xref: /openbmc/linux/fs/reiserfs/reiserfs.h (revision b34e08d5)
1 /*
2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4 
5 #include <linux/reiserfs_fs.h>
6 
7 #include <linux/slab.h>
8 #include <linux/interrupt.h>
9 #include <linux/sched.h>
10 #include <linux/bug.h>
11 #include <linux/workqueue.h>
12 #include <asm/unaligned.h>
13 #include <linux/bitops.h>
14 #include <linux/proc_fs.h>
15 #include <linux/buffer_head.h>
16 
17 /* the 32 bit compat definitions with int argument */
18 #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
19 #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
20 #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
21 #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22 #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23 
24 struct reiserfs_journal_list;
25 
26 /** bitmasks for i_flags field in reiserfs-specific part of inode */
27 typedef enum {
28     /** this says what format of key do all items (but stat data) of
29       an object have.  If this is set, that format is 3.6 otherwise
30       - 3.5 */
31 	i_item_key_version_mask = 0x0001,
32     /** If this is unset, object has 3.5 stat data, otherwise, it has
33       3.6 stat data with 64bit size, 32bit nlink etc. */
34 	i_stat_data_version_mask = 0x0002,
35     /** file might need tail packing on close */
36 	i_pack_on_close_mask = 0x0004,
37     /** don't pack tail of file */
38 	i_nopack_mask = 0x0008,
39     /** If those is set, "safe link" was created for this file during
40       truncate or unlink. Safe link is used to avoid leakage of disk
41       space on crash with some files open, but unlinked. */
42 	i_link_saved_unlink_mask = 0x0010,
43 	i_link_saved_truncate_mask = 0x0020,
44 	i_has_xattr_dir = 0x0040,
45 	i_data_log = 0x0080,
46 } reiserfs_inode_flags;
47 
48 struct reiserfs_inode_info {
49 	__u32 i_key[4];		/* key is still 4 32 bit integers */
50     /** transient inode flags that are never stored on disk. Bitmasks
51       for this field are defined above. */
52 	__u32 i_flags;
53 
54 	__u32 i_first_direct_byte;	// offset of first byte stored in direct item.
55 
56 	/* copy of persistent inode flags read from sd_attrs. */
57 	__u32 i_attrs;
58 
59 	int i_prealloc_block;	/* first unused block of a sequence of unused blocks */
60 	int i_prealloc_count;	/* length of that sequence */
61 	struct list_head i_prealloc_list;	/* per-transaction list of inodes which
62 						 * have preallocated blocks */
63 
64 	unsigned new_packing_locality:1;	/* new_packig_locality is created; new blocks
65 						 * for the contents of this directory should be
66 						 * displaced */
67 
68 	/* we use these for fsync or O_SYNC to decide which transaction
69 	 ** needs to be committed in order for this inode to be properly
70 	 ** flushed */
71 	unsigned int i_trans_id;
72 	struct reiserfs_journal_list *i_jl;
73 	atomic_t openers;
74 	struct mutex tailpack;
75 #ifdef CONFIG_REISERFS_FS_XATTR
76 	struct rw_semaphore i_xattr_sem;
77 #endif
78 	struct inode vfs_inode;
79 };
80 
81 typedef enum {
82 	reiserfs_attrs_cleared = 0x00000001,
83 } reiserfs_super_block_flags;
84 
85 /* struct reiserfs_super_block accessors/mutators
86  * since this is a disk structure, it will always be in
87  * little endian format. */
88 #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
89 #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
90 #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
91 #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
92 #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
93 #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
94 
95 #define sb_jp_journal_1st_block(sbp)  \
96               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
97 #define set_sb_jp_journal_1st_block(sbp,v) \
98               ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
99 #define sb_jp_journal_dev(sbp) \
100               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
101 #define set_sb_jp_journal_dev(sbp,v) \
102               ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
103 #define sb_jp_journal_size(sbp) \
104               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
105 #define set_sb_jp_journal_size(sbp,v) \
106               ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
107 #define sb_jp_journal_trans_max(sbp) \
108               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
109 #define set_sb_jp_journal_trans_max(sbp,v) \
110               ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
111 #define sb_jp_journal_magic(sbp) \
112               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
113 #define set_sb_jp_journal_magic(sbp,v) \
114               ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
115 #define sb_jp_journal_max_batch(sbp) \
116               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
117 #define set_sb_jp_journal_max_batch(sbp,v) \
118               ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
119 #define sb_jp_jourmal_max_commit_age(sbp) \
120               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
121 #define set_sb_jp_journal_max_commit_age(sbp,v) \
122               ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
123 
124 #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
125 #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
126 #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
127 #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
128 #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
129 #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
130 #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
131 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
132 #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
133 #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
134 #define sb_hash_function_code(sbp) \
135               (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
136 #define set_sb_hash_function_code(sbp,v) \
137               ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
138 #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
139 #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
140 #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
141 #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
142 #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
143 #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
144 
145 #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
146 #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
147 
148 #define sb_reserved_for_journal(sbp) \
149               (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
150 #define set_sb_reserved_for_journal(sbp,v) \
151               ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
152 
153 /* LOGGING -- */
154 
155 /* These all interelate for performance.
156 **
157 ** If the journal block count is smaller than n transactions, you lose speed.
158 ** I don't know what n is yet, I'm guessing 8-16.
159 **
160 ** typical transaction size depends on the application, how often fsync is
161 ** called, and how many metadata blocks you dirty in a 30 second period.
162 ** The more small files (<16k) you use, the larger your transactions will
163 ** be.
164 **
165 ** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
166 ** to wrap, which slows things down.  If you need high speed meta data updates, the journal should be big enough
167 ** to prevent wrapping before dirty meta blocks get to disk.
168 **
169 ** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
170 ** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
171 **
172 ** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
173 **
174 */
175 
176 /* don't mess with these for a while */
177 				/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
178 #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
179 #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
180 #define JOURNAL_HASH_SIZE 8192
181 #define JOURNAL_NUM_BITMAPS 5	/* number of copies of the bitmaps to have floating.  Must be >= 2 */
182 
183 /* One of these for every block in every transaction
184 ** Each one is in two hash tables.  First, a hash of the current transaction, and after journal_end, a
185 ** hash of all the in memory transactions.
186 ** next and prev are used by the current transaction (journal_hash).
187 ** hnext and hprev are used by journal_list_hash.  If a block is in more than one transaction, the journal_list_hash
188 ** links it in multiple times.  This allows flush_journal_list to remove just the cnode belonging
189 ** to a given transaction.
190 */
191 struct reiserfs_journal_cnode {
192 	struct buffer_head *bh;	/* real buffer head */
193 	struct super_block *sb;	/* dev of real buffer head */
194 	__u32 blocknr;		/* block number of real buffer head, == 0 when buffer on disk */
195 	unsigned long state;
196 	struct reiserfs_journal_list *jlist;	/* journal list this cnode lives in */
197 	struct reiserfs_journal_cnode *next;	/* next in transaction list */
198 	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
199 	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
200 	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
201 };
202 
203 struct reiserfs_bitmap_node {
204 	int id;
205 	char *data;
206 	struct list_head list;
207 };
208 
209 struct reiserfs_list_bitmap {
210 	struct reiserfs_journal_list *journal_list;
211 	struct reiserfs_bitmap_node **bitmaps;
212 };
213 
214 /*
215 ** one of these for each transaction.  The most important part here is the j_realblock.
216 ** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
217 ** real buffer heads dirty once all the commits hit the disk,
218 ** and to make sure every real block in a transaction is on disk before allowing the log area
219 ** to be overwritten */
220 struct reiserfs_journal_list {
221 	unsigned long j_start;
222 	unsigned long j_state;
223 	unsigned long j_len;
224 	atomic_t j_nonzerolen;
225 	atomic_t j_commit_left;
226 	atomic_t j_older_commits_done;	/* all commits older than this on disk */
227 	struct mutex j_commit_mutex;
228 	unsigned int j_trans_id;
229 	time_t j_timestamp;
230 	struct reiserfs_list_bitmap *j_list_bitmap;
231 	struct buffer_head *j_commit_bh;	/* commit buffer head */
232 	struct reiserfs_journal_cnode *j_realblock;
233 	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
234 	/* time ordered list of all active transactions */
235 	struct list_head j_list;
236 
237 	/* time ordered list of all transactions we haven't tried to flush yet */
238 	struct list_head j_working_list;
239 
240 	/* list of tail conversion targets in need of flush before commit */
241 	struct list_head j_tail_bh_list;
242 	/* list of data=ordered buffers in need of flush before commit */
243 	struct list_head j_bh_list;
244 	int j_refcount;
245 };
246 
247 struct reiserfs_journal {
248 	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
249 	struct reiserfs_journal_cnode *j_last;	/* newest journal block */
250 	struct reiserfs_journal_cnode *j_first;	/*  oldest journal block.  start here for traverse */
251 
252 	struct block_device *j_dev_bd;
253 	fmode_t j_dev_mode;
254 	int j_1st_reserved_block;	/* first block on s_dev of reserved area journal */
255 
256 	unsigned long j_state;
257 	unsigned int j_trans_id;
258 	unsigned long j_mount_id;
259 	unsigned long j_start;	/* start of current waiting commit (index into j_ap_blocks) */
260 	unsigned long j_len;	/* length of current waiting commit */
261 	unsigned long j_len_alloc;	/* number of buffers requested by journal_begin() */
262 	atomic_t j_wcount;	/* count of writers for current commit */
263 	unsigned long j_bcount;	/* batch count. allows turning X transactions into 1 */
264 	unsigned long j_first_unflushed_offset;	/* first unflushed transactions offset */
265 	unsigned j_last_flush_trans_id;	/* last fully flushed journal timestamp */
266 	struct buffer_head *j_header_bh;
267 
268 	time_t j_trans_start_time;	/* time this transaction started */
269 	struct mutex j_mutex;
270 	struct mutex j_flush_mutex;
271 	wait_queue_head_t j_join_wait;	/* wait for current transaction to finish before starting new one */
272 	atomic_t j_jlock;	/* lock for j_join_wait */
273 	int j_list_bitmap_index;	/* number of next list bitmap to use */
274 	int j_must_wait;	/* no more journal begins allowed. MUST sleep on j_join_wait */
275 	int j_next_full_flush;	/* next journal_end will flush all journal list */
276 	int j_next_async_flush;	/* next journal_end will flush all async commits */
277 
278 	int j_cnode_used;	/* number of cnodes on the used list */
279 	int j_cnode_free;	/* number of cnodes on the free list */
280 
281 	unsigned int j_trans_max;	/* max number of blocks in a transaction.  */
282 	unsigned int j_max_batch;	/* max number of blocks to batch into a trans */
283 	unsigned int j_max_commit_age;	/* in seconds, how old can an async commit be */
284 	unsigned int j_max_trans_age;	/* in seconds, how old can a transaction be */
285 	unsigned int j_default_max_commit_age;	/* the default for the max commit age */
286 
287 	struct reiserfs_journal_cnode *j_cnode_free_list;
288 	struct reiserfs_journal_cnode *j_cnode_free_orig;	/* orig pointer returned from vmalloc */
289 
290 	struct reiserfs_journal_list *j_current_jl;
291 	int j_free_bitmap_nodes;
292 	int j_used_bitmap_nodes;
293 
294 	int j_num_lists;	/* total number of active transactions */
295 	int j_num_work_lists;	/* number that need attention from kreiserfsd */
296 
297 	/* debugging to make sure things are flushed in order */
298 	unsigned int j_last_flush_id;
299 
300 	/* debugging to make sure things are committed in order */
301 	unsigned int j_last_commit_id;
302 
303 	struct list_head j_bitmap_nodes;
304 	struct list_head j_dirty_buffers;
305 	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
306 
307 	/* list of all active transactions */
308 	struct list_head j_journal_list;
309 	/* lists that haven't been touched by writeback attempts */
310 	struct list_head j_working_list;
311 
312 	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];	/* array of bitmaps to record the deleted blocks */
313 	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];	/* hash table for real buffer heads in current trans */
314 	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];	/* hash table for all the real buffer heads in all
315 										   the transactions */
316 	struct list_head j_prealloc_list;	/* list of inodes which have preallocated blocks */
317 	int j_persistent_trans;
318 	unsigned long j_max_trans_size;
319 	unsigned long j_max_batch_size;
320 
321 	int j_errno;
322 
323 	/* when flushing ordered buffers, throttle new ordered writers */
324 	struct delayed_work j_work;
325 	struct super_block *j_work_sb;
326 	atomic_t j_async_throttle;
327 };
328 
329 enum journal_state_bits {
330 	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
331 	J_WRITERS_QUEUED,	/* set when log is full due to too many writers */
332 	J_ABORTED,		/* set when log is aborted */
333 };
334 
335 #define JOURNAL_DESC_MAGIC "ReIsErLB"	/* ick.  magic string to find desc blocks in the journal */
336 
337 typedef __u32(*hashf_t) (const signed char *, int);
338 
339 struct reiserfs_bitmap_info {
340 	__u32 free_count;
341 };
342 
343 struct proc_dir_entry;
344 
345 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
346 typedef unsigned long int stat_cnt_t;
347 typedef struct reiserfs_proc_info_data {
348 	spinlock_t lock;
349 	int exiting;
350 	int max_hash_collisions;
351 
352 	stat_cnt_t breads;
353 	stat_cnt_t bread_miss;
354 	stat_cnt_t search_by_key;
355 	stat_cnt_t search_by_key_fs_changed;
356 	stat_cnt_t search_by_key_restarted;
357 
358 	stat_cnt_t insert_item_restarted;
359 	stat_cnt_t paste_into_item_restarted;
360 	stat_cnt_t cut_from_item_restarted;
361 	stat_cnt_t delete_solid_item_restarted;
362 	stat_cnt_t delete_item_restarted;
363 
364 	stat_cnt_t leaked_oid;
365 	stat_cnt_t leaves_removable;
366 
367 	/* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
368 	stat_cnt_t balance_at[5];	/* XXX */
369 	/* sbk == search_by_key */
370 	stat_cnt_t sbk_read_at[5];	/* XXX */
371 	stat_cnt_t sbk_fs_changed[5];
372 	stat_cnt_t sbk_restarted[5];
373 	stat_cnt_t items_at[5];	/* XXX */
374 	stat_cnt_t free_at[5];	/* XXX */
375 	stat_cnt_t can_node_be_removed[5];	/* XXX */
376 	long int lnum[5];	/* XXX */
377 	long int rnum[5];	/* XXX */
378 	long int lbytes[5];	/* XXX */
379 	long int rbytes[5];	/* XXX */
380 	stat_cnt_t get_neighbors[5];
381 	stat_cnt_t get_neighbors_restart[5];
382 	stat_cnt_t need_l_neighbor[5];
383 	stat_cnt_t need_r_neighbor[5];
384 
385 	stat_cnt_t free_block;
386 	struct __scan_bitmap_stats {
387 		stat_cnt_t call;
388 		stat_cnt_t wait;
389 		stat_cnt_t bmap;
390 		stat_cnt_t retry;
391 		stat_cnt_t in_journal_hint;
392 		stat_cnt_t in_journal_nohint;
393 		stat_cnt_t stolen;
394 	} scan_bitmap;
395 	struct __journal_stats {
396 		stat_cnt_t in_journal;
397 		stat_cnt_t in_journal_bitmap;
398 		stat_cnt_t in_journal_reusable;
399 		stat_cnt_t lock_journal;
400 		stat_cnt_t lock_journal_wait;
401 		stat_cnt_t journal_being;
402 		stat_cnt_t journal_relock_writers;
403 		stat_cnt_t journal_relock_wcount;
404 		stat_cnt_t mark_dirty;
405 		stat_cnt_t mark_dirty_already;
406 		stat_cnt_t mark_dirty_notjournal;
407 		stat_cnt_t restore_prepared;
408 		stat_cnt_t prepare;
409 		stat_cnt_t prepare_retry;
410 	} journal;
411 } reiserfs_proc_info_data_t;
412 #else
413 typedef struct reiserfs_proc_info_data {
414 } reiserfs_proc_info_data_t;
415 #endif
416 
417 /* reiserfs union of in-core super block data */
418 struct reiserfs_sb_info {
419 	struct buffer_head *s_sbh;	/* Buffer containing the super block */
420 	/* both the comment and the choice of
421 	   name are unclear for s_rs -Hans */
422 	struct reiserfs_super_block *s_rs;	/* Pointer to the super block in the buffer */
423 	struct reiserfs_bitmap_info *s_ap_bitmap;
424 	struct reiserfs_journal *s_journal;	/* pointer to journal information */
425 	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
426 
427 	/* Serialize writers access, replace the old bkl */
428 	struct mutex lock;
429 	/* Owner of the lock (can be recursive) */
430 	struct task_struct *lock_owner;
431 	/* Depth of the lock, start from -1 like the bkl */
432 	int lock_depth;
433 
434 	/* Comment? -Hans */
435 	void (*end_io_handler) (struct buffer_head *, int);
436 	hashf_t s_hash_function;	/* pointer to function which is used
437 					   to sort names in directory. Set on
438 					   mount */
439 	unsigned long s_mount_opt;	/* reiserfs's mount options are set
440 					   here (currently - NOTAIL, NOLOG,
441 					   REPLAYONLY) */
442 
443 	struct {		/* This is a structure that describes block allocator options */
444 		unsigned long bits;	/* Bitfield for enable/disable kind of options */
445 		unsigned long large_file_size;	/* size started from which we consider file to be a large one(in blocks) */
446 		int border;	/* percentage of disk, border takes */
447 		int preallocmin;	/* Minimal file size (in blocks) starting from which we do preallocations */
448 		int preallocsize;	/* Number of blocks we try to prealloc when file
449 					   reaches preallocmin size (in blocks) or
450 					   prealloc_list is empty. */
451 	} s_alloc_options;
452 
453 	/* Comment? -Hans */
454 	wait_queue_head_t s_wait;
455 	/* To be obsoleted soon by per buffer seals.. -Hans */
456 	atomic_t s_generation_counter;	// increased by one every time the
457 	// tree gets re-balanced
458 	unsigned long s_properties;	/* File system properties. Currently holds
459 					   on-disk FS format */
460 
461 	/* session statistics */
462 	int s_disk_reads;
463 	int s_disk_writes;
464 	int s_fix_nodes;
465 	int s_do_balance;
466 	int s_unneeded_left_neighbor;
467 	int s_good_search_by_key_reada;
468 	int s_bmaps;
469 	int s_bmaps_without_search;
470 	int s_direct2indirect;
471 	int s_indirect2direct;
472 	/* set up when it's ok for reiserfs_read_inode2() to read from
473 	   disk inode with nlink==0. Currently this is only used during
474 	   finish_unfinished() processing at mount time */
475 	int s_is_unlinked_ok;
476 	reiserfs_proc_info_data_t s_proc_info_data;
477 	struct proc_dir_entry *procdir;
478 	int reserved_blocks;	/* amount of blocks reserved for further allocations */
479 	spinlock_t bitmap_lock;	/* this lock on now only used to protect reserved_blocks variable */
480 	struct dentry *priv_root;	/* root of /.reiserfs_priv */
481 	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
482 	int j_errno;
483 
484 	int work_queued;              /* non-zero delayed work is queued */
485 	struct delayed_work old_work; /* old transactions flush delayed work */
486 	spinlock_t old_work_lock;     /* protects old_work and work_queued */
487 
488 #ifdef CONFIG_QUOTA
489 	char *s_qf_names[MAXQUOTAS];
490 	int s_jquota_fmt;
491 #endif
492 	char *s_jdev;		/* Stored jdev for mount option showing */
493 #ifdef CONFIG_REISERFS_CHECK
494 
495 	struct tree_balance *cur_tb;	/*
496 					 * Detects whether more than one
497 					 * copy of tb exists per superblock
498 					 * as a means of checking whether
499 					 * do_balance is executing concurrently
500 					 * against another tree reader/writer
501 					 * on a same mount point.
502 					 */
503 #endif
504 };
505 
506 /* Definitions of reiserfs on-disk properties: */
507 #define REISERFS_3_5 0
508 #define REISERFS_3_6 1
509 #define REISERFS_OLD_FORMAT 2
510 
511 enum reiserfs_mount_options {
512 /* Mount options */
513 	REISERFS_LARGETAIL,	/* large tails will be created in a session */
514 	REISERFS_SMALLTAIL,	/* small (for files less than block size) tails will be created in a session */
515 	REPLAYONLY,		/* replay journal and return 0. Use by fsck */
516 	REISERFS_CONVERT,	/* -o conv: causes conversion of old
517 				   format super block to the new
518 				   format. If not specified - old
519 				   partition will be dealt with in a
520 				   manner of 3.5.x */
521 
522 /* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
523 ** reiserfs disks from 3.5.19 or earlier.  99% of the time, this option
524 ** is not required.  If the normal autodection code can't determine which
525 ** hash to use (because both hashes had the same value for a file)
526 ** use this option to force a specific hash.  It won't allow you to override
527 ** the existing hash on the FS, so if you have a tea hash disk, and mount
528 ** with -o hash=rupasov, the mount will fail.
529 */
530 	FORCE_TEA_HASH,		/* try to force tea hash on mount */
531 	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
532 	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
533 	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
534 
535 	REISERFS_DATA_LOG,
536 	REISERFS_DATA_ORDERED,
537 	REISERFS_DATA_WRITEBACK,
538 
539 /* used for testing experimental features, makes benchmarking new
540    features with and without more convenient, should never be used by
541    users in any code shipped to users (ideally) */
542 
543 	REISERFS_NO_BORDER,
544 	REISERFS_NO_UNHASHED_RELOCATION,
545 	REISERFS_HASHED_RELOCATION,
546 	REISERFS_ATTRS,
547 	REISERFS_XATTRS_USER,
548 	REISERFS_POSIXACL,
549 	REISERFS_EXPOSE_PRIVROOT,
550 	REISERFS_BARRIER_NONE,
551 	REISERFS_BARRIER_FLUSH,
552 
553 	/* Actions on error */
554 	REISERFS_ERROR_PANIC,
555 	REISERFS_ERROR_RO,
556 	REISERFS_ERROR_CONTINUE,
557 
558 	REISERFS_USRQUOTA,	/* User quota option specified */
559 	REISERFS_GRPQUOTA,	/* Group quota option specified */
560 
561 	REISERFS_TEST1,
562 	REISERFS_TEST2,
563 	REISERFS_TEST3,
564 	REISERFS_TEST4,
565 	REISERFS_UNSUPPORTED_OPT,
566 };
567 
568 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
569 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
570 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
571 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
572 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
573 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
574 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
575 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
576 
577 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
578 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
579 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
580 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
581 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
582 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
583 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
584 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
585 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
586 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
587 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
588 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
589 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
590 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
591 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
592 
593 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
594 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
595 
596 void reiserfs_file_buffer(struct buffer_head *bh, int list);
597 extern struct file_system_type reiserfs_fs_type;
598 int reiserfs_resize(struct super_block *, unsigned long);
599 
600 #define CARRY_ON                0
601 #define SCHEDULE_OCCURRED       1
602 
603 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
604 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
605 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
606 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
607 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
608 
609 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
610 
611 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
612 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
613 						*journal)
614 {
615 	return test_bit(J_ABORTED, &journal->j_state);
616 }
617 
618 /*
619  * Locking primitives. The write lock is a per superblock
620  * special mutex that has properties close to the Big Kernel Lock
621  * which was used in the previous locking scheme.
622  */
623 void reiserfs_write_lock(struct super_block *s);
624 void reiserfs_write_unlock(struct super_block *s);
625 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
626 void reiserfs_write_lock_nested(struct super_block *s, int depth);
627 
628 #ifdef CONFIG_REISERFS_CHECK
629 void reiserfs_lock_check_recursive(struct super_block *s);
630 #else
631 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
632 #endif
633 
634 /*
635  * Several mutexes depend on the write lock.
636  * However sometimes we want to relax the write lock while we hold
637  * these mutexes, according to the release/reacquire on schedule()
638  * properties of the Bkl that were used.
639  * Reiserfs performances and locking were based on this scheme.
640  * Now that the write lock is a mutex and not the bkl anymore, doing so
641  * may result in a deadlock:
642  *
643  * A acquire write_lock
644  * A acquire j_commit_mutex
645  * A release write_lock and wait for something
646  * B acquire write_lock
647  * B can't acquire j_commit_mutex and sleep
648  * A can't acquire write lock anymore
649  * deadlock
650  *
651  * What we do here is avoiding such deadlock by playing the same game
652  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
653  * we release the write lock, wait a bit and then retry.
654  *
655  * The mutexes concerned by this hack are:
656  * - The commit mutex of a journal list
657  * - The flush mutex
658  * - The journal lock
659  * - The inode mutex
660  */
661 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
662 					    struct super_block *s)
663 {
664 	int depth;
665 
666 	depth = reiserfs_write_unlock_nested(s);
667 	mutex_lock(m);
668 	reiserfs_write_lock_nested(s, depth);
669 }
670 
671 static inline void
672 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
673 				struct super_block *s)
674 {
675 	int depth;
676 
677 	depth = reiserfs_write_unlock_nested(s);
678 	mutex_lock_nested(m, subclass);
679 	reiserfs_write_lock_nested(s, depth);
680 }
681 
682 static inline void
683 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
684 {
685        int depth;
686        depth = reiserfs_write_unlock_nested(s);
687        down_read(sem);
688        reiserfs_write_lock_nested(s, depth);
689 }
690 
691 /*
692  * When we schedule, we usually want to also release the write lock,
693  * according to the previous bkl based locking scheme of reiserfs.
694  */
695 static inline void reiserfs_cond_resched(struct super_block *s)
696 {
697 	if (need_resched()) {
698 		int depth;
699 
700 		depth = reiserfs_write_unlock_nested(s);
701 		schedule();
702 		reiserfs_write_lock_nested(s, depth);
703 	}
704 }
705 
706 struct fid;
707 
708 /* in reading the #defines, it may help to understand that they employ
709    the following abbreviations:
710 
711    B = Buffer
712    I = Item header
713    H = Height within the tree (should be changed to LEV)
714    N = Number of the item in the node
715    STAT = stat data
716    DEH = Directory Entry Header
717    EC = Entry Count
718    E = Entry number
719    UL = Unsigned Long
720    BLKH = BLocK Header
721    UNFM = UNForMatted node
722    DC = Disk Child
723    P = Path
724 
725    These #defines are named by concatenating these abbreviations,
726    where first comes the arguments, and last comes the return value,
727    of the macro.
728 
729 */
730 
731 #define USE_INODE_GENERATION_COUNTER
732 
733 #define REISERFS_PREALLOCATE
734 #define DISPLACE_NEW_PACKING_LOCALITIES
735 #define PREALLOCATION_SIZE 9
736 
737 /* n must be power of 2 */
738 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
739 
740 // to be ok for alpha and others we have to align structures to 8 byte
741 // boundary.
742 // FIXME: do not change 4 by anything else: there is code which relies on that
743 #define ROUND_UP(x) _ROUND_UP(x,8LL)
744 
745 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
746 ** messages.
747 */
748 #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
749 
750 void __reiserfs_warning(struct super_block *s, const char *id,
751 			 const char *func, const char *fmt, ...);
752 #define reiserfs_warning(s, id, fmt, args...) \
753 	 __reiserfs_warning(s, id, __func__, fmt, ##args)
754 /* assertions handling */
755 
756 /** always check a condition and panic if it's false. */
757 #define __RASSERT(cond, scond, format, args...)			\
758 do {									\
759 	if (!(cond))							\
760 		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
761 			       __FILE__ ":%i:%s: " format "\n",		\
762 			       in_interrupt() ? -1 : task_pid_nr(current), \
763 			       __LINE__, __func__ , ##args);		\
764 } while (0)
765 
766 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
767 
768 #if defined( CONFIG_REISERFS_CHECK )
769 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
770 #else
771 #define RFALSE( cond, format, args... ) do {;} while( 0 )
772 #endif
773 
774 #define CONSTF __attribute_const__
775 /*
776  * Disk Data Structures
777  */
778 
779 /***************************************************************************/
780 /*                             SUPER BLOCK                                 */
781 /***************************************************************************/
782 
783 /*
784  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
785  * the version in RAM is part of a larger structure containing fields never written to disk.
786  */
787 #define UNSET_HASH 0		// read_super will guess about, what hash names
788 		     // in directories were sorted with
789 #define TEA_HASH  1
790 #define YURA_HASH 2
791 #define R5_HASH   3
792 #define DEFAULT_HASH R5_HASH
793 
794 struct journal_params {
795 	__le32 jp_journal_1st_block;	/* where does journal start from on its
796 					 * device */
797 	__le32 jp_journal_dev;	/* journal device st_rdev */
798 	__le32 jp_journal_size;	/* size of the journal */
799 	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
800 	__le32 jp_journal_magic;	/* random value made on fs creation (this
801 					 * was sb_journal_block_count) */
802 	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
803 					 * trans */
804 	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
805 						 * commit be */
806 	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
807 						 * be */
808 };
809 
810 /* this is the super from 3.5.X, where X >= 10 */
811 struct reiserfs_super_block_v1 {
812 	__le32 s_block_count;	/* blocks count         */
813 	__le32 s_free_blocks;	/* free blocks count    */
814 	__le32 s_root_block;	/* root block number    */
815 	struct journal_params s_journal;
816 	__le16 s_blocksize;	/* block size */
817 	__le16 s_oid_maxsize;	/* max size of object id array, see
818 				 * get_objectid() commentary  */
819 	__le16 s_oid_cursize;	/* current size of object id array */
820 	__le16 s_umount_state;	/* this is set to 1 when filesystem was
821 				 * umounted, to 2 - when not */
822 	char s_magic[10];	/* reiserfs magic string indicates that
823 				 * file system is reiserfs:
824 				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
825 	__le16 s_fs_state;	/* it is set to used by fsck to mark which
826 				 * phase of rebuilding is done */
827 	__le32 s_hash_function_code;	/* indicate, what hash function is being use
828 					 * to sort names in a directory*/
829 	__le16 s_tree_height;	/* height of disk tree */
830 	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
831 				 * each block of file system */
832 	__le16 s_version;	/* this field is only reliable on filesystem
833 				 * with non-standard journal */
834 	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
835 					 * device, we need to keep after
836 					 * making fs with non-standard journal */
837 } __attribute__ ((__packed__));
838 
839 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
840 
841 /* this is the on disk super block */
842 struct reiserfs_super_block {
843 	struct reiserfs_super_block_v1 s_v1;
844 	__le32 s_inode_generation;
845 	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
846 	unsigned char s_uuid[16];	/* filesystem unique identifier */
847 	unsigned char s_label[16];	/* filesystem volume label */
848 	__le16 s_mnt_count;		/* Count of mounts since last fsck */
849 	__le16 s_max_mnt_count;		/* Maximum mounts before check */
850 	__le32 s_lastcheck;		/* Timestamp of last fsck */
851 	__le32 s_check_interval;	/* Interval between checks */
852 	char s_unused[76];	/* zero filled by mkreiserfs and
853 				 * reiserfs_convert_objectid_map_v1()
854 				 * so any additions must be updated
855 				 * there as well. */
856 } __attribute__ ((__packed__));
857 
858 #define SB_SIZE (sizeof(struct reiserfs_super_block))
859 
860 #define REISERFS_VERSION_1 0
861 #define REISERFS_VERSION_2 2
862 
863 // on-disk super block fields converted to cpu form
864 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
865 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
866 #define SB_BLOCKSIZE(s) \
867         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
868 #define SB_BLOCK_COUNT(s) \
869         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
870 #define SB_FREE_BLOCKS(s) \
871         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
872 #define SB_REISERFS_MAGIC(s) \
873         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
874 #define SB_ROOT_BLOCK(s) \
875         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
876 #define SB_TREE_HEIGHT(s) \
877         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
878 #define SB_REISERFS_STATE(s) \
879         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
880 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
881 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
882 
883 #define PUT_SB_BLOCK_COUNT(s, val) \
884    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
885 #define PUT_SB_FREE_BLOCKS(s, val) \
886    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
887 #define PUT_SB_ROOT_BLOCK(s, val) \
888    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
889 #define PUT_SB_TREE_HEIGHT(s, val) \
890    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
891 #define PUT_SB_REISERFS_STATE(s, val) \
892    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
893 #define PUT_SB_VERSION(s, val) \
894    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
895 #define PUT_SB_BMAP_NR(s, val) \
896    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
897 
898 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
899 #define SB_ONDISK_JOURNAL_SIZE(s) \
900          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
901 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
902          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
903 #define SB_ONDISK_JOURNAL_DEVICE(s) \
904          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
905 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
906          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
907 
908 #define is_block_in_log_or_reserved_area(s, block) \
909          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
910          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
911          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
912          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
913 
914 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
915 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
916 int is_reiserfs_jr(struct reiserfs_super_block *rs);
917 
918 /* ReiserFS leaves the first 64k unused, so that partition labels have
919    enough space.  If someone wants to write a fancy bootloader that
920    needs more than 64k, let us know, and this will be increased in size.
921    This number must be larger than than the largest block size on any
922    platform, or code will break.  -Hans */
923 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
924 #define REISERFS_FIRST_BLOCK unused_define
925 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
926 
927 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
928 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
929 
930 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
931 #define CARRY_ON      0
932 #define REPEAT_SEARCH -1
933 #define IO_ERROR      -2
934 #define NO_DISK_SPACE -3
935 #define NO_BALANCING_NEEDED  (-4)
936 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
937 #define QUOTA_EXCEEDED -6
938 
939 typedef __u32 b_blocknr_t;
940 typedef __le32 unp_t;
941 
942 struct unfm_nodeinfo {
943 	unp_t unfm_nodenum;
944 	unsigned short unfm_freespace;
945 };
946 
947 /* there are two formats of keys: 3.5 and 3.6
948  */
949 #define KEY_FORMAT_3_5 0
950 #define KEY_FORMAT_3_6 1
951 
952 /* there are two stat datas */
953 #define STAT_DATA_V1 0
954 #define STAT_DATA_V2 1
955 
956 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
957 {
958 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
959 }
960 
961 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
962 {
963 	return sb->s_fs_info;
964 }
965 
966 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
967  * which overflows on large file systems. */
968 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
969 {
970 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
971 }
972 
973 static inline int bmap_would_wrap(unsigned bmap_nr)
974 {
975 	return bmap_nr > ((1LL << 16) - 1);
976 }
977 
978 /** this says about version of key of all items (but stat data) the
979     object consists of */
980 #define get_inode_item_key_version( inode )                                    \
981     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
982 
983 #define set_inode_item_key_version( inode, version )                           \
984          ({ if((version)==KEY_FORMAT_3_6)                                      \
985                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
986             else                                                               \
987                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
988 
989 #define get_inode_sd_version(inode)                                            \
990     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
991 
992 #define set_inode_sd_version(inode, version)                                   \
993          ({ if((version)==STAT_DATA_V2)                                        \
994                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
995             else                                                               \
996                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
997 
998 /* This is an aggressive tail suppression policy, I am hoping it
999    improves our benchmarks. The principle behind it is that percentage
1000    space saving is what matters, not absolute space saving.  This is
1001    non-intuitive, but it helps to understand it if you consider that the
1002    cost to access 4 blocks is not much more than the cost to access 1
1003    block, if you have to do a seek and rotate.  A tail risks a
1004    non-linear disk access that is significant as a percentage of total
1005    time cost for a 4 block file and saves an amount of space that is
1006    less significant as a percentage of space, or so goes the hypothesis.
1007    -Hans */
1008 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1009 (\
1010   (!(n_tail_size)) || \
1011   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1012    ( (n_file_size) >= (n_block_size) * 4 ) || \
1013    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1014      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1015    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1016      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1017    ( ( (n_file_size) >= (n_block_size) ) && \
1018      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1019 )
1020 
1021 /* Another strategy for tails, this one means only create a tail if all the
1022    file would fit into one DIRECT item.
1023    Primary intention for this one is to increase performance by decreasing
1024    seeking.
1025 */
1026 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1027 (\
1028   (!(n_tail_size)) || \
1029   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1030 )
1031 
1032 /*
1033  * values for s_umount_state field
1034  */
1035 #define REISERFS_VALID_FS    1
1036 #define REISERFS_ERROR_FS    2
1037 
1038 //
1039 // there are 5 item types currently
1040 //
1041 #define TYPE_STAT_DATA 0
1042 #define TYPE_INDIRECT 1
1043 #define TYPE_DIRECT 2
1044 #define TYPE_DIRENTRY 3
1045 #define TYPE_MAXTYPE 3
1046 #define TYPE_ANY 15		// FIXME: comment is required
1047 
1048 /***************************************************************************/
1049 /*                       KEY & ITEM HEAD                                   */
1050 /***************************************************************************/
1051 
1052 //
1053 // directories use this key as well as old files
1054 //
1055 struct offset_v1 {
1056 	__le32 k_offset;
1057 	__le32 k_uniqueness;
1058 } __attribute__ ((__packed__));
1059 
1060 struct offset_v2 {
1061 	__le64 v;
1062 } __attribute__ ((__packed__));
1063 
1064 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1065 {
1066 	__u8 type = le64_to_cpu(v2->v) >> 60;
1067 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1068 }
1069 
1070 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1071 {
1072 	v2->v =
1073 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1074 }
1075 
1076 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1077 {
1078 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1079 }
1080 
1081 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1082 {
1083 	offset &= (~0ULL >> 4);
1084 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1085 }
1086 
1087 /* Key of an item determines its location in the S+tree, and
1088    is composed of 4 components */
1089 struct reiserfs_key {
1090 	__le32 k_dir_id;	/* packing locality: by default parent
1091 				   directory object id */
1092 	__le32 k_objectid;	/* object identifier */
1093 	union {
1094 		struct offset_v1 k_offset_v1;
1095 		struct offset_v2 k_offset_v2;
1096 	} __attribute__ ((__packed__)) u;
1097 } __attribute__ ((__packed__));
1098 
1099 struct in_core_key {
1100 	__u32 k_dir_id;		/* packing locality: by default parent
1101 				   directory object id */
1102 	__u32 k_objectid;	/* object identifier */
1103 	__u64 k_offset;
1104 	__u8 k_type;
1105 };
1106 
1107 struct cpu_key {
1108 	struct in_core_key on_disk_key;
1109 	int version;
1110 	int key_length;		/* 3 in all cases but direct2indirect and
1111 				   indirect2direct conversion */
1112 };
1113 
1114 /* Our function for comparing keys can compare keys of different
1115    lengths.  It takes as a parameter the length of the keys it is to
1116    compare.  These defines are used in determining what is to be passed
1117    to it as that parameter. */
1118 #define REISERFS_FULL_KEY_LEN     4
1119 #define REISERFS_SHORT_KEY_LEN    2
1120 
1121 /* The result of the key compare */
1122 #define FIRST_GREATER 1
1123 #define SECOND_GREATER -1
1124 #define KEYS_IDENTICAL 0
1125 #define KEY_FOUND 1
1126 #define KEY_NOT_FOUND 0
1127 
1128 #define KEY_SIZE (sizeof(struct reiserfs_key))
1129 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1130 
1131 /* return values for search_by_key and clones */
1132 #define ITEM_FOUND 1
1133 #define ITEM_NOT_FOUND 0
1134 #define ENTRY_FOUND 1
1135 #define ENTRY_NOT_FOUND 0
1136 #define DIRECTORY_NOT_FOUND -1
1137 #define REGULAR_FILE_FOUND -2
1138 #define DIRECTORY_FOUND -3
1139 #define BYTE_FOUND 1
1140 #define BYTE_NOT_FOUND 0
1141 #define FILE_NOT_FOUND -1
1142 
1143 #define POSITION_FOUND 1
1144 #define POSITION_NOT_FOUND 0
1145 
1146 // return values for reiserfs_find_entry and search_by_entry_key
1147 #define NAME_FOUND 1
1148 #define NAME_NOT_FOUND 0
1149 #define GOTO_PREVIOUS_ITEM 2
1150 #define NAME_FOUND_INVISIBLE 3
1151 
1152 /*  Everything in the filesystem is stored as a set of items.  The
1153     item head contains the key of the item, its free space (for
1154     indirect items) and specifies the location of the item itself
1155     within the block.  */
1156 
1157 struct item_head {
1158 	/* Everything in the tree is found by searching for it based on
1159 	 * its key.*/
1160 	struct reiserfs_key ih_key;
1161 	union {
1162 		/* The free space in the last unformatted node of an
1163 		   indirect item if this is an indirect item.  This
1164 		   equals 0xFFFF iff this is a direct item or stat data
1165 		   item. Note that the key, not this field, is used to
1166 		   determine the item type, and thus which field this
1167 		   union contains. */
1168 		__le16 ih_free_space_reserved;
1169 		/* Iff this is a directory item, this field equals the
1170 		   number of directory entries in the directory item. */
1171 		__le16 ih_entry_count;
1172 	} __attribute__ ((__packed__)) u;
1173 	__le16 ih_item_len;	/* total size of the item body */
1174 	__le16 ih_item_location;	/* an offset to the item body
1175 					 * within the block */
1176 	__le16 ih_version;	/* 0 for all old items, 2 for new
1177 				   ones. Highest bit is set by fsck
1178 				   temporary, cleaned after all
1179 				   done */
1180 } __attribute__ ((__packed__));
1181 /* size of item header     */
1182 #define IH_SIZE (sizeof(struct item_head))
1183 
1184 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1185 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1186 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1187 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1188 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1189 
1190 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1191 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1192 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1193 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1194 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1195 
1196 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1197 
1198 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1199 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1200 
1201 /* these operate on indirect items, where you've got an array of ints
1202 ** at a possibly unaligned location.  These are a noop on ia32
1203 **
1204 ** p is the array of __u32, i is the index into the array, v is the value
1205 ** to store there.
1206 */
1207 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1208 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1209 
1210 //
1211 // in old version uniqueness field shows key type
1212 //
1213 #define V1_SD_UNIQUENESS 0
1214 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1215 #define V1_DIRECT_UNIQUENESS 0xffffffff
1216 #define V1_DIRENTRY_UNIQUENESS 500
1217 #define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
1218 
1219 //
1220 // here are conversion routines
1221 //
1222 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1223 static inline int uniqueness2type(__u32 uniqueness)
1224 {
1225 	switch ((int)uniqueness) {
1226 	case V1_SD_UNIQUENESS:
1227 		return TYPE_STAT_DATA;
1228 	case V1_INDIRECT_UNIQUENESS:
1229 		return TYPE_INDIRECT;
1230 	case V1_DIRECT_UNIQUENESS:
1231 		return TYPE_DIRECT;
1232 	case V1_DIRENTRY_UNIQUENESS:
1233 		return TYPE_DIRENTRY;
1234 	case V1_ANY_UNIQUENESS:
1235 	default:
1236 		return TYPE_ANY;
1237 	}
1238 }
1239 
1240 static inline __u32 type2uniqueness(int type) CONSTF;
1241 static inline __u32 type2uniqueness(int type)
1242 {
1243 	switch (type) {
1244 	case TYPE_STAT_DATA:
1245 		return V1_SD_UNIQUENESS;
1246 	case TYPE_INDIRECT:
1247 		return V1_INDIRECT_UNIQUENESS;
1248 	case TYPE_DIRECT:
1249 		return V1_DIRECT_UNIQUENESS;
1250 	case TYPE_DIRENTRY:
1251 		return V1_DIRENTRY_UNIQUENESS;
1252 	case TYPE_ANY:
1253 	default:
1254 		return V1_ANY_UNIQUENESS;
1255 	}
1256 }
1257 
1258 //
1259 // key is pointer to on disk key which is stored in le, result is cpu,
1260 // there is no way to get version of object from key, so, provide
1261 // version to these defines
1262 //
1263 static inline loff_t le_key_k_offset(int version,
1264 				     const struct reiserfs_key *key)
1265 {
1266 	return (version == KEY_FORMAT_3_5) ?
1267 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1268 	    offset_v2_k_offset(&(key->u.k_offset_v2));
1269 }
1270 
1271 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1272 {
1273 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1274 }
1275 
1276 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1277 {
1278 	return (version == KEY_FORMAT_3_5) ?
1279 	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
1280 	    offset_v2_k_type(&(key->u.k_offset_v2));
1281 }
1282 
1283 static inline loff_t le_ih_k_type(const struct item_head *ih)
1284 {
1285 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1286 }
1287 
1288 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1289 				       loff_t offset)
1290 {
1291 	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
1292 	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1293 }
1294 
1295 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1296 {
1297 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1298 }
1299 
1300 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1301 				     int type)
1302 {
1303 	(version == KEY_FORMAT_3_5) ?
1304 	    (void)(key->u.k_offset_v1.k_uniqueness =
1305 		   cpu_to_le32(type2uniqueness(type)))
1306 	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1307 }
1308 
1309 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1310 {
1311 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1312 }
1313 
1314 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1315 {
1316 	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1317 }
1318 
1319 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1320 {
1321 	return le_key_k_type(version, key) == TYPE_DIRECT;
1322 }
1323 
1324 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1325 {
1326 	return le_key_k_type(version, key) == TYPE_INDIRECT;
1327 }
1328 
1329 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1330 {
1331 	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1332 }
1333 
1334 //
1335 // item header has version.
1336 //
1337 static inline int is_direntry_le_ih(struct item_head *ih)
1338 {
1339 	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1340 }
1341 
1342 static inline int is_direct_le_ih(struct item_head *ih)
1343 {
1344 	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1345 }
1346 
1347 static inline int is_indirect_le_ih(struct item_head *ih)
1348 {
1349 	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1350 }
1351 
1352 static inline int is_statdata_le_ih(struct item_head *ih)
1353 {
1354 	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1355 }
1356 
1357 //
1358 // key is pointer to cpu key, result is cpu
1359 //
1360 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1361 {
1362 	return key->on_disk_key.k_offset;
1363 }
1364 
1365 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1366 {
1367 	return key->on_disk_key.k_type;
1368 }
1369 
1370 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1371 {
1372 	key->on_disk_key.k_offset = offset;
1373 }
1374 
1375 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1376 {
1377 	key->on_disk_key.k_type = type;
1378 }
1379 
1380 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1381 {
1382 	key->on_disk_key.k_offset--;
1383 }
1384 
1385 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1386 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1387 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1388 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1389 
1390 /* are these used ? */
1391 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1392 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1393 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1394 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1395 
1396 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1397     (!COMP_SHORT_KEYS(ih, key) && \
1398 	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1399 
1400 /* maximal length of item */
1401 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1402 #define MIN_ITEM_LEN 1
1403 
1404 /* object identifier for root dir */
1405 #define REISERFS_ROOT_OBJECTID 2
1406 #define REISERFS_ROOT_PARENT_OBJECTID 1
1407 
1408 extern struct reiserfs_key root_key;
1409 
1410 /*
1411  * Picture represents a leaf of the S+tree
1412  *  ______________________________________________________
1413  * |      |  Array of     |                   |           |
1414  * |Block |  Object-Item  |      F r e e      |  Objects- |
1415  * | head |  Headers      |     S p a c e     |   Items   |
1416  * |______|_______________|___________________|___________|
1417  */
1418 
1419 /* Header of a disk block.  More precisely, header of a formatted leaf
1420    or internal node, and not the header of an unformatted node. */
1421 struct block_head {
1422 	__le16 blk_level;	/* Level of a block in the tree. */
1423 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1424 	__le16 blk_free_space;	/* Block free space in bytes. */
1425 	__le16 blk_reserved;
1426 	/* dump this in v4/planA */
1427 	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
1428 };
1429 
1430 #define BLKH_SIZE                     (sizeof(struct block_head))
1431 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1432 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1433 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1434 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1435 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1436 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1437 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1438 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1439 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1440 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1441 
1442 /*
1443  * values for blk_level field of the struct block_head
1444  */
1445 
1446 #define FREE_LEVEL 0		/* when node gets removed from the tree its
1447 				   blk_level is set to FREE_LEVEL. It is then
1448 				   used to see whether the node is still in the
1449 				   tree */
1450 
1451 #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1452 
1453 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
1454 #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1455 /* Number of items that are in buffer. */
1456 #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1457 #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1458 #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1459 
1460 #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1461 #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1462 #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1463 
1464 /* Get right delimiting key. -- little endian */
1465 #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1466 
1467 /* Does the buffer contain a disk leaf. */
1468 #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1469 
1470 /* Does the buffer contain a disk internal node */
1471 #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1472 					    && B_LEVEL(bh) <= MAX_HEIGHT)
1473 
1474 /***************************************************************************/
1475 /*                             STAT DATA                                   */
1476 /***************************************************************************/
1477 
1478 //
1479 // old stat data is 32 bytes long. We are going to distinguish new one by
1480 // different size
1481 //
1482 struct stat_data_v1 {
1483 	__le16 sd_mode;		/* file type, permissions */
1484 	__le16 sd_nlink;	/* number of hard links */
1485 	__le16 sd_uid;		/* owner */
1486 	__le16 sd_gid;		/* group */
1487 	__le32 sd_size;		/* file size */
1488 	__le32 sd_atime;	/* time of last access */
1489 	__le32 sd_mtime;	/* time file was last modified  */
1490 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1491 	union {
1492 		__le32 sd_rdev;
1493 		__le32 sd_blocks;	/* number of blocks file uses */
1494 	} __attribute__ ((__packed__)) u;
1495 	__le32 sd_first_direct_byte;	/* first byte of file which is stored
1496 					   in a direct item: except that if it
1497 					   equals 1 it is a symlink and if it
1498 					   equals ~(__u32)0 there is no
1499 					   direct item.  The existence of this
1500 					   field really grates on me. Let's
1501 					   replace it with a macro based on
1502 					   sd_size and our tail suppression
1503 					   policy.  Someday.  -Hans */
1504 } __attribute__ ((__packed__));
1505 
1506 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1507 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1508 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1509 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1510 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1511 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1512 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1513 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1514 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1515 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1516 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1517 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1518 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1519 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1520 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1521 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1522 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1523 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1524 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1525 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1526 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1527 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1528 #define sd_v1_first_direct_byte(sdp) \
1529                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
1530 #define set_sd_v1_first_direct_byte(sdp,v) \
1531                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1532 
1533 /* inode flags stored in sd_attrs (nee sd_reserved) */
1534 
1535 /* we want common flags to have the same values as in ext2,
1536    so chattr(1) will work without problems */
1537 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1538 #define REISERFS_APPEND_FL    FS_APPEND_FL
1539 #define REISERFS_SYNC_FL      FS_SYNC_FL
1540 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
1541 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
1542 #define REISERFS_SECRM_FL     FS_SECRM_FL
1543 #define REISERFS_UNRM_FL      FS_UNRM_FL
1544 #define REISERFS_COMPR_FL     FS_COMPR_FL
1545 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1546 
1547 /* persistent flags that file inherits from the parent directory */
1548 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1549 				REISERFS_SYNC_FL |	\
1550 				REISERFS_NOATIME_FL |	\
1551 				REISERFS_NODUMP_FL |	\
1552 				REISERFS_SECRM_FL |	\
1553 				REISERFS_COMPR_FL |	\
1554 				REISERFS_NOTAIL_FL )
1555 
1556 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
1557    address blocks) */
1558 struct stat_data {
1559 	__le16 sd_mode;		/* file type, permissions */
1560 	__le16 sd_attrs;	/* persistent inode flags */
1561 	__le32 sd_nlink;	/* number of hard links */
1562 	__le64 sd_size;		/* file size */
1563 	__le32 sd_uid;		/* owner */
1564 	__le32 sd_gid;		/* group */
1565 	__le32 sd_atime;	/* time of last access */
1566 	__le32 sd_mtime;	/* time file was last modified  */
1567 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1568 	__le32 sd_blocks;
1569 	union {
1570 		__le32 sd_rdev;
1571 		__le32 sd_generation;
1572 		//__le32 sd_first_direct_byte;
1573 		/* first byte of file which is stored in a
1574 		   direct item: except that if it equals 1
1575 		   it is a symlink and if it equals
1576 		   ~(__u32)0 there is no direct item.  The
1577 		   existence of this field really grates
1578 		   on me. Let's replace it with a macro
1579 		   based on sd_size and our tail
1580 		   suppression policy? */
1581 	} __attribute__ ((__packed__)) u;
1582 } __attribute__ ((__packed__));
1583 //
1584 // this is 44 bytes long
1585 //
1586 #define SD_SIZE (sizeof(struct stat_data))
1587 #define SD_V2_SIZE              SD_SIZE
1588 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1589 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1590 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1591 /* sd_reserved */
1592 /* set_sd_reserved */
1593 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1594 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1595 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1596 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1597 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1598 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1599 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1600 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1601 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1602 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1603 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1604 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1605 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1606 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1607 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1608 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1609 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1610 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1611 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1612 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1613 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1614 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1615 
1616 /***************************************************************************/
1617 /*                      DIRECTORY STRUCTURE                                */
1618 /***************************************************************************/
1619 /*
1620    Picture represents the structure of directory items
1621    ________________________________________________
1622    |  Array of     |   |     |        |       |   |
1623    | directory     |N-1| N-2 | ....   |   1st |0th|
1624    | entry headers |   |     |        |       |   |
1625    |_______________|___|_____|________|_______|___|
1626                     <----   directory entries         ------>
1627 
1628  First directory item has k_offset component 1. We store "." and ".."
1629  in one item, always, we never split "." and ".." into differing
1630  items.  This makes, among other things, the code for removing
1631  directories simpler. */
1632 #define SD_OFFSET  0
1633 #define SD_UNIQUENESS 0
1634 #define DOT_OFFSET 1
1635 #define DOT_DOT_OFFSET 2
1636 #define DIRENTRY_UNIQUENESS 500
1637 
1638 /* */
1639 #define FIRST_ITEM_OFFSET 1
1640 
1641 /*
1642    Q: How to get key of object pointed to by entry from entry?
1643 
1644    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1645       of object, entry points to */
1646 
1647 /* NOT IMPLEMENTED:
1648    Directory will someday contain stat data of object */
1649 
1650 struct reiserfs_de_head {
1651 	__le32 deh_offset;	/* third component of the directory entry key */
1652 	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
1653 				   by directory entry */
1654 	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
1655 	__le16 deh_location;	/* offset of name in the whole item */
1656 	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
1657 				   entry is hidden (unlinked) */
1658 } __attribute__ ((__packed__));
1659 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1660 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1661 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1662 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1663 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1664 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1665 
1666 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1667 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1668 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1669 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1670 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1671 
1672 /* empty directory contains two entries "." and ".." and their headers */
1673 #define EMPTY_DIR_SIZE \
1674 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1675 
1676 /* old format directories have this size when empty */
1677 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1678 
1679 #define DEH_Statdata 0		/* not used now */
1680 #define DEH_Visible 2
1681 
1682 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1683 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1684 #   define ADDR_UNALIGNED_BITS  (3)
1685 #endif
1686 
1687 /* These are only used to manipulate deh_state.
1688  * Because of this, we'll use the ext2_ bit routines,
1689  * since they are little endian */
1690 #ifdef ADDR_UNALIGNED_BITS
1691 
1692 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1693 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1694 
1695 #   define set_bit_unaligned(nr, addr)	\
1696 	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1697 #   define clear_bit_unaligned(nr, addr)	\
1698 	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1699 #   define test_bit_unaligned(nr, addr)	\
1700 	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1701 
1702 #else
1703 
1704 #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1705 #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1706 #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1707 
1708 #endif
1709 
1710 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1711 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1712 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1713 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1714 
1715 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1716 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1717 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1718 
1719 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1720 				   __le32 par_dirid, __le32 par_objid);
1721 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1722 				__le32 par_dirid, __le32 par_objid);
1723 
1724 /* array of the entry headers */
1725  /* get item body */
1726 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1727 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1728 
1729 /* length of the directory entry in directory item. This define
1730    calculates length of i-th directory entry using directory entry
1731    locations from dir entry head. When it calculates length of 0-th
1732    directory entry, it uses length of whole item in place of entry
1733    location of the non-existent following entry in the calculation.
1734    See picture above.*/
1735 /*
1736 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1737 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1738 */
1739 static inline int entry_length(const struct buffer_head *bh,
1740 			       const struct item_head *ih, int pos_in_item)
1741 {
1742 	struct reiserfs_de_head *deh;
1743 
1744 	deh = B_I_DEH(bh, ih) + pos_in_item;
1745 	if (pos_in_item)
1746 		return deh_location(deh - 1) - deh_location(deh);
1747 
1748 	return ih_item_len(ih) - deh_location(deh);
1749 }
1750 
1751 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1752 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1753 
1754 /* name by bh, ih and entry_num */
1755 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1756 
1757 // two entries per block (at least)
1758 #define REISERFS_MAX_NAME(block_size) 255
1759 
1760 /* this structure is used for operations on directory entries. It is
1761    not a disk structure. */
1762 /* When reiserfs_find_entry or search_by_entry_key find directory
1763    entry, they return filled reiserfs_dir_entry structure */
1764 struct reiserfs_dir_entry {
1765 	struct buffer_head *de_bh;
1766 	int de_item_num;
1767 	struct item_head *de_ih;
1768 	int de_entry_num;
1769 	struct reiserfs_de_head *de_deh;
1770 	int de_entrylen;
1771 	int de_namelen;
1772 	char *de_name;
1773 	unsigned long *de_gen_number_bit_string;
1774 
1775 	__u32 de_dir_id;
1776 	__u32 de_objectid;
1777 
1778 	struct cpu_key de_entry_key;
1779 };
1780 
1781 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1782 
1783 /* pointer to file name, stored in entry */
1784 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1785 
1786 /* length of name */
1787 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1788 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1789 
1790 /* hash value occupies bits from 7 up to 30 */
1791 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1792 /* generation number occupies 7 bits starting from 0 up to 6 */
1793 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1794 #define MAX_GENERATION_NUMBER  127
1795 
1796 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1797 
1798 /*
1799  * Picture represents an internal node of the reiserfs tree
1800  *  ______________________________________________________
1801  * |      |  Array of     |  Array of         |  Free     |
1802  * |block |    keys       |  pointers         | space     |
1803  * | head |      N        |      N+1          |           |
1804  * |______|_______________|___________________|___________|
1805  */
1806 
1807 /***************************************************************************/
1808 /*                      DISK CHILD                                         */
1809 /***************************************************************************/
1810 /* Disk child pointer: The pointer from an internal node of the tree
1811    to a node that is on disk. */
1812 struct disk_child {
1813 	__le32 dc_block_number;	/* Disk child's block number. */
1814 	__le16 dc_size;		/* Disk child's used space.   */
1815 	__le16 dc_reserved;
1816 };
1817 
1818 #define DC_SIZE (sizeof(struct disk_child))
1819 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1820 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1821 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1822 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1823 
1824 /* Get disk child by buffer header and position in the tree node. */
1825 #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
1826 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1827 
1828 /* Get disk child number by buffer header and position in the tree node. */
1829 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1830 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1831 				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1832 
1833  /* maximal value of field child_size in structure disk_child */
1834  /* child size is the combined size of all items and their headers */
1835 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1836 
1837 /* amount of used space in buffer (not including block head) */
1838 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1839 
1840 /* max and min number of keys in internal node */
1841 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1842 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1843 
1844 /***************************************************************************/
1845 /*                      PATH STRUCTURES AND DEFINES                        */
1846 /***************************************************************************/
1847 
1848 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1849    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1850    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1851    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1852    position of the block_number of the next node if it is looking through an internal node.  If it
1853    is looking through a leaf node bin_search will find the position of the item which has key either
1854    equal to given key, or which is the maximal key less than the given key. */
1855 
1856 struct path_element {
1857 	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
1858 	int pe_position;	/* Position in the tree node which is placed in the */
1859 	/* buffer above.                                  */
1860 };
1861 
1862 #define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1863 #define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1864 #define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
1865 
1866 #define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1867 #define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
1868 
1869 /* We need to keep track of who the ancestors of nodes are.  When we
1870    perform a search we record which nodes were visited while
1871    descending the tree looking for the node we searched for. This list
1872    of nodes is called the path.  This information is used while
1873    performing balancing.  Note that this path information may become
1874    invalid, and this means we must check it when using it to see if it
1875    is still valid. You'll need to read search_by_key and the comments
1876    in it, especially about decrement_counters_in_path(), to understand
1877    this structure.
1878 
1879 Paths make the code so much harder to work with and debug.... An
1880 enormous number of bugs are due to them, and trying to write or modify
1881 code that uses them just makes my head hurt.  They are based on an
1882 excessive effort to avoid disturbing the precious VFS code.:-( The
1883 gods only know how we are going to SMP the code that uses them.
1884 znodes are the way! */
1885 
1886 #define PATH_READA	0x1	/* do read ahead */
1887 #define PATH_READA_BACK 0x2	/* read backwards */
1888 
1889 struct treepath {
1890 	int path_length;	/* Length of the array above.   */
1891 	int reada;
1892 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1893 	int pos_in_item;
1894 };
1895 
1896 #define pos_in_item(path) ((path)->pos_in_item)
1897 
1898 #define INITIALIZE_PATH(var) \
1899 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1900 
1901 /* Get path element by path and path position. */
1902 #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
1903 
1904 /* Get buffer header at the path by path and path position. */
1905 #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1906 
1907 /* Get position in the element at the path by path and path position. */
1908 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1909 
1910 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1911 				/* you know, to the person who didn't
1912 				   write this the macro name does not
1913 				   at first suggest what it does.
1914 				   Maybe POSITION_FROM_PATH_END? Or
1915 				   maybe we should just focus on
1916 				   dumping paths... -Hans */
1917 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1918 
1919 #define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1920 
1921 /* in do_balance leaf has h == 0 in contrast with path structure,
1922    where root has level == 0. That is why we need these defines */
1923 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */
1924 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
1925 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1926 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
1927 
1928 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1929 
1930 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1931 #define get_ih(path) PATH_PITEM_HEAD(path)
1932 #define get_item_pos(path) PATH_LAST_POSITION(path)
1933 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1934 #define item_moved(ih,path) comp_items(ih, path)
1935 #define path_changed(ih,path) comp_items (ih, path)
1936 
1937 /***************************************************************************/
1938 /*                       MISC                                              */
1939 /***************************************************************************/
1940 
1941 /* Size of pointer to the unformatted node. */
1942 #define UNFM_P_SIZE (sizeof(unp_t))
1943 #define UNFM_P_SHIFT 2
1944 
1945 // in in-core inode key is stored on le form
1946 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1947 
1948 #define MAX_UL_INT 0xffffffff
1949 #define MAX_INT    0x7ffffff
1950 #define MAX_US_INT 0xffff
1951 
1952 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1953 static inline loff_t max_reiserfs_offset(struct inode *inode)
1954 {
1955 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1956 		return (loff_t) U32_MAX;
1957 
1958 	return (loff_t) ((~(__u64) 0) >> 4);
1959 }
1960 
1961 /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1962 #define MAX_KEY_OBJECTID	MAX_UL_INT
1963 
1964 #define MAX_B_NUM  MAX_UL_INT
1965 #define MAX_FC_NUM MAX_US_INT
1966 
1967 /* the purpose is to detect overflow of an unsigned short */
1968 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1969 
1970 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1971 #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
1972 #define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
1973 
1974 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1975 #define get_generation(s) atomic_read (&fs_generation(s))
1976 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1977 #define __fs_changed(gen,s) (gen != get_generation (s))
1978 #define fs_changed(gen,s)		\
1979 ({					\
1980 	reiserfs_cond_resched(s);	\
1981 	__fs_changed(gen, s);		\
1982 })
1983 
1984 /***************************************************************************/
1985 /*                  FIXATE NODES                                           */
1986 /***************************************************************************/
1987 
1988 #define VI_TYPE_LEFT_MERGEABLE 1
1989 #define VI_TYPE_RIGHT_MERGEABLE 2
1990 
1991 /* To make any changes in the tree we always first find node, that
1992    contains item to be changed/deleted or place to insert a new
1993    item. We call this node S. To do balancing we need to decide what
1994    we will shift to left/right neighbor, or to a new node, where new
1995    item will be etc. To make this analysis simpler we build virtual
1996    node. Virtual node is an array of items, that will replace items of
1997    node S. (For instance if we are going to delete an item, virtual
1998    node does not contain it). Virtual node keeps information about
1999    item sizes and types, mergeability of first and last items, sizes
2000    of all entries in directory item. We use this array of items when
2001    calculating what we can shift to neighbors and how many nodes we
2002    have to have if we do not any shiftings, if we shift to left/right
2003    neighbor or to both. */
2004 struct virtual_item {
2005 	int vi_index;		// index in the array of item operations
2006 	unsigned short vi_type;	// left/right mergeability
2007 	unsigned short vi_item_len;	/* length of item that it will have after balancing */
2008 	struct item_head *vi_ih;
2009 	const char *vi_item;	// body of item (old or new)
2010 	const void *vi_new_data;	// 0 always but paste mode
2011 	void *vi_uarea;		// item specific area
2012 };
2013 
2014 struct virtual_node {
2015 	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
2016 	unsigned short vn_nr_item;	/* number of items in virtual node */
2017 	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
2018 	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
2019 	short vn_affected_item_num;
2020 	short vn_pos_in_item;
2021 	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
2022 	const void *vn_data;
2023 	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
2024 };
2025 
2026 /* used by directory items when creating virtual nodes */
2027 struct direntry_uarea {
2028 	int flags;
2029 	__u16 entry_count;
2030 	__u16 entry_sizes[1];
2031 } __attribute__ ((__packed__));
2032 
2033 /***************************************************************************/
2034 /*                  TREE BALANCE                                           */
2035 /***************************************************************************/
2036 
2037 /* This temporary structure is used in tree balance algorithms, and
2038    constructed as we go to the extent that its various parts are
2039    needed.  It contains arrays of nodes that can potentially be
2040    involved in the balancing of node S, and parameters that define how
2041    each of the nodes must be balanced.  Note that in these algorithms
2042    for balancing the worst case is to need to balance the current node
2043    S and the left and right neighbors and all of their parents plus
2044    create a new node.  We implement S1 balancing for the leaf nodes
2045    and S0 balancing for the internal nodes (S1 and S0 are defined in
2046    our papers.)*/
2047 
2048 #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
2049 
2050 /* maximum number of FEB blocknrs on a single level */
2051 #define MAX_AMOUNT_NEEDED 2
2052 
2053 /* someday somebody will prefix every field in this struct with tb_ */
2054 struct tree_balance {
2055 	int tb_mode;
2056 	int need_balance_dirty;
2057 	struct super_block *tb_sb;
2058 	struct reiserfs_transaction_handle *transaction_handle;
2059 	struct treepath *tb_path;
2060 	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
2061 	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
2062 	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
2063 	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
2064 	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
2065 	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
2066 
2067 	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
2068 						   cur_blknum. */
2069 	struct buffer_head *used[MAX_FEB_SIZE];
2070 	struct buffer_head *thrown[MAX_FEB_SIZE];
2071 	int lnum[MAX_HEIGHT];	/* array of number of items which must be
2072 				   shifted to the left in order to balance the
2073 				   current node; for leaves includes item that
2074 				   will be partially shifted; for internal
2075 				   nodes, it is the number of child pointers
2076 				   rather than items. It includes the new item
2077 				   being created. The code sometimes subtracts
2078 				   one to get the number of wholly shifted
2079 				   items for other purposes. */
2080 	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
2081 	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
2082 				   S[h] to its item number within the node CFL[h] */
2083 	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
2084 	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
2085 					   S[h]. A negative value means removing.  */
2086 	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
2087 				   balancing on the level h of the tree.  If 0 then S is
2088 				   being deleted, if 1 then S is remaining and no new nodes
2089 				   are being created, if 2 or 3 then 1 or 2 new nodes is
2090 				   being created */
2091 
2092 	/* fields that are used only for balancing leaves of the tree */
2093 	int cur_blknum;		/* number of empty blocks having been already allocated                 */
2094 	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
2095 	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
2096 	int s2num;		/* number of items that fall into second new node when S[0] splits     */
2097 	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
2098 	/* most liquid item that cannot be shifted from S[0] entirely         */
2099 	/* if -1 then nothing will be partially shifted */
2100 	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
2101 	/* most liquid item that cannot be shifted from S[0] entirely         */
2102 	/* if -1 then nothing will be partially shifted                           */
2103 	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
2104 	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
2105 	int s2bytes;
2106 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
2107 	char *vn_buf;		/* kmalloced memory. Used to create
2108 				   virtual node and keep map of
2109 				   dirtied bitmap blocks */
2110 	int vn_buf_size;	/* size of the vn_buf */
2111 	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
2112 
2113 	int fs_gen;		/* saved value of `reiserfs_generation' counter
2114 				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
2115 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2116 	struct in_core_key key;	/* key pointer, to pass to block allocator or
2117 				   another low-level subsystem */
2118 #endif
2119 };
2120 
2121 /* These are modes of balancing */
2122 
2123 /* When inserting an item. */
2124 #define M_INSERT	'i'
2125 /* When inserting into (directories only) or appending onto an already
2126    existent item. */
2127 #define M_PASTE		'p'
2128 /* When deleting an item. */
2129 #define M_DELETE	'd'
2130 /* When truncating an item or removing an entry from a (directory) item. */
2131 #define M_CUT 		'c'
2132 
2133 /* used when balancing on leaf level skipped (in reiserfsck) */
2134 #define M_INTERNAL	'n'
2135 
2136 /* When further balancing is not needed, then do_balance does not need
2137    to be called. */
2138 #define M_SKIP_BALANCING 		's'
2139 #define M_CONVERT	'v'
2140 
2141 /* modes of leaf_move_items */
2142 #define LEAF_FROM_S_TO_L 0
2143 #define LEAF_FROM_S_TO_R 1
2144 #define LEAF_FROM_R_TO_L 2
2145 #define LEAF_FROM_L_TO_R 3
2146 #define LEAF_FROM_S_TO_SNEW 4
2147 
2148 #define FIRST_TO_LAST 0
2149 #define LAST_TO_FIRST 1
2150 
2151 /* used in do_balance for passing parent of node information that has
2152    been gotten from tb struct */
2153 struct buffer_info {
2154 	struct tree_balance *tb;
2155 	struct buffer_head *bi_bh;
2156 	struct buffer_head *bi_parent;
2157 	int bi_position;
2158 };
2159 
2160 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2161 {
2162 	return tb ? tb->tb_sb : NULL;
2163 }
2164 
2165 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2166 {
2167 	return bi ? sb_from_tb(bi->tb) : NULL;
2168 }
2169 
2170 /* there are 4 types of items: stat data, directory item, indirect, direct.
2171 +-------------------+------------+--------------+------------+
2172 |	            |  k_offset  | k_uniqueness | mergeable? |
2173 +-------------------+------------+--------------+------------+
2174 |     stat data     |	0        |      0       |   no       |
2175 +-------------------+------------+--------------+------------+
2176 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
2177 | non 1st directory | hash value |              |   yes      |
2178 |     item          |            |              |            |
2179 +-------------------+------------+--------------+------------+
2180 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
2181 +-------------------+------------+--------------+------------+
2182 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
2183 +-------------------+------------+--------------+------------+
2184 */
2185 
2186 struct item_operations {
2187 	int (*bytes_number) (struct item_head * ih, int block_size);
2188 	void (*decrement_key) (struct cpu_key *);
2189 	int (*is_left_mergeable) (struct reiserfs_key * ih,
2190 				  unsigned long bsize);
2191 	void (*print_item) (struct item_head *, char *item);
2192 	void (*check_item) (struct item_head *, char *item);
2193 
2194 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2195 			  int is_affected, int insert_size);
2196 	int (*check_left) (struct virtual_item * vi, int free,
2197 			   int start_skip, int end_skip);
2198 	int (*check_right) (struct virtual_item * vi, int free);
2199 	int (*part_size) (struct virtual_item * vi, int from, int to);
2200 	int (*unit_num) (struct virtual_item * vi);
2201 	void (*print_vi) (struct virtual_item * vi);
2202 };
2203 
2204 extern struct item_operations *item_ops[TYPE_ANY + 1];
2205 
2206 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2207 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2208 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2209 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2210 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2211 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2212 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2213 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2214 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2215 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2216 
2217 #define COMP_SHORT_KEYS comp_short_keys
2218 
2219 /* number of blocks pointed to by the indirect item */
2220 #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2221 
2222 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
2223 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2224 
2225 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
2226 
2227 /* get the item header */
2228 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2229 
2230 /* get key */
2231 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2232 
2233 /* get the key */
2234 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
2235 
2236 /* get item body */
2237 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
2238 
2239 /* get the stat data by the buffer header and the item order */
2240 #define B_N_STAT_DATA(bh,nr) \
2241 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
2242 
2243     /* following defines use reiserfs buffer header and item header */
2244 
2245 /* get stat-data */
2246 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2247 
2248 // this is 3976 for size==4096
2249 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2250 
2251 /* indirect items consist of entries which contain blocknrs, pos
2252    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2253    blocknr contained by the entry pos points to */
2254 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
2255 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
2256 
2257 struct reiserfs_iget_args {
2258 	__u32 objectid;
2259 	__u32 dirid;
2260 };
2261 
2262 /***************************************************************************/
2263 /*                    FUNCTION DECLARATIONS                                */
2264 /***************************************************************************/
2265 
2266 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2267 
2268 #define journal_trans_half(blocksize) \
2269 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2270 
2271 /* journal.c see journal.c for all the comments here */
2272 
2273 /* first block written in a commit.  */
2274 struct reiserfs_journal_desc {
2275 	__le32 j_trans_id;	/* id of commit */
2276 	__le32 j_len;		/* length of commit. len +1 is the commit block */
2277 	__le32 j_mount_id;	/* mount id of this trans */
2278 	__le32 j_realblock[1];	/* real locations for each block */
2279 };
2280 
2281 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2282 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2283 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2284 
2285 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2286 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2287 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2288 
2289 /* last block written in a commit */
2290 struct reiserfs_journal_commit {
2291 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2292 	__le32 j_len;		/* ditto */
2293 	__le32 j_realblock[1];	/* real locations for each block */
2294 };
2295 
2296 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2297 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2298 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2299 
2300 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2301 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2302 
2303 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
2304 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
2305 ** and this transaction does not need to be replayed.
2306 */
2307 struct reiserfs_journal_header {
2308 	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
2309 	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
2310 	__le32 j_mount_id;
2311 	/* 12 */ struct journal_params jh_journal;
2312 };
2313 
2314 /* biggest tunable defines are right here */
2315 #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2316 #define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
2317 #define JOURNAL_TRANS_MIN_DEFAULT 256
2318 #define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
2319 #define JOURNAL_MIN_RATIO 2
2320 #define JOURNAL_MAX_COMMIT_AGE 30
2321 #define JOURNAL_MAX_TRANS_AGE 30
2322 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2323 #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2324 					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2325 					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2326 
2327 #ifdef CONFIG_QUOTA
2328 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2329 /* We need to update data and inode (atime) */
2330 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2331 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2332 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2333 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2334 /* same as with INIT */
2335 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2336 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2337 #else
2338 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2339 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2340 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2341 #endif
2342 
2343 /* both of these can be as low as 1, or as high as you want.  The min is the
2344 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2345 ** as needed, and released when transactions are committed.  On release, if
2346 ** the current number of nodes is > max, the node is freed, otherwise,
2347 ** it is put on a free list for faster use later.
2348 */
2349 #define REISERFS_MIN_BITMAP_NODES 10
2350 #define REISERFS_MAX_BITMAP_NODES 100
2351 
2352 #define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
2353 #define JBH_HASH_MASK 8191
2354 
2355 #define _jhashfn(sb,block)	\
2356 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2357 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2358 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2359 
2360 // We need these to make journal.c code more readable
2361 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2362 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2363 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2364 
2365 enum reiserfs_bh_state_bits {
2366 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2367 	BH_JDirty_wait,
2368 	BH_JNew,		/* disk block was taken off free list before
2369 				 * being in a finished transaction, or
2370 				 * written to disk. Can be reused immed. */
2371 	BH_JPrepared,
2372 	BH_JRestore_dirty,
2373 	BH_JTest,		// debugging only will go away
2374 };
2375 
2376 BUFFER_FNS(JDirty, journaled);
2377 TAS_BUFFER_FNS(JDirty, journaled);
2378 BUFFER_FNS(JDirty_wait, journal_dirty);
2379 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2380 BUFFER_FNS(JNew, journal_new);
2381 TAS_BUFFER_FNS(JNew, journal_new);
2382 BUFFER_FNS(JPrepared, journal_prepared);
2383 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2384 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2385 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2386 BUFFER_FNS(JTest, journal_test);
2387 TAS_BUFFER_FNS(JTest, journal_test);
2388 
2389 /*
2390 ** transaction handle which is passed around for all journal calls
2391 */
2392 struct reiserfs_transaction_handle {
2393 	struct super_block *t_super;	/* super for this FS when journal_begin was
2394 					   called. saves calls to reiserfs_get_super
2395 					   also used by nested transactions to make
2396 					   sure they are nesting on the right FS
2397 					   _must_ be first in the handle
2398 					 */
2399 	int t_refcount;
2400 	int t_blocks_logged;	/* number of blocks this writer has logged */
2401 	int t_blocks_allocated;	/* number of blocks this writer allocated */
2402 	unsigned int t_trans_id;	/* sanity check, equals the current trans id */
2403 	void *t_handle_save;	/* save existing current->journal_info */
2404 	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
2405 					   should be displaced from others */
2406 	struct list_head t_list;
2407 };
2408 
2409 /* used to keep track of ordered and tail writes, attached to the buffer
2410  * head through b_journal_head.
2411  */
2412 struct reiserfs_jh {
2413 	struct reiserfs_journal_list *jl;
2414 	struct buffer_head *bh;
2415 	struct list_head list;
2416 };
2417 
2418 void reiserfs_free_jh(struct buffer_head *bh);
2419 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2420 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2421 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2422 		       struct super_block *, struct buffer_head *bh);
2423 
2424 static inline int reiserfs_file_data_log(struct inode *inode)
2425 {
2426 	if (reiserfs_data_log(inode->i_sb) ||
2427 	    (REISERFS_I(inode)->i_flags & i_data_log))
2428 		return 1;
2429 	return 0;
2430 }
2431 
2432 static inline int reiserfs_transaction_running(struct super_block *s)
2433 {
2434 	struct reiserfs_transaction_handle *th = current->journal_info;
2435 	if (th && th->t_super == s)
2436 		return 1;
2437 	if (th && th->t_super == NULL)
2438 		BUG();
2439 	return 0;
2440 }
2441 
2442 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2443 {
2444 	return th->t_blocks_allocated - th->t_blocks_logged;
2445 }
2446 
2447 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2448 								    super_block
2449 								    *,
2450 								    int count);
2451 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2452 void reiserfs_vfs_truncate_file(struct inode *inode);
2453 int reiserfs_commit_page(struct inode *inode, struct page *page,
2454 			 unsigned from, unsigned to);
2455 void reiserfs_flush_old_commits(struct super_block *);
2456 int reiserfs_commit_for_inode(struct inode *);
2457 int reiserfs_inode_needs_commit(struct inode *);
2458 void reiserfs_update_inode_transaction(struct inode *);
2459 void reiserfs_wait_on_write_block(struct super_block *s);
2460 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2461 void reiserfs_allow_writes(struct super_block *s);
2462 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2463 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2464 				 int wait);
2465 void reiserfs_restore_prepared_buffer(struct super_block *,
2466 				      struct buffer_head *bh);
2467 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2468 		 unsigned int);
2469 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2470 int journal_release_error(struct reiserfs_transaction_handle *,
2471 			  struct super_block *);
2472 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
2473 		unsigned long);
2474 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
2475 		     unsigned long);
2476 int journal_mark_freed(struct reiserfs_transaction_handle *,
2477 		       struct super_block *, b_blocknr_t blocknr);
2478 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2479 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2480 			 int bit_nr, int searchall, b_blocknr_t *next);
2481 int journal_begin(struct reiserfs_transaction_handle *,
2482 		  struct super_block *sb, unsigned long);
2483 int journal_join_abort(struct reiserfs_transaction_handle *,
2484 		       struct super_block *sb, unsigned long);
2485 void reiserfs_abort_journal(struct super_block *sb, int errno);
2486 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2487 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2488 				   struct reiserfs_list_bitmap *, unsigned int);
2489 
2490 void reiserfs_schedule_old_flush(struct super_block *s);
2491 void add_save_link(struct reiserfs_transaction_handle *th,
2492 		   struct inode *inode, int truncate);
2493 int remove_save_link(struct inode *inode, int truncate);
2494 
2495 /* objectid.c */
2496 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2497 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2498 			       __u32 objectid_to_release);
2499 int reiserfs_convert_objectid_map_v1(struct super_block *);
2500 
2501 /* stree.c */
2502 int B_IS_IN_TREE(const struct buffer_head *);
2503 extern void copy_item_head(struct item_head *to,
2504 			   const struct item_head *from);
2505 
2506 // first key is in cpu form, second - le
2507 extern int comp_short_keys(const struct reiserfs_key *le_key,
2508 			   const struct cpu_key *cpu_key);
2509 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2510 
2511 // both are in le form
2512 extern int comp_le_keys(const struct reiserfs_key *,
2513 			const struct reiserfs_key *);
2514 extern int comp_short_le_keys(const struct reiserfs_key *,
2515 			      const struct reiserfs_key *);
2516 
2517 //
2518 // get key version from on disk key - kludge
2519 //
2520 static inline int le_key_version(const struct reiserfs_key *key)
2521 {
2522 	int type;
2523 
2524 	type = offset_v2_k_type(&(key->u.k_offset_v2));
2525 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2526 	    && type != TYPE_DIRENTRY)
2527 		return KEY_FORMAT_3_5;
2528 
2529 	return KEY_FORMAT_3_6;
2530 
2531 }
2532 
2533 static inline void copy_key(struct reiserfs_key *to,
2534 			    const struct reiserfs_key *from)
2535 {
2536 	memcpy(to, from, KEY_SIZE);
2537 }
2538 
2539 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2540 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2541 				    const struct super_block *sb);
2542 int search_by_key(struct super_block *, const struct cpu_key *,
2543 		  struct treepath *, int);
2544 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2545 int search_for_position_by_key(struct super_block *sb,
2546 			       const struct cpu_key *cpu_key,
2547 			       struct treepath *search_path);
2548 extern void decrement_bcount(struct buffer_head *bh);
2549 void decrement_counters_in_path(struct treepath *search_path);
2550 void pathrelse(struct treepath *search_path);
2551 int reiserfs_check_path(struct treepath *p);
2552 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
2553 
2554 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2555 			 struct treepath *path,
2556 			 const struct cpu_key *key,
2557 			 struct item_head *ih,
2558 			 struct inode *inode, const char *body);
2559 
2560 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2561 			     struct treepath *path,
2562 			     const struct cpu_key *key,
2563 			     struct inode *inode,
2564 			     const char *body, int paste_size);
2565 
2566 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
2567 			   struct treepath *path,
2568 			   struct cpu_key *key,
2569 			   struct inode *inode,
2570 			   struct page *page, loff_t new_file_size);
2571 
2572 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2573 			 struct treepath *path,
2574 			 const struct cpu_key *key,
2575 			 struct inode *inode, struct buffer_head *un_bh);
2576 
2577 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2578 				struct inode *inode, struct reiserfs_key *key);
2579 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2580 			   struct inode *inode);
2581 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2582 			 struct inode *inode, struct page *,
2583 			 int update_timestamps);
2584 
2585 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2586 #define file_size(inode) ((inode)->i_size)
2587 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2588 
2589 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2590 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2591 
2592 void padd_item(char *item, int total_length, int length);
2593 
2594 /* inode.c */
2595 /* args for the create parameter of reiserfs_get_block */
2596 #define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
2597 #define GET_BLOCK_CREATE 1	/* add anything you need to find block */
2598 #define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
2599 #define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
2600 #define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
2601 #define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
2602 
2603 void reiserfs_read_locked_inode(struct inode *inode,
2604 				struct reiserfs_iget_args *args);
2605 int reiserfs_find_actor(struct inode *inode, void *p);
2606 int reiserfs_init_locked_inode(struct inode *inode, void *p);
2607 void reiserfs_evict_inode(struct inode *inode);
2608 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2609 int reiserfs_get_block(struct inode *inode, sector_t block,
2610 		       struct buffer_head *bh_result, int create);
2611 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2612 				     int fh_len, int fh_type);
2613 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2614 				     int fh_len, int fh_type);
2615 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
2616 		       struct inode *parent);
2617 
2618 int reiserfs_truncate_file(struct inode *, int update_timestamps);
2619 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2620 		  int type, int key_length);
2621 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2622 		       int version,
2623 		       loff_t offset, int type, int length, int entry_count);
2624 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2625 
2626 struct reiserfs_security_handle;
2627 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2628 		       struct inode *dir, umode_t mode,
2629 		       const char *symname, loff_t i_size,
2630 		       struct dentry *dentry, struct inode *inode,
2631 		       struct reiserfs_security_handle *security);
2632 
2633 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2634 			     struct inode *inode, loff_t size);
2635 
2636 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2637 				      struct inode *inode)
2638 {
2639 	reiserfs_update_sd_size(th, inode, inode->i_size);
2640 }
2641 
2642 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2643 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2644 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2645 
2646 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2647 
2648 /* namei.c */
2649 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2650 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2651 			struct treepath *path, struct reiserfs_dir_entry *de);
2652 struct dentry *reiserfs_get_parent(struct dentry *);
2653 
2654 #ifdef CONFIG_REISERFS_PROC_INFO
2655 int reiserfs_proc_info_init(struct super_block *sb);
2656 int reiserfs_proc_info_done(struct super_block *sb);
2657 int reiserfs_proc_info_global_init(void);
2658 int reiserfs_proc_info_global_done(void);
2659 
2660 #define PROC_EXP( e )   e
2661 
2662 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2663 #define PROC_INFO_MAX( sb, field, value )								\
2664     __PINFO( sb ).field =												\
2665         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2666 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2667 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2668 #define PROC_INFO_BH_STAT( sb, bh, level )							\
2669     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
2670     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
2671     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2672 #else
2673 static inline int reiserfs_proc_info_init(struct super_block *sb)
2674 {
2675 	return 0;
2676 }
2677 
2678 static inline int reiserfs_proc_info_done(struct super_block *sb)
2679 {
2680 	return 0;
2681 }
2682 
2683 static inline int reiserfs_proc_info_global_init(void)
2684 {
2685 	return 0;
2686 }
2687 
2688 static inline int reiserfs_proc_info_global_done(void)
2689 {
2690 	return 0;
2691 }
2692 
2693 #define PROC_EXP( e )
2694 #define VOID_V ( ( void ) 0 )
2695 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2696 #define PROC_INFO_INC( sb, field ) VOID_V
2697 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2698 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2699 #endif
2700 
2701 /* dir.c */
2702 extern const struct inode_operations reiserfs_dir_inode_operations;
2703 extern const struct inode_operations reiserfs_symlink_inode_operations;
2704 extern const struct inode_operations reiserfs_special_inode_operations;
2705 extern const struct file_operations reiserfs_dir_operations;
2706 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
2707 
2708 /* tail_conversion.c */
2709 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2710 		    struct treepath *, struct buffer_head *, loff_t);
2711 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2712 		    struct page *, struct treepath *, const struct cpu_key *,
2713 		    loff_t, char *);
2714 void reiserfs_unmap_buffer(struct buffer_head *);
2715 
2716 /* file.c */
2717 extern const struct inode_operations reiserfs_file_inode_operations;
2718 extern const struct file_operations reiserfs_file_operations;
2719 extern const struct address_space_operations reiserfs_address_space_operations;
2720 
2721 /* fix_nodes.c */
2722 
2723 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2724 	      struct item_head *ins_ih, const void *);
2725 void unfix_nodes(struct tree_balance *);
2726 
2727 /* prints.c */
2728 void __reiserfs_panic(struct super_block *s, const char *id,
2729 		      const char *function, const char *fmt, ...)
2730     __attribute__ ((noreturn));
2731 #define reiserfs_panic(s, id, fmt, args...) \
2732 	__reiserfs_panic(s, id, __func__, fmt, ##args)
2733 void __reiserfs_error(struct super_block *s, const char *id,
2734 		      const char *function, const char *fmt, ...);
2735 #define reiserfs_error(s, id, fmt, args...) \
2736 	 __reiserfs_error(s, id, __func__, fmt, ##args)
2737 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2738 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2739 void print_indirect_item(struct buffer_head *bh, int item_num);
2740 void store_print_tb(struct tree_balance *tb);
2741 void print_cur_tb(char *mes);
2742 void print_de(struct reiserfs_dir_entry *de);
2743 void print_bi(struct buffer_info *bi, char *mes);
2744 #define PRINT_LEAF_ITEMS 1	/* print all items */
2745 #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
2746 #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
2747 void print_block(struct buffer_head *bh, ...);
2748 void print_bmap(struct super_block *s, int silent);
2749 void print_bmap_block(int i, char *data, int size, int silent);
2750 /*void print_super_block (struct super_block * s, char * mes);*/
2751 void print_objectid_map(struct super_block *s);
2752 void print_block_head(struct buffer_head *bh, char *mes);
2753 void check_leaf(struct buffer_head *bh);
2754 void check_internal(struct buffer_head *bh);
2755 void print_statistics(struct super_block *s);
2756 char *reiserfs_hashname(int code);
2757 
2758 /* lbalance.c */
2759 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2760 		    int mov_bytes, struct buffer_head *Snew);
2761 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2762 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2763 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2764 		       int del_num, int del_bytes);
2765 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2766 			  struct item_head *inserted_item_ih,
2767 			  const char *inserted_item_body, int zeros_number);
2768 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2769 			  int pos_in_item, int paste_size, const char *body,
2770 			  int zeros_number);
2771 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2772 			  int pos_in_item, int cut_size);
2773 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2774 			int new_entry_count, struct reiserfs_de_head *new_dehs,
2775 			const char *records, int paste_size);
2776 /* ibalance.c */
2777 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2778 		     struct buffer_head **);
2779 
2780 /* do_balance.c */
2781 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2782 				struct buffer_head *bh, int flag);
2783 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2784 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2785 
2786 void do_balance(struct tree_balance *tb, struct item_head *ih,
2787 		const char *body, int flag);
2788 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2789 				struct buffer_head *bh);
2790 
2791 int get_left_neighbor_position(struct tree_balance *tb, int h);
2792 int get_right_neighbor_position(struct tree_balance *tb, int h);
2793 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2794 		 struct buffer_head *, int);
2795 void make_empty_node(struct buffer_info *);
2796 struct buffer_head *get_FEB(struct tree_balance *);
2797 
2798 /* bitmap.c */
2799 
2800 /* structure contains hints for block allocator, and it is a container for
2801  * arguments, such as node, search path, transaction_handle, etc. */
2802 struct __reiserfs_blocknr_hint {
2803 	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
2804 	sector_t block;		/* file offset, in blocks */
2805 	struct in_core_key key;
2806 	struct treepath *path;	/* search path, used by allocator to deternine search_start by
2807 				 * various ways */
2808 	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
2809 						 * bitmap blocks changes  */
2810 	b_blocknr_t beg, end;
2811 	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
2812 					 * between different block allocator procedures
2813 					 * (determine_search_start() and others) */
2814 	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
2815 				 * function that do actual allocation */
2816 
2817 	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
2818 					 * formatted/unformatted blocks with/without preallocation */
2819 	unsigned preallocate:1;
2820 };
2821 
2822 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2823 
2824 int reiserfs_parse_alloc_options(struct super_block *, char *);
2825 void reiserfs_init_alloc_options(struct super_block *s);
2826 
2827 /*
2828  * given a directory, this will tell you what packing locality
2829  * to use for a new object underneat it.  The locality is returned
2830  * in disk byte order (le).
2831  */
2832 __le32 reiserfs_choose_packing(struct inode *dir);
2833 
2834 void show_alloc_options(struct seq_file *seq, struct super_block *s);
2835 int reiserfs_init_bitmap_cache(struct super_block *sb);
2836 void reiserfs_free_bitmap_cache(struct super_block *sb);
2837 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2838 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2839 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2840 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2841 			 b_blocknr_t, int for_unformatted);
2842 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2843 			       int);
2844 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2845 					     b_blocknr_t * new_blocknrs,
2846 					     int amount_needed)
2847 {
2848 	reiserfs_blocknr_hint_t hint = {
2849 		.th = tb->transaction_handle,
2850 		.path = tb->tb_path,
2851 		.inode = NULL,
2852 		.key = tb->key,
2853 		.block = 0,
2854 		.formatted_node = 1
2855 	};
2856 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2857 					  0);
2858 }
2859 
2860 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2861 					    *th, struct inode *inode,
2862 					    b_blocknr_t * new_blocknrs,
2863 					    struct treepath *path,
2864 					    sector_t block)
2865 {
2866 	reiserfs_blocknr_hint_t hint = {
2867 		.th = th,
2868 		.path = path,
2869 		.inode = inode,
2870 		.block = block,
2871 		.formatted_node = 0,
2872 		.preallocate = 0
2873 	};
2874 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2875 }
2876 
2877 #ifdef REISERFS_PREALLOCATE
2878 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2879 					     *th, struct inode *inode,
2880 					     b_blocknr_t * new_blocknrs,
2881 					     struct treepath *path,
2882 					     sector_t block)
2883 {
2884 	reiserfs_blocknr_hint_t hint = {
2885 		.th = th,
2886 		.path = path,
2887 		.inode = inode,
2888 		.block = block,
2889 		.formatted_node = 0,
2890 		.preallocate = 1
2891 	};
2892 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2893 }
2894 
2895 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2896 			       struct inode *inode);
2897 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2898 #endif
2899 
2900 /* hashes.c */
2901 __u32 keyed_hash(const signed char *msg, int len);
2902 __u32 yura_hash(const signed char *msg, int len);
2903 __u32 r5_hash(const signed char *msg, int len);
2904 
2905 #define reiserfs_set_le_bit		__set_bit_le
2906 #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
2907 #define reiserfs_clear_le_bit		__clear_bit_le
2908 #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
2909 #define reiserfs_test_le_bit		test_bit_le
2910 #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
2911 
2912 /* sometimes reiserfs_truncate may require to allocate few new blocks
2913    to perform indirect2direct conversion. People probably used to
2914    think, that truncate should work without problems on a filesystem
2915    without free disk space. They may complain that they can not
2916    truncate due to lack of free disk space. This spare space allows us
2917    to not worry about it. 500 is probably too much, but it should be
2918    absolutely safe */
2919 #define SPARE_SPACE 500
2920 
2921 /* prototypes from ioctl.c */
2922 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2923 long reiserfs_compat_ioctl(struct file *filp,
2924 		   unsigned int cmd, unsigned long arg);
2925 int reiserfs_unpack(struct inode *inode, struct file *filp);
2926