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1257 { 1258 __u8 type = le64_to_cpu(v2->v) >> 60; 1259 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1260 } 1261 1262 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1263 { 1264 v2->v = 1265 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1266 } 1267 1268 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1269 { 1270 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1271 } 1272 1273 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1274 { 1275 offset &= (~0ULL >> 4); 1276 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1277 } 1278 1279 /* 1280 * Key of an item determines its location in the S+tree, and 1281 * is composed of 4 components 1282 */ 1283 struct reiserfs_key { 1284 /* packing locality: by default parent directory object id */ 1285 __le32 k_dir_id; 1286 1287 __le32 k_objectid; /* object identifier */ 1288 union { 1289 struct offset_v1 k_offset_v1; 1290 struct offset_v2 k_offset_v2; 1291 } __attribute__ ((__packed__)) u; 1292 } __attribute__ ((__packed__)); 1293 1294 struct in_core_key { 1295 /* packing locality: by default parent directory object id */ 1296 __u32 k_dir_id; 1297 __u32 k_objectid; /* object identifier */ 1298 __u64 k_offset; 1299 __u8 k_type; 1300 }; 1301 1302 struct cpu_key { 1303 struct in_core_key on_disk_key; 1304 int version; 1305 /* 3 in all cases but direct2indirect and indirect2direct conversion */ 1306 int key_length; 1307 }; 1308 1309 /* 1310 * Our function for comparing keys can compare keys of different 1311 * lengths. It takes as a parameter the length of the keys it is to 1312 * compare. These defines are used in determining what is to be passed 1313 * to it as that parameter. 1314 */ 1315 #define REISERFS_FULL_KEY_LEN 4 1316 #define REISERFS_SHORT_KEY_LEN 2 1317 1318 /* The result of the key compare */ 1319 #define FIRST_GREATER 1 1320 #define SECOND_GREATER -1 1321 #define KEYS_IDENTICAL 0 1322 #define KEY_FOUND 1 1323 #define KEY_NOT_FOUND 0 1324 1325 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1326 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) 1327 1328 /* return values for search_by_key and clones */ 1329 #define ITEM_FOUND 1 1330 #define ITEM_NOT_FOUND 0 1331 #define ENTRY_FOUND 1 1332 #define ENTRY_NOT_FOUND 0 1333 #define DIRECTORY_NOT_FOUND -1 1334 #define REGULAR_FILE_FOUND -2 1335 #define DIRECTORY_FOUND -3 1336 #define BYTE_FOUND 1 1337 #define BYTE_NOT_FOUND 0 1338 #define FILE_NOT_FOUND -1 1339 1340 #define POSITION_FOUND 1 1341 #define POSITION_NOT_FOUND 0 1342 1343 /* return values for reiserfs_find_entry and search_by_entry_key */ 1344 #define NAME_FOUND 1 1345 #define NAME_NOT_FOUND 0 1346 #define GOTO_PREVIOUS_ITEM 2 1347 #define NAME_FOUND_INVISIBLE 3 1348 1349 /* 1350 * Everything in the filesystem is stored as a set of items. The 1351 * item head contains the key of the item, its free space (for 1352 * indirect items) and specifies the location of the item itself 1353 * within the block. 1354 */ 1355 1356 struct item_head { 1357 /* 1358 * Everything in the tree is found by searching for it based on 1359 * its key. 1360 */ 1361 struct reiserfs_key ih_key; 1362 union { 1363 /* 1364 * The free space in the last unformatted node of an 1365 * indirect item if this is an indirect item. This 1366 * equals 0xFFFF iff this is a direct item or stat data 1367 * item. Note that the key, not this field, is used to 1368 * determine the item type, and thus which field this 1369 * union contains. 1370 */ 1371 __le16 ih_free_space_reserved; 1372 1373 /* 1374 * Iff this is a directory item, this field equals the 1375 * number of directory entries in the directory item. 1376 */ 1377 __le16 ih_entry_count; 1378 } __attribute__ ((__packed__)) u; 1379 __le16 ih_item_len; /* total size of the item body */ 1380 1381 /* an offset to the item body within the block */ 1382 __le16 ih_item_location; 1383 1384 /* 1385 * 0 for all old items, 2 for new ones. Highest bit is set by fsck 1386 * temporary, cleaned after all done 1387 */ 1388 __le16 ih_version; 1389 } __attribute__ ((__packed__)); 1390 /* size of item header */ 1391 #define IH_SIZE (sizeof(struct item_head)) 1392 1393 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1394 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1395 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1396 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1397 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1398 1399 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1400 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1401 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1402 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1403 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1404 1405 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1406 1407 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1408 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1409 1410 /* 1411 * these operate on indirect items, where you've got an array of ints 1412 * at a possibly unaligned location. These are a noop on ia32 1413 * 1414 * p is the array of __u32, i is the index into the array, v is the value 1415 * to store there. 1416 */ 1417 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1418 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1419 1420 /* * in old version uniqueness field shows key type */ 1421 #define V1_SD_UNIQUENESS 0 1422 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1423 #define V1_DIRECT_UNIQUENESS 0xffffffff 1424 #define V1_DIRENTRY_UNIQUENESS 500 1425 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ 1426 1427 /* here are conversion routines */ 1428 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1429 static inline int uniqueness2type(__u32 uniqueness) 1430 { 1431 switch ((int)uniqueness) { 1432 case V1_SD_UNIQUENESS: 1433 return TYPE_STAT_DATA; 1434 case V1_INDIRECT_UNIQUENESS: 1435 return TYPE_INDIRECT; 1436 case V1_DIRECT_UNIQUENESS: 1437 return TYPE_DIRECT; 1438 case V1_DIRENTRY_UNIQUENESS: 1439 return TYPE_DIRENTRY; 1440 case V1_ANY_UNIQUENESS: 1441 default: 1442 return TYPE_ANY; 1443 } 1444 } 1445 1446 static inline __u32 type2uniqueness(int type) CONSTF; 1447 static inline __u32 type2uniqueness(int type) 1448 { 1449 switch (type) { 1450 case TYPE_STAT_DATA: 1451 return V1_SD_UNIQUENESS; 1452 case TYPE_INDIRECT: 1453 return V1_INDIRECT_UNIQUENESS; 1454 case TYPE_DIRECT: 1455 return V1_DIRECT_UNIQUENESS; 1456 case TYPE_DIRENTRY: 1457 return V1_DIRENTRY_UNIQUENESS; 1458 case TYPE_ANY: 1459 default: 1460 return V1_ANY_UNIQUENESS; 1461 } 1462 } 1463 1464 /* 1465 * key is pointer to on disk key which is stored in le, result is cpu, 1466 * there is no way to get version of object from key, so, provide 1467 * version to these defines 1468 */ 1469 static inline loff_t le_key_k_offset(int version, 1470 const struct reiserfs_key *key) 1471 { 1472 return (version == KEY_FORMAT_3_5) ? 1473 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1474 offset_v2_k_offset(&(key->u.k_offset_v2)); 1475 } 1476 1477 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1478 { 1479 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1480 } 1481 1482 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1483 { 1484 if (version == KEY_FORMAT_3_5) { 1485 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); 1486 return uniqueness2type(val); 1487 } else 1488 return offset_v2_k_type(&(key->u.k_offset_v2)); 1489 } 1490 1491 static inline loff_t le_ih_k_type(const struct item_head *ih) 1492 { 1493 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1494 } 1495 1496 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1497 loff_t offset) 1498 { 1499 if (version == KEY_FORMAT_3_5) 1500 key->u.k_offset_v1.k_offset = cpu_to_le32(offset); 1501 else 1502 set_offset_v2_k_offset(&key->u.k_offset_v2, offset); 1503 } 1504 1505 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, 1506 loff_t offset) 1507 { 1508 set_le_key_k_offset(version, key, 1509 le_key_k_offset(version, key) + offset); 1510 } 1511 1512 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) 1513 { 1514 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1515 } 1516 1517 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1518 { 1519 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1520 } 1521 1522 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1523 int type) 1524 { 1525 if (version == KEY_FORMAT_3_5) { 1526 type = type2uniqueness(type); 1527 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); 1528 } else 1529 set_offset_v2_k_type(&key->u.k_offset_v2, type); 1530 } 1531 1532 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1533 { 1534 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1535 } 1536 1537 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1538 { 1539 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1540 } 1541 1542 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1543 { 1544 return le_key_k_type(version, key) == TYPE_DIRECT; 1545 } 1546 1547 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1548 { 1549 return le_key_k_type(version, key) == TYPE_INDIRECT; 1550 } 1551 1552 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1553 { 1554 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1555 } 1556 1557 /* item header has version. */ 1558 static inline int is_direntry_le_ih(struct item_head *ih) 1559 { 1560 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1561 } 1562 1563 static inline int is_direct_le_ih(struct item_head *ih) 1564 { 1565 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1566 } 1567 1568 static inline int is_indirect_le_ih(struct item_head *ih) 1569 { 1570 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1571 } 1572 1573 static inline int is_statdata_le_ih(struct item_head *ih) 1574 { 1575 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1576 } 1577 1578 /* key is pointer to cpu key, result is cpu */ 1579 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1580 { 1581 return key->on_disk_key.k_offset; 1582 } 1583 1584 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1585 { 1586 return key->on_disk_key.k_type; 1587 } 1588 1589 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1590 { 1591 key->on_disk_key.k_offset = offset; 1592 } 1593 1594 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1595 { 1596 key->on_disk_key.k_type = type; 1597 } 1598 1599 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1600 { 1601 key->on_disk_key.k_offset--; 1602 } 1603 1604 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1605 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1606 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1607 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1608 1609 /* are these used ? */ 1610 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1611 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1612 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1613 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1614 1615 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1616 (!COMP_SHORT_KEYS(ih, key) && \ 1617 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1618 1619 /* maximal length of item */ 1620 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1621 #define MIN_ITEM_LEN 1 1622 1623 /* object identifier for root dir */ 1624 #define REISERFS_ROOT_OBJECTID 2 1625 #define REISERFS_ROOT_PARENT_OBJECTID 1 1626 1627 extern struct reiserfs_key root_key; 1628 1629 /* 1630 * Picture represents a leaf of the S+tree 1631 * ______________________________________________________ 1632 * | | Array of | | | 1633 * |Block | Object-Item | F r e e | Objects- | 1634 * | head | Headers | S p a c e | Items | 1635 * |______|_______________|___________________|___________| 1636 */ 1637 1638 /* 1639 * Header of a disk block. More precisely, header of a formatted leaf 1640 * or internal node, and not the header of an unformatted node. 1641 */ 1642 struct block_head { 1643 __le16 blk_level; /* Level of a block in the tree. */ 1644 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1645 __le16 blk_free_space; /* Block free space in bytes. */ 1646 __le16 blk_reserved; 1647 /* dump this in v4/planA */ 1648 1649 /* kept only for compatibility */ 1650 struct reiserfs_key blk_right_delim_key; 1651 }; 1652 1653 #define BLKH_SIZE (sizeof(struct block_head)) 1654 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1655 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1656 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1657 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1658 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1659 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1660 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1661 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1662 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1663 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1664 1665 /* values for blk_level field of the struct block_head */ 1666 1667 /* 1668 * When node gets removed from the tree its blk_level is set to FREE_LEVEL. 1669 * It is then used to see whether the node is still in the tree 1670 */ 1671 #define FREE_LEVEL 0 1672 1673 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1674 1675 /* 1676 * Given the buffer head of a formatted node, resolve to the 1677 * block head of that node. 1678 */ 1679 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1680 /* Number of items that are in buffer. */ 1681 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1682 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1683 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1684 1685 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1686 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1687 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1688 1689 /* Get right delimiting key. -- little endian */ 1690 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1691 1692 /* Does the buffer contain a disk leaf. */ 1693 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1694 1695 /* Does the buffer contain a disk internal node */ 1696 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1697 && B_LEVEL(bh) <= MAX_HEIGHT) 1698 1699 /*************************************************************************** 1700 * STAT DATA * 1701 ***************************************************************************/ 1702 1703 /* 1704 * old stat data is 32 bytes long. We are going to distinguish new one by 1705 * different size 1706 */ 1707 struct stat_data_v1 { 1708 __le16 sd_mode; /* file type, permissions */ 1709 __le16 sd_nlink; /* number of hard links */ 1710 __le16 sd_uid; /* owner */ 1711 __le16 sd_gid; /* group */ 1712 __le32 sd_size; /* file size */ 1713 __le32 sd_atime; /* time of last access */ 1714 __le32 sd_mtime; /* time file was last modified */ 1715 1716 /* 1717 * time inode (stat data) was last changed 1718 * (except changes to sd_atime and sd_mtime) 1719 */ 1720 __le32 sd_ctime; 1721 union { 1722 __le32 sd_rdev; 1723 __le32 sd_blocks; /* number of blocks file uses */ 1724 } __attribute__ ((__packed__)) u; 1725 1726 /* 1727 * first byte of file which is stored in a direct item: except that if 1728 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no 1729 * direct item. The existence of this field really grates on me. 1730 * Let's replace it with a macro based on sd_size and our tail 1731 * suppression policy. Someday. -Hans 1732 */ 1733 __le32 sd_first_direct_byte; 1734 } __attribute__ ((__packed__)); 1735 1736 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1737 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1738 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1739 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1740 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1741 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1742 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1743 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1744 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1745 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1746 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1747 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1748 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1749 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1750 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1751 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1752 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1753 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1754 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1755 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1756 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1757 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1758 #define sd_v1_first_direct_byte(sdp) \ 1759 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1760 #define set_sd_v1_first_direct_byte(sdp,v) \ 1761 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1762 1763 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1764 1765 /* 1766 * we want common flags to have the same values as in ext2, 1767 * so chattr(1) will work without problems 1768 */ 1769 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1770 #define REISERFS_APPEND_FL FS_APPEND_FL 1771 #define REISERFS_SYNC_FL FS_SYNC_FL 1772 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1773 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1774 #define REISERFS_SECRM_FL FS_SECRM_FL 1775 #define REISERFS_UNRM_FL FS_UNRM_FL 1776 #define REISERFS_COMPR_FL FS_COMPR_FL 1777 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1778 1779 /* persistent flags that file inherits from the parent directory */ 1780 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1781 REISERFS_SYNC_FL | \ 1782 REISERFS_NOATIME_FL | \ 1783 REISERFS_NODUMP_FL | \ 1784 REISERFS_SECRM_FL | \ 1785 REISERFS_COMPR_FL | \ 1786 REISERFS_NOTAIL_FL ) 1787 1788 /* 1789 * Stat Data on disk (reiserfs version of UFS disk inode minus the 1790 * address blocks) 1791 */ 1792 struct stat_data { 1793 __le16 sd_mode; /* file type, permissions */ 1794 __le16 sd_attrs; /* persistent inode flags */ 1795 __le32 sd_nlink; /* number of hard links */ 1796 __le64 sd_size; /* file size */ 1797 __le32 sd_uid; /* owner */ 1798 __le32 sd_gid; /* group */ 1799 __le32 sd_atime; /* time of last access */ 1800 __le32 sd_mtime; /* time file was last modified */ 1801 1802 /* 1803 * time inode (stat data) was last changed 1804 * (except changes to sd_atime and sd_mtime) 1805 */ 1806 __le32 sd_ctime; 1807 __le32 sd_blocks; 1808 union { 1809 __le32 sd_rdev; 1810 __le32 sd_generation; 1811 } __attribute__ ((__packed__)) u; 1812 } __attribute__ ((__packed__)); 1813 1814 /* this is 44 bytes long */ 1815 #define SD_SIZE (sizeof(struct stat_data)) 1816 #define SD_V2_SIZE SD_SIZE 1817 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1818 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1819 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1820 /* sd_reserved */ 1821 /* set_sd_reserved */ 1822 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1823 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1824 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1825 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1826 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1827 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1828 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1829 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1830 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1831 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1832 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1833 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1834 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1835 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1836 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1837 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1838 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1839 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1840 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1841 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1842 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1843 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1844 1845 /*************************************************************************** 1846 * DIRECTORY STRUCTURE * 1847 ***************************************************************************/ 1848 /* 1849 * Picture represents the structure of directory items 1850 * ________________________________________________ 1851 * | Array of | | | | | | 1852 * | directory |N-1| N-2 | .... | 1st |0th| 1853 * | entry headers | | | | | | 1854 * |_______________|___|_____|________|_______|___| 1855 * <---- directory entries ------> 1856 * 1857 * First directory item has k_offset component 1. We store "." and ".." 1858 * in one item, always, we never split "." and ".." into differing 1859 * items. This makes, among other things, the code for removing 1860 * directories simpler. 1861 */ 1862 #define SD_OFFSET 0 1863 #define SD_UNIQUENESS 0 1864 #define DOT_OFFSET 1 1865 #define DOT_DOT_OFFSET 2 1866 #define DIRENTRY_UNIQUENESS 500 1867 1868 #define FIRST_ITEM_OFFSET 1 1869 1870 /* 1871 * Q: How to get key of object pointed to by entry from entry? 1872 * 1873 * A: Each directory entry has its header. This header has deh_dir_id 1874 * and deh_objectid fields, those are key of object, entry points to 1875 */ 1876 1877 /* 1878 * NOT IMPLEMENTED: 1879 * Directory will someday contain stat data of object 1880 */ 1881 1882 struct reiserfs_de_head { 1883 __le32 deh_offset; /* third component of the directory entry key */ 1884 1885 /* 1886 * objectid of the parent directory of the object, that is referenced 1887 * by directory entry 1888 */ 1889 __le32 deh_dir_id; 1890 1891 /* objectid of the object, that is referenced by directory entry */ 1892 __le32 deh_objectid; 1893 __le16 deh_location; /* offset of name in the whole item */ 1894 1895 /* 1896 * whether 1) entry contains stat data (for future), and 1897 * 2) whether entry is hidden (unlinked) 1898 */ 1899 __le16 deh_state; 1900 } __attribute__ ((__packed__)); 1901 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1902 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1903 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1904 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1905 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1906 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1907 1908 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1909 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1910 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1911 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1912 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1913 1914 /* empty directory contains two entries "." and ".." and their headers */ 1915 #define EMPTY_DIR_SIZE \ 1916 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) 1917 1918 /* old format directories have this size when empty */ 1919 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1920 1921 #define DEH_Statdata 0 /* not used now */ 1922 #define DEH_Visible 2 1923 1924 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1925 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1926 # define ADDR_UNALIGNED_BITS (3) 1927 #endif 1928 1929 /* 1930 * These are only used to manipulate deh_state. 1931 * Because of this, we'll use the ext2_ bit routines, 1932 * since they are little endian 1933 */ 1934 #ifdef ADDR_UNALIGNED_BITS 1935 1936 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1937 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1938 1939 # define set_bit_unaligned(nr, addr) \ 1940 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1941 # define clear_bit_unaligned(nr, addr) \ 1942 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1943 # define test_bit_unaligned(nr, addr) \ 1944 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1945 1946 #else 1947 1948 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1949 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1950 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1951 1952 #endif 1953 1954 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1955 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1956 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1957 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1958 1959 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1960 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1961 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1962 1963 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1964 __le32 par_dirid, __le32 par_objid); 1965 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1966 __le32 par_dirid, __le32 par_objid); 1967 1968 /* two entries per block (at least) */ 1969 #define REISERFS_MAX_NAME(block_size) 255 1970 1971 /* 1972 * this structure is used for operations on directory entries. It is 1973 * not a disk structure. 1974 * 1975 * When reiserfs_find_entry or search_by_entry_key find directory 1976 * entry, they return filled reiserfs_dir_entry structure 1977 */ 1978 struct reiserfs_dir_entry { 1979 struct buffer_head *de_bh; 1980 int de_item_num; 1981 struct item_head *de_ih; 1982 int de_entry_num; 1983 struct reiserfs_de_head *de_deh; 1984 int de_entrylen; 1985 int de_namelen; 1986 char *de_name; 1987 unsigned long *de_gen_number_bit_string; 1988 1989 __u32 de_dir_id; 1990 __u32 de_objectid; 1991 1992 struct cpu_key de_entry_key; 1993 }; 1994 1995 /* 1996 * these defines are useful when a particular member of 1997 * a reiserfs_dir_entry is needed 1998 */ 1999 2000 /* pointer to file name, stored in entry */ 2001 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ 2002 (ih_item_body(bh, ih) + deh_location(deh)) 2003 2004 /* length of name */ 2005 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 2006 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 2007 2008 /* hash value occupies bits from 7 up to 30 */ 2009 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 2010 /* generation number occupies 7 bits starting from 0 up to 6 */ 2011 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 2012 #define MAX_GENERATION_NUMBER 127 2013 2014 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 2015 2016 /* 2017 * Picture represents an internal node of the reiserfs tree 2018 * ______________________________________________________ 2019 * | | Array of | Array of | Free | 2020 * |block | keys | pointers | space | 2021 * | head | N | N+1 | | 2022 * |______|_______________|___________________|___________| 2023 */ 2024 2025 /*************************************************************************** 2026 * DISK CHILD * 2027 ***************************************************************************/ 2028 /* 2029 * Disk child pointer: 2030 * The pointer from an internal node of the tree to a node that is on disk. 2031 */ 2032 struct disk_child { 2033 __le32 dc_block_number; /* Disk child's block number. */ 2034 __le16 dc_size; /* Disk child's used space. */ 2035 __le16 dc_reserved; 2036 }; 2037 2038 #define DC_SIZE (sizeof(struct disk_child)) 2039 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 2040 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 2041 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 2042 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 2043 2044 /* Get disk child by buffer header and position in the tree node. */ 2045 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 2046 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 2047 2048 /* Get disk child number by buffer header and position in the tree node. */ 2049 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 2050 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 2051 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 2052 2053 /* maximal value of field child_size in structure disk_child */ 2054 /* child size is the combined size of all items and their headers */ 2055 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 2056 2057 /* amount of used space in buffer (not including block head) */ 2058 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 2059 2060 /* max and min number of keys in internal node */ 2061 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 2062 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 2063 2064 /*************************************************************************** 2065 * PATH STRUCTURES AND DEFINES * 2066 ***************************************************************************/ 2067 2068 /* 2069 * search_by_key fills up the path from the root to the leaf as it descends 2070 * the tree looking for the key. It uses reiserfs_bread to try to find 2071 * buffers in the cache given their block number. If it does not find 2072 * them in the cache it reads them from disk. For each node search_by_key 2073 * finds using reiserfs_bread it then uses bin_search to look through that 2074 * node. bin_search will find the position of the block_number of the next 2075 * node if it is looking through an internal node. If it is looking through 2076 * a leaf node bin_search will find the position of the item which has key 2077 * either equal to given key, or which is the maximal key less than the 2078 * given key. 2079 */ 2080 2081 struct path_element { 2082 /* Pointer to the buffer at the path in the tree. */ 2083 struct buffer_head *pe_buffer; 2084 /* Position in the tree node which is placed in the buffer above. */ 2085 int pe_position; 2086 }; 2087 2088 /* 2089 * maximal height of a tree. don't change this without 2090 * changing JOURNAL_PER_BALANCE_CNT 2091 */ 2092 #define MAX_HEIGHT 5 2093 2094 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 2095 #define EXTENDED_MAX_HEIGHT 7 2096 2097 /* Must be equal to at least 2. */ 2098 #define FIRST_PATH_ELEMENT_OFFSET 2 2099 2100 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 2101 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 2102 2103 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 2104 #define MAX_FEB_SIZE 6 2105 2106 /* 2107 * We need to keep track of who the ancestors of nodes are. When we 2108 * perform a search we record which nodes were visited while 2109 * descending the tree looking for the node we searched for. This list 2110 * of nodes is called the path. This information is used while 2111 * performing balancing. Note that this path information may become 2112 * invalid, and this means we must check it when using it to see if it 2113 * is still valid. You'll need to read search_by_key and the comments 2114 * in it, especially about decrement_counters_in_path(), to understand 2115 * this structure. 2116 * 2117 * Paths make the code so much harder to work with and debug.... An 2118 * enormous number of bugs are due to them, and trying to write or modify 2119 * code that uses them just makes my head hurt. They are based on an 2120 * excessive effort to avoid disturbing the precious VFS code.:-( The 2121 * gods only know how we are going to SMP the code that uses them. 2122 * znodes are the way! 2123 */ 2124 2125 #define PATH_READA 0x1 /* do read ahead */ 2126 #define PATH_READA_BACK 0x2 /* read backwards */ 2127 2128 struct treepath { 2129 int path_length; /* Length of the array above. */ 2130 int reada; 2131 /* Array of the path elements. */ 2132 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; 2133 int pos_in_item; 2134 }; 2135 2136 #define pos_in_item(path) ((path)->pos_in_item) 2137 2138 #define INITIALIZE_PATH(var) \ 2139 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 2140 2141 /* Get path element by path and path position. */ 2142 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 2143 2144 /* Get buffer header at the path by path and path position. */ 2145 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 2146 2147 /* Get position in the element at the path by path and path position. */ 2148 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 2149 2150 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 2151 2152 /* 2153 * you know, to the person who didn't write this the macro name does not 2154 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or 2155 * maybe we should just focus on dumping paths... -Hans 2156 */ 2157 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 2158 2159 /* 2160 * in do_balance leaf has h == 0 in contrast with path structure, 2161 * where root has level == 0. That is why we need these defines 2162 */ 2163 2164 /* tb->S[h] */ 2165 #define PATH_H_PBUFFER(path, h) \ 2166 PATH_OFFSET_PBUFFER(path, path->path_length - (h)) 2167 2168 /* tb->F[h] or tb->S[0]->b_parent */ 2169 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) 2170 2171 #define PATH_H_POSITION(path, h) \ 2172 PATH_OFFSET_POSITION(path, path->path_length - (h)) 2173 2174 /* tb->S[h]->b_item_order */ 2175 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) 2176 2177 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 2178 2179 static inline void *reiserfs_node_data(const struct buffer_head *bh) 2180 { 2181 return bh->b_data + sizeof(struct block_head); 2182 } 2183 2184 /* get key from internal node */ 2185 static inline struct reiserfs_key *internal_key(struct buffer_head *bh, 2186 int item_num) 2187 { 2188 struct reiserfs_key *key = reiserfs_node_data(bh); 2189 2190 return &key[item_num]; 2191 } 2192 2193 /* get the item header from leaf node */ 2194 static inline struct item_head *item_head(const struct buffer_head *bh, 2195 int item_num) 2196 { 2197 struct item_head *ih = reiserfs_node_data(bh); 2198 2199 return &ih[item_num]; 2200 } 2201 2202 /* get the key from leaf node */ 2203 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, 2204 int item_num) 2205 { 2206 return &item_head(bh, item_num)->ih_key; 2207 } 2208 2209 static inline void *ih_item_body(const struct buffer_head *bh, 2210 const struct item_head *ih) 2211 { 2212 return bh->b_data + ih_location(ih); 2213 } 2214 2215 /* get item body from leaf node */ 2216 static inline void *item_body(const struct buffer_head *bh, int item_num) 2217 { 2218 return ih_item_body(bh, item_head(bh, item_num)); 2219 } 2220 2221 static inline struct item_head *tp_item_head(const struct treepath *path) 2222 { 2223 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2224 } 2225 2226 static inline void *tp_item_body(const struct treepath *path) 2227 { 2228 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2229 } 2230 2231 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 2232 #define get_item_pos(path) PATH_LAST_POSITION(path) 2233 #define item_moved(ih,path) comp_items(ih, path) 2234 #define path_changed(ih,path) comp_items (ih, path) 2235 2236 /* array of the entry headers */ 2237 /* get item body */ 2238 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) 2239 2240 /* 2241 * length of the directory entry in directory item. This define 2242 * calculates length of i-th directory entry using directory entry 2243 * locations from dir entry head. When it calculates length of 0-th 2244 * directory entry, it uses length of whole item in place of entry 2245 * location of the non-existent following entry in the calculation. 2246 * See picture above. 2247 */ 2248 static inline int entry_length(const struct buffer_head *bh, 2249 const struct item_head *ih, int pos_in_item) 2250 { 2251 struct reiserfs_de_head *deh; 2252 2253 deh = B_I_DEH(bh, ih) + pos_in_item; 2254 if (pos_in_item) 2255 return deh_location(deh - 1) - deh_location(deh); 2256 2257 return ih_item_len(ih) - deh_location(deh); 2258 } 2259 2260 /*************************************************************************** 2261 * MISC * 2262 ***************************************************************************/ 2263 2264 /* Size of pointer to the unformatted node. */ 2265 #define UNFM_P_SIZE (sizeof(unp_t)) 2266 #define UNFM_P_SHIFT 2 2267 2268 /* in in-core inode key is stored on le form */ 2269 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 2270 2271 #define MAX_UL_INT 0xffffffff 2272 #define MAX_INT 0x7ffffff 2273 #define MAX_US_INT 0xffff 2274 2275 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 2276 static inline loff_t max_reiserfs_offset(struct inode *inode) 2277 { 2278 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 2279 return (loff_t) U32_MAX; 2280 2281 return (loff_t) ((~(__u64) 0) >> 4); 2282 } 2283 2284 #define MAX_KEY_OBJECTID MAX_UL_INT 2285 2286 #define MAX_B_NUM MAX_UL_INT 2287 #define MAX_FC_NUM MAX_US_INT 2288 2289 /* the purpose is to detect overflow of an unsigned short */ 2290 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 2291 2292 /* 2293 * The following defines are used in reiserfs_insert_item 2294 * and reiserfs_append_item 2295 */ 2296 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ 2297 #define REISERFS_USER_MEM 1 /* user memory mode */ 2298 2299 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 2300 #define get_generation(s) atomic_read (&fs_generation(s)) 2301 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 2302 #define __fs_changed(gen,s) (gen != get_generation (s)) 2303 #define fs_changed(gen,s) \ 2304 ({ \ 2305 reiserfs_cond_resched(s); \ 2306 __fs_changed(gen, s); \ 2307 }) 2308 2309 /*************************************************************************** 2310 * FIXATE NODES * 2311 ***************************************************************************/ 2312 2313 #define VI_TYPE_LEFT_MERGEABLE 1 2314 #define VI_TYPE_RIGHT_MERGEABLE 2 2315 2316 /* 2317 * To make any changes in the tree we always first find node, that 2318 * contains item to be changed/deleted or place to insert a new 2319 * item. We call this node S. To do balancing we need to decide what 2320 * we will shift to left/right neighbor, or to a new node, where new 2321 * item will be etc. To make this analysis simpler we build virtual 2322 * node. Virtual node is an array of items, that will replace items of 2323 * node S. (For instance if we are going to delete an item, virtual 2324 * node does not contain it). Virtual node keeps information about 2325 * item sizes and types, mergeability of first and last items, sizes 2326 * of all entries in directory item. We use this array of items when 2327 * calculating what we can shift to neighbors and how many nodes we 2328 * have to have if we do not any shiftings, if we shift to left/right 2329 * neighbor or to both. 2330 */ 2331 struct virtual_item { 2332 int vi_index; /* index in the array of item operations */ 2333 unsigned short vi_type; /* left/right mergeability */ 2334 2335 /* length of item that it will have after balancing */ 2336 unsigned short vi_item_len; 2337 2338 struct item_head *vi_ih; 2339 const char *vi_item; /* body of item (old or new) */ 2340 const void *vi_new_data; /* 0 always but paste mode */ 2341 void *vi_uarea; /* item specific area */ 2342 }; 2343 2344 struct virtual_node { 2345 /* this is a pointer to the free space in the buffer */ 2346 char *vn_free_ptr; 2347 2348 unsigned short vn_nr_item; /* number of items in virtual node */ 2349 2350 /* 2351 * size of node , that node would have if it has 2352 * unlimited size and no balancing is performed 2353 */ 2354 short vn_size; 2355 2356 /* mode of balancing (paste, insert, delete, cut) */ 2357 short vn_mode; 2358 2359 short vn_affected_item_num; 2360 short vn_pos_in_item; 2361 2362 /* item header of inserted item, 0 for other modes */ 2363 struct item_head *vn_ins_ih; 2364 const void *vn_data; 2365 2366 /* array of items (including a new one, excluding item to be deleted) */ 2367 struct virtual_item *vn_vi; 2368 }; 2369 2370 /* used by directory items when creating virtual nodes */ 2371 struct direntry_uarea { 2372 int flags; 2373 __u16 entry_count; 2374 __u16 entry_sizes[1]; 2375 } __attribute__ ((__packed__)); 2376 2377 /*************************************************************************** 2378 * TREE BALANCE * 2379 ***************************************************************************/ 2380 2381 /* 2382 * This temporary structure is used in tree balance algorithms, and 2383 * constructed as we go to the extent that its various parts are 2384 * needed. It contains arrays of nodes that can potentially be 2385 * involved in the balancing of node S, and parameters that define how 2386 * each of the nodes must be balanced. Note that in these algorithms 2387 * for balancing the worst case is to need to balance the current node 2388 * S and the left and right neighbors and all of their parents plus 2389 * create a new node. We implement S1 balancing for the leaf nodes 2390 * and S0 balancing for the internal nodes (S1 and S0 are defined in 2391 * our papers.) 2392 */ 2393 2394 /* size of the array of buffers to free at end of do_balance */ 2395 #define MAX_FREE_BLOCK 7 2396 2397 /* maximum number of FEB blocknrs on a single level */ 2398 #define MAX_AMOUNT_NEEDED 2 2399 2400 /* someday somebody will prefix every field in this struct with tb_ */ 2401 struct tree_balance { 2402 int tb_mode; 2403 int need_balance_dirty; 2404 struct super_block *tb_sb; 2405 struct reiserfs_transaction_handle *transaction_handle; 2406 struct treepath *tb_path; 2407 2408 /* array of left neighbors of nodes in the path */ 2409 struct buffer_head *L[MAX_HEIGHT]; 2410 2411 /* array of right neighbors of nodes in the path */ 2412 struct buffer_head *R[MAX_HEIGHT]; 2413 2414 /* array of fathers of the left neighbors */ 2415 struct buffer_head *FL[MAX_HEIGHT]; 2416 2417 /* array of fathers of the right neighbors */ 2418 struct buffer_head *FR[MAX_HEIGHT]; 2419 /* array of common parents of center node and its left neighbor */ 2420 struct buffer_head *CFL[MAX_HEIGHT]; 2421 2422 /* array of common parents of center node and its right neighbor */ 2423 struct buffer_head *CFR[MAX_HEIGHT]; 2424 2425 /* 2426 * array of empty buffers. Number of buffers in array equals 2427 * cur_blknum. 2428 */ 2429 struct buffer_head *FEB[MAX_FEB_SIZE]; 2430 struct buffer_head *used[MAX_FEB_SIZE]; 2431 struct buffer_head *thrown[MAX_FEB_SIZE]; 2432 2433 /* 2434 * array of number of items which must be shifted to the left in 2435 * order to balance the current node; for leaves includes item that 2436 * will be partially shifted; for internal nodes, it is the number 2437 * of child pointers rather than items. It includes the new item 2438 * being created. The code sometimes subtracts one to get the 2439 * number of wholly shifted items for other purposes. 2440 */ 2441 int lnum[MAX_HEIGHT]; 2442 2443 /* substitute right for left in comment above */ 2444 int rnum[MAX_HEIGHT]; 2445 2446 /* 2447 * array indexed by height h mapping the key delimiting L[h] and 2448 * S[h] to its item number within the node CFL[h] 2449 */ 2450 int lkey[MAX_HEIGHT]; 2451 2452 /* substitute r for l in comment above */ 2453 int rkey[MAX_HEIGHT]; 2454 2455 /* 2456 * the number of bytes by we are trying to add or remove from 2457 * S[h]. A negative value means removing. 2458 */ 2459 int insert_size[MAX_HEIGHT]; 2460 2461 /* 2462 * number of nodes that will replace node S[h] after balancing 2463 * on the level h of the tree. If 0 then S is being deleted, 2464 * if 1 then S is remaining and no new nodes are being created, 2465 * if 2 or 3 then 1 or 2 new nodes is being created 2466 */ 2467 int blknum[MAX_HEIGHT]; 2468 2469 /* fields that are used only for balancing leaves of the tree */ 2470 2471 /* number of empty blocks having been already allocated */ 2472 int cur_blknum; 2473 2474 /* number of items that fall into left most node when S[0] splits */ 2475 int s0num; 2476 2477 /* 2478 * number of bytes which can flow to the left neighbor from the left 2479 * most liquid item that cannot be shifted from S[0] entirely 2480 * if -1 then nothing will be partially shifted 2481 */ 2482 int lbytes; 2483 2484 /* 2485 * number of bytes which will flow to the right neighbor from the right 2486 * most liquid item that cannot be shifted from S[0] entirely 2487 * if -1 then nothing will be partially shifted 2488 */ 2489 int rbytes; 2490 2491 2492 /* 2493 * index into the array of item headers in 2494 * S[0] of the affected item 2495 */ 2496 int item_pos; 2497 2498 /* new nodes allocated to hold what could not fit into S */ 2499 struct buffer_head *S_new[2]; 2500 2501 /* 2502 * number of items that will be placed into nodes in S_new 2503 * when S[0] splits 2504 */ 2505 int snum[2]; 2506 2507 /* 2508 * number of bytes which flow to nodes in S_new when S[0] splits 2509 * note: if S[0] splits into 3 nodes, then items do not need to be cut 2510 */ 2511 int sbytes[2]; 2512 2513 int pos_in_item; 2514 int zeroes_num; 2515 2516 /* 2517 * buffers which are to be freed after do_balance finishes 2518 * by unfix_nodes 2519 */ 2520 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; 2521 2522 /* 2523 * kmalloced memory. Used to create virtual node and keep 2524 * map of dirtied bitmap blocks 2525 */ 2526 char *vn_buf; 2527 2528 int vn_buf_size; /* size of the vn_buf */ 2529 2530 /* VN starts after bitmap of bitmap blocks */ 2531 struct virtual_node *tb_vn; 2532 2533 /* 2534 * saved value of `reiserfs_generation' counter see 2535 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h 2536 */ 2537 int fs_gen; 2538 2539 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2540 /* 2541 * key pointer, to pass to block allocator or 2542 * another low-level subsystem 2543 */ 2544 struct in_core_key key; 2545 #endif 2546 }; 2547 2548 /* These are modes of balancing */ 2549 2550 /* When inserting an item. */ 2551 #define M_INSERT 'i' 2552 /* 2553 * When inserting into (directories only) or appending onto an already 2554 * existent item. 2555 */ 2556 #define M_PASTE 'p' 2557 /* When deleting an item. */ 2558 #define M_DELETE 'd' 2559 /* When truncating an item or removing an entry from a (directory) item. */ 2560 #define M_CUT 'c' 2561 2562 /* used when balancing on leaf level skipped (in reiserfsck) */ 2563 #define M_INTERNAL 'n' 2564 2565 /* 2566 * When further balancing is not needed, then do_balance does not need 2567 * to be called. 2568 */ 2569 #define M_SKIP_BALANCING 's' 2570 #define M_CONVERT 'v' 2571 2572 /* modes of leaf_move_items */ 2573 #define LEAF_FROM_S_TO_L 0 2574 #define LEAF_FROM_S_TO_R 1 2575 #define LEAF_FROM_R_TO_L 2 2576 #define LEAF_FROM_L_TO_R 3 2577 #define LEAF_FROM_S_TO_SNEW 4 2578 2579 #define FIRST_TO_LAST 0 2580 #define LAST_TO_FIRST 1 2581 2582 /* 2583 * used in do_balance for passing parent of node information that has 2584 * been gotten from tb struct 2585 */ 2586 struct buffer_info { 2587 struct tree_balance *tb; 2588 struct buffer_head *bi_bh; 2589 struct buffer_head *bi_parent; 2590 int bi_position; 2591 }; 2592 2593 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2594 { 2595 return tb ? tb->tb_sb : NULL; 2596 } 2597 2598 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2599 { 2600 return bi ? sb_from_tb(bi->tb) : NULL; 2601 } 2602 2603 /* 2604 * there are 4 types of items: stat data, directory item, indirect, direct. 2605 * +-------------------+------------+--------------+------------+ 2606 * | | k_offset | k_uniqueness | mergeable? | 2607 * +-------------------+------------+--------------+------------+ 2608 * | stat data | 0 | 0 | no | 2609 * +-------------------+------------+--------------+------------+ 2610 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | 2611 * | non 1st directory | hash value | UNIQUENESS | yes | 2612 * | item | | | | 2613 * +-------------------+------------+--------------+------------+ 2614 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | 2615 * +-------------------+------------+--------------+------------+ 2616 * | direct item | offset + 1 |TYPE_DIRECT | [2] | 2617 * +-------------------+------------+--------------+------------+ 2618 * 2619 * [1] if this is not the first indirect item of the object 2620 * [2] if this is not the first direct item of the object 2621 */ 2622 2623 struct item_operations { 2624 int (*bytes_number) (struct item_head * ih, int block_size); 2625 void (*decrement_key) (struct cpu_key *); 2626 int (*is_left_mergeable) (struct reiserfs_key * ih, 2627 unsigned long bsize); 2628 void (*print_item) (struct item_head *, char *item); 2629 void (*check_item) (struct item_head *, char *item); 2630 2631 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2632 int is_affected, int insert_size); 2633 int (*check_left) (struct virtual_item * vi, int free, 2634 int start_skip, int end_skip); 2635 int (*check_right) (struct virtual_item * vi, int free); 2636 int (*part_size) (struct virtual_item * vi, int from, int to); 2637 int (*unit_num) (struct virtual_item * vi); 2638 void (*print_vi) (struct virtual_item * vi); 2639 }; 2640 2641 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2642 2643 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2644 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2645 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2646 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2647 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2648 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2649 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2650 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2651 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2652 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2653 2654 #define COMP_SHORT_KEYS comp_short_keys 2655 2656 /* number of blocks pointed to by the indirect item */ 2657 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2658 2659 /* 2660 * the used space within the unformatted node corresponding 2661 * to pos within the item pointed to by ih 2662 */ 2663 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2664 2665 /* 2666 * number of bytes contained by the direct item or the 2667 * unformatted nodes the indirect item points to 2668 */ 2669 2670 /* following defines use reiserfs buffer header and item header */ 2671 2672 /* get stat-data */ 2673 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2674 2675 /* this is 3976 for size==4096 */ 2676 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2677 2678 /* 2679 * indirect items consist of entries which contain blocknrs, pos 2680 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2681 * blocknr contained by the entry pos points to 2682 */ 2683 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ 2684 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) 2685 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ 2686 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) 2687 2688 struct reiserfs_iget_args { 2689 __u32 objectid; 2690 __u32 dirid; 2691 }; 2692 2693 /*************************************************************************** 2694 * FUNCTION DECLARATIONS * 2695 ***************************************************************************/ 2696 2697 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2698 2699 #define journal_trans_half(blocksize) \ 2700 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 2701 2702 /* journal.c see journal.c for all the comments here */ 2703 2704 /* first block written in a commit. */ 2705 struct reiserfs_journal_desc { 2706 __le32 j_trans_id; /* id of commit */ 2707 2708 /* length of commit. len +1 is the commit block */ 2709 __le32 j_len; 2710 2711 __le32 j_mount_id; /* mount id of this trans */ 2712 __le32 j_realblock[1]; /* real locations for each block */ 2713 }; 2714 2715 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2716 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2717 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2718 2719 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2720 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2721 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2722 2723 /* last block written in a commit */ 2724 struct reiserfs_journal_commit { 2725 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2726 __le32 j_len; /* ditto */ 2727 __le32 j_realblock[1]; /* real locations for each block */ 2728 }; 2729 2730 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2731 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2732 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2733 2734 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2735 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2736 2737 /* 2738 * this header block gets written whenever a transaction is considered 2739 * fully flushed, and is more recent than the last fully flushed transaction. 2740 * fully flushed means all the log blocks and all the real blocks are on 2741 * disk, and this transaction does not need to be replayed. 2742 */ 2743 struct reiserfs_journal_header { 2744 /* id of last fully flushed transaction */ 2745 __le32 j_last_flush_trans_id; 2746 2747 /* offset in the log of where to start replay after a crash */ 2748 __le32 j_first_unflushed_offset; 2749 2750 __le32 j_mount_id; 2751 /* 12 */ struct journal_params jh_journal; 2752 }; 2753 2754 /* biggest tunable defines are right here */ 2755 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2756 2757 /* biggest possible single transaction, don't change for now (8/3/99) */ 2758 #define JOURNAL_TRANS_MAX_DEFAULT 1024 2759 #define JOURNAL_TRANS_MIN_DEFAULT 256 2760 2761 /* 2762 * max blocks to batch into one transaction, 2763 * don't make this any bigger than 900 2764 */ 2765 #define JOURNAL_MAX_BATCH_DEFAULT 900 2766 #define JOURNAL_MIN_RATIO 2 2767 #define JOURNAL_MAX_COMMIT_AGE 30 2768 #define JOURNAL_MAX_TRANS_AGE 30 2769 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2770 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2771 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2772 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2773 2774 #ifdef CONFIG_QUOTA 2775 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2776 /* We need to update data and inode (atime) */ 2777 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2778 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2779 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2780 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2781 /* same as with INIT */ 2782 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2783 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2784 #else 2785 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2786 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2787 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2788 #endif 2789 2790 /* 2791 * both of these can be as low as 1, or as high as you want. The min is the 2792 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2793 * as needed, and released when transactions are committed. On release, if 2794 * the current number of nodes is > max, the node is freed, otherwise, 2795 * it is put on a free list for faster use later. 2796 */ 2797 #define REISERFS_MIN_BITMAP_NODES 10 2798 #define REISERFS_MAX_BITMAP_NODES 100 2799 2800 /* these are based on journal hash size of 8192 */ 2801 #define JBH_HASH_SHIFT 13 2802 #define JBH_HASH_MASK 8191 2803 2804 #define _jhashfn(sb,block) \ 2805 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2806 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2807 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2808 2809 /* We need these to make journal.c code more readable */ 2810 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2811 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2812 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2813 2814 enum reiserfs_bh_state_bits { 2815 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2816 BH_JDirty_wait, 2817 /* 2818 * disk block was taken off free list before being in a 2819 * finished transaction, or written to disk. Can be reused immed. 2820 */ 2821 BH_JNew, 2822 BH_JPrepared, 2823 BH_JRestore_dirty, 2824 BH_JTest, /* debugging only will go away */ 2825 }; 2826 2827 BUFFER_FNS(JDirty, journaled); 2828 TAS_BUFFER_FNS(JDirty, journaled); 2829 BUFFER_FNS(JDirty_wait, journal_dirty); 2830 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2831 BUFFER_FNS(JNew, journal_new); 2832 TAS_BUFFER_FNS(JNew, journal_new); 2833 BUFFER_FNS(JPrepared, journal_prepared); 2834 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2835 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2836 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2837 BUFFER_FNS(JTest, journal_test); 2838 TAS_BUFFER_FNS(JTest, journal_test); 2839 2840 /* transaction handle which is passed around for all journal calls */ 2841 struct reiserfs_transaction_handle { 2842 /* 2843 * super for this FS when journal_begin was called. saves calls to 2844 * reiserfs_get_super also used by nested transactions to make 2845 * sure they are nesting on the right FS _must_ be first 2846 * in the handle 2847 */ 2848 struct super_block *t_super; 2849 2850 int t_refcount; 2851 int t_blocks_logged; /* number of blocks this writer has logged */ 2852 int t_blocks_allocated; /* number of blocks this writer allocated */ 2853 2854 /* sanity check, equals the current trans id */ 2855 unsigned int t_trans_id; 2856 2857 void *t_handle_save; /* save existing current->journal_info */ 2858 2859 /* 2860 * if new block allocation occurres, that block 2861 * should be displaced from others 2862 */ 2863 unsigned displace_new_blocks:1; 2864 2865 struct list_head t_list; 2866 }; 2867 2868 /* 2869 * used to keep track of ordered and tail writes, attached to the buffer 2870 * head through b_journal_head. 2871 */ 2872 struct reiserfs_jh { 2873 struct reiserfs_journal_list *jl; 2874 struct buffer_head *bh; 2875 struct list_head list; 2876 }; 2877 2878 void reiserfs_free_jh(struct buffer_head *bh); 2879 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2880 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2881 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2882 struct buffer_head *bh); 2883 2884 static inline int reiserfs_file_data_log(struct inode *inode) 2885 { 2886 if (reiserfs_data_log(inode->i_sb) || 2887 (REISERFS_I(inode)->i_flags & i_data_log)) 2888 return 1; 2889 return 0; 2890 } 2891 2892 static inline int reiserfs_transaction_running(struct super_block *s) 2893 { 2894 struct reiserfs_transaction_handle *th = current->journal_info; 2895 if (th && th->t_super == s) 2896 return 1; 2897 if (th && th->t_super == NULL) 2898 BUG(); 2899 return 0; 2900 } 2901 2902 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2903 { 2904 return th->t_blocks_allocated - th->t_blocks_logged; 2905 } 2906 2907 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2908 super_block 2909 *, 2910 int count); 2911 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2912 void reiserfs_vfs_truncate_file(struct inode *inode); 2913 int reiserfs_commit_page(struct inode *inode, struct page *page, 2914 unsigned from, unsigned to); 2915 void reiserfs_flush_old_commits(struct super_block *); 2916 int reiserfs_commit_for_inode(struct inode *); 2917 int reiserfs_inode_needs_commit(struct inode *); 2918 void reiserfs_update_inode_transaction(struct inode *); 2919 void reiserfs_wait_on_write_block(struct super_block *s); 2920 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2921 void reiserfs_allow_writes(struct super_block *s); 2922 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2923 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2924 int wait); 2925 void reiserfs_restore_prepared_buffer(struct super_block *, 2926 struct buffer_head *bh); 2927 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2928 unsigned int); 2929 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2930 int journal_release_error(struct reiserfs_transaction_handle *, 2931 struct super_block *); 2932 int journal_end(struct reiserfs_transaction_handle *); 2933 int journal_end_sync(struct reiserfs_transaction_handle *); 2934 int journal_mark_freed(struct reiserfs_transaction_handle *, 2935 struct super_block *, b_blocknr_t blocknr); 2936 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2937 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2938 int bit_nr, int searchall, b_blocknr_t *next); 2939 int journal_begin(struct reiserfs_transaction_handle *, 2940 struct super_block *sb, unsigned long); 2941 int journal_join_abort(struct reiserfs_transaction_handle *, 2942 struct super_block *sb); 2943 void reiserfs_abort_journal(struct super_block *sb, int errno); 2944 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2945 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2946 struct reiserfs_list_bitmap *, unsigned int); 2947 2948 void reiserfs_schedule_old_flush(struct super_block *s); 2949 void add_save_link(struct reiserfs_transaction_handle *th, 2950 struct inode *inode, int truncate); 2951 int remove_save_link(struct inode *inode, int truncate); 2952 2953 /* objectid.c */ 2954 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2955 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2956 __u32 objectid_to_release); 2957 int reiserfs_convert_objectid_map_v1(struct super_block *); 2958 2959 /* stree.c */ 2960 int B_IS_IN_TREE(const struct buffer_head *); 2961 extern void copy_item_head(struct item_head *to, 2962 const struct item_head *from); 2963 2964 /* first key is in cpu form, second - le */ 2965 extern int comp_short_keys(const struct reiserfs_key *le_key, 2966 const struct cpu_key *cpu_key); 2967 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2968 2969 /* both are in le form */ 2970 extern int comp_le_keys(const struct reiserfs_key *, 2971 const struct reiserfs_key *); 2972 extern int comp_short_le_keys(const struct reiserfs_key *, 2973 const struct reiserfs_key *); 2974 2975 /* * get key version from on disk key - kludge */ 2976 static inline int le_key_version(const struct reiserfs_key *key) 2977 { 2978 int type; 2979 2980 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2981 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2982 && type != TYPE_DIRENTRY) 2983 return KEY_FORMAT_3_5; 2984 2985 return KEY_FORMAT_3_6; 2986 2987 } 2988 2989 static inline void copy_key(struct reiserfs_key *to, 2990 const struct reiserfs_key *from) 2991 { 2992 memcpy(to, from, KEY_SIZE); 2993 } 2994 2995 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 2996 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 2997 const struct super_block *sb); 2998 int search_by_key(struct super_block *, const struct cpu_key *, 2999 struct treepath *, int); 3000 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 3001 int search_for_position_by_key(struct super_block *sb, 3002 const struct cpu_key *cpu_key, 3003 struct treepath *search_path); 3004 extern void decrement_bcount(struct buffer_head *bh); 3005 void decrement_counters_in_path(struct treepath *search_path); 3006 void pathrelse(struct treepath *search_path); 3007 int reiserfs_check_path(struct treepath *p); 3008 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 3009 3010 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 3011 struct treepath *path, 3012 const struct cpu_key *key, 3013 struct item_head *ih, 3014 struct inode *inode, const char *body); 3015 3016 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 3017 struct treepath *path, 3018 const struct cpu_key *key, 3019 struct inode *inode, 3020 const char *body, int paste_size); 3021 3022 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 3023 struct treepath *path, 3024 struct cpu_key *key, 3025 struct inode *inode, 3026 struct page *page, loff_t new_file_size); 3027 3028 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 3029 struct treepath *path, 3030 const struct cpu_key *key, 3031 struct inode *inode, struct buffer_head *un_bh); 3032 3033 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 3034 struct inode *inode, struct reiserfs_key *key); 3035 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 3036 struct inode *inode); 3037 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 3038 struct inode *inode, struct page *, 3039 int update_timestamps); 3040 3041 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 3042 #define file_size(inode) ((inode)->i_size) 3043 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 3044 3045 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 3046 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 3047 3048 void padd_item(char *item, int total_length, int length); 3049 3050 /* inode.c */ 3051 /* args for the create parameter of reiserfs_get_block */ 3052 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 3053 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 3054 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 3055 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 3056 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 3057 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 3058 3059 void reiserfs_read_locked_inode(struct inode *inode, 3060 struct reiserfs_iget_args *args); 3061 int reiserfs_find_actor(struct inode *inode, void *p); 3062 int reiserfs_init_locked_inode(struct inode *inode, void *p); 3063 void reiserfs_evict_inode(struct inode *inode); 3064 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3065 int reiserfs_get_block(struct inode *inode, sector_t block, 3066 struct buffer_head *bh_result, int create); 3067 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3068 int fh_len, int fh_type); 3069 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 3070 int fh_len, int fh_type); 3071 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 3072 struct inode *parent); 3073 3074 int reiserfs_truncate_file(struct inode *, int update_timestamps); 3075 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 3076 int type, int key_length); 3077 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 3078 int version, 3079 loff_t offset, int type, int length, int entry_count); 3080 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 3081 3082 struct reiserfs_security_handle; 3083 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 3084 struct inode *dir, umode_t mode, 3085 const char *symname, loff_t i_size, 3086 struct dentry *dentry, struct inode *inode, 3087 struct reiserfs_security_handle *security); 3088 3089 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 3090 struct inode *inode, loff_t size); 3091 3092 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 3093 struct inode *inode) 3094 { 3095 reiserfs_update_sd_size(th, inode, inode->i_size); 3096 } 3097 3098 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 3099 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); 3100 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 3101 3102 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 3103 3104 /* namei.c */ 3105 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 3106 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 3107 struct treepath *path, struct reiserfs_dir_entry *de); 3108 struct dentry *reiserfs_get_parent(struct dentry *); 3109 3110 #ifdef CONFIG_REISERFS_PROC_INFO 3111 int reiserfs_proc_info_init(struct super_block *sb); 3112 int reiserfs_proc_info_done(struct super_block *sb); 3113 int reiserfs_proc_info_global_init(void); 3114 int reiserfs_proc_info_global_done(void); 3115 3116 #define PROC_EXP( e ) e 3117 3118 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 3119 #define PROC_INFO_MAX( sb, field, value ) \ 3120 __PINFO( sb ).field = \ 3121 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 3122 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 3123 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 3124 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 3125 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 3126 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 3127 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 3128 #else 3129 static inline int reiserfs_proc_info_init(struct super_block *sb) 3130 { 3131 return 0; 3132 } 3133 3134 static inline int reiserfs_proc_info_done(struct super_block *sb) 3135 { 3136 return 0; 3137 } 3138 3139 static inline int reiserfs_proc_info_global_init(void) 3140 { 3141 return 0; 3142 } 3143 3144 static inline int reiserfs_proc_info_global_done(void) 3145 { 3146 return 0; 3147 } 3148 3149 #define PROC_EXP( e ) 3150 #define VOID_V ( ( void ) 0 ) 3151 #define PROC_INFO_MAX( sb, field, value ) VOID_V 3152 #define PROC_INFO_INC( sb, field ) VOID_V 3153 #define PROC_INFO_ADD( sb, field, val ) VOID_V 3154 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 3155 #endif 3156 3157 /* dir.c */ 3158 extern const struct inode_operations reiserfs_dir_inode_operations; 3159 extern const struct inode_operations reiserfs_symlink_inode_operations; 3160 extern const struct inode_operations reiserfs_special_inode_operations; 3161 extern const struct file_operations reiserfs_dir_operations; 3162 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 3163 3164 /* tail_conversion.c */ 3165 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 3166 struct treepath *, struct buffer_head *, loff_t); 3167 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 3168 struct page *, struct treepath *, const struct cpu_key *, 3169 loff_t, char *); 3170 void reiserfs_unmap_buffer(struct buffer_head *); 3171 3172 /* file.c */ 3173 extern const struct inode_operations reiserfs_file_inode_operations; 3174 extern const struct file_operations reiserfs_file_operations; 3175 extern const struct address_space_operations reiserfs_address_space_operations; 3176 3177 /* fix_nodes.c */ 3178 3179 int fix_nodes(int n_op_mode, struct tree_balance *tb, 3180 struct item_head *ins_ih, const void *); 3181 void unfix_nodes(struct tree_balance *); 3182 3183 /* prints.c */ 3184 void __reiserfs_panic(struct super_block *s, const char *id, 3185 const char *function, const char *fmt, ...) 3186 __attribute__ ((noreturn)); 3187 #define reiserfs_panic(s, id, fmt, args...) \ 3188 __reiserfs_panic(s, id, __func__, fmt, ##args) 3189 void __reiserfs_error(struct super_block *s, const char *id, 3190 const char *function, const char *fmt, ...); 3191 #define reiserfs_error(s, id, fmt, args...) \ 3192 __reiserfs_error(s, id, __func__, fmt, ##args) 3193 void reiserfs_info(struct super_block *s, const char *fmt, ...); 3194 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 3195 void print_indirect_item(struct buffer_head *bh, int item_num); 3196 void store_print_tb(struct tree_balance *tb); 3197 void print_cur_tb(char *mes); 3198 void print_de(struct reiserfs_dir_entry *de); 3199 void print_bi(struct buffer_info *bi, char *mes); 3200 #define PRINT_LEAF_ITEMS 1 /* print all items */ 3201 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 3202 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 3203 void print_block(struct buffer_head *bh, ...); 3204 void print_bmap(struct super_block *s, int silent); 3205 void print_bmap_block(int i, char *data, int size, int silent); 3206 /*void print_super_block (struct super_block * s, char * mes);*/ 3207 void print_objectid_map(struct super_block *s); 3208 void print_block_head(struct buffer_head *bh, char *mes); 3209 void check_leaf(struct buffer_head *bh); 3210 void check_internal(struct buffer_head *bh); 3211 void print_statistics(struct super_block *s); 3212 char *reiserfs_hashname(int code); 3213 3214 /* lbalance.c */ 3215 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 3216 int mov_bytes, struct buffer_head *Snew); 3217 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 3218 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 3219 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 3220 int del_num, int del_bytes); 3221 void leaf_insert_into_buf(struct buffer_info *bi, int before, 3222 struct item_head * const inserted_item_ih, 3223 const char * const inserted_item_body, 3224 int zeros_number); 3225 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 3226 int pos_in_item, int paste_size, 3227 const char * const body, int zeros_number); 3228 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 3229 int pos_in_item, int cut_size); 3230 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 3231 int new_entry_count, struct reiserfs_de_head *new_dehs, 3232 const char *records, int paste_size); 3233 /* ibalance.c */ 3234 int balance_internal(struct tree_balance *, int, int, struct item_head *, 3235 struct buffer_head **); 3236 3237 /* do_balance.c */ 3238 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 3239 struct buffer_head *bh, int flag); 3240 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 3241 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 3242 3243 void do_balance(struct tree_balance *tb, struct item_head *ih, 3244 const char *body, int flag); 3245 void reiserfs_invalidate_buffer(struct tree_balance *tb, 3246 struct buffer_head *bh); 3247 3248 int get_left_neighbor_position(struct tree_balance *tb, int h); 3249 int get_right_neighbor_position(struct tree_balance *tb, int h); 3250 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 3251 struct buffer_head *, int); 3252 void make_empty_node(struct buffer_info *); 3253 struct buffer_head *get_FEB(struct tree_balance *); 3254 3255 /* bitmap.c */ 3256 3257 /* 3258 * structure contains hints for block allocator, and it is a container for 3259 * arguments, such as node, search path, transaction_handle, etc. 3260 */ 3261 struct __reiserfs_blocknr_hint { 3262 /* inode passed to allocator, if we allocate unf. nodes */ 3263 struct inode *inode; 3264 3265 sector_t block; /* file offset, in blocks */ 3266 struct in_core_key key; 3267 3268 /* 3269 * search path, used by allocator to deternine search_start by 3270 * various ways 3271 */ 3272 struct treepath *path; 3273 3274 /* 3275 * transaction handle is needed to log super blocks 3276 * and bitmap blocks changes 3277 */ 3278 struct reiserfs_transaction_handle *th; 3279 3280 b_blocknr_t beg, end; 3281 3282 /* 3283 * a field used to transfer search start value (block number) 3284 * between different block allocator procedures 3285 * (determine_search_start() and others) 3286 */ 3287 b_blocknr_t search_start; 3288 3289 /* 3290 * is set in determine_prealloc_size() function, 3291 * used by underlayed function that do actual allocation 3292 */ 3293 int prealloc_size; 3294 3295 /* 3296 * the allocator uses different polices for getting disk 3297 * space for formatted/unformatted blocks with/without preallocation 3298 */ 3299 unsigned formatted_node:1; 3300 unsigned preallocate:1; 3301 }; 3302 3303 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 3304 3305 int reiserfs_parse_alloc_options(struct super_block *, char *); 3306 void reiserfs_init_alloc_options(struct super_block *s); 3307 3308 /* 3309 * given a directory, this will tell you what packing locality 3310 * to use for a new object underneat it. The locality is returned 3311 * in disk byte order (le). 3312 */ 3313 __le32 reiserfs_choose_packing(struct inode *dir); 3314 3315 void show_alloc_options(struct seq_file *seq, struct super_block *s); 3316 int reiserfs_init_bitmap_cache(struct super_block *sb); 3317 void reiserfs_free_bitmap_cache(struct super_block *sb); 3318 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 3319 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 3320 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 3321 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 3322 b_blocknr_t, int for_unformatted); 3323 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 3324 int); 3325 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 3326 b_blocknr_t * new_blocknrs, 3327 int amount_needed) 3328 { 3329 reiserfs_blocknr_hint_t hint = { 3330 .th = tb->transaction_handle, 3331 .path = tb->tb_path, 3332 .inode = NULL, 3333 .key = tb->key, 3334 .block = 0, 3335 .formatted_node = 1 3336 }; 3337 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 3338 0); 3339 } 3340 3341 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 3342 *th, struct inode *inode, 3343 b_blocknr_t * new_blocknrs, 3344 struct treepath *path, 3345 sector_t block) 3346 { 3347 reiserfs_blocknr_hint_t hint = { 3348 .th = th, 3349 .path = path, 3350 .inode = inode, 3351 .block = block, 3352 .formatted_node = 0, 3353 .preallocate = 0 3354 }; 3355 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3356 } 3357 3358 #ifdef REISERFS_PREALLOCATE 3359 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 3360 *th, struct inode *inode, 3361 b_blocknr_t * new_blocknrs, 3362 struct treepath *path, 3363 sector_t block) 3364 { 3365 reiserfs_blocknr_hint_t hint = { 3366 .th = th, 3367 .path = path, 3368 .inode = inode, 3369 .block = block, 3370 .formatted_node = 0, 3371 .preallocate = 1 3372 }; 3373 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3374 } 3375 3376 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 3377 struct inode *inode); 3378 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 3379 #endif 3380 3381 /* hashes.c */ 3382 __u32 keyed_hash(const signed char *msg, int len); 3383 __u32 yura_hash(const signed char *msg, int len); 3384 __u32 r5_hash(const signed char *msg, int len); 3385 3386 #define reiserfs_set_le_bit __set_bit_le 3387 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 3388 #define reiserfs_clear_le_bit __clear_bit_le 3389 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 3390 #define reiserfs_test_le_bit test_bit_le 3391 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 3392 3393 /* 3394 * sometimes reiserfs_truncate may require to allocate few new blocks 3395 * to perform indirect2direct conversion. People probably used to 3396 * think, that truncate should work without problems on a filesystem 3397 * without free disk space. They may complain that they can not 3398 * truncate due to lack of free disk space. This spare space allows us 3399 * to not worry about it. 500 is probably too much, but it should be 3400 * absolutely safe 3401 */ 3402 #define SPARE_SPACE 500 3403 3404 /* prototypes from ioctl.c */ 3405 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3406 long reiserfs_compat_ioctl(struct file *filp, 3407 unsigned int cmd, unsigned long arg); 3408 int reiserfs_unpack(struct inode *inode, struct file *filp); 3409