1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for 4 * licensing and copyright details 5 */ 6 7 #include <linux/reiserfs_fs.h> 8 9 #include <linux/slab.h> 10 #include <linux/interrupt.h> 11 #include <linux/sched.h> 12 #include <linux/bug.h> 13 #include <linux/workqueue.h> 14 #include <asm/unaligned.h> 15 #include <linux/bitops.h> 16 #include <linux/proc_fs.h> 17 #include <linux/buffer_head.h> 18 19 /* the 32 bit compat definitions with int argument */ 20 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 21 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 22 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 23 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 24 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 25 26 struct reiserfs_journal_list; 27 28 /* bitmasks for i_flags field in reiserfs-specific part of inode */ 29 typedef enum { 30 /* 31 * this says what format of key do all items (but stat data) of 32 * an object have. If this is set, that format is 3.6 otherwise - 3.5 33 */ 34 i_item_key_version_mask = 0x0001, 35 36 /* 37 * If this is unset, object has 3.5 stat data, otherwise, 38 * it has 3.6 stat data with 64bit size, 32bit nlink etc. 39 */ 40 i_stat_data_version_mask = 0x0002, 41 42 /* file might need tail packing on close */ 43 i_pack_on_close_mask = 0x0004, 44 45 /* don't pack tail of file */ 46 i_nopack_mask = 0x0008, 47 48 /* 49 * If either of these are set, "safe link" was created for this 50 * file during truncate or unlink. Safe link is used to avoid 51 * leakage of disk space on crash with some files open, but unlinked. 52 */ 53 i_link_saved_unlink_mask = 0x0010, 54 i_link_saved_truncate_mask = 0x0020, 55 56 i_has_xattr_dir = 0x0040, 57 i_data_log = 0x0080, 58 } reiserfs_inode_flags; 59 60 struct reiserfs_inode_info { 61 __u32 i_key[4]; /* key is still 4 32 bit integers */ 62 63 /* 64 * transient inode flags that are never stored on disk. Bitmasks 65 * for this field are defined above. 66 */ 67 __u32 i_flags; 68 69 /* offset of first byte stored in direct item. */ 70 __u32 i_first_direct_byte; 71 72 /* copy of persistent inode flags read from sd_attrs. */ 73 __u32 i_attrs; 74 75 /* first unused block of a sequence of unused blocks */ 76 int i_prealloc_block; 77 int i_prealloc_count; /* length of that sequence */ 78 79 /* per-transaction list of inodes which have preallocated blocks */ 80 struct list_head i_prealloc_list; 81 82 /* 83 * new_packing_locality is created; new blocks for the contents 84 * of this directory should be displaced 85 */ 86 unsigned new_packing_locality:1; 87 88 /* 89 * we use these for fsync or O_SYNC to decide which transaction 90 * needs to be committed in order for this inode to be properly 91 * flushed 92 */ 93 unsigned int i_trans_id; 94 95 struct reiserfs_journal_list *i_jl; 96 atomic_t openers; 97 struct mutex tailpack; 98 #ifdef CONFIG_REISERFS_FS_XATTR 99 struct rw_semaphore i_xattr_sem; 100 #endif 101 #ifdef CONFIG_QUOTA 102 struct dquot *i_dquot[MAXQUOTAS]; 103 #endif 104 105 struct inode vfs_inode; 106 }; 107 108 typedef enum { 109 reiserfs_attrs_cleared = 0x00000001, 110 } reiserfs_super_block_flags; 111 112 /* 113 * struct reiserfs_super_block accessors/mutators since this is a disk 114 * structure, it will always be in little endian format. 115 */ 116 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 117 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 118 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 119 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 120 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 121 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 122 123 #define sb_jp_journal_1st_block(sbp) \ 124 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 125 #define set_sb_jp_journal_1st_block(sbp,v) \ 126 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 127 #define sb_jp_journal_dev(sbp) \ 128 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 129 #define set_sb_jp_journal_dev(sbp,v) \ 130 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 131 #define sb_jp_journal_size(sbp) \ 132 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 133 #define set_sb_jp_journal_size(sbp,v) \ 134 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 135 #define sb_jp_journal_trans_max(sbp) \ 136 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 137 #define set_sb_jp_journal_trans_max(sbp,v) \ 138 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 139 #define sb_jp_journal_magic(sbp) \ 140 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 141 #define set_sb_jp_journal_magic(sbp,v) \ 142 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 143 #define sb_jp_journal_max_batch(sbp) \ 144 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 145 #define set_sb_jp_journal_max_batch(sbp,v) \ 146 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 147 #define sb_jp_jourmal_max_commit_age(sbp) \ 148 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 149 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 150 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 151 152 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 153 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 154 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 155 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 156 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 157 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 158 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 159 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 160 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 161 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 162 #define sb_hash_function_code(sbp) \ 163 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 164 #define set_sb_hash_function_code(sbp,v) \ 165 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 166 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 167 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 168 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 169 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 170 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 171 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 172 173 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 174 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 175 176 #define sb_reserved_for_journal(sbp) \ 177 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 178 #define set_sb_reserved_for_journal(sbp,v) \ 179 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 180 181 /* LOGGING -- */ 182 183 /* 184 * These all interelate for performance. 185 * 186 * If the journal block count is smaller than n transactions, you lose speed. 187 * I don't know what n is yet, I'm guessing 8-16. 188 * 189 * typical transaction size depends on the application, how often fsync is 190 * called, and how many metadata blocks you dirty in a 30 second period. 191 * The more small files (<16k) you use, the larger your transactions will 192 * be. 193 * 194 * If your journal fills faster than dirty buffers get flushed to disk, it 195 * must flush them before allowing the journal to wrap, which slows things 196 * down. If you need high speed meta data updates, the journal should be 197 * big enough to prevent wrapping before dirty meta blocks get to disk. 198 * 199 * If the batch max is smaller than the transaction max, you'll waste space 200 * at the end of the journal because journal_end sets the next transaction 201 * to start at 0 if the next transaction has any chance of wrapping. 202 * 203 * The large the batch max age, the better the speed, and the more meta 204 * data changes you'll lose after a crash. 205 */ 206 207 /* don't mess with these for a while */ 208 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 209 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 210 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 211 #define JOURNAL_HASH_SIZE 8192 212 213 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 214 #define JOURNAL_NUM_BITMAPS 5 215 216 /* 217 * One of these for every block in every transaction 218 * Each one is in two hash tables. First, a hash of the current transaction, 219 * and after journal_end, a hash of all the in memory transactions. 220 * next and prev are used by the current transaction (journal_hash). 221 * hnext and hprev are used by journal_list_hash. If a block is in more 222 * than one transaction, the journal_list_hash links it in multiple times. 223 * This allows flush_journal_list to remove just the cnode belonging to a 224 * given transaction. 225 */ 226 struct reiserfs_journal_cnode { 227 struct buffer_head *bh; /* real buffer head */ 228 struct super_block *sb; /* dev of real buffer head */ 229 230 /* block number of real buffer head, == 0 when buffer on disk */ 231 __u32 blocknr; 232 233 unsigned long state; 234 235 /* journal list this cnode lives in */ 236 struct reiserfs_journal_list *jlist; 237 238 struct reiserfs_journal_cnode *next; /* next in transaction list */ 239 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 240 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 241 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 242 }; 243 244 struct reiserfs_bitmap_node { 245 int id; 246 char *data; 247 struct list_head list; 248 }; 249 250 struct reiserfs_list_bitmap { 251 struct reiserfs_journal_list *journal_list; 252 struct reiserfs_bitmap_node **bitmaps; 253 }; 254 255 /* 256 * one of these for each transaction. The most important part here is the 257 * j_realblock. this list of cnodes is used to hash all the blocks in all 258 * the commits, to mark all the real buffer heads dirty once all the commits 259 * hit the disk, and to make sure every real block in a transaction is on 260 * disk before allowing the log area to be overwritten 261 */ 262 struct reiserfs_journal_list { 263 unsigned long j_start; 264 unsigned long j_state; 265 unsigned long j_len; 266 atomic_t j_nonzerolen; 267 atomic_t j_commit_left; 268 269 /* all commits older than this on disk */ 270 atomic_t j_older_commits_done; 271 272 struct mutex j_commit_mutex; 273 unsigned int j_trans_id; 274 time64_t j_timestamp; /* write-only but useful for crash dump analysis */ 275 struct reiserfs_list_bitmap *j_list_bitmap; 276 struct buffer_head *j_commit_bh; /* commit buffer head */ 277 struct reiserfs_journal_cnode *j_realblock; 278 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 279 /* time ordered list of all active transactions */ 280 struct list_head j_list; 281 282 /* 283 * time ordered list of all transactions we haven't tried 284 * to flush yet 285 */ 286 struct list_head j_working_list; 287 288 /* list of tail conversion targets in need of flush before commit */ 289 struct list_head j_tail_bh_list; 290 291 /* list of data=ordered buffers in need of flush before commit */ 292 struct list_head j_bh_list; 293 int j_refcount; 294 }; 295 296 struct reiserfs_journal { 297 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 298 /* newest journal block */ 299 struct reiserfs_journal_cnode *j_last; 300 301 /* oldest journal block. start here for traverse */ 302 struct reiserfs_journal_cnode *j_first; 303 304 struct block_device *j_dev_bd; 305 fmode_t j_dev_mode; 306 307 /* first block on s_dev of reserved area journal */ 308 int j_1st_reserved_block; 309 310 unsigned long j_state; 311 unsigned int j_trans_id; 312 unsigned long j_mount_id; 313 314 /* start of current waiting commit (index into j_ap_blocks) */ 315 unsigned long j_start; 316 unsigned long j_len; /* length of current waiting commit */ 317 318 /* number of buffers requested by journal_begin() */ 319 unsigned long j_len_alloc; 320 321 atomic_t j_wcount; /* count of writers for current commit */ 322 323 /* batch count. allows turning X transactions into 1 */ 324 unsigned long j_bcount; 325 326 /* first unflushed transactions offset */ 327 unsigned long j_first_unflushed_offset; 328 329 /* last fully flushed journal timestamp */ 330 unsigned j_last_flush_trans_id; 331 332 struct buffer_head *j_header_bh; 333 334 time64_t j_trans_start_time; /* time this transaction started */ 335 struct mutex j_mutex; 336 struct mutex j_flush_mutex; 337 338 /* wait for current transaction to finish before starting new one */ 339 wait_queue_head_t j_join_wait; 340 341 atomic_t j_jlock; /* lock for j_join_wait */ 342 int j_list_bitmap_index; /* number of next list bitmap to use */ 343 344 /* no more journal begins allowed. MUST sleep on j_join_wait */ 345 int j_must_wait; 346 347 /* next journal_end will flush all journal list */ 348 int j_next_full_flush; 349 350 /* next journal_end will flush all async commits */ 351 int j_next_async_flush; 352 353 int j_cnode_used; /* number of cnodes on the used list */ 354 int j_cnode_free; /* number of cnodes on the free list */ 355 356 /* max number of blocks in a transaction. */ 357 unsigned int j_trans_max; 358 359 /* max number of blocks to batch into a trans */ 360 unsigned int j_max_batch; 361 362 /* in seconds, how old can an async commit be */ 363 unsigned int j_max_commit_age; 364 365 /* in seconds, how old can a transaction be */ 366 unsigned int j_max_trans_age; 367 368 /* the default for the max commit age */ 369 unsigned int j_default_max_commit_age; 370 371 struct reiserfs_journal_cnode *j_cnode_free_list; 372 373 /* orig pointer returned from vmalloc */ 374 struct reiserfs_journal_cnode *j_cnode_free_orig; 375 376 struct reiserfs_journal_list *j_current_jl; 377 int j_free_bitmap_nodes; 378 int j_used_bitmap_nodes; 379 380 int j_num_lists; /* total number of active transactions */ 381 int j_num_work_lists; /* number that need attention from kreiserfsd */ 382 383 /* debugging to make sure things are flushed in order */ 384 unsigned int j_last_flush_id; 385 386 /* debugging to make sure things are committed in order */ 387 unsigned int j_last_commit_id; 388 389 struct list_head j_bitmap_nodes; 390 struct list_head j_dirty_buffers; 391 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 392 393 /* list of all active transactions */ 394 struct list_head j_journal_list; 395 396 /* lists that haven't been touched by writeback attempts */ 397 struct list_head j_working_list; 398 399 /* hash table for real buffer heads in current trans */ 400 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; 401 402 /* hash table for all the real buffer heads in all the transactions */ 403 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; 404 405 /* array of bitmaps to record the deleted blocks */ 406 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; 407 408 /* list of inodes which have preallocated blocks */ 409 struct list_head j_prealloc_list; 410 int j_persistent_trans; 411 unsigned long j_max_trans_size; 412 unsigned long j_max_batch_size; 413 414 int j_errno; 415 416 /* when flushing ordered buffers, throttle new ordered writers */ 417 struct delayed_work j_work; 418 struct super_block *j_work_sb; 419 atomic_t j_async_throttle; 420 }; 421 422 enum journal_state_bits { 423 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 424 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 425 J_ABORTED, /* set when log is aborted */ 426 }; 427 428 /* ick. magic string to find desc blocks in the journal */ 429 #define JOURNAL_DESC_MAGIC "ReIsErLB" 430 431 typedef __u32(*hashf_t) (const signed char *, int); 432 433 struct reiserfs_bitmap_info { 434 __u32 free_count; 435 }; 436 437 struct proc_dir_entry; 438 439 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 440 typedef unsigned long int stat_cnt_t; 441 typedef struct reiserfs_proc_info_data { 442 spinlock_t lock; 443 int exiting; 444 int max_hash_collisions; 445 446 stat_cnt_t breads; 447 stat_cnt_t bread_miss; 448 stat_cnt_t search_by_key; 449 stat_cnt_t search_by_key_fs_changed; 450 stat_cnt_t search_by_key_restarted; 451 452 stat_cnt_t insert_item_restarted; 453 stat_cnt_t paste_into_item_restarted; 454 stat_cnt_t cut_from_item_restarted; 455 stat_cnt_t delete_solid_item_restarted; 456 stat_cnt_t delete_item_restarted; 457 458 stat_cnt_t leaked_oid; 459 stat_cnt_t leaves_removable; 460 461 /* 462 * balances per level. 463 * Use explicit 5 as MAX_HEIGHT is not visible yet. 464 */ 465 stat_cnt_t balance_at[5]; /* XXX */ 466 /* sbk == search_by_key */ 467 stat_cnt_t sbk_read_at[5]; /* XXX */ 468 stat_cnt_t sbk_fs_changed[5]; 469 stat_cnt_t sbk_restarted[5]; 470 stat_cnt_t items_at[5]; /* XXX */ 471 stat_cnt_t free_at[5]; /* XXX */ 472 stat_cnt_t can_node_be_removed[5]; /* XXX */ 473 long int lnum[5]; /* XXX */ 474 long int rnum[5]; /* XXX */ 475 long int lbytes[5]; /* XXX */ 476 long int rbytes[5]; /* XXX */ 477 stat_cnt_t get_neighbors[5]; 478 stat_cnt_t get_neighbors_restart[5]; 479 stat_cnt_t need_l_neighbor[5]; 480 stat_cnt_t need_r_neighbor[5]; 481 482 stat_cnt_t free_block; 483 struct __scan_bitmap_stats { 484 stat_cnt_t call; 485 stat_cnt_t wait; 486 stat_cnt_t bmap; 487 stat_cnt_t retry; 488 stat_cnt_t in_journal_hint; 489 stat_cnt_t in_journal_nohint; 490 stat_cnt_t stolen; 491 } scan_bitmap; 492 struct __journal_stats { 493 stat_cnt_t in_journal; 494 stat_cnt_t in_journal_bitmap; 495 stat_cnt_t in_journal_reusable; 496 stat_cnt_t lock_journal; 497 stat_cnt_t lock_journal_wait; 498 stat_cnt_t journal_being; 499 stat_cnt_t journal_relock_writers; 500 stat_cnt_t journal_relock_wcount; 501 stat_cnt_t mark_dirty; 502 stat_cnt_t mark_dirty_already; 503 stat_cnt_t mark_dirty_notjournal; 504 stat_cnt_t restore_prepared; 505 stat_cnt_t prepare; 506 stat_cnt_t prepare_retry; 507 } journal; 508 } reiserfs_proc_info_data_t; 509 #else 510 typedef struct reiserfs_proc_info_data { 511 } reiserfs_proc_info_data_t; 512 #endif 513 514 /* Number of quota types we support */ 515 #define REISERFS_MAXQUOTAS 2 516 517 /* reiserfs union of in-core super block data */ 518 struct reiserfs_sb_info { 519 /* Buffer containing the super block */ 520 struct buffer_head *s_sbh; 521 522 /* Pointer to the on-disk super block in the buffer */ 523 struct reiserfs_super_block *s_rs; 524 struct reiserfs_bitmap_info *s_ap_bitmap; 525 526 /* pointer to journal information */ 527 struct reiserfs_journal *s_journal; 528 529 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 530 531 /* Serialize writers access, replace the old bkl */ 532 struct mutex lock; 533 534 /* Owner of the lock (can be recursive) */ 535 struct task_struct *lock_owner; 536 537 /* Depth of the lock, start from -1 like the bkl */ 538 int lock_depth; 539 540 struct workqueue_struct *commit_wq; 541 542 /* Comment? -Hans */ 543 void (*end_io_handler) (struct buffer_head *, int); 544 545 /* 546 * pointer to function which is used to sort names in directory. 547 * Set on mount 548 */ 549 hashf_t s_hash_function; 550 551 /* reiserfs's mount options are set here */ 552 unsigned long s_mount_opt; 553 554 /* This is a structure that describes block allocator options */ 555 struct { 556 /* Bitfield for enable/disable kind of options */ 557 unsigned long bits; 558 559 /* 560 * size started from which we consider file 561 * to be a large one (in blocks) 562 */ 563 unsigned long large_file_size; 564 565 int border; /* percentage of disk, border takes */ 566 567 /* 568 * Minimal file size (in blocks) starting 569 * from which we do preallocations 570 */ 571 int preallocmin; 572 573 /* 574 * Number of blocks we try to prealloc when file 575 * reaches preallocmin size (in blocks) or prealloc_list 576 is empty. 577 */ 578 int preallocsize; 579 } s_alloc_options; 580 581 /* Comment? -Hans */ 582 wait_queue_head_t s_wait; 583 /* increased by one every time the tree gets re-balanced */ 584 atomic_t s_generation_counter; 585 586 /* File system properties. Currently holds on-disk FS format */ 587 unsigned long s_properties; 588 589 /* session statistics */ 590 int s_disk_reads; 591 int s_disk_writes; 592 int s_fix_nodes; 593 int s_do_balance; 594 int s_unneeded_left_neighbor; 595 int s_good_search_by_key_reada; 596 int s_bmaps; 597 int s_bmaps_without_search; 598 int s_direct2indirect; 599 int s_indirect2direct; 600 601 /* 602 * set up when it's ok for reiserfs_read_inode2() to read from 603 * disk inode with nlink==0. Currently this is only used during 604 * finish_unfinished() processing at mount time 605 */ 606 int s_is_unlinked_ok; 607 608 reiserfs_proc_info_data_t s_proc_info_data; 609 struct proc_dir_entry *procdir; 610 611 /* amount of blocks reserved for further allocations */ 612 int reserved_blocks; 613 614 615 /* this lock on now only used to protect reserved_blocks variable */ 616 spinlock_t bitmap_lock; 617 struct dentry *priv_root; /* root of /.reiserfs_priv */ 618 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 619 int j_errno; 620 621 int work_queued; /* non-zero delayed work is queued */ 622 struct delayed_work old_work; /* old transactions flush delayed work */ 623 spinlock_t old_work_lock; /* protects old_work and work_queued */ 624 625 #ifdef CONFIG_QUOTA 626 char *s_qf_names[REISERFS_MAXQUOTAS]; 627 int s_jquota_fmt; 628 #endif 629 char *s_jdev; /* Stored jdev for mount option showing */ 630 #ifdef CONFIG_REISERFS_CHECK 631 632 /* 633 * Detects whether more than one copy of tb exists per superblock 634 * as a means of checking whether do_balance is executing 635 * concurrently against another tree reader/writer on a same 636 * mount point. 637 */ 638 struct tree_balance *cur_tb; 639 #endif 640 }; 641 642 /* Definitions of reiserfs on-disk properties: */ 643 #define REISERFS_3_5 0 644 #define REISERFS_3_6 1 645 #define REISERFS_OLD_FORMAT 2 646 647 /* Mount options */ 648 enum reiserfs_mount_options { 649 /* large tails will be created in a session */ 650 REISERFS_LARGETAIL, 651 /* 652 * small (for files less than block size) tails will 653 * be created in a session 654 */ 655 REISERFS_SMALLTAIL, 656 657 /* replay journal and return 0. Use by fsck */ 658 REPLAYONLY, 659 660 /* 661 * -o conv: causes conversion of old format super block to the 662 * new format. If not specified - old partition will be dealt 663 * with in a manner of 3.5.x 664 */ 665 REISERFS_CONVERT, 666 667 /* 668 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting 669 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this 670 * option is not required. If the normal autodection code can't 671 * determine which hash to use (because both hashes had the same 672 * value for a file) use this option to force a specific hash. 673 * It won't allow you to override the existing hash on the FS, so 674 * if you have a tea hash disk, and mount with -o hash=rupasov, 675 * the mount will fail. 676 */ 677 FORCE_TEA_HASH, /* try to force tea hash on mount */ 678 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 679 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 680 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 681 682 REISERFS_DATA_LOG, 683 REISERFS_DATA_ORDERED, 684 REISERFS_DATA_WRITEBACK, 685 686 /* 687 * used for testing experimental features, makes benchmarking new 688 * features with and without more convenient, should never be used by 689 * users in any code shipped to users (ideally) 690 */ 691 692 REISERFS_NO_BORDER, 693 REISERFS_NO_UNHASHED_RELOCATION, 694 REISERFS_HASHED_RELOCATION, 695 REISERFS_ATTRS, 696 REISERFS_XATTRS_USER, 697 REISERFS_POSIXACL, 698 REISERFS_EXPOSE_PRIVROOT, 699 REISERFS_BARRIER_NONE, 700 REISERFS_BARRIER_FLUSH, 701 702 /* Actions on error */ 703 REISERFS_ERROR_PANIC, 704 REISERFS_ERROR_RO, 705 REISERFS_ERROR_CONTINUE, 706 707 REISERFS_USRQUOTA, /* User quota option specified */ 708 REISERFS_GRPQUOTA, /* Group quota option specified */ 709 710 REISERFS_TEST1, 711 REISERFS_TEST2, 712 REISERFS_TEST3, 713 REISERFS_TEST4, 714 REISERFS_UNSUPPORTED_OPT, 715 }; 716 717 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 718 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 719 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 720 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 721 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 722 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 723 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 724 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 725 726 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 727 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 728 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 729 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 730 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 731 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 732 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 733 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 734 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 735 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 736 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 737 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 738 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 739 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 740 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 741 742 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 743 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 744 745 void reiserfs_file_buffer(struct buffer_head *bh, int list); 746 extern struct file_system_type reiserfs_fs_type; 747 int reiserfs_resize(struct super_block *, unsigned long); 748 749 #define CARRY_ON 0 750 #define SCHEDULE_OCCURRED 1 751 752 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 753 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 754 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 755 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 756 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 757 758 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 759 760 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 761 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 762 *journal) 763 { 764 return test_bit(J_ABORTED, &journal->j_state); 765 } 766 767 /* 768 * Locking primitives. The write lock is a per superblock 769 * special mutex that has properties close to the Big Kernel Lock 770 * which was used in the previous locking scheme. 771 */ 772 void reiserfs_write_lock(struct super_block *s); 773 void reiserfs_write_unlock(struct super_block *s); 774 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 775 void reiserfs_write_lock_nested(struct super_block *s, int depth); 776 777 #ifdef CONFIG_REISERFS_CHECK 778 void reiserfs_lock_check_recursive(struct super_block *s); 779 #else 780 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 781 #endif 782 783 /* 784 * Several mutexes depend on the write lock. 785 * However sometimes we want to relax the write lock while we hold 786 * these mutexes, according to the release/reacquire on schedule() 787 * properties of the Bkl that were used. 788 * Reiserfs performances and locking were based on this scheme. 789 * Now that the write lock is a mutex and not the bkl anymore, doing so 790 * may result in a deadlock: 791 * 792 * A acquire write_lock 793 * A acquire j_commit_mutex 794 * A release write_lock and wait for something 795 * B acquire write_lock 796 * B can't acquire j_commit_mutex and sleep 797 * A can't acquire write lock anymore 798 * deadlock 799 * 800 * What we do here is avoiding such deadlock by playing the same game 801 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 802 * we release the write lock, wait a bit and then retry. 803 * 804 * The mutexes concerned by this hack are: 805 * - The commit mutex of a journal list 806 * - The flush mutex 807 * - The journal lock 808 * - The inode mutex 809 */ 810 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 811 struct super_block *s) 812 { 813 int depth; 814 815 depth = reiserfs_write_unlock_nested(s); 816 mutex_lock(m); 817 reiserfs_write_lock_nested(s, depth); 818 } 819 820 static inline void 821 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 822 struct super_block *s) 823 { 824 int depth; 825 826 depth = reiserfs_write_unlock_nested(s); 827 mutex_lock_nested(m, subclass); 828 reiserfs_write_lock_nested(s, depth); 829 } 830 831 static inline void 832 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 833 { 834 int depth; 835 depth = reiserfs_write_unlock_nested(s); 836 down_read(sem); 837 reiserfs_write_lock_nested(s, depth); 838 } 839 840 /* 841 * When we schedule, we usually want to also release the write lock, 842 * according to the previous bkl based locking scheme of reiserfs. 843 */ 844 static inline void reiserfs_cond_resched(struct super_block *s) 845 { 846 if (need_resched()) { 847 int depth; 848 849 depth = reiserfs_write_unlock_nested(s); 850 schedule(); 851 reiserfs_write_lock_nested(s, depth); 852 } 853 } 854 855 struct fid; 856 857 /* 858 * in reading the #defines, it may help to understand that they employ 859 * the following abbreviations: 860 * 861 * B = Buffer 862 * I = Item header 863 * H = Height within the tree (should be changed to LEV) 864 * N = Number of the item in the node 865 * STAT = stat data 866 * DEH = Directory Entry Header 867 * EC = Entry Count 868 * E = Entry number 869 * UL = Unsigned Long 870 * BLKH = BLocK Header 871 * UNFM = UNForMatted node 872 * DC = Disk Child 873 * P = Path 874 * 875 * These #defines are named by concatenating these abbreviations, 876 * where first comes the arguments, and last comes the return value, 877 * of the macro. 878 */ 879 880 #define USE_INODE_GENERATION_COUNTER 881 882 #define REISERFS_PREALLOCATE 883 #define DISPLACE_NEW_PACKING_LOCALITIES 884 #define PREALLOCATION_SIZE 9 885 886 /* n must be power of 2 */ 887 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 888 889 /* 890 * to be ok for alpha and others we have to align structures to 8 byte 891 * boundary. 892 * FIXME: do not change 4 by anything else: there is code which relies on that 893 */ 894 #define ROUND_UP(x) _ROUND_UP(x,8LL) 895 896 /* 897 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 898 * messages. 899 */ 900 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 901 902 void __reiserfs_warning(struct super_block *s, const char *id, 903 const char *func, const char *fmt, ...); 904 #define reiserfs_warning(s, id, fmt, args...) \ 905 __reiserfs_warning(s, id, __func__, fmt, ##args) 906 /* assertions handling */ 907 908 /* always check a condition and panic if it's false. */ 909 #define __RASSERT(cond, scond, format, args...) \ 910 do { \ 911 if (!(cond)) \ 912 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 913 __FILE__ ":%i:%s: " format "\n", \ 914 __LINE__, __func__ , ##args); \ 915 } while (0) 916 917 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 918 919 #if defined( CONFIG_REISERFS_CHECK ) 920 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 921 #else 922 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 923 #endif 924 925 #define CONSTF __attribute_const__ 926 /* 927 * Disk Data Structures 928 */ 929 930 /*************************************************************************** 931 * SUPER BLOCK * 932 ***************************************************************************/ 933 934 /* 935 * Structure of super block on disk, a version of which in RAM is often 936 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger 937 * structure containing fields never written to disk. 938 */ 939 #define UNSET_HASH 0 /* Detect hash on disk */ 940 #define TEA_HASH 1 941 #define YURA_HASH 2 942 #define R5_HASH 3 943 #define DEFAULT_HASH R5_HASH 944 945 struct journal_params { 946 /* where does journal start from on its * device */ 947 __le32 jp_journal_1st_block; 948 949 /* journal device st_rdev */ 950 __le32 jp_journal_dev; 951 952 /* size of the journal */ 953 __le32 jp_journal_size; 954 955 /* max number of blocks in a transaction. */ 956 __le32 jp_journal_trans_max; 957 958 /* 959 * random value made on fs creation 960 * (this was sb_journal_block_count) 961 */ 962 __le32 jp_journal_magic; 963 964 /* max number of blocks to batch into a trans */ 965 __le32 jp_journal_max_batch; 966 967 /* in seconds, how old can an async commit be */ 968 __le32 jp_journal_max_commit_age; 969 970 /* in seconds, how old can a transaction be */ 971 __le32 jp_journal_max_trans_age; 972 }; 973 974 /* this is the super from 3.5.X, where X >= 10 */ 975 struct reiserfs_super_block_v1 { 976 __le32 s_block_count; /* blocks count */ 977 __le32 s_free_blocks; /* free blocks count */ 978 __le32 s_root_block; /* root block number */ 979 struct journal_params s_journal; 980 __le16 s_blocksize; /* block size */ 981 982 /* max size of object id array, see get_objectid() commentary */ 983 __le16 s_oid_maxsize; 984 __le16 s_oid_cursize; /* current size of object id array */ 985 986 /* this is set to 1 when filesystem was umounted, to 2 - when not */ 987 __le16 s_umount_state; 988 989 /* 990 * reiserfs magic string indicates that file system is reiserfs: 991 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" 992 */ 993 char s_magic[10]; 994 995 /* 996 * it is set to used by fsck to mark which 997 * phase of rebuilding is done 998 */ 999 __le16 s_fs_state; 1000 /* 1001 * indicate, what hash function is being use 1002 * to sort names in a directory 1003 */ 1004 __le32 s_hash_function_code; 1005 __le16 s_tree_height; /* height of disk tree */ 1006 1007 /* 1008 * amount of bitmap blocks needed to address 1009 * each block of file system 1010 */ 1011 __le16 s_bmap_nr; 1012 1013 /* 1014 * this field is only reliable on filesystem with non-standard journal 1015 */ 1016 __le16 s_version; 1017 1018 /* 1019 * size in blocks of journal area on main device, we need to 1020 * keep after making fs with non-standard journal 1021 */ 1022 __le16 s_reserved_for_journal; 1023 } __attribute__ ((__packed__)); 1024 1025 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 1026 1027 /* this is the on disk super block */ 1028 struct reiserfs_super_block { 1029 struct reiserfs_super_block_v1 s_v1; 1030 __le32 s_inode_generation; 1031 1032 /* Right now used only by inode-attributes, if enabled */ 1033 __le32 s_flags; 1034 1035 unsigned char s_uuid[16]; /* filesystem unique identifier */ 1036 unsigned char s_label[16]; /* filesystem volume label */ 1037 __le16 s_mnt_count; /* Count of mounts since last fsck */ 1038 __le16 s_max_mnt_count; /* Maximum mounts before check */ 1039 __le32 s_lastcheck; /* Timestamp of last fsck */ 1040 __le32 s_check_interval; /* Interval between checks */ 1041 1042 /* 1043 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() 1044 * so any additions must be updated there as well. */ 1045 char s_unused[76]; 1046 } __attribute__ ((__packed__)); 1047 1048 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 1049 1050 #define REISERFS_VERSION_1 0 1051 #define REISERFS_VERSION_2 2 1052 1053 /* on-disk super block fields converted to cpu form */ 1054 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 1055 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 1056 #define SB_BLOCKSIZE(s) \ 1057 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 1058 #define SB_BLOCK_COUNT(s) \ 1059 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 1060 #define SB_FREE_BLOCKS(s) \ 1061 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 1062 #define SB_REISERFS_MAGIC(s) \ 1063 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 1064 #define SB_ROOT_BLOCK(s) \ 1065 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 1066 #define SB_TREE_HEIGHT(s) \ 1067 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 1068 #define SB_REISERFS_STATE(s) \ 1069 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 1070 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 1071 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 1072 1073 #define PUT_SB_BLOCK_COUNT(s, val) \ 1074 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 1075 #define PUT_SB_FREE_BLOCKS(s, val) \ 1076 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 1077 #define PUT_SB_ROOT_BLOCK(s, val) \ 1078 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 1079 #define PUT_SB_TREE_HEIGHT(s, val) \ 1080 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 1081 #define PUT_SB_REISERFS_STATE(s, val) \ 1082 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 1083 #define PUT_SB_VERSION(s, val) \ 1084 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 1085 #define PUT_SB_BMAP_NR(s, val) \ 1086 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 1087 1088 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 1089 #define SB_ONDISK_JOURNAL_SIZE(s) \ 1090 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 1091 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 1092 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 1093 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 1094 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 1095 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 1096 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 1097 1098 #define is_block_in_log_or_reserved_area(s, block) \ 1099 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 1100 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 1101 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 1102 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 1103 1104 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 1105 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 1106 int is_reiserfs_jr(struct reiserfs_super_block *rs); 1107 1108 /* 1109 * ReiserFS leaves the first 64k unused, so that partition labels have 1110 * enough space. If someone wants to write a fancy bootloader that 1111 * needs more than 64k, let us know, and this will be increased in size. 1112 * This number must be larger than the largest block size on any 1113 * platform, or code will break. -Hans 1114 */ 1115 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 1116 #define REISERFS_FIRST_BLOCK unused_define 1117 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 1118 1119 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 1120 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 1121 1122 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 1123 #define CARRY_ON 0 1124 #define REPEAT_SEARCH -1 1125 #define IO_ERROR -2 1126 #define NO_DISK_SPACE -3 1127 #define NO_BALANCING_NEEDED (-4) 1128 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 1129 #define QUOTA_EXCEEDED -6 1130 1131 typedef __u32 b_blocknr_t; 1132 typedef __le32 unp_t; 1133 1134 struct unfm_nodeinfo { 1135 unp_t unfm_nodenum; 1136 unsigned short unfm_freespace; 1137 }; 1138 1139 /* there are two formats of keys: 3.5 and 3.6 */ 1140 #define KEY_FORMAT_3_5 0 1141 #define KEY_FORMAT_3_6 1 1142 1143 /* there are two stat datas */ 1144 #define STAT_DATA_V1 0 1145 #define STAT_DATA_V2 1 1146 1147 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 1148 { 1149 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 1150 } 1151 1152 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 1153 { 1154 return sb->s_fs_info; 1155 } 1156 1157 /* 1158 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 1159 * which overflows on large file systems. 1160 */ 1161 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 1162 { 1163 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 1164 } 1165 1166 static inline int bmap_would_wrap(unsigned bmap_nr) 1167 { 1168 return bmap_nr > ((1LL << 16) - 1); 1169 } 1170 1171 extern const struct xattr_handler *reiserfs_xattr_handlers[]; 1172 1173 /* 1174 * this says about version of key of all items (but stat data) the 1175 * object consists of 1176 */ 1177 #define get_inode_item_key_version( inode ) \ 1178 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 1179 1180 #define set_inode_item_key_version( inode, version ) \ 1181 ({ if((version)==KEY_FORMAT_3_6) \ 1182 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 1183 else \ 1184 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 1185 1186 #define get_inode_sd_version(inode) \ 1187 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 1188 1189 #define set_inode_sd_version(inode, version) \ 1190 ({ if((version)==STAT_DATA_V2) \ 1191 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1192 else \ 1193 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1194 1195 /* 1196 * This is an aggressive tail suppression policy, I am hoping it 1197 * improves our benchmarks. The principle behind it is that percentage 1198 * space saving is what matters, not absolute space saving. This is 1199 * non-intuitive, but it helps to understand it if you consider that the 1200 * cost to access 4 blocks is not much more than the cost to access 1 1201 * block, if you have to do a seek and rotate. A tail risks a 1202 * non-linear disk access that is significant as a percentage of total 1203 * time cost for a 4 block file and saves an amount of space that is 1204 * less significant as a percentage of space, or so goes the hypothesis. 1205 * -Hans 1206 */ 1207 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1208 (\ 1209 (!(n_tail_size)) || \ 1210 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1211 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1212 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1213 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1214 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1215 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1216 ( ( (n_file_size) >= (n_block_size) ) && \ 1217 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1218 ) 1219 1220 /* 1221 * Another strategy for tails, this one means only create a tail if all the 1222 * file would fit into one DIRECT item. 1223 * Primary intention for this one is to increase performance by decreasing 1224 * seeking. 1225 */ 1226 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1227 (\ 1228 (!(n_tail_size)) || \ 1229 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1230 ) 1231 1232 /* 1233 * values for s_umount_state field 1234 */ 1235 #define REISERFS_VALID_FS 1 1236 #define REISERFS_ERROR_FS 2 1237 1238 /* 1239 * there are 5 item types currently 1240 */ 1241 #define TYPE_STAT_DATA 0 1242 #define TYPE_INDIRECT 1 1243 #define TYPE_DIRECT 2 1244 #define TYPE_DIRENTRY 3 1245 #define TYPE_MAXTYPE 3 1246 #define TYPE_ANY 15 /* FIXME: comment is required */ 1247 1248 /*************************************************************************** 1249 * KEY & ITEM HEAD * 1250 ***************************************************************************/ 1251 1252 /* * directories use this key as well as old files */ 1253 struct offset_v1 { 1254 __le32 k_offset; 1255 __le32 k_uniqueness; 1256 } __attribute__ ((__packed__)); 1257 1258 struct offset_v2 { 1259 __le64 v; 1260 } __attribute__ ((__packed__)); 1261 1262 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1263 { 1264 __u8 type = le64_to_cpu(v2->v) >> 60; 1265 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1266 } 1267 1268 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1269 { 1270 v2->v = 1271 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1272 } 1273 1274 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1275 { 1276 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1277 } 1278 1279 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1280 { 1281 offset &= (~0ULL >> 4); 1282 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1283 } 1284 1285 /* 1286 * Key of an item determines its location in the S+tree, and 1287 * is composed of 4 components 1288 */ 1289 struct reiserfs_key { 1290 /* packing locality: by default parent directory object id */ 1291 __le32 k_dir_id; 1292 1293 __le32 k_objectid; /* object identifier */ 1294 union { 1295 struct offset_v1 k_offset_v1; 1296 struct offset_v2 k_offset_v2; 1297 } __attribute__ ((__packed__)) u; 1298 } __attribute__ ((__packed__)); 1299 1300 struct in_core_key { 1301 /* packing locality: by default parent directory object id */ 1302 __u32 k_dir_id; 1303 __u32 k_objectid; /* object identifier */ 1304 __u64 k_offset; 1305 __u8 k_type; 1306 }; 1307 1308 struct cpu_key { 1309 struct in_core_key on_disk_key; 1310 int version; 1311 /* 3 in all cases but direct2indirect and indirect2direct conversion */ 1312 int key_length; 1313 }; 1314 1315 /* 1316 * Our function for comparing keys can compare keys of different 1317 * lengths. It takes as a parameter the length of the keys it is to 1318 * compare. These defines are used in determining what is to be passed 1319 * to it as that parameter. 1320 */ 1321 #define REISERFS_FULL_KEY_LEN 4 1322 #define REISERFS_SHORT_KEY_LEN 2 1323 1324 /* The result of the key compare */ 1325 #define FIRST_GREATER 1 1326 #define SECOND_GREATER -1 1327 #define KEYS_IDENTICAL 0 1328 #define KEY_FOUND 1 1329 #define KEY_NOT_FOUND 0 1330 1331 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1332 1333 /* return values for search_by_key and clones */ 1334 #define ITEM_FOUND 1 1335 #define ITEM_NOT_FOUND 0 1336 #define ENTRY_FOUND 1 1337 #define ENTRY_NOT_FOUND 0 1338 #define DIRECTORY_NOT_FOUND -1 1339 #define REGULAR_FILE_FOUND -2 1340 #define DIRECTORY_FOUND -3 1341 #define BYTE_FOUND 1 1342 #define BYTE_NOT_FOUND 0 1343 #define FILE_NOT_FOUND -1 1344 1345 #define POSITION_FOUND 1 1346 #define POSITION_NOT_FOUND 0 1347 1348 /* return values for reiserfs_find_entry and search_by_entry_key */ 1349 #define NAME_FOUND 1 1350 #define NAME_NOT_FOUND 0 1351 #define GOTO_PREVIOUS_ITEM 2 1352 #define NAME_FOUND_INVISIBLE 3 1353 1354 /* 1355 * Everything in the filesystem is stored as a set of items. The 1356 * item head contains the key of the item, its free space (for 1357 * indirect items) and specifies the location of the item itself 1358 * within the block. 1359 */ 1360 1361 struct item_head { 1362 /* 1363 * Everything in the tree is found by searching for it based on 1364 * its key. 1365 */ 1366 struct reiserfs_key ih_key; 1367 union { 1368 /* 1369 * The free space in the last unformatted node of an 1370 * indirect item if this is an indirect item. This 1371 * equals 0xFFFF iff this is a direct item or stat data 1372 * item. Note that the key, not this field, is used to 1373 * determine the item type, and thus which field this 1374 * union contains. 1375 */ 1376 __le16 ih_free_space_reserved; 1377 1378 /* 1379 * Iff this is a directory item, this field equals the 1380 * number of directory entries in the directory item. 1381 */ 1382 __le16 ih_entry_count; 1383 } __attribute__ ((__packed__)) u; 1384 __le16 ih_item_len; /* total size of the item body */ 1385 1386 /* an offset to the item body within the block */ 1387 __le16 ih_item_location; 1388 1389 /* 1390 * 0 for all old items, 2 for new ones. Highest bit is set by fsck 1391 * temporary, cleaned after all done 1392 */ 1393 __le16 ih_version; 1394 } __attribute__ ((__packed__)); 1395 /* size of item header */ 1396 #define IH_SIZE (sizeof(struct item_head)) 1397 1398 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1399 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1400 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1401 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1402 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1403 1404 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1405 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1406 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1407 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1408 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1409 1410 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1411 1412 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1413 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1414 1415 /* 1416 * these operate on indirect items, where you've got an array of ints 1417 * at a possibly unaligned location. These are a noop on ia32 1418 * 1419 * p is the array of __u32, i is the index into the array, v is the value 1420 * to store there. 1421 */ 1422 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1423 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1424 1425 /* * in old version uniqueness field shows key type */ 1426 #define V1_SD_UNIQUENESS 0 1427 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1428 #define V1_DIRECT_UNIQUENESS 0xffffffff 1429 #define V1_DIRENTRY_UNIQUENESS 500 1430 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ 1431 1432 /* here are conversion routines */ 1433 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1434 static inline int uniqueness2type(__u32 uniqueness) 1435 { 1436 switch ((int)uniqueness) { 1437 case V1_SD_UNIQUENESS: 1438 return TYPE_STAT_DATA; 1439 case V1_INDIRECT_UNIQUENESS: 1440 return TYPE_INDIRECT; 1441 case V1_DIRECT_UNIQUENESS: 1442 return TYPE_DIRECT; 1443 case V1_DIRENTRY_UNIQUENESS: 1444 return TYPE_DIRENTRY; 1445 case V1_ANY_UNIQUENESS: 1446 default: 1447 return TYPE_ANY; 1448 } 1449 } 1450 1451 static inline __u32 type2uniqueness(int type) CONSTF; 1452 static inline __u32 type2uniqueness(int type) 1453 { 1454 switch (type) { 1455 case TYPE_STAT_DATA: 1456 return V1_SD_UNIQUENESS; 1457 case TYPE_INDIRECT: 1458 return V1_INDIRECT_UNIQUENESS; 1459 case TYPE_DIRECT: 1460 return V1_DIRECT_UNIQUENESS; 1461 case TYPE_DIRENTRY: 1462 return V1_DIRENTRY_UNIQUENESS; 1463 case TYPE_ANY: 1464 default: 1465 return V1_ANY_UNIQUENESS; 1466 } 1467 } 1468 1469 /* 1470 * key is pointer to on disk key which is stored in le, result is cpu, 1471 * there is no way to get version of object from key, so, provide 1472 * version to these defines 1473 */ 1474 static inline loff_t le_key_k_offset(int version, 1475 const struct reiserfs_key *key) 1476 { 1477 return (version == KEY_FORMAT_3_5) ? 1478 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1479 offset_v2_k_offset(&(key->u.k_offset_v2)); 1480 } 1481 1482 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1483 { 1484 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1485 } 1486 1487 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1488 { 1489 if (version == KEY_FORMAT_3_5) { 1490 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); 1491 return uniqueness2type(val); 1492 } else 1493 return offset_v2_k_type(&(key->u.k_offset_v2)); 1494 } 1495 1496 static inline loff_t le_ih_k_type(const struct item_head *ih) 1497 { 1498 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1499 } 1500 1501 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1502 loff_t offset) 1503 { 1504 if (version == KEY_FORMAT_3_5) 1505 key->u.k_offset_v1.k_offset = cpu_to_le32(offset); 1506 else 1507 set_offset_v2_k_offset(&key->u.k_offset_v2, offset); 1508 } 1509 1510 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, 1511 loff_t offset) 1512 { 1513 set_le_key_k_offset(version, key, 1514 le_key_k_offset(version, key) + offset); 1515 } 1516 1517 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) 1518 { 1519 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1520 } 1521 1522 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1523 { 1524 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1525 } 1526 1527 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1528 int type) 1529 { 1530 if (version == KEY_FORMAT_3_5) { 1531 type = type2uniqueness(type); 1532 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); 1533 } else 1534 set_offset_v2_k_type(&key->u.k_offset_v2, type); 1535 } 1536 1537 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1538 { 1539 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1540 } 1541 1542 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1543 { 1544 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1545 } 1546 1547 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1548 { 1549 return le_key_k_type(version, key) == TYPE_DIRECT; 1550 } 1551 1552 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1553 { 1554 return le_key_k_type(version, key) == TYPE_INDIRECT; 1555 } 1556 1557 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1558 { 1559 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1560 } 1561 1562 /* item header has version. */ 1563 static inline int is_direntry_le_ih(struct item_head *ih) 1564 { 1565 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1566 } 1567 1568 static inline int is_direct_le_ih(struct item_head *ih) 1569 { 1570 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1571 } 1572 1573 static inline int is_indirect_le_ih(struct item_head *ih) 1574 { 1575 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1576 } 1577 1578 static inline int is_statdata_le_ih(struct item_head *ih) 1579 { 1580 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1581 } 1582 1583 /* key is pointer to cpu key, result is cpu */ 1584 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1585 { 1586 return key->on_disk_key.k_offset; 1587 } 1588 1589 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1590 { 1591 return key->on_disk_key.k_type; 1592 } 1593 1594 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1595 { 1596 key->on_disk_key.k_offset = offset; 1597 } 1598 1599 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1600 { 1601 key->on_disk_key.k_type = type; 1602 } 1603 1604 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1605 { 1606 key->on_disk_key.k_offset--; 1607 } 1608 1609 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1610 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1611 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1612 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1613 1614 /* are these used ? */ 1615 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1616 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1617 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1618 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1619 1620 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1621 (!COMP_SHORT_KEYS(ih, key) && \ 1622 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1623 1624 /* maximal length of item */ 1625 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1626 #define MIN_ITEM_LEN 1 1627 1628 /* object identifier for root dir */ 1629 #define REISERFS_ROOT_OBJECTID 2 1630 #define REISERFS_ROOT_PARENT_OBJECTID 1 1631 1632 extern struct reiserfs_key root_key; 1633 1634 /* 1635 * Picture represents a leaf of the S+tree 1636 * ______________________________________________________ 1637 * | | Array of | | | 1638 * |Block | Object-Item | F r e e | Objects- | 1639 * | head | Headers | S p a c e | Items | 1640 * |______|_______________|___________________|___________| 1641 */ 1642 1643 /* 1644 * Header of a disk block. More precisely, header of a formatted leaf 1645 * or internal node, and not the header of an unformatted node. 1646 */ 1647 struct block_head { 1648 __le16 blk_level; /* Level of a block in the tree. */ 1649 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1650 __le16 blk_free_space; /* Block free space in bytes. */ 1651 __le16 blk_reserved; 1652 /* dump this in v4/planA */ 1653 1654 /* kept only for compatibility */ 1655 struct reiserfs_key blk_right_delim_key; 1656 }; 1657 1658 #define BLKH_SIZE (sizeof(struct block_head)) 1659 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1660 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1661 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1662 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1663 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1664 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1665 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1666 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1667 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1668 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1669 1670 /* values for blk_level field of the struct block_head */ 1671 1672 /* 1673 * When node gets removed from the tree its blk_level is set to FREE_LEVEL. 1674 * It is then used to see whether the node is still in the tree 1675 */ 1676 #define FREE_LEVEL 0 1677 1678 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1679 1680 /* 1681 * Given the buffer head of a formatted node, resolve to the 1682 * block head of that node. 1683 */ 1684 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1685 /* Number of items that are in buffer. */ 1686 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1687 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1688 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1689 1690 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1691 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1692 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1693 1694 /* Get right delimiting key. -- little endian */ 1695 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1696 1697 /* Does the buffer contain a disk leaf. */ 1698 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1699 1700 /* Does the buffer contain a disk internal node */ 1701 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1702 && B_LEVEL(bh) <= MAX_HEIGHT) 1703 1704 /*************************************************************************** 1705 * STAT DATA * 1706 ***************************************************************************/ 1707 1708 /* 1709 * old stat data is 32 bytes long. We are going to distinguish new one by 1710 * different size 1711 */ 1712 struct stat_data_v1 { 1713 __le16 sd_mode; /* file type, permissions */ 1714 __le16 sd_nlink; /* number of hard links */ 1715 __le16 sd_uid; /* owner */ 1716 __le16 sd_gid; /* group */ 1717 __le32 sd_size; /* file size */ 1718 __le32 sd_atime; /* time of last access */ 1719 __le32 sd_mtime; /* time file was last modified */ 1720 1721 /* 1722 * time inode (stat data) was last changed 1723 * (except changes to sd_atime and sd_mtime) 1724 */ 1725 __le32 sd_ctime; 1726 union { 1727 __le32 sd_rdev; 1728 __le32 sd_blocks; /* number of blocks file uses */ 1729 } __attribute__ ((__packed__)) u; 1730 1731 /* 1732 * first byte of file which is stored in a direct item: except that if 1733 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no 1734 * direct item. The existence of this field really grates on me. 1735 * Let's replace it with a macro based on sd_size and our tail 1736 * suppression policy. Someday. -Hans 1737 */ 1738 __le32 sd_first_direct_byte; 1739 } __attribute__ ((__packed__)); 1740 1741 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1742 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1743 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1744 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1745 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1746 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1747 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1748 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1749 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1750 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1751 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1752 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1753 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1754 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1755 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1756 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1757 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1758 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1759 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1760 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1761 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1762 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1763 #define sd_v1_first_direct_byte(sdp) \ 1764 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1765 #define set_sd_v1_first_direct_byte(sdp,v) \ 1766 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1767 1768 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1769 1770 /* 1771 * we want common flags to have the same values as in ext2, 1772 * so chattr(1) will work without problems 1773 */ 1774 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1775 #define REISERFS_APPEND_FL FS_APPEND_FL 1776 #define REISERFS_SYNC_FL FS_SYNC_FL 1777 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1778 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1779 #define REISERFS_SECRM_FL FS_SECRM_FL 1780 #define REISERFS_UNRM_FL FS_UNRM_FL 1781 #define REISERFS_COMPR_FL FS_COMPR_FL 1782 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1783 1784 /* persistent flags that file inherits from the parent directory */ 1785 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1786 REISERFS_SYNC_FL | \ 1787 REISERFS_NOATIME_FL | \ 1788 REISERFS_NODUMP_FL | \ 1789 REISERFS_SECRM_FL | \ 1790 REISERFS_COMPR_FL | \ 1791 REISERFS_NOTAIL_FL ) 1792 1793 /* 1794 * Stat Data on disk (reiserfs version of UFS disk inode minus the 1795 * address blocks) 1796 */ 1797 struct stat_data { 1798 __le16 sd_mode; /* file type, permissions */ 1799 __le16 sd_attrs; /* persistent inode flags */ 1800 __le32 sd_nlink; /* number of hard links */ 1801 __le64 sd_size; /* file size */ 1802 __le32 sd_uid; /* owner */ 1803 __le32 sd_gid; /* group */ 1804 __le32 sd_atime; /* time of last access */ 1805 __le32 sd_mtime; /* time file was last modified */ 1806 1807 /* 1808 * time inode (stat data) was last changed 1809 * (except changes to sd_atime and sd_mtime) 1810 */ 1811 __le32 sd_ctime; 1812 __le32 sd_blocks; 1813 union { 1814 __le32 sd_rdev; 1815 __le32 sd_generation; 1816 } __attribute__ ((__packed__)) u; 1817 } __attribute__ ((__packed__)); 1818 1819 /* this is 44 bytes long */ 1820 #define SD_SIZE (sizeof(struct stat_data)) 1821 #define SD_V2_SIZE SD_SIZE 1822 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1823 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1824 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1825 /* sd_reserved */ 1826 /* set_sd_reserved */ 1827 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1828 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1829 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1830 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1831 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1832 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1833 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1834 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1835 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1836 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1837 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1838 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1839 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1840 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1841 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1842 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1843 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1844 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1845 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1846 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1847 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1848 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1849 1850 /*************************************************************************** 1851 * DIRECTORY STRUCTURE * 1852 ***************************************************************************/ 1853 /* 1854 * Picture represents the structure of directory items 1855 * ________________________________________________ 1856 * | Array of | | | | | | 1857 * | directory |N-1| N-2 | .... | 1st |0th| 1858 * | entry headers | | | | | | 1859 * |_______________|___|_____|________|_______|___| 1860 * <---- directory entries ------> 1861 * 1862 * First directory item has k_offset component 1. We store "." and ".." 1863 * in one item, always, we never split "." and ".." into differing 1864 * items. This makes, among other things, the code for removing 1865 * directories simpler. 1866 */ 1867 #define SD_OFFSET 0 1868 #define SD_UNIQUENESS 0 1869 #define DOT_OFFSET 1 1870 #define DOT_DOT_OFFSET 2 1871 #define DIRENTRY_UNIQUENESS 500 1872 1873 #define FIRST_ITEM_OFFSET 1 1874 1875 /* 1876 * Q: How to get key of object pointed to by entry from entry? 1877 * 1878 * A: Each directory entry has its header. This header has deh_dir_id 1879 * and deh_objectid fields, those are key of object, entry points to 1880 */ 1881 1882 /* 1883 * NOT IMPLEMENTED: 1884 * Directory will someday contain stat data of object 1885 */ 1886 1887 struct reiserfs_de_head { 1888 __le32 deh_offset; /* third component of the directory entry key */ 1889 1890 /* 1891 * objectid of the parent directory of the object, that is referenced 1892 * by directory entry 1893 */ 1894 __le32 deh_dir_id; 1895 1896 /* objectid of the object, that is referenced by directory entry */ 1897 __le32 deh_objectid; 1898 __le16 deh_location; /* offset of name in the whole item */ 1899 1900 /* 1901 * whether 1) entry contains stat data (for future), and 1902 * 2) whether entry is hidden (unlinked) 1903 */ 1904 __le16 deh_state; 1905 } __attribute__ ((__packed__)); 1906 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1907 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1908 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1909 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1910 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1911 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1912 1913 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1914 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1915 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1916 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1917 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1918 1919 /* empty directory contains two entries "." and ".." and their headers */ 1920 #define EMPTY_DIR_SIZE \ 1921 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1)) 1922 1923 /* old format directories have this size when empty */ 1924 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1925 1926 #define DEH_Statdata 0 /* not used now */ 1927 #define DEH_Visible 2 1928 1929 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1930 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1931 # define ADDR_UNALIGNED_BITS (3) 1932 #endif 1933 1934 /* 1935 * These are only used to manipulate deh_state. 1936 * Because of this, we'll use the ext2_ bit routines, 1937 * since they are little endian 1938 */ 1939 #ifdef ADDR_UNALIGNED_BITS 1940 1941 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1942 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1943 1944 # define set_bit_unaligned(nr, addr) \ 1945 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1946 # define clear_bit_unaligned(nr, addr) \ 1947 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1948 # define test_bit_unaligned(nr, addr) \ 1949 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1950 1951 #else 1952 1953 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1954 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1955 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1956 1957 #endif 1958 1959 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1960 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1961 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1962 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1963 1964 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1965 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1966 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1967 1968 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1969 __le32 par_dirid, __le32 par_objid); 1970 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1971 __le32 par_dirid, __le32 par_objid); 1972 1973 /* two entries per block (at least) */ 1974 #define REISERFS_MAX_NAME(block_size) 255 1975 1976 /* 1977 * this structure is used for operations on directory entries. It is 1978 * not a disk structure. 1979 * 1980 * When reiserfs_find_entry or search_by_entry_key find directory 1981 * entry, they return filled reiserfs_dir_entry structure 1982 */ 1983 struct reiserfs_dir_entry { 1984 struct buffer_head *de_bh; 1985 int de_item_num; 1986 struct item_head *de_ih; 1987 int de_entry_num; 1988 struct reiserfs_de_head *de_deh; 1989 int de_entrylen; 1990 int de_namelen; 1991 char *de_name; 1992 unsigned long *de_gen_number_bit_string; 1993 1994 __u32 de_dir_id; 1995 __u32 de_objectid; 1996 1997 struct cpu_key de_entry_key; 1998 }; 1999 2000 /* 2001 * these defines are useful when a particular member of 2002 * a reiserfs_dir_entry is needed 2003 */ 2004 2005 /* pointer to file name, stored in entry */ 2006 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ 2007 (ih_item_body(bh, ih) + deh_location(deh)) 2008 2009 /* length of name */ 2010 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 2011 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 2012 2013 /* hash value occupies bits from 7 up to 30 */ 2014 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 2015 /* generation number occupies 7 bits starting from 0 up to 6 */ 2016 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 2017 #define MAX_GENERATION_NUMBER 127 2018 2019 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 2020 2021 /* 2022 * Picture represents an internal node of the reiserfs tree 2023 * ______________________________________________________ 2024 * | | Array of | Array of | Free | 2025 * |block | keys | pointers | space | 2026 * | head | N | N+1 | | 2027 * |______|_______________|___________________|___________| 2028 */ 2029 2030 /*************************************************************************** 2031 * DISK CHILD * 2032 ***************************************************************************/ 2033 /* 2034 * Disk child pointer: 2035 * The pointer from an internal node of the tree to a node that is on disk. 2036 */ 2037 struct disk_child { 2038 __le32 dc_block_number; /* Disk child's block number. */ 2039 __le16 dc_size; /* Disk child's used space. */ 2040 __le16 dc_reserved; 2041 }; 2042 2043 #define DC_SIZE (sizeof(struct disk_child)) 2044 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 2045 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 2046 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 2047 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 2048 2049 /* Get disk child by buffer header and position in the tree node. */ 2050 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 2051 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 2052 2053 /* Get disk child number by buffer header and position in the tree node. */ 2054 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 2055 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 2056 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 2057 2058 /* maximal value of field child_size in structure disk_child */ 2059 /* child size is the combined size of all items and their headers */ 2060 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 2061 2062 /* amount of used space in buffer (not including block head) */ 2063 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 2064 2065 /* max and min number of keys in internal node */ 2066 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 2067 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 2068 2069 /*************************************************************************** 2070 * PATH STRUCTURES AND DEFINES * 2071 ***************************************************************************/ 2072 2073 /* 2074 * search_by_key fills up the path from the root to the leaf as it descends 2075 * the tree looking for the key. It uses reiserfs_bread to try to find 2076 * buffers in the cache given their block number. If it does not find 2077 * them in the cache it reads them from disk. For each node search_by_key 2078 * finds using reiserfs_bread it then uses bin_search to look through that 2079 * node. bin_search will find the position of the block_number of the next 2080 * node if it is looking through an internal node. If it is looking through 2081 * a leaf node bin_search will find the position of the item which has key 2082 * either equal to given key, or which is the maximal key less than the 2083 * given key. 2084 */ 2085 2086 struct path_element { 2087 /* Pointer to the buffer at the path in the tree. */ 2088 struct buffer_head *pe_buffer; 2089 /* Position in the tree node which is placed in the buffer above. */ 2090 int pe_position; 2091 }; 2092 2093 /* 2094 * maximal height of a tree. don't change this without 2095 * changing JOURNAL_PER_BALANCE_CNT 2096 */ 2097 #define MAX_HEIGHT 5 2098 2099 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 2100 #define EXTENDED_MAX_HEIGHT 7 2101 2102 /* Must be equal to at least 2. */ 2103 #define FIRST_PATH_ELEMENT_OFFSET 2 2104 2105 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 2106 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 2107 2108 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 2109 #define MAX_FEB_SIZE 6 2110 2111 /* 2112 * We need to keep track of who the ancestors of nodes are. When we 2113 * perform a search we record which nodes were visited while 2114 * descending the tree looking for the node we searched for. This list 2115 * of nodes is called the path. This information is used while 2116 * performing balancing. Note that this path information may become 2117 * invalid, and this means we must check it when using it to see if it 2118 * is still valid. You'll need to read search_by_key and the comments 2119 * in it, especially about decrement_counters_in_path(), to understand 2120 * this structure. 2121 * 2122 * Paths make the code so much harder to work with and debug.... An 2123 * enormous number of bugs are due to them, and trying to write or modify 2124 * code that uses them just makes my head hurt. They are based on an 2125 * excessive effort to avoid disturbing the precious VFS code.:-( The 2126 * gods only know how we are going to SMP the code that uses them. 2127 * znodes are the way! 2128 */ 2129 2130 #define PATH_READA 0x1 /* do read ahead */ 2131 #define PATH_READA_BACK 0x2 /* read backwards */ 2132 2133 struct treepath { 2134 int path_length; /* Length of the array above. */ 2135 int reada; 2136 /* Array of the path elements. */ 2137 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; 2138 int pos_in_item; 2139 }; 2140 2141 #define pos_in_item(path) ((path)->pos_in_item) 2142 2143 #define INITIALIZE_PATH(var) \ 2144 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 2145 2146 /* Get path element by path and path position. */ 2147 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 2148 2149 /* Get buffer header at the path by path and path position. */ 2150 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 2151 2152 /* Get position in the element at the path by path and path position. */ 2153 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 2154 2155 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 2156 2157 /* 2158 * you know, to the person who didn't write this the macro name does not 2159 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or 2160 * maybe we should just focus on dumping paths... -Hans 2161 */ 2162 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 2163 2164 /* 2165 * in do_balance leaf has h == 0 in contrast with path structure, 2166 * where root has level == 0. That is why we need these defines 2167 */ 2168 2169 /* tb->S[h] */ 2170 #define PATH_H_PBUFFER(path, h) \ 2171 PATH_OFFSET_PBUFFER(path, path->path_length - (h)) 2172 2173 /* tb->F[h] or tb->S[0]->b_parent */ 2174 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) 2175 2176 #define PATH_H_POSITION(path, h) \ 2177 PATH_OFFSET_POSITION(path, path->path_length - (h)) 2178 2179 /* tb->S[h]->b_item_order */ 2180 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) 2181 2182 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 2183 2184 static inline void *reiserfs_node_data(const struct buffer_head *bh) 2185 { 2186 return bh->b_data + sizeof(struct block_head); 2187 } 2188 2189 /* get key from internal node */ 2190 static inline struct reiserfs_key *internal_key(struct buffer_head *bh, 2191 int item_num) 2192 { 2193 struct reiserfs_key *key = reiserfs_node_data(bh); 2194 2195 return &key[item_num]; 2196 } 2197 2198 /* get the item header from leaf node */ 2199 static inline struct item_head *item_head(const struct buffer_head *bh, 2200 int item_num) 2201 { 2202 struct item_head *ih = reiserfs_node_data(bh); 2203 2204 return &ih[item_num]; 2205 } 2206 2207 /* get the key from leaf node */ 2208 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, 2209 int item_num) 2210 { 2211 return &item_head(bh, item_num)->ih_key; 2212 } 2213 2214 static inline void *ih_item_body(const struct buffer_head *bh, 2215 const struct item_head *ih) 2216 { 2217 return bh->b_data + ih_location(ih); 2218 } 2219 2220 /* get item body from leaf node */ 2221 static inline void *item_body(const struct buffer_head *bh, int item_num) 2222 { 2223 return ih_item_body(bh, item_head(bh, item_num)); 2224 } 2225 2226 static inline struct item_head *tp_item_head(const struct treepath *path) 2227 { 2228 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2229 } 2230 2231 static inline void *tp_item_body(const struct treepath *path) 2232 { 2233 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2234 } 2235 2236 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 2237 #define get_item_pos(path) PATH_LAST_POSITION(path) 2238 #define item_moved(ih,path) comp_items(ih, path) 2239 #define path_changed(ih,path) comp_items (ih, path) 2240 2241 /* array of the entry headers */ 2242 /* get item body */ 2243 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) 2244 2245 /* 2246 * length of the directory entry in directory item. This define 2247 * calculates length of i-th directory entry using directory entry 2248 * locations from dir entry head. When it calculates length of 0-th 2249 * directory entry, it uses length of whole item in place of entry 2250 * location of the non-existent following entry in the calculation. 2251 * See picture above. 2252 */ 2253 static inline int entry_length(const struct buffer_head *bh, 2254 const struct item_head *ih, int pos_in_item) 2255 { 2256 struct reiserfs_de_head *deh; 2257 2258 deh = B_I_DEH(bh, ih) + pos_in_item; 2259 if (pos_in_item) 2260 return deh_location(deh - 1) - deh_location(deh); 2261 2262 return ih_item_len(ih) - deh_location(deh); 2263 } 2264 2265 /*************************************************************************** 2266 * MISC * 2267 ***************************************************************************/ 2268 2269 /* Size of pointer to the unformatted node. */ 2270 #define UNFM_P_SIZE (sizeof(unp_t)) 2271 #define UNFM_P_SHIFT 2 2272 2273 /* in in-core inode key is stored on le form */ 2274 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 2275 2276 #define MAX_UL_INT 0xffffffff 2277 #define MAX_INT 0x7ffffff 2278 #define MAX_US_INT 0xffff 2279 2280 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 2281 static inline loff_t max_reiserfs_offset(struct inode *inode) 2282 { 2283 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 2284 return (loff_t) U32_MAX; 2285 2286 return (loff_t) ((~(__u64) 0) >> 4); 2287 } 2288 2289 #define MAX_KEY_OBJECTID MAX_UL_INT 2290 2291 #define MAX_B_NUM MAX_UL_INT 2292 #define MAX_FC_NUM MAX_US_INT 2293 2294 /* the purpose is to detect overflow of an unsigned short */ 2295 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 2296 2297 /* 2298 * The following defines are used in reiserfs_insert_item 2299 * and reiserfs_append_item 2300 */ 2301 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ 2302 #define REISERFS_USER_MEM 1 /* user memory mode */ 2303 2304 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 2305 #define get_generation(s) atomic_read (&fs_generation(s)) 2306 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 2307 #define __fs_changed(gen,s) (gen != get_generation (s)) 2308 #define fs_changed(gen,s) \ 2309 ({ \ 2310 reiserfs_cond_resched(s); \ 2311 __fs_changed(gen, s); \ 2312 }) 2313 2314 /*************************************************************************** 2315 * FIXATE NODES * 2316 ***************************************************************************/ 2317 2318 #define VI_TYPE_LEFT_MERGEABLE 1 2319 #define VI_TYPE_RIGHT_MERGEABLE 2 2320 2321 /* 2322 * To make any changes in the tree we always first find node, that 2323 * contains item to be changed/deleted or place to insert a new 2324 * item. We call this node S. To do balancing we need to decide what 2325 * we will shift to left/right neighbor, or to a new node, where new 2326 * item will be etc. To make this analysis simpler we build virtual 2327 * node. Virtual node is an array of items, that will replace items of 2328 * node S. (For instance if we are going to delete an item, virtual 2329 * node does not contain it). Virtual node keeps information about 2330 * item sizes and types, mergeability of first and last items, sizes 2331 * of all entries in directory item. We use this array of items when 2332 * calculating what we can shift to neighbors and how many nodes we 2333 * have to have if we do not any shiftings, if we shift to left/right 2334 * neighbor or to both. 2335 */ 2336 struct virtual_item { 2337 int vi_index; /* index in the array of item operations */ 2338 unsigned short vi_type; /* left/right mergeability */ 2339 2340 /* length of item that it will have after balancing */ 2341 unsigned short vi_item_len; 2342 2343 struct item_head *vi_ih; 2344 const char *vi_item; /* body of item (old or new) */ 2345 const void *vi_new_data; /* 0 always but paste mode */ 2346 void *vi_uarea; /* item specific area */ 2347 }; 2348 2349 struct virtual_node { 2350 /* this is a pointer to the free space in the buffer */ 2351 char *vn_free_ptr; 2352 2353 unsigned short vn_nr_item; /* number of items in virtual node */ 2354 2355 /* 2356 * size of node , that node would have if it has 2357 * unlimited size and no balancing is performed 2358 */ 2359 short vn_size; 2360 2361 /* mode of balancing (paste, insert, delete, cut) */ 2362 short vn_mode; 2363 2364 short vn_affected_item_num; 2365 short vn_pos_in_item; 2366 2367 /* item header of inserted item, 0 for other modes */ 2368 struct item_head *vn_ins_ih; 2369 const void *vn_data; 2370 2371 /* array of items (including a new one, excluding item to be deleted) */ 2372 struct virtual_item *vn_vi; 2373 }; 2374 2375 /* used by directory items when creating virtual nodes */ 2376 struct direntry_uarea { 2377 int flags; 2378 __u16 entry_count; 2379 __u16 entry_sizes[1]; 2380 } __attribute__ ((__packed__)); 2381 2382 /*************************************************************************** 2383 * TREE BALANCE * 2384 ***************************************************************************/ 2385 2386 /* 2387 * This temporary structure is used in tree balance algorithms, and 2388 * constructed as we go to the extent that its various parts are 2389 * needed. It contains arrays of nodes that can potentially be 2390 * involved in the balancing of node S, and parameters that define how 2391 * each of the nodes must be balanced. Note that in these algorithms 2392 * for balancing the worst case is to need to balance the current node 2393 * S and the left and right neighbors and all of their parents plus 2394 * create a new node. We implement S1 balancing for the leaf nodes 2395 * and S0 balancing for the internal nodes (S1 and S0 are defined in 2396 * our papers.) 2397 */ 2398 2399 /* size of the array of buffers to free at end of do_balance */ 2400 #define MAX_FREE_BLOCK 7 2401 2402 /* maximum number of FEB blocknrs on a single level */ 2403 #define MAX_AMOUNT_NEEDED 2 2404 2405 /* someday somebody will prefix every field in this struct with tb_ */ 2406 struct tree_balance { 2407 int tb_mode; 2408 int need_balance_dirty; 2409 struct super_block *tb_sb; 2410 struct reiserfs_transaction_handle *transaction_handle; 2411 struct treepath *tb_path; 2412 2413 /* array of left neighbors of nodes in the path */ 2414 struct buffer_head *L[MAX_HEIGHT]; 2415 2416 /* array of right neighbors of nodes in the path */ 2417 struct buffer_head *R[MAX_HEIGHT]; 2418 2419 /* array of fathers of the left neighbors */ 2420 struct buffer_head *FL[MAX_HEIGHT]; 2421 2422 /* array of fathers of the right neighbors */ 2423 struct buffer_head *FR[MAX_HEIGHT]; 2424 /* array of common parents of center node and its left neighbor */ 2425 struct buffer_head *CFL[MAX_HEIGHT]; 2426 2427 /* array of common parents of center node and its right neighbor */ 2428 struct buffer_head *CFR[MAX_HEIGHT]; 2429 2430 /* 2431 * array of empty buffers. Number of buffers in array equals 2432 * cur_blknum. 2433 */ 2434 struct buffer_head *FEB[MAX_FEB_SIZE]; 2435 struct buffer_head *used[MAX_FEB_SIZE]; 2436 struct buffer_head *thrown[MAX_FEB_SIZE]; 2437 2438 /* 2439 * array of number of items which must be shifted to the left in 2440 * order to balance the current node; for leaves includes item that 2441 * will be partially shifted; for internal nodes, it is the number 2442 * of child pointers rather than items. It includes the new item 2443 * being created. The code sometimes subtracts one to get the 2444 * number of wholly shifted items for other purposes. 2445 */ 2446 int lnum[MAX_HEIGHT]; 2447 2448 /* substitute right for left in comment above */ 2449 int rnum[MAX_HEIGHT]; 2450 2451 /* 2452 * array indexed by height h mapping the key delimiting L[h] and 2453 * S[h] to its item number within the node CFL[h] 2454 */ 2455 int lkey[MAX_HEIGHT]; 2456 2457 /* substitute r for l in comment above */ 2458 int rkey[MAX_HEIGHT]; 2459 2460 /* 2461 * the number of bytes by we are trying to add or remove from 2462 * S[h]. A negative value means removing. 2463 */ 2464 int insert_size[MAX_HEIGHT]; 2465 2466 /* 2467 * number of nodes that will replace node S[h] after balancing 2468 * on the level h of the tree. If 0 then S is being deleted, 2469 * if 1 then S is remaining and no new nodes are being created, 2470 * if 2 or 3 then 1 or 2 new nodes is being created 2471 */ 2472 int blknum[MAX_HEIGHT]; 2473 2474 /* fields that are used only for balancing leaves of the tree */ 2475 2476 /* number of empty blocks having been already allocated */ 2477 int cur_blknum; 2478 2479 /* number of items that fall into left most node when S[0] splits */ 2480 int s0num; 2481 2482 /* 2483 * number of bytes which can flow to the left neighbor from the left 2484 * most liquid item that cannot be shifted from S[0] entirely 2485 * if -1 then nothing will be partially shifted 2486 */ 2487 int lbytes; 2488 2489 /* 2490 * number of bytes which will flow to the right neighbor from the right 2491 * most liquid item that cannot be shifted from S[0] entirely 2492 * if -1 then nothing will be partially shifted 2493 */ 2494 int rbytes; 2495 2496 2497 /* 2498 * index into the array of item headers in 2499 * S[0] of the affected item 2500 */ 2501 int item_pos; 2502 2503 /* new nodes allocated to hold what could not fit into S */ 2504 struct buffer_head *S_new[2]; 2505 2506 /* 2507 * number of items that will be placed into nodes in S_new 2508 * when S[0] splits 2509 */ 2510 int snum[2]; 2511 2512 /* 2513 * number of bytes which flow to nodes in S_new when S[0] splits 2514 * note: if S[0] splits into 3 nodes, then items do not need to be cut 2515 */ 2516 int sbytes[2]; 2517 2518 int pos_in_item; 2519 int zeroes_num; 2520 2521 /* 2522 * buffers which are to be freed after do_balance finishes 2523 * by unfix_nodes 2524 */ 2525 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; 2526 2527 /* 2528 * kmalloced memory. Used to create virtual node and keep 2529 * map of dirtied bitmap blocks 2530 */ 2531 char *vn_buf; 2532 2533 int vn_buf_size; /* size of the vn_buf */ 2534 2535 /* VN starts after bitmap of bitmap blocks */ 2536 struct virtual_node *tb_vn; 2537 2538 /* 2539 * saved value of `reiserfs_generation' counter see 2540 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h 2541 */ 2542 int fs_gen; 2543 2544 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2545 /* 2546 * key pointer, to pass to block allocator or 2547 * another low-level subsystem 2548 */ 2549 struct in_core_key key; 2550 #endif 2551 }; 2552 2553 /* These are modes of balancing */ 2554 2555 /* When inserting an item. */ 2556 #define M_INSERT 'i' 2557 /* 2558 * When inserting into (directories only) or appending onto an already 2559 * existent item. 2560 */ 2561 #define M_PASTE 'p' 2562 /* When deleting an item. */ 2563 #define M_DELETE 'd' 2564 /* When truncating an item or removing an entry from a (directory) item. */ 2565 #define M_CUT 'c' 2566 2567 /* used when balancing on leaf level skipped (in reiserfsck) */ 2568 #define M_INTERNAL 'n' 2569 2570 /* 2571 * When further balancing is not needed, then do_balance does not need 2572 * to be called. 2573 */ 2574 #define M_SKIP_BALANCING 's' 2575 #define M_CONVERT 'v' 2576 2577 /* modes of leaf_move_items */ 2578 #define LEAF_FROM_S_TO_L 0 2579 #define LEAF_FROM_S_TO_R 1 2580 #define LEAF_FROM_R_TO_L 2 2581 #define LEAF_FROM_L_TO_R 3 2582 #define LEAF_FROM_S_TO_SNEW 4 2583 2584 #define FIRST_TO_LAST 0 2585 #define LAST_TO_FIRST 1 2586 2587 /* 2588 * used in do_balance for passing parent of node information that has 2589 * been gotten from tb struct 2590 */ 2591 struct buffer_info { 2592 struct tree_balance *tb; 2593 struct buffer_head *bi_bh; 2594 struct buffer_head *bi_parent; 2595 int bi_position; 2596 }; 2597 2598 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2599 { 2600 return tb ? tb->tb_sb : NULL; 2601 } 2602 2603 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2604 { 2605 return bi ? sb_from_tb(bi->tb) : NULL; 2606 } 2607 2608 /* 2609 * there are 4 types of items: stat data, directory item, indirect, direct. 2610 * +-------------------+------------+--------------+------------+ 2611 * | | k_offset | k_uniqueness | mergeable? | 2612 * +-------------------+------------+--------------+------------+ 2613 * | stat data | 0 | 0 | no | 2614 * +-------------------+------------+--------------+------------+ 2615 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | 2616 * | non 1st directory | hash value | UNIQUENESS | yes | 2617 * | item | | | | 2618 * +-------------------+------------+--------------+------------+ 2619 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | 2620 * +-------------------+------------+--------------+------------+ 2621 * | direct item | offset + 1 |TYPE_DIRECT | [2] | 2622 * +-------------------+------------+--------------+------------+ 2623 * 2624 * [1] if this is not the first indirect item of the object 2625 * [2] if this is not the first direct item of the object 2626 */ 2627 2628 struct item_operations { 2629 int (*bytes_number) (struct item_head * ih, int block_size); 2630 void (*decrement_key) (struct cpu_key *); 2631 int (*is_left_mergeable) (struct reiserfs_key * ih, 2632 unsigned long bsize); 2633 void (*print_item) (struct item_head *, char *item); 2634 void (*check_item) (struct item_head *, char *item); 2635 2636 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2637 int is_affected, int insert_size); 2638 int (*check_left) (struct virtual_item * vi, int free, 2639 int start_skip, int end_skip); 2640 int (*check_right) (struct virtual_item * vi, int free); 2641 int (*part_size) (struct virtual_item * vi, int from, int to); 2642 int (*unit_num) (struct virtual_item * vi); 2643 void (*print_vi) (struct virtual_item * vi); 2644 }; 2645 2646 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2647 2648 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2649 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2650 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2651 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2652 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2653 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2654 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2655 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2656 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2657 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2658 2659 #define COMP_SHORT_KEYS comp_short_keys 2660 2661 /* number of blocks pointed to by the indirect item */ 2662 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2663 2664 /* 2665 * the used space within the unformatted node corresponding 2666 * to pos within the item pointed to by ih 2667 */ 2668 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2669 2670 /* 2671 * number of bytes contained by the direct item or the 2672 * unformatted nodes the indirect item points to 2673 */ 2674 2675 /* following defines use reiserfs buffer header and item header */ 2676 2677 /* get stat-data */ 2678 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2679 2680 /* this is 3976 for size==4096 */ 2681 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2682 2683 /* 2684 * indirect items consist of entries which contain blocknrs, pos 2685 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2686 * blocknr contained by the entry pos points to 2687 */ 2688 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ 2689 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) 2690 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ 2691 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) 2692 2693 struct reiserfs_iget_args { 2694 __u32 objectid; 2695 __u32 dirid; 2696 }; 2697 2698 /*************************************************************************** 2699 * FUNCTION DECLARATIONS * 2700 ***************************************************************************/ 2701 2702 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2703 2704 #define journal_trans_half(blocksize) \ 2705 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 2706 2707 /* journal.c see journal.c for all the comments here */ 2708 2709 /* first block written in a commit. */ 2710 struct reiserfs_journal_desc { 2711 __le32 j_trans_id; /* id of commit */ 2712 2713 /* length of commit. len +1 is the commit block */ 2714 __le32 j_len; 2715 2716 __le32 j_mount_id; /* mount id of this trans */ 2717 __le32 j_realblock[1]; /* real locations for each block */ 2718 }; 2719 2720 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2721 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2722 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2723 2724 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2725 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2726 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2727 2728 /* last block written in a commit */ 2729 struct reiserfs_journal_commit { 2730 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2731 __le32 j_len; /* ditto */ 2732 __le32 j_realblock[1]; /* real locations for each block */ 2733 }; 2734 2735 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2736 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2737 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2738 2739 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2740 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2741 2742 /* 2743 * this header block gets written whenever a transaction is considered 2744 * fully flushed, and is more recent than the last fully flushed transaction. 2745 * fully flushed means all the log blocks and all the real blocks are on 2746 * disk, and this transaction does not need to be replayed. 2747 */ 2748 struct reiserfs_journal_header { 2749 /* id of last fully flushed transaction */ 2750 __le32 j_last_flush_trans_id; 2751 2752 /* offset in the log of where to start replay after a crash */ 2753 __le32 j_first_unflushed_offset; 2754 2755 __le32 j_mount_id; 2756 /* 12 */ struct journal_params jh_journal; 2757 }; 2758 2759 /* biggest tunable defines are right here */ 2760 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2761 2762 /* biggest possible single transaction, don't change for now (8/3/99) */ 2763 #define JOURNAL_TRANS_MAX_DEFAULT 1024 2764 #define JOURNAL_TRANS_MIN_DEFAULT 256 2765 2766 /* 2767 * max blocks to batch into one transaction, 2768 * don't make this any bigger than 900 2769 */ 2770 #define JOURNAL_MAX_BATCH_DEFAULT 900 2771 #define JOURNAL_MIN_RATIO 2 2772 #define JOURNAL_MAX_COMMIT_AGE 30 2773 #define JOURNAL_MAX_TRANS_AGE 30 2774 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2775 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2776 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2777 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2778 2779 #ifdef CONFIG_QUOTA 2780 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2781 /* We need to update data and inode (atime) */ 2782 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2783 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2784 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2785 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2786 /* same as with INIT */ 2787 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2788 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2789 #else 2790 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2791 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2792 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2793 #endif 2794 2795 /* 2796 * both of these can be as low as 1, or as high as you want. The min is the 2797 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2798 * as needed, and released when transactions are committed. On release, if 2799 * the current number of nodes is > max, the node is freed, otherwise, 2800 * it is put on a free list for faster use later. 2801 */ 2802 #define REISERFS_MIN_BITMAP_NODES 10 2803 #define REISERFS_MAX_BITMAP_NODES 100 2804 2805 /* these are based on journal hash size of 8192 */ 2806 #define JBH_HASH_SHIFT 13 2807 #define JBH_HASH_MASK 8191 2808 2809 #define _jhashfn(sb,block) \ 2810 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2811 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2812 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2813 2814 /* We need these to make journal.c code more readable */ 2815 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2816 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2817 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2818 2819 enum reiserfs_bh_state_bits { 2820 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2821 BH_JDirty_wait, 2822 /* 2823 * disk block was taken off free list before being in a 2824 * finished transaction, or written to disk. Can be reused immed. 2825 */ 2826 BH_JNew, 2827 BH_JPrepared, 2828 BH_JRestore_dirty, 2829 BH_JTest, /* debugging only will go away */ 2830 }; 2831 2832 BUFFER_FNS(JDirty, journaled); 2833 TAS_BUFFER_FNS(JDirty, journaled); 2834 BUFFER_FNS(JDirty_wait, journal_dirty); 2835 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2836 BUFFER_FNS(JNew, journal_new); 2837 TAS_BUFFER_FNS(JNew, journal_new); 2838 BUFFER_FNS(JPrepared, journal_prepared); 2839 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2840 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2841 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2842 BUFFER_FNS(JTest, journal_test); 2843 TAS_BUFFER_FNS(JTest, journal_test); 2844 2845 /* transaction handle which is passed around for all journal calls */ 2846 struct reiserfs_transaction_handle { 2847 /* 2848 * super for this FS when journal_begin was called. saves calls to 2849 * reiserfs_get_super also used by nested transactions to make 2850 * sure they are nesting on the right FS _must_ be first 2851 * in the handle 2852 */ 2853 struct super_block *t_super; 2854 2855 int t_refcount; 2856 int t_blocks_logged; /* number of blocks this writer has logged */ 2857 int t_blocks_allocated; /* number of blocks this writer allocated */ 2858 2859 /* sanity check, equals the current trans id */ 2860 unsigned int t_trans_id; 2861 2862 void *t_handle_save; /* save existing current->journal_info */ 2863 2864 /* 2865 * if new block allocation occurres, that block 2866 * should be displaced from others 2867 */ 2868 unsigned displace_new_blocks:1; 2869 2870 struct list_head t_list; 2871 }; 2872 2873 /* 2874 * used to keep track of ordered and tail writes, attached to the buffer 2875 * head through b_journal_head. 2876 */ 2877 struct reiserfs_jh { 2878 struct reiserfs_journal_list *jl; 2879 struct buffer_head *bh; 2880 struct list_head list; 2881 }; 2882 2883 void reiserfs_free_jh(struct buffer_head *bh); 2884 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2885 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2886 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2887 struct buffer_head *bh); 2888 2889 static inline int reiserfs_file_data_log(struct inode *inode) 2890 { 2891 if (reiserfs_data_log(inode->i_sb) || 2892 (REISERFS_I(inode)->i_flags & i_data_log)) 2893 return 1; 2894 return 0; 2895 } 2896 2897 static inline int reiserfs_transaction_running(struct super_block *s) 2898 { 2899 struct reiserfs_transaction_handle *th = current->journal_info; 2900 if (th && th->t_super == s) 2901 return 1; 2902 if (th && th->t_super == NULL) 2903 BUG(); 2904 return 0; 2905 } 2906 2907 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2908 { 2909 return th->t_blocks_allocated - th->t_blocks_logged; 2910 } 2911 2912 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2913 super_block 2914 *, 2915 int count); 2916 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2917 void reiserfs_vfs_truncate_file(struct inode *inode); 2918 int reiserfs_commit_page(struct inode *inode, struct page *page, 2919 unsigned from, unsigned to); 2920 void reiserfs_flush_old_commits(struct super_block *); 2921 int reiserfs_commit_for_inode(struct inode *); 2922 int reiserfs_inode_needs_commit(struct inode *); 2923 void reiserfs_update_inode_transaction(struct inode *); 2924 void reiserfs_wait_on_write_block(struct super_block *s); 2925 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2926 void reiserfs_allow_writes(struct super_block *s); 2927 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2928 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2929 int wait); 2930 void reiserfs_restore_prepared_buffer(struct super_block *, 2931 struct buffer_head *bh); 2932 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2933 unsigned int); 2934 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2935 int journal_release_error(struct reiserfs_transaction_handle *, 2936 struct super_block *); 2937 int journal_end(struct reiserfs_transaction_handle *); 2938 int journal_end_sync(struct reiserfs_transaction_handle *); 2939 int journal_mark_freed(struct reiserfs_transaction_handle *, 2940 struct super_block *, b_blocknr_t blocknr); 2941 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2942 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2943 int bit_nr, int searchall, b_blocknr_t *next); 2944 int journal_begin(struct reiserfs_transaction_handle *, 2945 struct super_block *sb, unsigned long); 2946 int journal_join_abort(struct reiserfs_transaction_handle *, 2947 struct super_block *sb); 2948 void reiserfs_abort_journal(struct super_block *sb, int errno); 2949 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2950 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2951 struct reiserfs_list_bitmap *, unsigned int); 2952 2953 void reiserfs_schedule_old_flush(struct super_block *s); 2954 void reiserfs_cancel_old_flush(struct super_block *s); 2955 void add_save_link(struct reiserfs_transaction_handle *th, 2956 struct inode *inode, int truncate); 2957 int remove_save_link(struct inode *inode, int truncate); 2958 2959 /* objectid.c */ 2960 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2961 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2962 __u32 objectid_to_release); 2963 int reiserfs_convert_objectid_map_v1(struct super_block *); 2964 2965 /* stree.c */ 2966 int B_IS_IN_TREE(const struct buffer_head *); 2967 extern void copy_item_head(struct item_head *to, 2968 const struct item_head *from); 2969 2970 /* first key is in cpu form, second - le */ 2971 extern int comp_short_keys(const struct reiserfs_key *le_key, 2972 const struct cpu_key *cpu_key); 2973 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2974 2975 /* both are in le form */ 2976 extern int comp_le_keys(const struct reiserfs_key *, 2977 const struct reiserfs_key *); 2978 extern int comp_short_le_keys(const struct reiserfs_key *, 2979 const struct reiserfs_key *); 2980 2981 /* * get key version from on disk key - kludge */ 2982 static inline int le_key_version(const struct reiserfs_key *key) 2983 { 2984 int type; 2985 2986 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2987 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2988 && type != TYPE_DIRENTRY) 2989 return KEY_FORMAT_3_5; 2990 2991 return KEY_FORMAT_3_6; 2992 2993 } 2994 2995 static inline void copy_key(struct reiserfs_key *to, 2996 const struct reiserfs_key *from) 2997 { 2998 memcpy(to, from, KEY_SIZE); 2999 } 3000 3001 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 3002 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 3003 const struct super_block *sb); 3004 int search_by_key(struct super_block *, const struct cpu_key *, 3005 struct treepath *, int); 3006 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 3007 int search_for_position_by_key(struct super_block *sb, 3008 const struct cpu_key *cpu_key, 3009 struct treepath *search_path); 3010 extern void decrement_bcount(struct buffer_head *bh); 3011 void decrement_counters_in_path(struct treepath *search_path); 3012 void pathrelse(struct treepath *search_path); 3013 int reiserfs_check_path(struct treepath *p); 3014 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 3015 3016 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 3017 struct treepath *path, 3018 const struct cpu_key *key, 3019 struct item_head *ih, 3020 struct inode *inode, const char *body); 3021 3022 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 3023 struct treepath *path, 3024 const struct cpu_key *key, 3025 struct inode *inode, 3026 const char *body, int paste_size); 3027 3028 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 3029 struct treepath *path, 3030 struct cpu_key *key, 3031 struct inode *inode, 3032 struct page *page, loff_t new_file_size); 3033 3034 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 3035 struct treepath *path, 3036 const struct cpu_key *key, 3037 struct inode *inode, struct buffer_head *un_bh); 3038 3039 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 3040 struct inode *inode, struct reiserfs_key *key); 3041 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 3042 struct inode *inode); 3043 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 3044 struct inode *inode, struct page *, 3045 int update_timestamps); 3046 3047 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 3048 #define file_size(inode) ((inode)->i_size) 3049 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 3050 3051 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 3052 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 3053 3054 void padd_item(char *item, int total_length, int length); 3055 3056 /* inode.c */ 3057 /* args for the create parameter of reiserfs_get_block */ 3058 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 3059 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 3060 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 3061 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 3062 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 3063 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 3064 3065 void reiserfs_read_locked_inode(struct inode *inode, 3066 struct reiserfs_iget_args *args); 3067 int reiserfs_find_actor(struct inode *inode, void *p); 3068 int reiserfs_init_locked_inode(struct inode *inode, void *p); 3069 void reiserfs_evict_inode(struct inode *inode); 3070 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3071 int reiserfs_get_block(struct inode *inode, sector_t block, 3072 struct buffer_head *bh_result, int create); 3073 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3074 int fh_len, int fh_type); 3075 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 3076 int fh_len, int fh_type); 3077 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 3078 struct inode *parent); 3079 3080 int reiserfs_truncate_file(struct inode *, int update_timestamps); 3081 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 3082 int type, int key_length); 3083 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 3084 int version, 3085 loff_t offset, int type, int length, int entry_count); 3086 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 3087 3088 struct reiserfs_security_handle; 3089 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 3090 struct inode *dir, umode_t mode, 3091 const char *symname, loff_t i_size, 3092 struct dentry *dentry, struct inode *inode, 3093 struct reiserfs_security_handle *security); 3094 3095 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 3096 struct inode *inode, loff_t size); 3097 3098 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 3099 struct inode *inode) 3100 { 3101 reiserfs_update_sd_size(th, inode, inode->i_size); 3102 } 3103 3104 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 3105 int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3106 struct iattr *attr); 3107 3108 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 3109 3110 /* namei.c */ 3111 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 3112 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 3113 struct treepath *path, struct reiserfs_dir_entry *de); 3114 struct dentry *reiserfs_get_parent(struct dentry *); 3115 3116 #ifdef CONFIG_REISERFS_PROC_INFO 3117 int reiserfs_proc_info_init(struct super_block *sb); 3118 int reiserfs_proc_info_done(struct super_block *sb); 3119 int reiserfs_proc_info_global_init(void); 3120 int reiserfs_proc_info_global_done(void); 3121 3122 #define PROC_EXP( e ) e 3123 3124 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 3125 #define PROC_INFO_MAX( sb, field, value ) \ 3126 __PINFO( sb ).field = \ 3127 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 3128 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 3129 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 3130 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 3131 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 3132 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 3133 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 3134 #else 3135 static inline int reiserfs_proc_info_init(struct super_block *sb) 3136 { 3137 return 0; 3138 } 3139 3140 static inline int reiserfs_proc_info_done(struct super_block *sb) 3141 { 3142 return 0; 3143 } 3144 3145 static inline int reiserfs_proc_info_global_init(void) 3146 { 3147 return 0; 3148 } 3149 3150 static inline int reiserfs_proc_info_global_done(void) 3151 { 3152 return 0; 3153 } 3154 3155 #define PROC_EXP( e ) 3156 #define VOID_V ( ( void ) 0 ) 3157 #define PROC_INFO_MAX( sb, field, value ) VOID_V 3158 #define PROC_INFO_INC( sb, field ) VOID_V 3159 #define PROC_INFO_ADD( sb, field, val ) VOID_V 3160 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 3161 #endif 3162 3163 /* dir.c */ 3164 extern const struct inode_operations reiserfs_dir_inode_operations; 3165 extern const struct inode_operations reiserfs_symlink_inode_operations; 3166 extern const struct inode_operations reiserfs_special_inode_operations; 3167 extern const struct file_operations reiserfs_dir_operations; 3168 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 3169 3170 /* tail_conversion.c */ 3171 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 3172 struct treepath *, struct buffer_head *, loff_t); 3173 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 3174 struct page *, struct treepath *, const struct cpu_key *, 3175 loff_t, char *); 3176 void reiserfs_unmap_buffer(struct buffer_head *); 3177 3178 /* file.c */ 3179 extern const struct inode_operations reiserfs_file_inode_operations; 3180 extern const struct file_operations reiserfs_file_operations; 3181 extern const struct address_space_operations reiserfs_address_space_operations; 3182 3183 /* fix_nodes.c */ 3184 3185 int fix_nodes(int n_op_mode, struct tree_balance *tb, 3186 struct item_head *ins_ih, const void *); 3187 void unfix_nodes(struct tree_balance *); 3188 3189 /* prints.c */ 3190 void __reiserfs_panic(struct super_block *s, const char *id, 3191 const char *function, const char *fmt, ...) 3192 __attribute__ ((noreturn)); 3193 #define reiserfs_panic(s, id, fmt, args...) \ 3194 __reiserfs_panic(s, id, __func__, fmt, ##args) 3195 void __reiserfs_error(struct super_block *s, const char *id, 3196 const char *function, const char *fmt, ...); 3197 #define reiserfs_error(s, id, fmt, args...) \ 3198 __reiserfs_error(s, id, __func__, fmt, ##args) 3199 void reiserfs_info(struct super_block *s, const char *fmt, ...); 3200 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 3201 void print_indirect_item(struct buffer_head *bh, int item_num); 3202 void store_print_tb(struct tree_balance *tb); 3203 void print_cur_tb(char *mes); 3204 void print_de(struct reiserfs_dir_entry *de); 3205 void print_bi(struct buffer_info *bi, char *mes); 3206 #define PRINT_LEAF_ITEMS 1 /* print all items */ 3207 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 3208 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 3209 void print_block(struct buffer_head *bh, ...); 3210 void print_bmap(struct super_block *s, int silent); 3211 void print_bmap_block(int i, char *data, int size, int silent); 3212 /*void print_super_block (struct super_block * s, char * mes);*/ 3213 void print_objectid_map(struct super_block *s); 3214 void print_block_head(struct buffer_head *bh, char *mes); 3215 void check_leaf(struct buffer_head *bh); 3216 void check_internal(struct buffer_head *bh); 3217 void print_statistics(struct super_block *s); 3218 char *reiserfs_hashname(int code); 3219 3220 /* lbalance.c */ 3221 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 3222 int mov_bytes, struct buffer_head *Snew); 3223 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 3224 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 3225 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 3226 int del_num, int del_bytes); 3227 void leaf_insert_into_buf(struct buffer_info *bi, int before, 3228 struct item_head * const inserted_item_ih, 3229 const char * const inserted_item_body, 3230 int zeros_number); 3231 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 3232 int pos_in_item, int paste_size, 3233 const char * const body, int zeros_number); 3234 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 3235 int pos_in_item, int cut_size); 3236 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 3237 int new_entry_count, struct reiserfs_de_head *new_dehs, 3238 const char *records, int paste_size); 3239 /* ibalance.c */ 3240 int balance_internal(struct tree_balance *, int, int, struct item_head *, 3241 struct buffer_head **); 3242 3243 /* do_balance.c */ 3244 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 3245 struct buffer_head *bh, int flag); 3246 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 3247 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 3248 3249 void do_balance(struct tree_balance *tb, struct item_head *ih, 3250 const char *body, int flag); 3251 void reiserfs_invalidate_buffer(struct tree_balance *tb, 3252 struct buffer_head *bh); 3253 3254 int get_left_neighbor_position(struct tree_balance *tb, int h); 3255 int get_right_neighbor_position(struct tree_balance *tb, int h); 3256 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 3257 struct buffer_head *, int); 3258 void make_empty_node(struct buffer_info *); 3259 struct buffer_head *get_FEB(struct tree_balance *); 3260 3261 /* bitmap.c */ 3262 3263 /* 3264 * structure contains hints for block allocator, and it is a container for 3265 * arguments, such as node, search path, transaction_handle, etc. 3266 */ 3267 struct __reiserfs_blocknr_hint { 3268 /* inode passed to allocator, if we allocate unf. nodes */ 3269 struct inode *inode; 3270 3271 sector_t block; /* file offset, in blocks */ 3272 struct in_core_key key; 3273 3274 /* 3275 * search path, used by allocator to deternine search_start by 3276 * various ways 3277 */ 3278 struct treepath *path; 3279 3280 /* 3281 * transaction handle is needed to log super blocks 3282 * and bitmap blocks changes 3283 */ 3284 struct reiserfs_transaction_handle *th; 3285 3286 b_blocknr_t beg, end; 3287 3288 /* 3289 * a field used to transfer search start value (block number) 3290 * between different block allocator procedures 3291 * (determine_search_start() and others) 3292 */ 3293 b_blocknr_t search_start; 3294 3295 /* 3296 * is set in determine_prealloc_size() function, 3297 * used by underlayed function that do actual allocation 3298 */ 3299 int prealloc_size; 3300 3301 /* 3302 * the allocator uses different polices for getting disk 3303 * space for formatted/unformatted blocks with/without preallocation 3304 */ 3305 unsigned formatted_node:1; 3306 unsigned preallocate:1; 3307 }; 3308 3309 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 3310 3311 int reiserfs_parse_alloc_options(struct super_block *, char *); 3312 void reiserfs_init_alloc_options(struct super_block *s); 3313 3314 /* 3315 * given a directory, this will tell you what packing locality 3316 * to use for a new object underneat it. The locality is returned 3317 * in disk byte order (le). 3318 */ 3319 __le32 reiserfs_choose_packing(struct inode *dir); 3320 3321 void show_alloc_options(struct seq_file *seq, struct super_block *s); 3322 int reiserfs_init_bitmap_cache(struct super_block *sb); 3323 void reiserfs_free_bitmap_cache(struct super_block *sb); 3324 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 3325 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 3326 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 3327 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 3328 b_blocknr_t, int for_unformatted); 3329 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 3330 int); 3331 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 3332 b_blocknr_t * new_blocknrs, 3333 int amount_needed) 3334 { 3335 reiserfs_blocknr_hint_t hint = { 3336 .th = tb->transaction_handle, 3337 .path = tb->tb_path, 3338 .inode = NULL, 3339 .key = tb->key, 3340 .block = 0, 3341 .formatted_node = 1 3342 }; 3343 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 3344 0); 3345 } 3346 3347 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 3348 *th, struct inode *inode, 3349 b_blocknr_t * new_blocknrs, 3350 struct treepath *path, 3351 sector_t block) 3352 { 3353 reiserfs_blocknr_hint_t hint = { 3354 .th = th, 3355 .path = path, 3356 .inode = inode, 3357 .block = block, 3358 .formatted_node = 0, 3359 .preallocate = 0 3360 }; 3361 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3362 } 3363 3364 #ifdef REISERFS_PREALLOCATE 3365 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 3366 *th, struct inode *inode, 3367 b_blocknr_t * new_blocknrs, 3368 struct treepath *path, 3369 sector_t block) 3370 { 3371 reiserfs_blocknr_hint_t hint = { 3372 .th = th, 3373 .path = path, 3374 .inode = inode, 3375 .block = block, 3376 .formatted_node = 0, 3377 .preallocate = 1 3378 }; 3379 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3380 } 3381 3382 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 3383 struct inode *inode); 3384 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 3385 #endif 3386 3387 /* hashes.c */ 3388 __u32 keyed_hash(const signed char *msg, int len); 3389 __u32 yura_hash(const signed char *msg, int len); 3390 __u32 r5_hash(const signed char *msg, int len); 3391 3392 #define reiserfs_set_le_bit __set_bit_le 3393 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 3394 #define reiserfs_clear_le_bit __clear_bit_le 3395 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 3396 #define reiserfs_test_le_bit test_bit_le 3397 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 3398 3399 /* 3400 * sometimes reiserfs_truncate may require to allocate few new blocks 3401 * to perform indirect2direct conversion. People probably used to 3402 * think, that truncate should work without problems on a filesystem 3403 * without free disk space. They may complain that they can not 3404 * truncate due to lack of free disk space. This spare space allows us 3405 * to not worry about it. 500 is probably too much, but it should be 3406 * absolutely safe 3407 */ 3408 #define SPARE_SPACE 500 3409 3410 /* prototypes from ioctl.c */ 3411 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3412 long reiserfs_compat_ioctl(struct file *filp, 3413 unsigned int cmd, unsigned long arg); 3414 int reiserfs_unpack(struct inode *inode, struct file *filp); 3415