xref: /openbmc/linux/fs/reiserfs/reiserfs.h (revision 4c004ed9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
4  * licensing and copyright details
5  */
6 
7 #include <linux/reiserfs_fs.h>
8 
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/sched.h>
12 #include <linux/bug.h>
13 #include <linux/workqueue.h>
14 #include <asm/unaligned.h>
15 #include <linux/bitops.h>
16 #include <linux/proc_fs.h>
17 #include <linux/buffer_head.h>
18 
19 /* the 32 bit compat definitions with int argument */
20 #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
21 #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22 #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23 
24 struct reiserfs_journal_list;
25 
26 /* bitmasks for i_flags field in reiserfs-specific part of inode */
27 typedef enum {
28 	/*
29 	 * this says what format of key do all items (but stat data) of
30 	 * an object have.  If this is set, that format is 3.6 otherwise - 3.5
31 	 */
32 	i_item_key_version_mask = 0x0001,
33 
34 	/*
35 	 * If this is unset, object has 3.5 stat data, otherwise,
36 	 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
37 	 */
38 	i_stat_data_version_mask = 0x0002,
39 
40 	/* file might need tail packing on close */
41 	i_pack_on_close_mask = 0x0004,
42 
43 	/* don't pack tail of file */
44 	i_nopack_mask = 0x0008,
45 
46 	/*
47 	 * If either of these are set, "safe link" was created for this
48 	 * file during truncate or unlink. Safe link is used to avoid
49 	 * leakage of disk space on crash with some files open, but unlinked.
50 	 */
51 	i_link_saved_unlink_mask = 0x0010,
52 	i_link_saved_truncate_mask = 0x0020,
53 
54 	i_has_xattr_dir = 0x0040,
55 	i_data_log = 0x0080,
56 } reiserfs_inode_flags;
57 
58 struct reiserfs_inode_info {
59 	__u32 i_key[4];		/* key is still 4 32 bit integers */
60 
61 	/*
62 	 * transient inode flags that are never stored on disk. Bitmasks
63 	 * for this field are defined above.
64 	 */
65 	__u32 i_flags;
66 
67 	/* offset of first byte stored in direct item. */
68 	__u32 i_first_direct_byte;
69 
70 	/* copy of persistent inode flags read from sd_attrs. */
71 	__u32 i_attrs;
72 
73 	/* first unused block of a sequence of unused blocks */
74 	int i_prealloc_block;
75 	int i_prealloc_count;	/* length of that sequence */
76 
77 	/* per-transaction list of inodes which  have preallocated blocks */
78 	struct list_head i_prealloc_list;
79 
80 	/*
81 	 * new_packing_locality is created; new blocks for the contents
82 	 * of this directory should be displaced
83 	 */
84 	unsigned new_packing_locality:1;
85 
86 	/*
87 	 * we use these for fsync or O_SYNC to decide which transaction
88 	 * needs to be committed in order for this inode to be properly
89 	 * flushed
90 	 */
91 	unsigned int i_trans_id;
92 
93 	struct reiserfs_journal_list *i_jl;
94 	atomic_t openers;
95 	struct mutex tailpack;
96 #ifdef CONFIG_REISERFS_FS_XATTR
97 	struct rw_semaphore i_xattr_sem;
98 #endif
99 #ifdef CONFIG_QUOTA
100 	struct dquot *i_dquot[MAXQUOTAS];
101 #endif
102 
103 	struct inode vfs_inode;
104 };
105 
106 typedef enum {
107 	reiserfs_attrs_cleared = 0x00000001,
108 } reiserfs_super_block_flags;
109 
110 /*
111  * struct reiserfs_super_block accessors/mutators since this is a disk
112  * structure, it will always be in little endian format.
113  */
114 #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
115 #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
116 #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
117 #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
118 #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
119 #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
120 
121 #define sb_jp_journal_1st_block(sbp)  \
122               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
123 #define set_sb_jp_journal_1st_block(sbp,v) \
124               ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
125 #define sb_jp_journal_dev(sbp) \
126               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
127 #define set_sb_jp_journal_dev(sbp,v) \
128               ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
129 #define sb_jp_journal_size(sbp) \
130               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
131 #define set_sb_jp_journal_size(sbp,v) \
132               ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
133 #define sb_jp_journal_trans_max(sbp) \
134               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
135 #define set_sb_jp_journal_trans_max(sbp,v) \
136               ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
137 #define sb_jp_journal_magic(sbp) \
138               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
139 #define set_sb_jp_journal_magic(sbp,v) \
140               ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
141 #define sb_jp_journal_max_batch(sbp) \
142               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
143 #define set_sb_jp_journal_max_batch(sbp,v) \
144               ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
145 #define sb_jp_jourmal_max_commit_age(sbp) \
146               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
147 #define set_sb_jp_journal_max_commit_age(sbp,v) \
148               ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
149 
150 #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
151 #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
152 #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
153 #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
154 #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
155 #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
156 #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
157 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
158 #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
159 #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
160 #define sb_hash_function_code(sbp) \
161               (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
162 #define set_sb_hash_function_code(sbp,v) \
163               ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
164 #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
165 #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
166 #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
167 #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
168 #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
169 #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
170 
171 #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
172 #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
173 
174 #define sb_reserved_for_journal(sbp) \
175               (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
176 #define set_sb_reserved_for_journal(sbp,v) \
177               ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
178 
179 /* LOGGING -- */
180 
181 /*
182  * These all interelate for performance.
183  *
184  * If the journal block count is smaller than n transactions, you lose speed.
185  * I don't know what n is yet, I'm guessing 8-16.
186  *
187  * typical transaction size depends on the application, how often fsync is
188  * called, and how many metadata blocks you dirty in a 30 second period.
189  * The more small files (<16k) you use, the larger your transactions will
190  * be.
191  *
192  * If your journal fills faster than dirty buffers get flushed to disk, it
193  * must flush them before allowing the journal to wrap, which slows things
194  * down.  If you need high speed meta data updates, the journal should be
195  * big enough to prevent wrapping before dirty meta blocks get to disk.
196  *
197  * If the batch max is smaller than the transaction max, you'll waste space
198  * at the end of the journal because journal_end sets the next transaction
199  * to start at 0 if the next transaction has any chance of wrapping.
200  *
201  * The large the batch max age, the better the speed, and the more meta
202  * data changes you'll lose after a crash.
203  */
204 
205 /* don't mess with these for a while */
206 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
207 #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
208 #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
209 #define JOURNAL_HASH_SIZE 8192
210 
211 /* number of copies of the bitmaps to have floating.  Must be >= 2 */
212 #define JOURNAL_NUM_BITMAPS 5
213 
214 /*
215  * One of these for every block in every transaction
216  * Each one is in two hash tables.  First, a hash of the current transaction,
217  * and after journal_end, a hash of all the in memory transactions.
218  * next and prev are used by the current transaction (journal_hash).
219  * hnext and hprev are used by journal_list_hash.  If a block is in more
220  * than one transaction, the journal_list_hash links it in multiple times.
221  * This allows flush_journal_list to remove just the cnode belonging to a
222  * given transaction.
223  */
224 struct reiserfs_journal_cnode {
225 	struct buffer_head *bh;	/* real buffer head */
226 	struct super_block *sb;	/* dev of real buffer head */
227 
228 	/* block number of real buffer head, == 0 when buffer on disk */
229 	__u32 blocknr;
230 
231 	unsigned long state;
232 
233 	/* journal list this cnode lives in */
234 	struct reiserfs_journal_list *jlist;
235 
236 	struct reiserfs_journal_cnode *next;	/* next in transaction list */
237 	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
238 	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
239 	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
240 };
241 
242 struct reiserfs_bitmap_node {
243 	int id;
244 	char *data;
245 	struct list_head list;
246 };
247 
248 struct reiserfs_list_bitmap {
249 	struct reiserfs_journal_list *journal_list;
250 	struct reiserfs_bitmap_node **bitmaps;
251 };
252 
253 /*
254  * one of these for each transaction.  The most important part here is the
255  * j_realblock.  this list of cnodes is used to hash all the blocks in all
256  * the commits, to mark all the real buffer heads dirty once all the commits
257  * hit the disk, and to make sure every real block in a transaction is on
258  * disk before allowing the log area to be overwritten
259  */
260 struct reiserfs_journal_list {
261 	unsigned long j_start;
262 	unsigned long j_state;
263 	unsigned long j_len;
264 	atomic_t j_nonzerolen;
265 	atomic_t j_commit_left;
266 
267 	/* all commits older than this on disk */
268 	atomic_t j_older_commits_done;
269 
270 	struct mutex j_commit_mutex;
271 	unsigned int j_trans_id;
272 	time64_t j_timestamp; /* write-only but useful for crash dump analysis */
273 	struct reiserfs_list_bitmap *j_list_bitmap;
274 	struct buffer_head *j_commit_bh;	/* commit buffer head */
275 	struct reiserfs_journal_cnode *j_realblock;
276 	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
277 	/* time ordered list of all active transactions */
278 	struct list_head j_list;
279 
280 	/*
281 	 * time ordered list of all transactions we haven't tried
282 	 * to flush yet
283 	 */
284 	struct list_head j_working_list;
285 
286 	/* list of tail conversion targets in need of flush before commit */
287 	struct list_head j_tail_bh_list;
288 
289 	/* list of data=ordered buffers in need of flush before commit */
290 	struct list_head j_bh_list;
291 	int j_refcount;
292 };
293 
294 struct reiserfs_journal {
295 	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
296 	/* newest journal block */
297 	struct reiserfs_journal_cnode *j_last;
298 
299 	/* oldest journal block.  start here for traverse */
300 	struct reiserfs_journal_cnode *j_first;
301 
302 	struct block_device *j_dev_bd;
303 
304 	/* first block on s_dev of reserved area journal */
305 	int j_1st_reserved_block;
306 
307 	unsigned long j_state;
308 	unsigned int j_trans_id;
309 	unsigned long j_mount_id;
310 
311 	/* start of current waiting commit (index into j_ap_blocks) */
312 	unsigned long j_start;
313 	unsigned long j_len;	/* length of current waiting commit */
314 
315 	/* number of buffers requested by journal_begin() */
316 	unsigned long j_len_alloc;
317 
318 	atomic_t j_wcount;	/* count of writers for current commit */
319 
320 	/* batch count. allows turning X transactions into 1 */
321 	unsigned long j_bcount;
322 
323 	/* first unflushed transactions offset */
324 	unsigned long j_first_unflushed_offset;
325 
326 	/* last fully flushed journal timestamp */
327 	unsigned j_last_flush_trans_id;
328 
329 	struct buffer_head *j_header_bh;
330 
331 	time64_t j_trans_start_time;	/* time this transaction started */
332 	struct mutex j_mutex;
333 	struct mutex j_flush_mutex;
334 
335 	/* wait for current transaction to finish before starting new one */
336 	wait_queue_head_t j_join_wait;
337 
338 	atomic_t j_jlock;		/* lock for j_join_wait */
339 	int j_list_bitmap_index;	/* number of next list bitmap to use */
340 
341 	/* no more journal begins allowed. MUST sleep on j_join_wait */
342 	int j_must_wait;
343 
344 	/* next journal_end will flush all journal list */
345 	int j_next_full_flush;
346 
347 	/* next journal_end will flush all async commits */
348 	int j_next_async_flush;
349 
350 	int j_cnode_used;	/* number of cnodes on the used list */
351 	int j_cnode_free;	/* number of cnodes on the free list */
352 
353 	/* max number of blocks in a transaction.  */
354 	unsigned int j_trans_max;
355 
356 	/* max number of blocks to batch into a trans */
357 	unsigned int j_max_batch;
358 
359 	/* in seconds, how old can an async commit be */
360 	unsigned int j_max_commit_age;
361 
362 	/* in seconds, how old can a transaction be */
363 	unsigned int j_max_trans_age;
364 
365 	/* the default for the max commit age */
366 	unsigned int j_default_max_commit_age;
367 
368 	struct reiserfs_journal_cnode *j_cnode_free_list;
369 
370 	/* orig pointer returned from vmalloc */
371 	struct reiserfs_journal_cnode *j_cnode_free_orig;
372 
373 	struct reiserfs_journal_list *j_current_jl;
374 	int j_free_bitmap_nodes;
375 	int j_used_bitmap_nodes;
376 
377 	int j_num_lists;	/* total number of active transactions */
378 	int j_num_work_lists;	/* number that need attention from kreiserfsd */
379 
380 	/* debugging to make sure things are flushed in order */
381 	unsigned int j_last_flush_id;
382 
383 	/* debugging to make sure things are committed in order */
384 	unsigned int j_last_commit_id;
385 
386 	struct list_head j_bitmap_nodes;
387 	struct list_head j_dirty_buffers;
388 	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
389 
390 	/* list of all active transactions */
391 	struct list_head j_journal_list;
392 
393 	/* lists that haven't been touched by writeback attempts */
394 	struct list_head j_working_list;
395 
396 	/* hash table for real buffer heads in current trans */
397 	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
398 
399 	/* hash table for all the real buffer heads in all the transactions */
400 	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
401 
402 	/* array of bitmaps to record the deleted blocks */
403 	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
404 
405 	/* list of inodes which have preallocated blocks */
406 	struct list_head j_prealloc_list;
407 	int j_persistent_trans;
408 	unsigned long j_max_trans_size;
409 	unsigned long j_max_batch_size;
410 
411 	int j_errno;
412 
413 	/* when flushing ordered buffers, throttle new ordered writers */
414 	struct delayed_work j_work;
415 	struct super_block *j_work_sb;
416 	atomic_t j_async_throttle;
417 };
418 
419 enum journal_state_bits {
420 	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
421 	J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
422 	J_ABORTED,           /* set when log is aborted */
423 };
424 
425 /* ick.  magic string to find desc blocks in the journal */
426 #define JOURNAL_DESC_MAGIC "ReIsErLB"
427 
428 typedef __u32(*hashf_t) (const signed char *, int);
429 
430 struct reiserfs_bitmap_info {
431 	__u32 free_count;
432 };
433 
434 struct proc_dir_entry;
435 
436 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
437 typedef unsigned long int stat_cnt_t;
438 typedef struct reiserfs_proc_info_data {
439 	spinlock_t lock;
440 	int exiting;
441 	int max_hash_collisions;
442 
443 	stat_cnt_t breads;
444 	stat_cnt_t bread_miss;
445 	stat_cnt_t search_by_key;
446 	stat_cnt_t search_by_key_fs_changed;
447 	stat_cnt_t search_by_key_restarted;
448 
449 	stat_cnt_t insert_item_restarted;
450 	stat_cnt_t paste_into_item_restarted;
451 	stat_cnt_t cut_from_item_restarted;
452 	stat_cnt_t delete_solid_item_restarted;
453 	stat_cnt_t delete_item_restarted;
454 
455 	stat_cnt_t leaked_oid;
456 	stat_cnt_t leaves_removable;
457 
458 	/*
459 	 * balances per level.
460 	 * Use explicit 5 as MAX_HEIGHT is not visible yet.
461 	 */
462 	stat_cnt_t balance_at[5];	/* XXX */
463 	/* sbk == search_by_key */
464 	stat_cnt_t sbk_read_at[5];	/* XXX */
465 	stat_cnt_t sbk_fs_changed[5];
466 	stat_cnt_t sbk_restarted[5];
467 	stat_cnt_t items_at[5];	/* XXX */
468 	stat_cnt_t free_at[5];	/* XXX */
469 	stat_cnt_t can_node_be_removed[5];	/* XXX */
470 	long int lnum[5];	/* XXX */
471 	long int rnum[5];	/* XXX */
472 	long int lbytes[5];	/* XXX */
473 	long int rbytes[5];	/* XXX */
474 	stat_cnt_t get_neighbors[5];
475 	stat_cnt_t get_neighbors_restart[5];
476 	stat_cnt_t need_l_neighbor[5];
477 	stat_cnt_t need_r_neighbor[5];
478 
479 	stat_cnt_t free_block;
480 	struct __scan_bitmap_stats {
481 		stat_cnt_t call;
482 		stat_cnt_t wait;
483 		stat_cnt_t bmap;
484 		stat_cnt_t retry;
485 		stat_cnt_t in_journal_hint;
486 		stat_cnt_t in_journal_nohint;
487 		stat_cnt_t stolen;
488 	} scan_bitmap;
489 	struct __journal_stats {
490 		stat_cnt_t in_journal;
491 		stat_cnt_t in_journal_bitmap;
492 		stat_cnt_t in_journal_reusable;
493 		stat_cnt_t lock_journal;
494 		stat_cnt_t lock_journal_wait;
495 		stat_cnt_t journal_being;
496 		stat_cnt_t journal_relock_writers;
497 		stat_cnt_t journal_relock_wcount;
498 		stat_cnt_t mark_dirty;
499 		stat_cnt_t mark_dirty_already;
500 		stat_cnt_t mark_dirty_notjournal;
501 		stat_cnt_t restore_prepared;
502 		stat_cnt_t prepare;
503 		stat_cnt_t prepare_retry;
504 	} journal;
505 } reiserfs_proc_info_data_t;
506 #else
507 typedef struct reiserfs_proc_info_data {
508 } reiserfs_proc_info_data_t;
509 #endif
510 
511 /* Number of quota types we support */
512 #define REISERFS_MAXQUOTAS 2
513 
514 /* reiserfs union of in-core super block data */
515 struct reiserfs_sb_info {
516 	/* Buffer containing the super block */
517 	struct buffer_head *s_sbh;
518 
519 	/* Pointer to the on-disk super block in the buffer */
520 	struct reiserfs_super_block *s_rs;
521 	struct reiserfs_bitmap_info *s_ap_bitmap;
522 
523 	/* pointer to journal information */
524 	struct reiserfs_journal *s_journal;
525 
526 	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
527 
528 	/* Serialize writers access, replace the old bkl */
529 	struct mutex lock;
530 
531 	/* Owner of the lock (can be recursive) */
532 	struct task_struct *lock_owner;
533 
534 	/* Depth of the lock, start from -1 like the bkl */
535 	int lock_depth;
536 
537 	struct workqueue_struct *commit_wq;
538 
539 	/* Comment? -Hans */
540 	void (*end_io_handler) (struct buffer_head *, int);
541 
542 	/*
543 	 * pointer to function which is used to sort names in directory.
544 	 * Set on mount
545 	 */
546 	hashf_t s_hash_function;
547 
548 	/* reiserfs's mount options are set here */
549 	unsigned long s_mount_opt;
550 
551 	/* This is a structure that describes block allocator options */
552 	struct {
553 		/* Bitfield for enable/disable kind of options */
554 		unsigned long bits;
555 
556 		/*
557 		 * size started from which we consider file
558 		 * to be a large one (in blocks)
559 		 */
560 		unsigned long large_file_size;
561 
562 		int border;	/* percentage of disk, border takes */
563 
564 		/*
565 		 * Minimal file size (in blocks) starting
566 		 * from which we do preallocations
567 		 */
568 		int preallocmin;
569 
570 		/*
571 		 * Number of blocks we try to prealloc when file
572 		 * reaches preallocmin size (in blocks) or prealloc_list
573 		 is empty.
574 		 */
575 		int preallocsize;
576 	} s_alloc_options;
577 
578 	/* Comment? -Hans */
579 	wait_queue_head_t s_wait;
580 	/* increased by one every time the  tree gets re-balanced */
581 	atomic_t s_generation_counter;
582 
583 	/* File system properties. Currently holds on-disk FS format */
584 	unsigned long s_properties;
585 
586 	/* session statistics */
587 	int s_disk_reads;
588 	int s_disk_writes;
589 	int s_fix_nodes;
590 	int s_do_balance;
591 	int s_unneeded_left_neighbor;
592 	int s_good_search_by_key_reada;
593 	int s_bmaps;
594 	int s_bmaps_without_search;
595 	int s_direct2indirect;
596 	int s_indirect2direct;
597 
598 	/*
599 	 * set up when it's ok for reiserfs_read_inode2() to read from
600 	 * disk inode with nlink==0. Currently this is only used during
601 	 * finish_unfinished() processing at mount time
602 	 */
603 	int s_is_unlinked_ok;
604 
605 	reiserfs_proc_info_data_t s_proc_info_data;
606 	struct proc_dir_entry *procdir;
607 
608 	/* amount of blocks reserved for further allocations */
609 	int reserved_blocks;
610 
611 
612 	/* this lock on now only used to protect reserved_blocks variable */
613 	spinlock_t bitmap_lock;
614 	struct dentry *priv_root;	/* root of /.reiserfs_priv */
615 	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
616 	int j_errno;
617 
618 	int work_queued;              /* non-zero delayed work is queued */
619 	struct delayed_work old_work; /* old transactions flush delayed work */
620 	spinlock_t old_work_lock;     /* protects old_work and work_queued */
621 
622 #ifdef CONFIG_QUOTA
623 	char *s_qf_names[REISERFS_MAXQUOTAS];
624 	int s_jquota_fmt;
625 #endif
626 	char *s_jdev;		/* Stored jdev for mount option showing */
627 #ifdef CONFIG_REISERFS_CHECK
628 
629 	/*
630 	 * Detects whether more than one copy of tb exists per superblock
631 	 * as a means of checking whether do_balance is executing
632 	 * concurrently against another tree reader/writer on a same
633 	 * mount point.
634 	 */
635 	struct tree_balance *cur_tb;
636 #endif
637 };
638 
639 /* Definitions of reiserfs on-disk properties: */
640 #define REISERFS_3_5 0
641 #define REISERFS_3_6 1
642 #define REISERFS_OLD_FORMAT 2
643 
644 /* Mount options */
645 enum reiserfs_mount_options {
646 	/* large tails will be created in a session */
647 	REISERFS_LARGETAIL,
648 	/*
649 	 * small (for files less than block size) tails will
650 	 * be created in a session
651 	 */
652 	REISERFS_SMALLTAIL,
653 
654 	/* replay journal and return 0. Use by fsck */
655 	REPLAYONLY,
656 
657 	/*
658 	 * -o conv: causes conversion of old format super block to the
659 	 * new format. If not specified - old partition will be dealt
660 	 * with in a manner of 3.5.x
661 	 */
662 	REISERFS_CONVERT,
663 
664 	/*
665 	 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
666 	 * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
667 	 * option is not required.  If the normal autodection code can't
668 	 * determine which hash to use (because both hashes had the same
669 	 * value for a file) use this option to force a specific hash.
670 	 * It won't allow you to override the existing hash on the FS, so
671 	 * if you have a tea hash disk, and mount with -o hash=rupasov,
672 	 * the mount will fail.
673 	 */
674 	FORCE_TEA_HASH,		/* try to force tea hash on mount */
675 	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
676 	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
677 	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
678 
679 	REISERFS_DATA_LOG,
680 	REISERFS_DATA_ORDERED,
681 	REISERFS_DATA_WRITEBACK,
682 
683 	/*
684 	 * used for testing experimental features, makes benchmarking new
685 	 * features with and without more convenient, should never be used by
686 	 * users in any code shipped to users (ideally)
687 	 */
688 
689 	REISERFS_NO_BORDER,
690 	REISERFS_NO_UNHASHED_RELOCATION,
691 	REISERFS_HASHED_RELOCATION,
692 	REISERFS_ATTRS,
693 	REISERFS_XATTRS_USER,
694 	REISERFS_POSIXACL,
695 	REISERFS_EXPOSE_PRIVROOT,
696 	REISERFS_BARRIER_NONE,
697 	REISERFS_BARRIER_FLUSH,
698 
699 	/* Actions on error */
700 	REISERFS_ERROR_PANIC,
701 	REISERFS_ERROR_RO,
702 	REISERFS_ERROR_CONTINUE,
703 
704 	REISERFS_USRQUOTA,	/* User quota option specified */
705 	REISERFS_GRPQUOTA,	/* Group quota option specified */
706 
707 	REISERFS_TEST1,
708 	REISERFS_TEST2,
709 	REISERFS_TEST3,
710 	REISERFS_TEST4,
711 	REISERFS_UNSUPPORTED_OPT,
712 };
713 
714 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
715 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
716 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
717 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
718 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
719 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
720 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
721 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
722 
723 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
724 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
725 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
726 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
727 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
728 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
729 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
730 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
731 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
732 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
733 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
734 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
735 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
736 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
737 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
738 
739 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
740 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
741 
742 void reiserfs_file_buffer(struct buffer_head *bh, int list);
743 extern struct file_system_type reiserfs_fs_type;
744 int reiserfs_resize(struct super_block *, unsigned long);
745 
746 #define CARRY_ON                0
747 #define SCHEDULE_OCCURRED       1
748 
749 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
750 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
751 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
752 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
753 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
754 
755 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
756 
757 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
758 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
759 						*journal)
760 {
761 	return test_bit(J_ABORTED, &journal->j_state);
762 }
763 
764 /*
765  * Locking primitives. The write lock is a per superblock
766  * special mutex that has properties close to the Big Kernel Lock
767  * which was used in the previous locking scheme.
768  */
769 void reiserfs_write_lock(struct super_block *s);
770 void reiserfs_write_unlock(struct super_block *s);
771 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
772 void reiserfs_write_lock_nested(struct super_block *s, int depth);
773 
774 #ifdef CONFIG_REISERFS_CHECK
775 void reiserfs_lock_check_recursive(struct super_block *s);
776 #else
777 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
778 #endif
779 
780 /*
781  * Several mutexes depend on the write lock.
782  * However sometimes we want to relax the write lock while we hold
783  * these mutexes, according to the release/reacquire on schedule()
784  * properties of the Bkl that were used.
785  * Reiserfs performances and locking were based on this scheme.
786  * Now that the write lock is a mutex and not the bkl anymore, doing so
787  * may result in a deadlock:
788  *
789  * A acquire write_lock
790  * A acquire j_commit_mutex
791  * A release write_lock and wait for something
792  * B acquire write_lock
793  * B can't acquire j_commit_mutex and sleep
794  * A can't acquire write lock anymore
795  * deadlock
796  *
797  * What we do here is avoiding such deadlock by playing the same game
798  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
799  * we release the write lock, wait a bit and then retry.
800  *
801  * The mutexes concerned by this hack are:
802  * - The commit mutex of a journal list
803  * - The flush mutex
804  * - The journal lock
805  * - The inode mutex
806  */
807 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
808 					    struct super_block *s)
809 {
810 	int depth;
811 
812 	depth = reiserfs_write_unlock_nested(s);
813 	mutex_lock(m);
814 	reiserfs_write_lock_nested(s, depth);
815 }
816 
817 static inline void
818 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
819 				struct super_block *s)
820 {
821 	int depth;
822 
823 	depth = reiserfs_write_unlock_nested(s);
824 	mutex_lock_nested(m, subclass);
825 	reiserfs_write_lock_nested(s, depth);
826 }
827 
828 static inline void
829 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
830 {
831        int depth;
832        depth = reiserfs_write_unlock_nested(s);
833        down_read(sem);
834        reiserfs_write_lock_nested(s, depth);
835 }
836 
837 /*
838  * When we schedule, we usually want to also release the write lock,
839  * according to the previous bkl based locking scheme of reiserfs.
840  */
841 static inline void reiserfs_cond_resched(struct super_block *s)
842 {
843 	if (need_resched()) {
844 		int depth;
845 
846 		depth = reiserfs_write_unlock_nested(s);
847 		schedule();
848 		reiserfs_write_lock_nested(s, depth);
849 	}
850 }
851 
852 struct fid;
853 
854 /*
855  * in reading the #defines, it may help to understand that they employ
856  *  the following abbreviations:
857  *
858  *  B = Buffer
859  *  I = Item header
860  *  H = Height within the tree (should be changed to LEV)
861  *  N = Number of the item in the node
862  *  STAT = stat data
863  *  DEH = Directory Entry Header
864  *  EC = Entry Count
865  *  E = Entry number
866  *  UL = Unsigned Long
867  *  BLKH = BLocK Header
868  *  UNFM = UNForMatted node
869  *  DC = Disk Child
870  *  P = Path
871  *
872  *  These #defines are named by concatenating these abbreviations,
873  *  where first comes the arguments, and last comes the return value,
874  *  of the macro.
875  */
876 
877 #define USE_INODE_GENERATION_COUNTER
878 
879 #define REISERFS_PREALLOCATE
880 #define DISPLACE_NEW_PACKING_LOCALITIES
881 #define PREALLOCATION_SIZE 9
882 
883 /* n must be power of 2 */
884 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
885 
886 /*
887  * to be ok for alpha and others we have to align structures to 8 byte
888  * boundary.
889  * FIXME: do not change 4 by anything else: there is code which relies on that
890  */
891 #define ROUND_UP(x) _ROUND_UP(x,8LL)
892 
893 /*
894  * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
895  * messages.
896  */
897 #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
898 
899 void __reiserfs_warning(struct super_block *s, const char *id,
900 			 const char *func, const char *fmt, ...);
901 #define reiserfs_warning(s, id, fmt, args...) \
902 	 __reiserfs_warning(s, id, __func__, fmt, ##args)
903 /* assertions handling */
904 
905 /* always check a condition and panic if it's false. */
906 #define __RASSERT(cond, scond, format, args...)			\
907 do {									\
908 	if (!(cond))							\
909 		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
910 			       __FILE__ ":%i:%s: " format "\n",		\
911 			       __LINE__, __func__ , ##args);		\
912 } while (0)
913 
914 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
915 
916 #if defined( CONFIG_REISERFS_CHECK )
917 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
918 #else
919 #define RFALSE( cond, format, args... ) do {;} while( 0 )
920 #endif
921 
922 #define CONSTF __attribute_const__
923 /*
924  * Disk Data Structures
925  */
926 
927 /***************************************************************************
928  *                             SUPER BLOCK                                 *
929  ***************************************************************************/
930 
931 /*
932  * Structure of super block on disk, a version of which in RAM is often
933  * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
934  * structure containing fields never written to disk.
935  */
936 #define UNSET_HASH 0	/* Detect hash on disk */
937 #define TEA_HASH  1
938 #define YURA_HASH 2
939 #define R5_HASH   3
940 #define DEFAULT_HASH R5_HASH
941 
942 struct journal_params {
943 	/* where does journal start from on its * device */
944 	__le32 jp_journal_1st_block;
945 
946 	/* journal device st_rdev */
947 	__le32 jp_journal_dev;
948 
949 	/* size of the journal */
950 	__le32 jp_journal_size;
951 
952 	/* max number of blocks in a transaction. */
953 	__le32 jp_journal_trans_max;
954 
955 	/*
956 	 * random value made on fs creation
957 	 * (this was sb_journal_block_count)
958 	 */
959 	__le32 jp_journal_magic;
960 
961 	/* max number of blocks to batch into a trans */
962 	__le32 jp_journal_max_batch;
963 
964 	/* in seconds, how old can an async  commit be */
965 	__le32 jp_journal_max_commit_age;
966 
967 	/* in seconds, how old can a transaction be */
968 	__le32 jp_journal_max_trans_age;
969 };
970 
971 /* this is the super from 3.5.X, where X >= 10 */
972 struct reiserfs_super_block_v1 {
973 	__le32 s_block_count;	/* blocks count         */
974 	__le32 s_free_blocks;	/* free blocks count    */
975 	__le32 s_root_block;	/* root block number    */
976 	struct journal_params s_journal;
977 	__le16 s_blocksize;	/* block size */
978 
979 	/* max size of object id array, see get_objectid() commentary  */
980 	__le16 s_oid_maxsize;
981 	__le16 s_oid_cursize;	/* current size of object id array */
982 
983 	/* this is set to 1 when filesystem was umounted, to 2 - when not */
984 	__le16 s_umount_state;
985 
986 	/*
987 	 * reiserfs magic string indicates that file system is reiserfs:
988 	 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
989 	 */
990 	char s_magic[10];
991 
992 	/*
993 	 * it is set to used by fsck to mark which
994 	 * phase of rebuilding is done
995 	 */
996 	__le16 s_fs_state;
997 	/*
998 	 * indicate, what hash function is being use
999 	 * to sort names in a directory
1000 	 */
1001 	__le32 s_hash_function_code;
1002 	__le16 s_tree_height;	/* height of disk tree */
1003 
1004 	/*
1005 	 * amount of bitmap blocks needed to address
1006 	 * each block of file system
1007 	 */
1008 	__le16 s_bmap_nr;
1009 
1010 	/*
1011 	 * this field is only reliable on filesystem with non-standard journal
1012 	 */
1013 	__le16 s_version;
1014 
1015 	/*
1016 	 * size in blocks of journal area on main device, we need to
1017 	 * keep after making fs with non-standard journal
1018 	 */
1019 	__le16 s_reserved_for_journal;
1020 } __attribute__ ((__packed__));
1021 
1022 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1023 
1024 /* this is the on disk super block */
1025 struct reiserfs_super_block {
1026 	struct reiserfs_super_block_v1 s_v1;
1027 	__le32 s_inode_generation;
1028 
1029 	/* Right now used only by inode-attributes, if enabled */
1030 	__le32 s_flags;
1031 
1032 	unsigned char s_uuid[16];	/* filesystem unique identifier */
1033 	unsigned char s_label[16];	/* filesystem volume label */
1034 	__le16 s_mnt_count;		/* Count of mounts since last fsck */
1035 	__le16 s_max_mnt_count;		/* Maximum mounts before check */
1036 	__le32 s_lastcheck;		/* Timestamp of last fsck */
1037 	__le32 s_check_interval;	/* Interval between checks */
1038 
1039 	/*
1040 	 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1041 	 * so any additions must be updated there as well. */
1042 	char s_unused[76];
1043 } __attribute__ ((__packed__));
1044 
1045 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1046 
1047 #define REISERFS_VERSION_1 0
1048 #define REISERFS_VERSION_2 2
1049 
1050 /* on-disk super block fields converted to cpu form */
1051 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1052 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1053 #define SB_BLOCKSIZE(s) \
1054         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1055 #define SB_BLOCK_COUNT(s) \
1056         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1057 #define SB_FREE_BLOCKS(s) \
1058         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1059 #define SB_REISERFS_MAGIC(s) \
1060         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1061 #define SB_ROOT_BLOCK(s) \
1062         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1063 #define SB_TREE_HEIGHT(s) \
1064         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1065 #define SB_REISERFS_STATE(s) \
1066         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1067 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1068 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1069 
1070 #define PUT_SB_BLOCK_COUNT(s, val) \
1071    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1072 #define PUT_SB_FREE_BLOCKS(s, val) \
1073    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1074 #define PUT_SB_ROOT_BLOCK(s, val) \
1075    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1076 #define PUT_SB_TREE_HEIGHT(s, val) \
1077    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1078 #define PUT_SB_REISERFS_STATE(s, val) \
1079    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1080 #define PUT_SB_VERSION(s, val) \
1081    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1082 #define PUT_SB_BMAP_NR(s, val) \
1083    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1084 
1085 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1086 #define SB_ONDISK_JOURNAL_SIZE(s) \
1087          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1088 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1089          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1090 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1091          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1092 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1093          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1094 
1095 #define is_block_in_log_or_reserved_area(s, block) \
1096          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1097          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
1098          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1099          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1100 
1101 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1102 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1103 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1104 
1105 /*
1106  * ReiserFS leaves the first 64k unused, so that partition labels have
1107  * enough space.  If someone wants to write a fancy bootloader that
1108  * needs more than 64k, let us know, and this will be increased in size.
1109  * This number must be larger than the largest block size on any
1110  * platform, or code will break.  -Hans
1111  */
1112 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1113 #define REISERFS_FIRST_BLOCK unused_define
1114 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1115 
1116 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1117 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1118 
1119 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1120 #define CARRY_ON      0
1121 #define REPEAT_SEARCH -1
1122 #define IO_ERROR      -2
1123 #define NO_DISK_SPACE -3
1124 #define NO_BALANCING_NEEDED  (-4)
1125 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1126 #define QUOTA_EXCEEDED -6
1127 
1128 typedef __u32 b_blocknr_t;
1129 typedef __le32 unp_t;
1130 
1131 struct unfm_nodeinfo {
1132 	unp_t unfm_nodenum;
1133 	unsigned short unfm_freespace;
1134 };
1135 
1136 /* there are two formats of keys: 3.5 and 3.6 */
1137 #define KEY_FORMAT_3_5 0
1138 #define KEY_FORMAT_3_6 1
1139 
1140 /* there are two stat datas */
1141 #define STAT_DATA_V1 0
1142 #define STAT_DATA_V2 1
1143 
1144 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1145 {
1146 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1147 }
1148 
1149 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1150 {
1151 	return sb->s_fs_info;
1152 }
1153 
1154 /*
1155  * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1156  * which overflows on large file systems.
1157  */
1158 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1159 {
1160 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1161 }
1162 
1163 static inline int bmap_would_wrap(unsigned bmap_nr)
1164 {
1165 	return bmap_nr > ((1LL << 16) - 1);
1166 }
1167 
1168 extern const struct xattr_handler *reiserfs_xattr_handlers[];
1169 
1170 /*
1171  * this says about version of key of all items (but stat data) the
1172  * object consists of
1173  */
1174 #define get_inode_item_key_version( inode )                                    \
1175     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1176 
1177 #define set_inode_item_key_version( inode, version )                           \
1178          ({ if((version)==KEY_FORMAT_3_6)                                      \
1179                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
1180             else                                                               \
1181                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1182 
1183 #define get_inode_sd_version(inode)                                            \
1184     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1185 
1186 #define set_inode_sd_version(inode, version)                                   \
1187          ({ if((version)==STAT_DATA_V2)                                        \
1188                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1189             else                                                               \
1190                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1191 
1192 /*
1193  * This is an aggressive tail suppression policy, I am hoping it
1194  * improves our benchmarks. The principle behind it is that percentage
1195  * space saving is what matters, not absolute space saving.  This is
1196  * non-intuitive, but it helps to understand it if you consider that the
1197  * cost to access 4 blocks is not much more than the cost to access 1
1198  * block, if you have to do a seek and rotate.  A tail risks a
1199  * non-linear disk access that is significant as a percentage of total
1200  * time cost for a 4 block file and saves an amount of space that is
1201  * less significant as a percentage of space, or so goes the hypothesis.
1202  * -Hans
1203  */
1204 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1205 (\
1206   (!(n_tail_size)) || \
1207   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1208    ( (n_file_size) >= (n_block_size) * 4 ) || \
1209    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1210      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1211    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1212      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1213    ( ( (n_file_size) >= (n_block_size) ) && \
1214      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1215 )
1216 
1217 /*
1218  * Another strategy for tails, this one means only create a tail if all the
1219  * file would fit into one DIRECT item.
1220  * Primary intention for this one is to increase performance by decreasing
1221  * seeking.
1222 */
1223 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1224 (\
1225   (!(n_tail_size)) || \
1226   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1227 )
1228 
1229 /*
1230  * values for s_umount_state field
1231  */
1232 #define REISERFS_VALID_FS    1
1233 #define REISERFS_ERROR_FS    2
1234 
1235 /*
1236  * there are 5 item types currently
1237  */
1238 #define TYPE_STAT_DATA 0
1239 #define TYPE_INDIRECT 1
1240 #define TYPE_DIRECT 2
1241 #define TYPE_DIRENTRY 3
1242 #define TYPE_MAXTYPE 3
1243 #define TYPE_ANY 15		/* FIXME: comment is required */
1244 
1245 /***************************************************************************
1246  *                       KEY & ITEM HEAD                                   *
1247  ***************************************************************************/
1248 
1249 /* * directories use this key as well as old files */
1250 struct offset_v1 {
1251 	__le32 k_offset;
1252 	__le32 k_uniqueness;
1253 } __attribute__ ((__packed__));
1254 
1255 struct offset_v2 {
1256 	__le64 v;
1257 } __attribute__ ((__packed__));
1258 
1259 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1260 {
1261 	__u8 type = le64_to_cpu(v2->v) >> 60;
1262 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1263 }
1264 
1265 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1266 {
1267 	v2->v =
1268 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1269 }
1270 
1271 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1272 {
1273 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1274 }
1275 
1276 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1277 {
1278 	offset &= (~0ULL >> 4);
1279 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1280 }
1281 
1282 /*
1283  * Key of an item determines its location in the S+tree, and
1284  * is composed of 4 components
1285  */
1286 struct reiserfs_key {
1287 	/* packing locality: by default parent directory object id */
1288 	__le32 k_dir_id;
1289 
1290 	__le32 k_objectid;	/* object identifier */
1291 	union {
1292 		struct offset_v1 k_offset_v1;
1293 		struct offset_v2 k_offset_v2;
1294 	} __attribute__ ((__packed__)) u;
1295 } __attribute__ ((__packed__));
1296 
1297 struct in_core_key {
1298 	/* packing locality: by default parent directory object id */
1299 	__u32 k_dir_id;
1300 	__u32 k_objectid;	/* object identifier */
1301 	__u64 k_offset;
1302 	__u8 k_type;
1303 };
1304 
1305 struct cpu_key {
1306 	struct in_core_key on_disk_key;
1307 	int version;
1308 	/* 3 in all cases but direct2indirect and indirect2direct conversion */
1309 	int key_length;
1310 };
1311 
1312 /*
1313  * Our function for comparing keys can compare keys of different
1314  * lengths.  It takes as a parameter the length of the keys it is to
1315  * compare.  These defines are used in determining what is to be passed
1316  * to it as that parameter.
1317  */
1318 #define REISERFS_FULL_KEY_LEN     4
1319 #define REISERFS_SHORT_KEY_LEN    2
1320 
1321 /* The result of the key compare */
1322 #define FIRST_GREATER 1
1323 #define SECOND_GREATER -1
1324 #define KEYS_IDENTICAL 0
1325 #define KEY_FOUND 1
1326 #define KEY_NOT_FOUND 0
1327 
1328 #define KEY_SIZE (sizeof(struct reiserfs_key))
1329 
1330 /* return values for search_by_key and clones */
1331 #define ITEM_FOUND 1
1332 #define ITEM_NOT_FOUND 0
1333 #define ENTRY_FOUND 1
1334 #define ENTRY_NOT_FOUND 0
1335 #define DIRECTORY_NOT_FOUND -1
1336 #define REGULAR_FILE_FOUND -2
1337 #define DIRECTORY_FOUND -3
1338 #define BYTE_FOUND 1
1339 #define BYTE_NOT_FOUND 0
1340 #define FILE_NOT_FOUND -1
1341 
1342 #define POSITION_FOUND 1
1343 #define POSITION_NOT_FOUND 0
1344 
1345 /* return values for reiserfs_find_entry and search_by_entry_key */
1346 #define NAME_FOUND 1
1347 #define NAME_NOT_FOUND 0
1348 #define GOTO_PREVIOUS_ITEM 2
1349 #define NAME_FOUND_INVISIBLE 3
1350 
1351 /*
1352  * Everything in the filesystem is stored as a set of items.  The
1353  * item head contains the key of the item, its free space (for
1354  * indirect items) and specifies the location of the item itself
1355  * within the block.
1356  */
1357 
1358 struct item_head {
1359 	/*
1360 	 * Everything in the tree is found by searching for it based on
1361 	 * its key.
1362 	 */
1363 	struct reiserfs_key ih_key;
1364 	union {
1365 		/*
1366 		 * The free space in the last unformatted node of an
1367 		 * indirect item if this is an indirect item.  This
1368 		 * equals 0xFFFF iff this is a direct item or stat data
1369 		 * item. Note that the key, not this field, is used to
1370 		 * determine the item type, and thus which field this
1371 		 * union contains.
1372 		 */
1373 		__le16 ih_free_space_reserved;
1374 
1375 		/*
1376 		 * Iff this is a directory item, this field equals the
1377 		 * number of directory entries in the directory item.
1378 		 */
1379 		__le16 ih_entry_count;
1380 	} __attribute__ ((__packed__)) u;
1381 	__le16 ih_item_len;	/* total size of the item body */
1382 
1383 	/* an offset to the item body within the block */
1384 	__le16 ih_item_location;
1385 
1386 	/*
1387 	 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1388 	 * temporary, cleaned after all done
1389 	 */
1390 	__le16 ih_version;
1391 } __attribute__ ((__packed__));
1392 /* size of item header     */
1393 #define IH_SIZE (sizeof(struct item_head))
1394 
1395 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1396 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1397 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1398 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1399 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1400 
1401 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1402 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1403 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1404 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1405 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1406 
1407 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1408 
1409 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1410 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1411 
1412 /*
1413  * these operate on indirect items, where you've got an array of ints
1414  * at a possibly unaligned location.  These are a noop on ia32
1415  *
1416  * p is the array of __u32, i is the index into the array, v is the value
1417  * to store there.
1418  */
1419 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1420 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1421 
1422 /* * in old version uniqueness field shows key type */
1423 #define V1_SD_UNIQUENESS 0
1424 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1425 #define V1_DIRECT_UNIQUENESS 0xffffffff
1426 #define V1_DIRENTRY_UNIQUENESS 500
1427 #define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */
1428 
1429 /* here are conversion routines */
1430 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1431 static inline int uniqueness2type(__u32 uniqueness)
1432 {
1433 	switch ((int)uniqueness) {
1434 	case V1_SD_UNIQUENESS:
1435 		return TYPE_STAT_DATA;
1436 	case V1_INDIRECT_UNIQUENESS:
1437 		return TYPE_INDIRECT;
1438 	case V1_DIRECT_UNIQUENESS:
1439 		return TYPE_DIRECT;
1440 	case V1_DIRENTRY_UNIQUENESS:
1441 		return TYPE_DIRENTRY;
1442 	case V1_ANY_UNIQUENESS:
1443 	default:
1444 		return TYPE_ANY;
1445 	}
1446 }
1447 
1448 static inline __u32 type2uniqueness(int type) CONSTF;
1449 static inline __u32 type2uniqueness(int type)
1450 {
1451 	switch (type) {
1452 	case TYPE_STAT_DATA:
1453 		return V1_SD_UNIQUENESS;
1454 	case TYPE_INDIRECT:
1455 		return V1_INDIRECT_UNIQUENESS;
1456 	case TYPE_DIRECT:
1457 		return V1_DIRECT_UNIQUENESS;
1458 	case TYPE_DIRENTRY:
1459 		return V1_DIRENTRY_UNIQUENESS;
1460 	case TYPE_ANY:
1461 	default:
1462 		return V1_ANY_UNIQUENESS;
1463 	}
1464 }
1465 
1466 /*
1467  * key is pointer to on disk key which is stored in le, result is cpu,
1468  * there is no way to get version of object from key, so, provide
1469  * version to these defines
1470  */
1471 static inline loff_t le_key_k_offset(int version,
1472 				     const struct reiserfs_key *key)
1473 {
1474 	return (version == KEY_FORMAT_3_5) ?
1475 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1476 	    offset_v2_k_offset(&(key->u.k_offset_v2));
1477 }
1478 
1479 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1480 {
1481 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1482 }
1483 
1484 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1485 {
1486 	if (version == KEY_FORMAT_3_5) {
1487 		loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1488 		return uniqueness2type(val);
1489 	} else
1490 		return offset_v2_k_type(&(key->u.k_offset_v2));
1491 }
1492 
1493 static inline loff_t le_ih_k_type(const struct item_head *ih)
1494 {
1495 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1496 }
1497 
1498 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1499 				       loff_t offset)
1500 {
1501 	if (version == KEY_FORMAT_3_5)
1502 		key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1503 	else
1504 		set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1505 }
1506 
1507 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1508 				       loff_t offset)
1509 {
1510 	set_le_key_k_offset(version, key,
1511 			    le_key_k_offset(version, key) + offset);
1512 }
1513 
1514 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1515 {
1516 	add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1517 }
1518 
1519 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1520 {
1521 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1522 }
1523 
1524 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1525 				     int type)
1526 {
1527 	if (version == KEY_FORMAT_3_5) {
1528 		type = type2uniqueness(type);
1529 		key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1530 	} else
1531 	       set_offset_v2_k_type(&key->u.k_offset_v2, type);
1532 }
1533 
1534 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1535 {
1536 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1537 }
1538 
1539 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1540 {
1541 	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1542 }
1543 
1544 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1545 {
1546 	return le_key_k_type(version, key) == TYPE_DIRECT;
1547 }
1548 
1549 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1550 {
1551 	return le_key_k_type(version, key) == TYPE_INDIRECT;
1552 }
1553 
1554 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1555 {
1556 	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1557 }
1558 
1559 /* item header has version.  */
1560 static inline int is_direntry_le_ih(struct item_head *ih)
1561 {
1562 	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1563 }
1564 
1565 static inline int is_direct_le_ih(struct item_head *ih)
1566 {
1567 	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1568 }
1569 
1570 static inline int is_indirect_le_ih(struct item_head *ih)
1571 {
1572 	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1573 }
1574 
1575 static inline int is_statdata_le_ih(struct item_head *ih)
1576 {
1577 	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1578 }
1579 
1580 /* key is pointer to cpu key, result is cpu */
1581 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1582 {
1583 	return key->on_disk_key.k_offset;
1584 }
1585 
1586 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1587 {
1588 	return key->on_disk_key.k_type;
1589 }
1590 
1591 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1592 {
1593 	key->on_disk_key.k_offset = offset;
1594 }
1595 
1596 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1597 {
1598 	key->on_disk_key.k_type = type;
1599 }
1600 
1601 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1602 {
1603 	key->on_disk_key.k_offset--;
1604 }
1605 
1606 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1607 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1608 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1609 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1610 
1611 /* are these used ? */
1612 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1613 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1614 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1615 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1616 
1617 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1618     (!COMP_SHORT_KEYS(ih, key) && \
1619 	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1620 
1621 /* maximal length of item */
1622 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1623 #define MIN_ITEM_LEN 1
1624 
1625 /* object identifier for root dir */
1626 #define REISERFS_ROOT_OBJECTID 2
1627 #define REISERFS_ROOT_PARENT_OBJECTID 1
1628 
1629 extern struct reiserfs_key root_key;
1630 
1631 /*
1632  * Picture represents a leaf of the S+tree
1633  *  ______________________________________________________
1634  * |      |  Array of     |                   |           |
1635  * |Block |  Object-Item  |      F r e e      |  Objects- |
1636  * | head |  Headers      |     S p a c e     |   Items   |
1637  * |______|_______________|___________________|___________|
1638  */
1639 
1640 /*
1641  * Header of a disk block.  More precisely, header of a formatted leaf
1642  * or internal node, and not the header of an unformatted node.
1643  */
1644 struct block_head {
1645 	__le16 blk_level;	/* Level of a block in the tree. */
1646 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1647 	__le16 blk_free_space;	/* Block free space in bytes. */
1648 	__le16 blk_reserved;
1649 	/* dump this in v4/planA */
1650 
1651 	/* kept only for compatibility */
1652 	struct reiserfs_key blk_right_delim_key;
1653 };
1654 
1655 #define BLKH_SIZE                     (sizeof(struct block_head))
1656 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1657 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1658 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1659 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1660 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1661 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1662 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1663 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1664 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1665 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1666 
1667 /* values for blk_level field of the struct block_head */
1668 
1669 /*
1670  * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1671  * It is then  used to see whether the node is still in the tree
1672  */
1673 #define FREE_LEVEL 0
1674 
1675 #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1676 
1677 /*
1678  * Given the buffer head of a formatted node, resolve to the
1679  * block head of that node.
1680  */
1681 #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1682 /* Number of items that are in buffer. */
1683 #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1684 #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1685 #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1686 
1687 #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1688 #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1689 #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1690 
1691 /* Get right delimiting key. -- little endian */
1692 #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1693 
1694 /* Does the buffer contain a disk leaf. */
1695 #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1696 
1697 /* Does the buffer contain a disk internal node */
1698 #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1699 					    && B_LEVEL(bh) <= MAX_HEIGHT)
1700 
1701 /***************************************************************************
1702  *                             STAT DATA                                   *
1703  ***************************************************************************/
1704 
1705 /*
1706  * old stat data is 32 bytes long. We are going to distinguish new one by
1707  * different size
1708 */
1709 struct stat_data_v1 {
1710 	__le16 sd_mode;		/* file type, permissions */
1711 	__le16 sd_nlink;	/* number of hard links */
1712 	__le16 sd_uid;		/* owner */
1713 	__le16 sd_gid;		/* group */
1714 	__le32 sd_size;		/* file size */
1715 	__le32 sd_atime;	/* time of last access */
1716 	__le32 sd_mtime;	/* time file was last modified  */
1717 
1718 	/*
1719 	 * time inode (stat data) was last changed
1720 	 * (except changes to sd_atime and sd_mtime)
1721 	 */
1722 	__le32 sd_ctime;
1723 	union {
1724 		__le32 sd_rdev;
1725 		__le32 sd_blocks;	/* number of blocks file uses */
1726 	} __attribute__ ((__packed__)) u;
1727 
1728 	/*
1729 	 * first byte of file which is stored in a direct item: except that if
1730 	 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1731 	 * direct item.  The existence of this field really grates on me.
1732 	 * Let's replace it with a macro based on sd_size and our tail
1733 	 * suppression policy.  Someday.  -Hans
1734 	 */
1735 	__le32 sd_first_direct_byte;
1736 } __attribute__ ((__packed__));
1737 
1738 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1739 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1740 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1741 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1742 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1743 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1744 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1745 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1746 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1747 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1748 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1749 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1750 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1751 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1752 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1753 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1754 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1755 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1756 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1757 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1758 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1759 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1760 #define sd_v1_first_direct_byte(sdp) \
1761                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
1762 #define set_sd_v1_first_direct_byte(sdp,v) \
1763                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1764 
1765 /* inode flags stored in sd_attrs (nee sd_reserved) */
1766 
1767 /*
1768  * we want common flags to have the same values as in ext2,
1769  * so chattr(1) will work without problems
1770  */
1771 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1772 #define REISERFS_APPEND_FL    FS_APPEND_FL
1773 #define REISERFS_SYNC_FL      FS_SYNC_FL
1774 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
1775 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
1776 #define REISERFS_SECRM_FL     FS_SECRM_FL
1777 #define REISERFS_UNRM_FL      FS_UNRM_FL
1778 #define REISERFS_COMPR_FL     FS_COMPR_FL
1779 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1780 
1781 /* persistent flags that file inherits from the parent directory */
1782 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1783 				REISERFS_SYNC_FL |	\
1784 				REISERFS_NOATIME_FL |	\
1785 				REISERFS_NODUMP_FL |	\
1786 				REISERFS_SECRM_FL |	\
1787 				REISERFS_COMPR_FL |	\
1788 				REISERFS_NOTAIL_FL )
1789 
1790 /*
1791  * Stat Data on disk (reiserfs version of UFS disk inode minus the
1792  * address blocks)
1793  */
1794 struct stat_data {
1795 	__le16 sd_mode;		/* file type, permissions */
1796 	__le16 sd_attrs;	/* persistent inode flags */
1797 	__le32 sd_nlink;	/* number of hard links */
1798 	__le64 sd_size;		/* file size */
1799 	__le32 sd_uid;		/* owner */
1800 	__le32 sd_gid;		/* group */
1801 	__le32 sd_atime;	/* time of last access */
1802 	__le32 sd_mtime;	/* time file was last modified  */
1803 
1804 	/*
1805 	 * time inode (stat data) was last changed
1806 	 * (except changes to sd_atime and sd_mtime)
1807 	 */
1808 	__le32 sd_ctime;
1809 	__le32 sd_blocks;
1810 	union {
1811 		__le32 sd_rdev;
1812 		__le32 sd_generation;
1813 	} __attribute__ ((__packed__)) u;
1814 } __attribute__ ((__packed__));
1815 
1816 /* this is 44 bytes long */
1817 #define SD_SIZE (sizeof(struct stat_data))
1818 #define SD_V2_SIZE              SD_SIZE
1819 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1820 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1821 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1822 /* sd_reserved */
1823 /* set_sd_reserved */
1824 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1825 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1826 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1827 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1828 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1829 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1830 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1831 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1832 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1833 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1834 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1835 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1836 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1837 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1838 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1839 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1840 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1841 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1842 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1843 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1844 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1845 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1846 
1847 /***************************************************************************
1848  *                      DIRECTORY STRUCTURE                                *
1849  ***************************************************************************/
1850 /*
1851  * Picture represents the structure of directory items
1852  * ________________________________________________
1853  * |  Array of     |   |     |        |       |   |
1854  * | directory     |N-1| N-2 | ....   |   1st |0th|
1855  * | entry headers |   |     |        |       |   |
1856  * |_______________|___|_____|________|_______|___|
1857  *                  <----   directory entries         ------>
1858  *
1859  * First directory item has k_offset component 1. We store "." and ".."
1860  * in one item, always, we never split "." and ".." into differing
1861  * items.  This makes, among other things, the code for removing
1862  * directories simpler.
1863  */
1864 #define SD_OFFSET  0
1865 #define SD_UNIQUENESS 0
1866 #define DOT_OFFSET 1
1867 #define DOT_DOT_OFFSET 2
1868 #define DIRENTRY_UNIQUENESS 500
1869 
1870 #define FIRST_ITEM_OFFSET 1
1871 
1872 /*
1873  * Q: How to get key of object pointed to by entry from entry?
1874  *
1875  * A: Each directory entry has its header. This header has deh_dir_id
1876  *    and deh_objectid fields, those are key of object, entry points to
1877  */
1878 
1879 /*
1880  * NOT IMPLEMENTED:
1881  * Directory will someday contain stat data of object
1882  */
1883 
1884 struct reiserfs_de_head {
1885 	__le32 deh_offset;	/* third component of the directory entry key */
1886 
1887 	/*
1888 	 * objectid of the parent directory of the object, that is referenced
1889 	 * by directory entry
1890 	 */
1891 	__le32 deh_dir_id;
1892 
1893 	/* objectid of the object, that is referenced by directory entry */
1894 	__le32 deh_objectid;
1895 	__le16 deh_location;	/* offset of name in the whole item */
1896 
1897 	/*
1898 	 * whether 1) entry contains stat data (for future), and
1899 	 * 2) whether entry is hidden (unlinked)
1900 	 */
1901 	__le16 deh_state;
1902 } __attribute__ ((__packed__));
1903 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1904 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1905 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1906 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1907 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1908 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1909 
1910 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1911 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1912 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1913 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1914 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1915 
1916 /* empty directory contains two entries "." and ".." and their headers */
1917 #define EMPTY_DIR_SIZE \
1918 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1919 
1920 /* old format directories have this size when empty */
1921 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1922 
1923 #define DEH_Statdata 0		/* not used now */
1924 #define DEH_Visible 2
1925 
1926 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1927 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1928 #   define ADDR_UNALIGNED_BITS  (3)
1929 #endif
1930 
1931 /*
1932  * These are only used to manipulate deh_state.
1933  * Because of this, we'll use the ext2_ bit routines,
1934  * since they are little endian
1935  */
1936 #ifdef ADDR_UNALIGNED_BITS
1937 
1938 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1939 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1940 
1941 #   define set_bit_unaligned(nr, addr)	\
1942 	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943 #   define clear_bit_unaligned(nr, addr)	\
1944 	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1945 #   define test_bit_unaligned(nr, addr)	\
1946 	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1947 
1948 #else
1949 
1950 #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1951 #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1952 #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1953 
1954 #endif
1955 
1956 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958 #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1959 #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960 
1961 #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1962 #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963 #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964 
1965 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1966 				   __le32 par_dirid, __le32 par_objid);
1967 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1968 				__le32 par_dirid, __le32 par_objid);
1969 
1970 /* two entries per block (at least) */
1971 #define REISERFS_MAX_NAME(block_size) 255
1972 
1973 /*
1974  * this structure is used for operations on directory entries. It is
1975  * not a disk structure.
1976  *
1977  * When reiserfs_find_entry or search_by_entry_key find directory
1978  * entry, they return filled reiserfs_dir_entry structure
1979  */
1980 struct reiserfs_dir_entry {
1981 	struct buffer_head *de_bh;
1982 	int de_item_num;
1983 	struct item_head *de_ih;
1984 	int de_entry_num;
1985 	struct reiserfs_de_head *de_deh;
1986 	int de_entrylen;
1987 	int de_namelen;
1988 	char *de_name;
1989 	unsigned long *de_gen_number_bit_string;
1990 
1991 	__u32 de_dir_id;
1992 	__u32 de_objectid;
1993 
1994 	struct cpu_key de_entry_key;
1995 };
1996 
1997 /*
1998  * these defines are useful when a particular member of
1999  * a reiserfs_dir_entry is needed
2000  */
2001 
2002 /* pointer to file name, stored in entry */
2003 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2004 				(ih_item_body(bh, ih) + deh_location(deh))
2005 
2006 /* length of name */
2007 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2008 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2009 
2010 /* hash value occupies bits from 7 up to 30 */
2011 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2012 /* generation number occupies 7 bits starting from 0 up to 6 */
2013 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2014 #define MAX_GENERATION_NUMBER  127
2015 
2016 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2017 
2018 /*
2019  * Picture represents an internal node of the reiserfs tree
2020  *  ______________________________________________________
2021  * |      |  Array of     |  Array of         |  Free     |
2022  * |block |    keys       |  pointers         | space     |
2023  * | head |      N        |      N+1          |           |
2024  * |______|_______________|___________________|___________|
2025  */
2026 
2027 /***************************************************************************
2028  *                      DISK CHILD                                         *
2029  ***************************************************************************/
2030 /*
2031  * Disk child pointer:
2032  * The pointer from an internal node of the tree to a node that is on disk.
2033  */
2034 struct disk_child {
2035 	__le32 dc_block_number;	/* Disk child's block number. */
2036 	__le16 dc_size;		/* Disk child's used space.   */
2037 	__le16 dc_reserved;
2038 };
2039 
2040 #define DC_SIZE (sizeof(struct disk_child))
2041 #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
2042 #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
2043 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2044 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2045 
2046 /* Get disk child by buffer header and position in the tree node. */
2047 #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
2048 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2049 
2050 /* Get disk child number by buffer header and position in the tree node. */
2051 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2052 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2053 				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2054 
2055  /* maximal value of field child_size in structure disk_child */
2056  /* child size is the combined size of all items and their headers */
2057 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2058 
2059 /* amount of used space in buffer (not including block head) */
2060 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2061 
2062 /* max and min number of keys in internal node */
2063 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2064 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
2065 
2066 /***************************************************************************
2067  *                      PATH STRUCTURES AND DEFINES                        *
2068  ***************************************************************************/
2069 
2070 /*
2071  * search_by_key fills up the path from the root to the leaf as it descends
2072  * the tree looking for the key.  It uses reiserfs_bread to try to find
2073  * buffers in the cache given their block number.  If it does not find
2074  * them in the cache it reads them from disk.  For each node search_by_key
2075  * finds using reiserfs_bread it then uses bin_search to look through that
2076  * node.  bin_search will find the position of the block_number of the next
2077  * node if it is looking through an internal node.  If it is looking through
2078  * a leaf node bin_search will find the position of the item which has key
2079  * either equal to given key, or which is the maximal key less than the
2080  * given key.
2081  */
2082 
2083 struct path_element {
2084 	/* Pointer to the buffer at the path in the tree. */
2085 	struct buffer_head *pe_buffer;
2086 	/* Position in the tree node which is placed in the buffer above. */
2087 	int pe_position;
2088 };
2089 
2090 /*
2091  * maximal height of a tree. don't change this without
2092  * changing JOURNAL_PER_BALANCE_CNT
2093  */
2094 #define MAX_HEIGHT 5
2095 
2096 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2097 #define EXTENDED_MAX_HEIGHT         7
2098 
2099 /* Must be equal to at least 2. */
2100 #define FIRST_PATH_ELEMENT_OFFSET   2
2101 
2102 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2103 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2104 
2105 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2106 #define MAX_FEB_SIZE 6
2107 
2108 /*
2109  * We need to keep track of who the ancestors of nodes are.  When we
2110  * perform a search we record which nodes were visited while
2111  * descending the tree looking for the node we searched for. This list
2112  * of nodes is called the path.  This information is used while
2113  * performing balancing.  Note that this path information may become
2114  * invalid, and this means we must check it when using it to see if it
2115  * is still valid. You'll need to read search_by_key and the comments
2116  * in it, especially about decrement_counters_in_path(), to understand
2117  * this structure.
2118  *
2119  * Paths make the code so much harder to work with and debug.... An
2120  * enormous number of bugs are due to them, and trying to write or modify
2121  * code that uses them just makes my head hurt.  They are based on an
2122  * excessive effort to avoid disturbing the precious VFS code.:-( The
2123  * gods only know how we are going to SMP the code that uses them.
2124  * znodes are the way!
2125  */
2126 
2127 #define PATH_READA	0x1	/* do read ahead */
2128 #define PATH_READA_BACK 0x2	/* read backwards */
2129 
2130 struct treepath {
2131 	int path_length;	/* Length of the array above.   */
2132 	int reada;
2133 	/* Array of the path elements.  */
2134 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2135 	int pos_in_item;
2136 };
2137 
2138 #define pos_in_item(path) ((path)->pos_in_item)
2139 
2140 #define INITIALIZE_PATH(var) \
2141 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2142 
2143 /* Get path element by path and path position. */
2144 #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
2145 
2146 /* Get buffer header at the path by path and path position. */
2147 #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2148 
2149 /* Get position in the element at the path by path and path position. */
2150 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2151 
2152 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2153 
2154 /*
2155  * you know, to the person who didn't write this the macro name does not
2156  * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
2157  * maybe we should just focus on dumping paths... -Hans
2158  */
2159 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2160 
2161 /*
2162  * in do_balance leaf has h == 0 in contrast with path structure,
2163  * where root has level == 0. That is why we need these defines
2164  */
2165 
2166 /* tb->S[h] */
2167 #define PATH_H_PBUFFER(path, h) \
2168 			PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2169 
2170 /* tb->F[h] or tb->S[0]->b_parent */
2171 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2172 
2173 #define PATH_H_POSITION(path, h) \
2174 			PATH_OFFSET_POSITION(path, path->path_length - (h))
2175 
2176 /* tb->S[h]->b_item_order */
2177 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2178 
2179 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2180 
2181 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2182 {
2183 	return bh->b_data + sizeof(struct block_head);
2184 }
2185 
2186 /* get key from internal node */
2187 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2188 						int item_num)
2189 {
2190 	struct reiserfs_key *key = reiserfs_node_data(bh);
2191 
2192 	return &key[item_num];
2193 }
2194 
2195 /* get the item header from leaf node */
2196 static inline struct item_head *item_head(const struct buffer_head *bh,
2197 					  int item_num)
2198 {
2199 	struct item_head *ih = reiserfs_node_data(bh);
2200 
2201 	return &ih[item_num];
2202 }
2203 
2204 /* get the key from leaf node */
2205 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2206 					    int item_num)
2207 {
2208 	return &item_head(bh, item_num)->ih_key;
2209 }
2210 
2211 static inline void *ih_item_body(const struct buffer_head *bh,
2212 				 const struct item_head *ih)
2213 {
2214 	return bh->b_data + ih_location(ih);
2215 }
2216 
2217 /* get item body from leaf node */
2218 static inline void *item_body(const struct buffer_head *bh, int item_num)
2219 {
2220 	return ih_item_body(bh, item_head(bh, item_num));
2221 }
2222 
2223 static inline struct item_head *tp_item_head(const struct treepath *path)
2224 {
2225 	return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2226 }
2227 
2228 static inline void *tp_item_body(const struct treepath *path)
2229 {
2230 	return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2231 }
2232 
2233 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2234 #define get_item_pos(path) PATH_LAST_POSITION(path)
2235 #define item_moved(ih,path) comp_items(ih, path)
2236 #define path_changed(ih,path) comp_items (ih, path)
2237 
2238 /* array of the entry headers */
2239  /* get item body */
2240 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2241 
2242 /*
2243  * length of the directory entry in directory item. This define
2244  * calculates length of i-th directory entry using directory entry
2245  * locations from dir entry head. When it calculates length of 0-th
2246  * directory entry, it uses length of whole item in place of entry
2247  * location of the non-existent following entry in the calculation.
2248  * See picture above.
2249  */
2250 static inline int entry_length(const struct buffer_head *bh,
2251 			       const struct item_head *ih, int pos_in_item)
2252 {
2253 	struct reiserfs_de_head *deh;
2254 
2255 	deh = B_I_DEH(bh, ih) + pos_in_item;
2256 	if (pos_in_item)
2257 		return deh_location(deh - 1) - deh_location(deh);
2258 
2259 	return ih_item_len(ih) - deh_location(deh);
2260 }
2261 
2262 /***************************************************************************
2263  *                       MISC                                              *
2264  ***************************************************************************/
2265 
2266 /* Size of pointer to the unformatted node. */
2267 #define UNFM_P_SIZE (sizeof(unp_t))
2268 #define UNFM_P_SHIFT 2
2269 
2270 /* in in-core inode key is stored on le form */
2271 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2272 
2273 #define MAX_UL_INT 0xffffffff
2274 #define MAX_INT    0x7ffffff
2275 #define MAX_US_INT 0xffff
2276 
2277 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2278 static inline loff_t max_reiserfs_offset(struct inode *inode)
2279 {
2280 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2281 		return (loff_t) U32_MAX;
2282 
2283 	return (loff_t) ((~(__u64) 0) >> 4);
2284 }
2285 
2286 #define MAX_KEY_OBJECTID	MAX_UL_INT
2287 
2288 #define MAX_B_NUM  MAX_UL_INT
2289 #define MAX_FC_NUM MAX_US_INT
2290 
2291 /* the purpose is to detect overflow of an unsigned short */
2292 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2293 
2294 /*
2295  * The following defines are used in reiserfs_insert_item
2296  * and reiserfs_append_item
2297  */
2298 #define REISERFS_KERNEL_MEM		0	/* kernel memory mode */
2299 #define REISERFS_USER_MEM		1	/* user memory mode */
2300 
2301 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2302 #define get_generation(s) atomic_read (&fs_generation(s))
2303 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2304 #define __fs_changed(gen,s) (gen != get_generation (s))
2305 #define fs_changed(gen,s)		\
2306 ({					\
2307 	reiserfs_cond_resched(s);	\
2308 	__fs_changed(gen, s);		\
2309 })
2310 
2311 /***************************************************************************
2312  *                  FIXATE NODES                                           *
2313  ***************************************************************************/
2314 
2315 #define VI_TYPE_LEFT_MERGEABLE 1
2316 #define VI_TYPE_RIGHT_MERGEABLE 2
2317 
2318 /*
2319  * To make any changes in the tree we always first find node, that
2320  * contains item to be changed/deleted or place to insert a new
2321  * item. We call this node S. To do balancing we need to decide what
2322  * we will shift to left/right neighbor, or to a new node, where new
2323  * item will be etc. To make this analysis simpler we build virtual
2324  * node. Virtual node is an array of items, that will replace items of
2325  * node S. (For instance if we are going to delete an item, virtual
2326  * node does not contain it). Virtual node keeps information about
2327  * item sizes and types, mergeability of first and last items, sizes
2328  * of all entries in directory item. We use this array of items when
2329  * calculating what we can shift to neighbors and how many nodes we
2330  * have to have if we do not any shiftings, if we shift to left/right
2331  * neighbor or to both.
2332  */
2333 struct virtual_item {
2334 	int vi_index;		/* index in the array of item operations */
2335 	unsigned short vi_type;	/* left/right mergeability */
2336 
2337 	/* length of item that it will have after balancing */
2338 	unsigned short vi_item_len;
2339 
2340 	struct item_head *vi_ih;
2341 	const char *vi_item;	/* body of item (old or new) */
2342 	const void *vi_new_data;	/* 0 always but paste mode */
2343 	void *vi_uarea;		/* item specific area */
2344 };
2345 
2346 struct virtual_node {
2347 	/* this is a pointer to the free space in the buffer */
2348 	char *vn_free_ptr;
2349 
2350 	unsigned short vn_nr_item;	/* number of items in virtual node */
2351 
2352 	/*
2353 	 * size of node , that node would have if it has
2354 	 * unlimited size and no balancing is performed
2355 	 */
2356 	short vn_size;
2357 
2358 	/* mode of balancing (paste, insert, delete, cut) */
2359 	short vn_mode;
2360 
2361 	short vn_affected_item_num;
2362 	short vn_pos_in_item;
2363 
2364 	/* item header of inserted item, 0 for other modes */
2365 	struct item_head *vn_ins_ih;
2366 	const void *vn_data;
2367 
2368 	/* array of items (including a new one, excluding item to be deleted) */
2369 	struct virtual_item *vn_vi;
2370 };
2371 
2372 /* used by directory items when creating virtual nodes */
2373 struct direntry_uarea {
2374 	int flags;
2375 	__u16 entry_count;
2376 	__u16 entry_sizes[];
2377 } __attribute__ ((__packed__));
2378 
2379 /***************************************************************************
2380  *                  TREE BALANCE                                           *
2381  ***************************************************************************/
2382 
2383 /*
2384  * This temporary structure is used in tree balance algorithms, and
2385  * constructed as we go to the extent that its various parts are
2386  * needed.  It contains arrays of nodes that can potentially be
2387  * involved in the balancing of node S, and parameters that define how
2388  * each of the nodes must be balanced.  Note that in these algorithms
2389  * for balancing the worst case is to need to balance the current node
2390  * S and the left and right neighbors and all of their parents plus
2391  * create a new node.  We implement S1 balancing for the leaf nodes
2392  * and S0 balancing for the internal nodes (S1 and S0 are defined in
2393  * our papers.)
2394  */
2395 
2396 /* size of the array of buffers to free at end of do_balance */
2397 #define MAX_FREE_BLOCK 7
2398 
2399 /* maximum number of FEB blocknrs on a single level */
2400 #define MAX_AMOUNT_NEEDED 2
2401 
2402 /* someday somebody will prefix every field in this struct with tb_ */
2403 struct tree_balance {
2404 	int tb_mode;
2405 	int need_balance_dirty;
2406 	struct super_block *tb_sb;
2407 	struct reiserfs_transaction_handle *transaction_handle;
2408 	struct treepath *tb_path;
2409 
2410 	/* array of left neighbors of nodes in the path */
2411 	struct buffer_head *L[MAX_HEIGHT];
2412 
2413 	/* array of right neighbors of nodes in the path */
2414 	struct buffer_head *R[MAX_HEIGHT];
2415 
2416 	/* array of fathers of the left neighbors */
2417 	struct buffer_head *FL[MAX_HEIGHT];
2418 
2419 	/* array of fathers of the right neighbors */
2420 	struct buffer_head *FR[MAX_HEIGHT];
2421 	/* array of common parents of center node and its left neighbor */
2422 	struct buffer_head *CFL[MAX_HEIGHT];
2423 
2424 	/* array of common parents of center node and its right neighbor */
2425 	struct buffer_head *CFR[MAX_HEIGHT];
2426 
2427 	/*
2428 	 * array of empty buffers. Number of buffers in array equals
2429 	 * cur_blknum.
2430 	 */
2431 	struct buffer_head *FEB[MAX_FEB_SIZE];
2432 	struct buffer_head *used[MAX_FEB_SIZE];
2433 	struct buffer_head *thrown[MAX_FEB_SIZE];
2434 
2435 	/*
2436 	 * array of number of items which must be shifted to the left in
2437 	 * order to balance the current node; for leaves includes item that
2438 	 * will be partially shifted; for internal nodes, it is the number
2439 	 * of child pointers rather than items. It includes the new item
2440 	 * being created. The code sometimes subtracts one to get the
2441 	 * number of wholly shifted items for other purposes.
2442 	 */
2443 	int lnum[MAX_HEIGHT];
2444 
2445 	/* substitute right for left in comment above */
2446 	int rnum[MAX_HEIGHT];
2447 
2448 	/*
2449 	 * array indexed by height h mapping the key delimiting L[h] and
2450 	 * S[h] to its item number within the node CFL[h]
2451 	 */
2452 	int lkey[MAX_HEIGHT];
2453 
2454 	/* substitute r for l in comment above */
2455 	int rkey[MAX_HEIGHT];
2456 
2457 	/*
2458 	 * the number of bytes by we are trying to add or remove from
2459 	 * S[h]. A negative value means removing.
2460 	 */
2461 	int insert_size[MAX_HEIGHT];
2462 
2463 	/*
2464 	 * number of nodes that will replace node S[h] after balancing
2465 	 * on the level h of the tree.  If 0 then S is being deleted,
2466 	 * if 1 then S is remaining and no new nodes are being created,
2467 	 * if 2 or 3 then 1 or 2 new nodes is being created
2468 	 */
2469 	int blknum[MAX_HEIGHT];
2470 
2471 	/* fields that are used only for balancing leaves of the tree */
2472 
2473 	/* number of empty blocks having been already allocated */
2474 	int cur_blknum;
2475 
2476 	/* number of items that fall into left most node when S[0] splits */
2477 	int s0num;
2478 
2479 	/*
2480 	 * number of bytes which can flow to the left neighbor from the left
2481 	 * most liquid item that cannot be shifted from S[0] entirely
2482 	 * if -1 then nothing will be partially shifted
2483 	 */
2484 	int lbytes;
2485 
2486 	/*
2487 	 * number of bytes which will flow to the right neighbor from the right
2488 	 * most liquid item that cannot be shifted from S[0] entirely
2489 	 * if -1 then nothing will be partially shifted
2490 	 */
2491 	int rbytes;
2492 
2493 
2494 	/*
2495 	 * index into the array of item headers in
2496 	 * S[0] of the affected item
2497 	 */
2498 	int item_pos;
2499 
2500 	/* new nodes allocated to hold what could not fit into S */
2501 	struct buffer_head *S_new[2];
2502 
2503 	/*
2504 	 * number of items that will be placed into nodes in S_new
2505 	 * when S[0] splits
2506 	 */
2507 	int snum[2];
2508 
2509 	/*
2510 	 * number of bytes which flow to nodes in S_new when S[0] splits
2511 	 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2512 	 */
2513 	int sbytes[2];
2514 
2515 	int pos_in_item;
2516 	int zeroes_num;
2517 
2518 	/*
2519 	 * buffers which are to be freed after do_balance finishes
2520 	 * by unfix_nodes
2521 	 */
2522 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2523 
2524 	/*
2525 	 * kmalloced memory. Used to create virtual node and keep
2526 	 * map of dirtied bitmap blocks
2527 	 */
2528 	char *vn_buf;
2529 
2530 	int vn_buf_size;	/* size of the vn_buf */
2531 
2532 	/* VN starts after bitmap of bitmap blocks */
2533 	struct virtual_node *tb_vn;
2534 
2535 	/*
2536 	 * saved value of `reiserfs_generation' counter see
2537 	 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2538 	 */
2539 	int fs_gen;
2540 
2541 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2542 	/*
2543 	 * key pointer, to pass to block allocator or
2544 	 * another low-level subsystem
2545 	 */
2546 	struct in_core_key key;
2547 #endif
2548 };
2549 
2550 /* These are modes of balancing */
2551 
2552 /* When inserting an item. */
2553 #define M_INSERT	'i'
2554 /*
2555  * When inserting into (directories only) or appending onto an already
2556  * existent item.
2557  */
2558 #define M_PASTE		'p'
2559 /* When deleting an item. */
2560 #define M_DELETE	'd'
2561 /* When truncating an item or removing an entry from a (directory) item. */
2562 #define M_CUT		'c'
2563 
2564 /* used when balancing on leaf level skipped (in reiserfsck) */
2565 #define M_INTERNAL	'n'
2566 
2567 /*
2568  * When further balancing is not needed, then do_balance does not need
2569  * to be called.
2570  */
2571 #define M_SKIP_BALANCING		's'
2572 #define M_CONVERT	'v'
2573 
2574 /* modes of leaf_move_items */
2575 #define LEAF_FROM_S_TO_L 0
2576 #define LEAF_FROM_S_TO_R 1
2577 #define LEAF_FROM_R_TO_L 2
2578 #define LEAF_FROM_L_TO_R 3
2579 #define LEAF_FROM_S_TO_SNEW 4
2580 
2581 #define FIRST_TO_LAST 0
2582 #define LAST_TO_FIRST 1
2583 
2584 /*
2585  * used in do_balance for passing parent of node information that has
2586  * been gotten from tb struct
2587  */
2588 struct buffer_info {
2589 	struct tree_balance *tb;
2590 	struct buffer_head *bi_bh;
2591 	struct buffer_head *bi_parent;
2592 	int bi_position;
2593 };
2594 
2595 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2596 {
2597 	return tb ? tb->tb_sb : NULL;
2598 }
2599 
2600 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2601 {
2602 	return bi ? sb_from_tb(bi->tb) : NULL;
2603 }
2604 
2605 /*
2606  * there are 4 types of items: stat data, directory item, indirect, direct.
2607  * +-------------------+------------+--------------+------------+
2608  * |                   |  k_offset  | k_uniqueness | mergeable? |
2609  * +-------------------+------------+--------------+------------+
2610  * |     stat data     |     0      |      0       |   no       |
2611  * +-------------------+------------+--------------+------------+
2612  * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
2613  * | non 1st directory | hash value | UNIQUENESS   |   yes      |
2614  * |     item          |            |              |            |
2615  * +-------------------+------------+--------------+------------+
2616  * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	|
2617  * +-------------------+------------+--------------+------------+
2618  * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
2619  * +-------------------+------------+--------------+------------+
2620  *
2621  * [1] if this is not the first indirect item of the object
2622  * [2] if this is not the first direct item of the object
2623 */
2624 
2625 struct item_operations {
2626 	int (*bytes_number) (struct item_head * ih, int block_size);
2627 	void (*decrement_key) (struct cpu_key *);
2628 	int (*is_left_mergeable) (struct reiserfs_key * ih,
2629 				  unsigned long bsize);
2630 	void (*print_item) (struct item_head *, char *item);
2631 	void (*check_item) (struct item_head *, char *item);
2632 
2633 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2634 			  int is_affected, int insert_size);
2635 	int (*check_left) (struct virtual_item * vi, int free,
2636 			   int start_skip, int end_skip);
2637 	int (*check_right) (struct virtual_item * vi, int free);
2638 	int (*part_size) (struct virtual_item * vi, int from, int to);
2639 	int (*unit_num) (struct virtual_item * vi);
2640 	void (*print_vi) (struct virtual_item * vi);
2641 };
2642 
2643 extern struct item_operations *item_ops[TYPE_ANY + 1];
2644 
2645 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2646 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2647 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2648 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2649 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2650 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2651 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2652 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2653 #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2654 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2655 
2656 #define COMP_SHORT_KEYS comp_short_keys
2657 
2658 /* number of blocks pointed to by the indirect item */
2659 #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2660 
2661 /*
2662  * the used space within the unformatted node corresponding
2663  * to pos within the item pointed to by ih
2664  */
2665 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2666 
2667 /*
2668  * number of bytes contained by the direct item or the
2669  * unformatted nodes the indirect item points to
2670  */
2671 
2672 /* following defines use reiserfs buffer header and item header */
2673 
2674 /* get stat-data */
2675 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2676 
2677 /* this is 3976 for size==4096 */
2678 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2679 
2680 /*
2681  * indirect items consist of entries which contain blocknrs, pos
2682  * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2683  * blocknr contained by the entry pos points to
2684  */
2685 #define B_I_POS_UNFM_POINTER(bh, ih, pos)				\
2686 	le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2687 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\
2688 	(*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2689 
2690 struct reiserfs_iget_args {
2691 	__u32 objectid;
2692 	__u32 dirid;
2693 };
2694 
2695 /***************************************************************************
2696  *                    FUNCTION DECLARATIONS                                *
2697  ***************************************************************************/
2698 
2699 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2700 
2701 #define journal_trans_half(blocksize) \
2702 	((blocksize - sizeof(struct reiserfs_journal_desc) - 12) / sizeof(__u32))
2703 
2704 /* journal.c see journal.c for all the comments here */
2705 
2706 /* first block written in a commit.  */
2707 struct reiserfs_journal_desc {
2708 	__le32 j_trans_id;	/* id of commit */
2709 
2710 	/* length of commit. len +1 is the commit block */
2711 	__le32 j_len;
2712 
2713 	__le32 j_mount_id;	/* mount id of this trans */
2714 	__le32 j_realblock[];	/* real locations for each block */
2715 };
2716 
2717 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2718 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2719 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2720 
2721 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2722 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2723 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2724 
2725 /* last block written in a commit */
2726 struct reiserfs_journal_commit {
2727 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2728 	__le32 j_len;		/* ditto */
2729 	__le32 j_realblock[];	/* real locations for each block */
2730 };
2731 
2732 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2733 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2734 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2735 
2736 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2737 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2738 
2739 /*
2740  * this header block gets written whenever a transaction is considered
2741  * fully flushed, and is more recent than the last fully flushed transaction.
2742  * fully flushed means all the log blocks and all the real blocks are on
2743  * disk, and this transaction does not need to be replayed.
2744  */
2745 struct reiserfs_journal_header {
2746 	/* id of last fully flushed transaction */
2747 	__le32 j_last_flush_trans_id;
2748 
2749 	/* offset in the log of where to start replay after a crash */
2750 	__le32 j_first_unflushed_offset;
2751 
2752 	__le32 j_mount_id;
2753 	/* 12 */ struct journal_params jh_journal;
2754 };
2755 
2756 /* biggest tunable defines are right here */
2757 #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2758 
2759 /* biggest possible single transaction, don't change for now (8/3/99) */
2760 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2761 #define JOURNAL_TRANS_MIN_DEFAULT 256
2762 
2763 /*
2764  * max blocks to batch into one transaction,
2765  * don't make this any bigger than 900
2766  */
2767 #define JOURNAL_MAX_BATCH_DEFAULT   900
2768 #define JOURNAL_MIN_RATIO 2
2769 #define JOURNAL_MAX_COMMIT_AGE 30
2770 #define JOURNAL_MAX_TRANS_AGE 30
2771 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2772 #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2773 					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2774 					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2775 
2776 #ifdef CONFIG_QUOTA
2777 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2778 /* We need to update data and inode (atime) */
2779 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2780 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2781 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2782 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2783 /* same as with INIT */
2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2786 #else
2787 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2788 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2789 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2790 #endif
2791 
2792 /*
2793  * both of these can be as low as 1, or as high as you want.  The min is the
2794  * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2795  * as needed, and released when transactions are committed.  On release, if
2796  * the current number of nodes is > max, the node is freed, otherwise,
2797  * it is put on a free list for faster use later.
2798 */
2799 #define REISERFS_MIN_BITMAP_NODES 10
2800 #define REISERFS_MAX_BITMAP_NODES 100
2801 
2802 /* these are based on journal hash size of 8192 */
2803 #define JBH_HASH_SHIFT 13
2804 #define JBH_HASH_MASK 8191
2805 
2806 #define _jhashfn(sb,block)	\
2807 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2808 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2809 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2810 
2811 /* We need these to make journal.c code more readable */
2812 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2813 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2814 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2815 
2816 enum reiserfs_bh_state_bits {
2817 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2818 	BH_JDirty_wait,
2819 	/*
2820 	 * disk block was taken off free list before being in a
2821 	 * finished transaction, or written to disk. Can be reused immed.
2822 	 */
2823 	BH_JNew,
2824 	BH_JPrepared,
2825 	BH_JRestore_dirty,
2826 	BH_JTest,		/* debugging only will go away */
2827 };
2828 
2829 BUFFER_FNS(JDirty, journaled);
2830 TAS_BUFFER_FNS(JDirty, journaled);
2831 BUFFER_FNS(JDirty_wait, journal_dirty);
2832 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2833 BUFFER_FNS(JNew, journal_new);
2834 TAS_BUFFER_FNS(JNew, journal_new);
2835 BUFFER_FNS(JPrepared, journal_prepared);
2836 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2837 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2838 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2839 BUFFER_FNS(JTest, journal_test);
2840 TAS_BUFFER_FNS(JTest, journal_test);
2841 
2842 /* transaction handle which is passed around for all journal calls */
2843 struct reiserfs_transaction_handle {
2844 	/*
2845 	 * super for this FS when journal_begin was called. saves calls to
2846 	 * reiserfs_get_super also used by nested transactions to make
2847 	 * sure they are nesting on the right FS _must_ be first
2848 	 * in the handle
2849 	 */
2850 	struct super_block *t_super;
2851 
2852 	int t_refcount;
2853 	int t_blocks_logged;	/* number of blocks this writer has logged */
2854 	int t_blocks_allocated;	/* number of blocks this writer allocated */
2855 
2856 	/* sanity check, equals the current trans id */
2857 	unsigned int t_trans_id;
2858 
2859 	void *t_handle_save;	/* save existing current->journal_info */
2860 
2861 	/*
2862 	 * if new block allocation occurres, that block
2863 	 * should be displaced from others
2864 	 */
2865 	unsigned displace_new_blocks:1;
2866 
2867 	struct list_head t_list;
2868 };
2869 
2870 /*
2871  * used to keep track of ordered and tail writes, attached to the buffer
2872  * head through b_journal_head.
2873  */
2874 struct reiserfs_jh {
2875 	struct reiserfs_journal_list *jl;
2876 	struct buffer_head *bh;
2877 	struct list_head list;
2878 };
2879 
2880 void reiserfs_free_jh(struct buffer_head *bh);
2881 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2882 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2883 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2884 		       struct buffer_head *bh);
2885 
2886 static inline int reiserfs_file_data_log(struct inode *inode)
2887 {
2888 	if (reiserfs_data_log(inode->i_sb) ||
2889 	    (REISERFS_I(inode)->i_flags & i_data_log))
2890 		return 1;
2891 	return 0;
2892 }
2893 
2894 static inline int reiserfs_transaction_running(struct super_block *s)
2895 {
2896 	struct reiserfs_transaction_handle *th = current->journal_info;
2897 	if (th && th->t_super == s)
2898 		return 1;
2899 	if (th && th->t_super == NULL)
2900 		BUG();
2901 	return 0;
2902 }
2903 
2904 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2905 {
2906 	return th->t_blocks_allocated - th->t_blocks_logged;
2907 }
2908 
2909 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2910 								    super_block
2911 								    *,
2912 								    int count);
2913 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2914 void reiserfs_vfs_truncate_file(struct inode *inode);
2915 int reiserfs_commit_page(struct inode *inode, struct page *page,
2916 			 unsigned from, unsigned to);
2917 void reiserfs_flush_old_commits(struct super_block *);
2918 int reiserfs_commit_for_inode(struct inode *);
2919 int reiserfs_inode_needs_commit(struct inode *);
2920 void reiserfs_update_inode_transaction(struct inode *);
2921 void reiserfs_wait_on_write_block(struct super_block *s);
2922 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2923 void reiserfs_allow_writes(struct super_block *s);
2924 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2925 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2926 				 int wait);
2927 void reiserfs_restore_prepared_buffer(struct super_block *,
2928 				      struct buffer_head *bh);
2929 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2930 		 unsigned int);
2931 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2932 int journal_release_error(struct reiserfs_transaction_handle *,
2933 			  struct super_block *);
2934 int journal_end(struct reiserfs_transaction_handle *);
2935 int journal_end_sync(struct reiserfs_transaction_handle *);
2936 int journal_mark_freed(struct reiserfs_transaction_handle *,
2937 		       struct super_block *, b_blocknr_t blocknr);
2938 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2939 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2940 			 int bit_nr, int searchall, b_blocknr_t *next);
2941 int journal_begin(struct reiserfs_transaction_handle *,
2942 		  struct super_block *sb, unsigned long);
2943 int journal_join_abort(struct reiserfs_transaction_handle *,
2944 		       struct super_block *sb);
2945 void reiserfs_abort_journal(struct super_block *sb, int errno);
2946 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2947 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2948 				   struct reiserfs_list_bitmap *, unsigned int);
2949 
2950 void reiserfs_schedule_old_flush(struct super_block *s);
2951 void reiserfs_cancel_old_flush(struct super_block *s);
2952 void add_save_link(struct reiserfs_transaction_handle *th,
2953 		   struct inode *inode, int truncate);
2954 int remove_save_link(struct inode *inode, int truncate);
2955 
2956 /* objectid.c */
2957 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2958 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2959 			       __u32 objectid_to_release);
2960 int reiserfs_convert_objectid_map_v1(struct super_block *);
2961 
2962 /* stree.c */
2963 int B_IS_IN_TREE(const struct buffer_head *);
2964 extern void copy_item_head(struct item_head *to,
2965 			   const struct item_head *from);
2966 
2967 /* first key is in cpu form, second - le */
2968 extern int comp_short_keys(const struct reiserfs_key *le_key,
2969 			   const struct cpu_key *cpu_key);
2970 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2971 
2972 /* both are in le form */
2973 extern int comp_le_keys(const struct reiserfs_key *,
2974 			const struct reiserfs_key *);
2975 extern int comp_short_le_keys(const struct reiserfs_key *,
2976 			      const struct reiserfs_key *);
2977 
2978 /* * get key version from on disk key - kludge */
2979 static inline int le_key_version(const struct reiserfs_key *key)
2980 {
2981 	int type;
2982 
2983 	type = offset_v2_k_type(&(key->u.k_offset_v2));
2984 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2985 	    && type != TYPE_DIRENTRY)
2986 		return KEY_FORMAT_3_5;
2987 
2988 	return KEY_FORMAT_3_6;
2989 
2990 }
2991 
2992 static inline void copy_key(struct reiserfs_key *to,
2993 			    const struct reiserfs_key *from)
2994 {
2995 	memcpy(to, from, KEY_SIZE);
2996 }
2997 
2998 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2999 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3000 				    const struct super_block *sb);
3001 int search_by_key(struct super_block *, const struct cpu_key *,
3002 		  struct treepath *, int);
3003 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3004 int search_for_position_by_key(struct super_block *sb,
3005 			       const struct cpu_key *cpu_key,
3006 			       struct treepath *search_path);
3007 extern void decrement_bcount(struct buffer_head *bh);
3008 void decrement_counters_in_path(struct treepath *search_path);
3009 void pathrelse(struct treepath *search_path);
3010 int reiserfs_check_path(struct treepath *p);
3011 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3012 
3013 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3014 			 struct treepath *path,
3015 			 const struct cpu_key *key,
3016 			 struct item_head *ih,
3017 			 struct inode *inode, const char *body);
3018 
3019 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3020 			     struct treepath *path,
3021 			     const struct cpu_key *key,
3022 			     struct inode *inode,
3023 			     const char *body, int paste_size);
3024 
3025 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3026 			   struct treepath *path,
3027 			   struct cpu_key *key,
3028 			   struct inode *inode,
3029 			   struct page *page, loff_t new_file_size);
3030 
3031 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3032 			 struct treepath *path,
3033 			 const struct cpu_key *key,
3034 			 struct inode *inode, struct buffer_head *un_bh);
3035 
3036 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3037 				struct inode *inode, struct reiserfs_key *key);
3038 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3039 			   struct inode *inode);
3040 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3041 			 struct inode *inode, struct page *,
3042 			 int update_timestamps);
3043 
3044 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3045 #define file_size(inode) ((inode)->i_size)
3046 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3047 
3048 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3049 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3050 
3051 void padd_item(char *item, int total_length, int length);
3052 
3053 /* inode.c */
3054 /* args for the create parameter of reiserfs_get_block */
3055 #define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */
3056 #define GET_BLOCK_CREATE 1	 /* add anything you need to find block */
3057 #define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */
3058 #define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */
3059 #define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */
3060 #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
3061 
3062 void reiserfs_read_locked_inode(struct inode *inode,
3063 				struct reiserfs_iget_args *args);
3064 int reiserfs_find_actor(struct inode *inode, void *p);
3065 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3066 void reiserfs_evict_inode(struct inode *inode);
3067 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3068 int reiserfs_get_block(struct inode *inode, sector_t block,
3069 		       struct buffer_head *bh_result, int create);
3070 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3071 				     int fh_len, int fh_type);
3072 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3073 				     int fh_len, int fh_type);
3074 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3075 		       struct inode *parent);
3076 
3077 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3078 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3079 		  int type, int key_length);
3080 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3081 		       int version,
3082 		       loff_t offset, int type, int length, int entry_count);
3083 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3084 
3085 struct reiserfs_security_handle;
3086 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3087 		       struct inode *dir, umode_t mode,
3088 		       const char *symname, loff_t i_size,
3089 		       struct dentry *dentry, struct inode *inode,
3090 		       struct reiserfs_security_handle *security);
3091 
3092 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3093 			     struct inode *inode, loff_t size);
3094 
3095 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3096 				      struct inode *inode)
3097 {
3098 	reiserfs_update_sd_size(th, inode, inode->i_size);
3099 }
3100 
3101 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3102 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3103 		     struct iattr *attr);
3104 
3105 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3106 
3107 /* namei.c */
3108 void reiserfs_init_priv_inode(struct inode *inode);
3109 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3110 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3111 			struct treepath *path, struct reiserfs_dir_entry *de);
3112 struct dentry *reiserfs_get_parent(struct dentry *);
3113 
3114 #ifdef CONFIG_REISERFS_PROC_INFO
3115 int reiserfs_proc_info_init(struct super_block *sb);
3116 int reiserfs_proc_info_done(struct super_block *sb);
3117 int reiserfs_proc_info_global_init(void);
3118 int reiserfs_proc_info_global_done(void);
3119 
3120 #define PROC_EXP( e )   e
3121 
3122 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3123 #define PROC_INFO_MAX( sb, field, value )								\
3124     __PINFO( sb ).field =												\
3125         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3126 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3127 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3128 #define PROC_INFO_BH_STAT( sb, bh, level )							\
3129     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
3130     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
3131     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3132 #else
3133 static inline int reiserfs_proc_info_init(struct super_block *sb)
3134 {
3135 	return 0;
3136 }
3137 
3138 static inline int reiserfs_proc_info_done(struct super_block *sb)
3139 {
3140 	return 0;
3141 }
3142 
3143 static inline int reiserfs_proc_info_global_init(void)
3144 {
3145 	return 0;
3146 }
3147 
3148 static inline int reiserfs_proc_info_global_done(void)
3149 {
3150 	return 0;
3151 }
3152 
3153 #define PROC_EXP( e )
3154 #define VOID_V ( ( void ) 0 )
3155 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3156 #define PROC_INFO_INC( sb, field ) VOID_V
3157 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3158 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3159 #endif
3160 
3161 /* dir.c */
3162 extern const struct inode_operations reiserfs_dir_inode_operations;
3163 extern const struct inode_operations reiserfs_symlink_inode_operations;
3164 extern const struct inode_operations reiserfs_special_inode_operations;
3165 extern const struct file_operations reiserfs_dir_operations;
3166 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3167 
3168 /* tail_conversion.c */
3169 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3170 		    struct treepath *, struct buffer_head *, loff_t);
3171 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3172 		    struct page *, struct treepath *, const struct cpu_key *,
3173 		    loff_t, char *);
3174 void reiserfs_unmap_buffer(struct buffer_head *);
3175 
3176 /* file.c */
3177 extern const struct inode_operations reiserfs_file_inode_operations;
3178 extern const struct inode_operations reiserfs_priv_file_inode_operations;
3179 extern const struct file_operations reiserfs_file_operations;
3180 extern const struct address_space_operations reiserfs_address_space_operations;
3181 
3182 /* fix_nodes.c */
3183 
3184 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3185 	      struct item_head *ins_ih, const void *);
3186 void unfix_nodes(struct tree_balance *);
3187 
3188 /* prints.c */
3189 void __reiserfs_panic(struct super_block *s, const char *id,
3190 		      const char *function, const char *fmt, ...)
3191     __attribute__ ((noreturn));
3192 #define reiserfs_panic(s, id, fmt, args...) \
3193 	__reiserfs_panic(s, id, __func__, fmt, ##args)
3194 void __reiserfs_error(struct super_block *s, const char *id,
3195 		      const char *function, const char *fmt, ...);
3196 #define reiserfs_error(s, id, fmt, args...) \
3197 	 __reiserfs_error(s, id, __func__, fmt, ##args)
3198 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3199 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3200 void print_indirect_item(struct buffer_head *bh, int item_num);
3201 void store_print_tb(struct tree_balance *tb);
3202 void print_cur_tb(char *mes);
3203 void print_de(struct reiserfs_dir_entry *de);
3204 void print_bi(struct buffer_info *bi, char *mes);
3205 #define PRINT_LEAF_ITEMS 1	/* print all items */
3206 #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
3207 #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
3208 void print_block(struct buffer_head *bh, ...);
3209 void print_bmap(struct super_block *s, int silent);
3210 void print_bmap_block(int i, char *data, int size, int silent);
3211 /*void print_super_block (struct super_block * s, char * mes);*/
3212 void print_objectid_map(struct super_block *s);
3213 void print_block_head(struct buffer_head *bh, char *mes);
3214 void check_leaf(struct buffer_head *bh);
3215 void check_internal(struct buffer_head *bh);
3216 void print_statistics(struct super_block *s);
3217 char *reiserfs_hashname(int code);
3218 
3219 /* lbalance.c */
3220 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3221 		    int mov_bytes, struct buffer_head *Snew);
3222 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3223 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3224 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3225 		       int del_num, int del_bytes);
3226 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3227 			  struct item_head * const inserted_item_ih,
3228 			  const char * const inserted_item_body,
3229 			  int zeros_number);
3230 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3231 			  int pos_in_item, int paste_size,
3232 			  const char * const body, int zeros_number);
3233 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3234 			  int pos_in_item, int cut_size);
3235 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3236 			int new_entry_count, struct reiserfs_de_head *new_dehs,
3237 			const char *records, int paste_size);
3238 /* ibalance.c */
3239 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3240 		     struct buffer_head **);
3241 
3242 /* do_balance.c */
3243 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3244 				struct buffer_head *bh, int flag);
3245 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3246 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3247 
3248 void do_balance(struct tree_balance *tb, struct item_head *ih,
3249 		const char *body, int flag);
3250 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3251 				struct buffer_head *bh);
3252 
3253 int get_left_neighbor_position(struct tree_balance *tb, int h);
3254 int get_right_neighbor_position(struct tree_balance *tb, int h);
3255 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3256 		 struct buffer_head *, int);
3257 void make_empty_node(struct buffer_info *);
3258 struct buffer_head *get_FEB(struct tree_balance *);
3259 
3260 /* bitmap.c */
3261 
3262 /*
3263  * structure contains hints for block allocator, and it is a container for
3264  * arguments, such as node, search path, transaction_handle, etc.
3265  */
3266 struct __reiserfs_blocknr_hint {
3267 	/* inode passed to allocator, if we allocate unf. nodes */
3268 	struct inode *inode;
3269 
3270 	sector_t block;		/* file offset, in blocks */
3271 	struct in_core_key key;
3272 
3273 	/*
3274 	 * search path, used by allocator to deternine search_start by
3275 	 * various ways
3276 	 */
3277 	struct treepath *path;
3278 
3279 	/*
3280 	 * transaction handle is needed to log super blocks
3281 	 * and bitmap blocks changes
3282 	 */
3283 	struct reiserfs_transaction_handle *th;
3284 
3285 	b_blocknr_t beg, end;
3286 
3287 	/*
3288 	 * a field used to transfer search start value (block number)
3289 	 * between different block allocator procedures
3290 	 * (determine_search_start() and others)
3291 	 */
3292 	b_blocknr_t search_start;
3293 
3294 	/*
3295 	 * is set in determine_prealloc_size() function,
3296 	 * used by underlayed function that do actual allocation
3297 	 */
3298 	int prealloc_size;
3299 
3300 	/*
3301 	 * the allocator uses different polices for getting disk
3302 	 * space for formatted/unformatted blocks with/without preallocation
3303 	 */
3304 	unsigned formatted_node:1;
3305 	unsigned preallocate:1;
3306 };
3307 
3308 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3309 
3310 int reiserfs_parse_alloc_options(struct super_block *, char *);
3311 void reiserfs_init_alloc_options(struct super_block *s);
3312 
3313 /*
3314  * given a directory, this will tell you what packing locality
3315  * to use for a new object underneat it.  The locality is returned
3316  * in disk byte order (le).
3317  */
3318 __le32 reiserfs_choose_packing(struct inode *dir);
3319 
3320 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3321 int reiserfs_init_bitmap_cache(struct super_block *sb);
3322 void reiserfs_free_bitmap_cache(struct super_block *sb);
3323 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3324 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3325 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3326 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3327 			 b_blocknr_t, int for_unformatted);
3328 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3329 			       int);
3330 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3331 					     b_blocknr_t * new_blocknrs,
3332 					     int amount_needed)
3333 {
3334 	reiserfs_blocknr_hint_t hint = {
3335 		.th = tb->transaction_handle,
3336 		.path = tb->tb_path,
3337 		.inode = NULL,
3338 		.key = tb->key,
3339 		.block = 0,
3340 		.formatted_node = 1
3341 	};
3342 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3343 					  0);
3344 }
3345 
3346 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3347 					    *th, struct inode *inode,
3348 					    b_blocknr_t * new_blocknrs,
3349 					    struct treepath *path,
3350 					    sector_t block)
3351 {
3352 	reiserfs_blocknr_hint_t hint = {
3353 		.th = th,
3354 		.path = path,
3355 		.inode = inode,
3356 		.block = block,
3357 		.formatted_node = 0,
3358 		.preallocate = 0
3359 	};
3360 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3361 }
3362 
3363 #ifdef REISERFS_PREALLOCATE
3364 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3365 					     *th, struct inode *inode,
3366 					     b_blocknr_t * new_blocknrs,
3367 					     struct treepath *path,
3368 					     sector_t block)
3369 {
3370 	reiserfs_blocknr_hint_t hint = {
3371 		.th = th,
3372 		.path = path,
3373 		.inode = inode,
3374 		.block = block,
3375 		.formatted_node = 0,
3376 		.preallocate = 1
3377 	};
3378 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3379 }
3380 
3381 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3382 			       struct inode *inode);
3383 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3384 #endif
3385 
3386 /* hashes.c */
3387 __u32 keyed_hash(const signed char *msg, int len);
3388 __u32 yura_hash(const signed char *msg, int len);
3389 __u32 r5_hash(const signed char *msg, int len);
3390 
3391 #define reiserfs_set_le_bit		__set_bit_le
3392 #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
3393 #define reiserfs_clear_le_bit		__clear_bit_le
3394 #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
3395 #define reiserfs_test_le_bit		test_bit_le
3396 #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
3397 
3398 /*
3399  * sometimes reiserfs_truncate may require to allocate few new blocks
3400  * to perform indirect2direct conversion. People probably used to
3401  * think, that truncate should work without problems on a filesystem
3402  * without free disk space. They may complain that they can not
3403  * truncate due to lack of free disk space. This spare space allows us
3404  * to not worry about it. 500 is probably too much, but it should be
3405  * absolutely safe
3406  */
3407 #define SPARE_SPACE 500
3408 
3409 /* prototypes from ioctl.c */
3410 int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3411 int reiserfs_fileattr_set(struct mnt_idmap *idmap,
3412 			  struct dentry *dentry, struct fileattr *fa);
3413 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3414 long reiserfs_compat_ioctl(struct file *filp,
3415 		   unsigned int cmd, unsigned long arg);
3416 int reiserfs_unpack(struct inode *inode);
3417