1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for 4 * licensing and copyright details 5 */ 6 7 #include <linux/reiserfs_fs.h> 8 9 #include <linux/slab.h> 10 #include <linux/interrupt.h> 11 #include <linux/sched.h> 12 #include <linux/bug.h> 13 #include <linux/workqueue.h> 14 #include <asm/unaligned.h> 15 #include <linux/bitops.h> 16 #include <linux/proc_fs.h> 17 #include <linux/buffer_head.h> 18 19 /* the 32 bit compat definitions with int argument */ 20 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 21 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 22 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 23 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 24 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 25 26 struct reiserfs_journal_list; 27 28 /* bitmasks for i_flags field in reiserfs-specific part of inode */ 29 typedef enum { 30 /* 31 * this says what format of key do all items (but stat data) of 32 * an object have. If this is set, that format is 3.6 otherwise - 3.5 33 */ 34 i_item_key_version_mask = 0x0001, 35 36 /* 37 * If this is unset, object has 3.5 stat data, otherwise, 38 * it has 3.6 stat data with 64bit size, 32bit nlink etc. 39 */ 40 i_stat_data_version_mask = 0x0002, 41 42 /* file might need tail packing on close */ 43 i_pack_on_close_mask = 0x0004, 44 45 /* don't pack tail of file */ 46 i_nopack_mask = 0x0008, 47 48 /* 49 * If either of these are set, "safe link" was created for this 50 * file during truncate or unlink. Safe link is used to avoid 51 * leakage of disk space on crash with some files open, but unlinked. 52 */ 53 i_link_saved_unlink_mask = 0x0010, 54 i_link_saved_truncate_mask = 0x0020, 55 56 i_has_xattr_dir = 0x0040, 57 i_data_log = 0x0080, 58 } reiserfs_inode_flags; 59 60 struct reiserfs_inode_info { 61 __u32 i_key[4]; /* key is still 4 32 bit integers */ 62 63 /* 64 * transient inode flags that are never stored on disk. Bitmasks 65 * for this field are defined above. 66 */ 67 __u32 i_flags; 68 69 /* offset of first byte stored in direct item. */ 70 __u32 i_first_direct_byte; 71 72 /* copy of persistent inode flags read from sd_attrs. */ 73 __u32 i_attrs; 74 75 /* first unused block of a sequence of unused blocks */ 76 int i_prealloc_block; 77 int i_prealloc_count; /* length of that sequence */ 78 79 /* per-transaction list of inodes which have preallocated blocks */ 80 struct list_head i_prealloc_list; 81 82 /* 83 * new_packing_locality is created; new blocks for the contents 84 * of this directory should be displaced 85 */ 86 unsigned new_packing_locality:1; 87 88 /* 89 * we use these for fsync or O_SYNC to decide which transaction 90 * needs to be committed in order for this inode to be properly 91 * flushed 92 */ 93 unsigned int i_trans_id; 94 95 struct reiserfs_journal_list *i_jl; 96 atomic_t openers; 97 struct mutex tailpack; 98 #ifdef CONFIG_REISERFS_FS_XATTR 99 struct rw_semaphore i_xattr_sem; 100 #endif 101 #ifdef CONFIG_QUOTA 102 struct dquot *i_dquot[MAXQUOTAS]; 103 #endif 104 105 struct inode vfs_inode; 106 }; 107 108 typedef enum { 109 reiserfs_attrs_cleared = 0x00000001, 110 } reiserfs_super_block_flags; 111 112 /* 113 * struct reiserfs_super_block accessors/mutators since this is a disk 114 * structure, it will always be in little endian format. 115 */ 116 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 117 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 118 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 119 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 120 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 121 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 122 123 #define sb_jp_journal_1st_block(sbp) \ 124 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 125 #define set_sb_jp_journal_1st_block(sbp,v) \ 126 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 127 #define sb_jp_journal_dev(sbp) \ 128 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 129 #define set_sb_jp_journal_dev(sbp,v) \ 130 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 131 #define sb_jp_journal_size(sbp) \ 132 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 133 #define set_sb_jp_journal_size(sbp,v) \ 134 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 135 #define sb_jp_journal_trans_max(sbp) \ 136 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 137 #define set_sb_jp_journal_trans_max(sbp,v) \ 138 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 139 #define sb_jp_journal_magic(sbp) \ 140 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 141 #define set_sb_jp_journal_magic(sbp,v) \ 142 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 143 #define sb_jp_journal_max_batch(sbp) \ 144 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 145 #define set_sb_jp_journal_max_batch(sbp,v) \ 146 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 147 #define sb_jp_jourmal_max_commit_age(sbp) \ 148 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 149 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 150 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 151 152 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 153 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 154 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 155 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 156 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 157 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 158 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 159 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 160 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 161 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 162 #define sb_hash_function_code(sbp) \ 163 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 164 #define set_sb_hash_function_code(sbp,v) \ 165 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 166 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 167 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 168 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 169 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 170 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 171 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 172 173 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 174 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 175 176 #define sb_reserved_for_journal(sbp) \ 177 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 178 #define set_sb_reserved_for_journal(sbp,v) \ 179 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 180 181 /* LOGGING -- */ 182 183 /* 184 * These all interelate for performance. 185 * 186 * If the journal block count is smaller than n transactions, you lose speed. 187 * I don't know what n is yet, I'm guessing 8-16. 188 * 189 * typical transaction size depends on the application, how often fsync is 190 * called, and how many metadata blocks you dirty in a 30 second period. 191 * The more small files (<16k) you use, the larger your transactions will 192 * be. 193 * 194 * If your journal fills faster than dirty buffers get flushed to disk, it 195 * must flush them before allowing the journal to wrap, which slows things 196 * down. If you need high speed meta data updates, the journal should be 197 * big enough to prevent wrapping before dirty meta blocks get to disk. 198 * 199 * If the batch max is smaller than the transaction max, you'll waste space 200 * at the end of the journal because journal_end sets the next transaction 201 * to start at 0 if the next transaction has any chance of wrapping. 202 * 203 * The large the batch max age, the better the speed, and the more meta 204 * data changes you'll lose after a crash. 205 */ 206 207 /* don't mess with these for a while */ 208 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 209 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 210 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 211 #define JOURNAL_HASH_SIZE 8192 212 213 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 214 #define JOURNAL_NUM_BITMAPS 5 215 216 /* 217 * One of these for every block in every transaction 218 * Each one is in two hash tables. First, a hash of the current transaction, 219 * and after journal_end, a hash of all the in memory transactions. 220 * next and prev are used by the current transaction (journal_hash). 221 * hnext and hprev are used by journal_list_hash. If a block is in more 222 * than one transaction, the journal_list_hash links it in multiple times. 223 * This allows flush_journal_list to remove just the cnode belonging to a 224 * given transaction. 225 */ 226 struct reiserfs_journal_cnode { 227 struct buffer_head *bh; /* real buffer head */ 228 struct super_block *sb; /* dev of real buffer head */ 229 230 /* block number of real buffer head, == 0 when buffer on disk */ 231 __u32 blocknr; 232 233 unsigned long state; 234 235 /* journal list this cnode lives in */ 236 struct reiserfs_journal_list *jlist; 237 238 struct reiserfs_journal_cnode *next; /* next in transaction list */ 239 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 240 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 241 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 242 }; 243 244 struct reiserfs_bitmap_node { 245 int id; 246 char *data; 247 struct list_head list; 248 }; 249 250 struct reiserfs_list_bitmap { 251 struct reiserfs_journal_list *journal_list; 252 struct reiserfs_bitmap_node **bitmaps; 253 }; 254 255 /* 256 * one of these for each transaction. The most important part here is the 257 * j_realblock. this list of cnodes is used to hash all the blocks in all 258 * the commits, to mark all the real buffer heads dirty once all the commits 259 * hit the disk, and to make sure every real block in a transaction is on 260 * disk before allowing the log area to be overwritten 261 */ 262 struct reiserfs_journal_list { 263 unsigned long j_start; 264 unsigned long j_state; 265 unsigned long j_len; 266 atomic_t j_nonzerolen; 267 atomic_t j_commit_left; 268 269 /* all commits older than this on disk */ 270 atomic_t j_older_commits_done; 271 272 struct mutex j_commit_mutex; 273 unsigned int j_trans_id; 274 time_t j_timestamp; 275 struct reiserfs_list_bitmap *j_list_bitmap; 276 struct buffer_head *j_commit_bh; /* commit buffer head */ 277 struct reiserfs_journal_cnode *j_realblock; 278 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 279 /* time ordered list of all active transactions */ 280 struct list_head j_list; 281 282 /* 283 * time ordered list of all transactions we haven't tried 284 * to flush yet 285 */ 286 struct list_head j_working_list; 287 288 /* list of tail conversion targets in need of flush before commit */ 289 struct list_head j_tail_bh_list; 290 291 /* list of data=ordered buffers in need of flush before commit */ 292 struct list_head j_bh_list; 293 int j_refcount; 294 }; 295 296 struct reiserfs_journal { 297 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 298 /* newest journal block */ 299 struct reiserfs_journal_cnode *j_last; 300 301 /* oldest journal block. start here for traverse */ 302 struct reiserfs_journal_cnode *j_first; 303 304 struct block_device *j_dev_bd; 305 fmode_t j_dev_mode; 306 307 /* first block on s_dev of reserved area journal */ 308 int j_1st_reserved_block; 309 310 unsigned long j_state; 311 unsigned int j_trans_id; 312 unsigned long j_mount_id; 313 314 /* start of current waiting commit (index into j_ap_blocks) */ 315 unsigned long j_start; 316 unsigned long j_len; /* length of current waiting commit */ 317 318 /* number of buffers requested by journal_begin() */ 319 unsigned long j_len_alloc; 320 321 atomic_t j_wcount; /* count of writers for current commit */ 322 323 /* batch count. allows turning X transactions into 1 */ 324 unsigned long j_bcount; 325 326 /* first unflushed transactions offset */ 327 unsigned long j_first_unflushed_offset; 328 329 /* last fully flushed journal timestamp */ 330 unsigned j_last_flush_trans_id; 331 332 struct buffer_head *j_header_bh; 333 334 time_t j_trans_start_time; /* time this transaction started */ 335 struct mutex j_mutex; 336 struct mutex j_flush_mutex; 337 338 /* wait for current transaction to finish before starting new one */ 339 wait_queue_head_t j_join_wait; 340 341 atomic_t j_jlock; /* lock for j_join_wait */ 342 int j_list_bitmap_index; /* number of next list bitmap to use */ 343 344 /* no more journal begins allowed. MUST sleep on j_join_wait */ 345 int j_must_wait; 346 347 /* next journal_end will flush all journal list */ 348 int j_next_full_flush; 349 350 /* next journal_end will flush all async commits */ 351 int j_next_async_flush; 352 353 int j_cnode_used; /* number of cnodes on the used list */ 354 int j_cnode_free; /* number of cnodes on the free list */ 355 356 /* max number of blocks in a transaction. */ 357 unsigned int j_trans_max; 358 359 /* max number of blocks to batch into a trans */ 360 unsigned int j_max_batch; 361 362 /* in seconds, how old can an async commit be */ 363 unsigned int j_max_commit_age; 364 365 /* in seconds, how old can a transaction be */ 366 unsigned int j_max_trans_age; 367 368 /* the default for the max commit age */ 369 unsigned int j_default_max_commit_age; 370 371 struct reiserfs_journal_cnode *j_cnode_free_list; 372 373 /* orig pointer returned from vmalloc */ 374 struct reiserfs_journal_cnode *j_cnode_free_orig; 375 376 struct reiserfs_journal_list *j_current_jl; 377 int j_free_bitmap_nodes; 378 int j_used_bitmap_nodes; 379 380 int j_num_lists; /* total number of active transactions */ 381 int j_num_work_lists; /* number that need attention from kreiserfsd */ 382 383 /* debugging to make sure things are flushed in order */ 384 unsigned int j_last_flush_id; 385 386 /* debugging to make sure things are committed in order */ 387 unsigned int j_last_commit_id; 388 389 struct list_head j_bitmap_nodes; 390 struct list_head j_dirty_buffers; 391 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 392 393 /* list of all active transactions */ 394 struct list_head j_journal_list; 395 396 /* lists that haven't been touched by writeback attempts */ 397 struct list_head j_working_list; 398 399 /* hash table for real buffer heads in current trans */ 400 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; 401 402 /* hash table for all the real buffer heads in all the transactions */ 403 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; 404 405 /* array of bitmaps to record the deleted blocks */ 406 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; 407 408 /* list of inodes which have preallocated blocks */ 409 struct list_head j_prealloc_list; 410 int j_persistent_trans; 411 unsigned long j_max_trans_size; 412 unsigned long j_max_batch_size; 413 414 int j_errno; 415 416 /* when flushing ordered buffers, throttle new ordered writers */ 417 struct delayed_work j_work; 418 struct super_block *j_work_sb; 419 atomic_t j_async_throttle; 420 }; 421 422 enum journal_state_bits { 423 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 424 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 425 J_ABORTED, /* set when log is aborted */ 426 }; 427 428 /* ick. magic string to find desc blocks in the journal */ 429 #define JOURNAL_DESC_MAGIC "ReIsErLB" 430 431 typedef __u32(*hashf_t) (const signed char *, int); 432 433 struct reiserfs_bitmap_info { 434 __u32 free_count; 435 }; 436 437 struct proc_dir_entry; 438 439 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 440 typedef unsigned long int stat_cnt_t; 441 typedef struct reiserfs_proc_info_data { 442 spinlock_t lock; 443 int exiting; 444 int max_hash_collisions; 445 446 stat_cnt_t breads; 447 stat_cnt_t bread_miss; 448 stat_cnt_t search_by_key; 449 stat_cnt_t search_by_key_fs_changed; 450 stat_cnt_t search_by_key_restarted; 451 452 stat_cnt_t insert_item_restarted; 453 stat_cnt_t paste_into_item_restarted; 454 stat_cnt_t cut_from_item_restarted; 455 stat_cnt_t delete_solid_item_restarted; 456 stat_cnt_t delete_item_restarted; 457 458 stat_cnt_t leaked_oid; 459 stat_cnt_t leaves_removable; 460 461 /* 462 * balances per level. 463 * Use explicit 5 as MAX_HEIGHT is not visible yet. 464 */ 465 stat_cnt_t balance_at[5]; /* XXX */ 466 /* sbk == search_by_key */ 467 stat_cnt_t sbk_read_at[5]; /* XXX */ 468 stat_cnt_t sbk_fs_changed[5]; 469 stat_cnt_t sbk_restarted[5]; 470 stat_cnt_t items_at[5]; /* XXX */ 471 stat_cnt_t free_at[5]; /* XXX */ 472 stat_cnt_t can_node_be_removed[5]; /* XXX */ 473 long int lnum[5]; /* XXX */ 474 long int rnum[5]; /* XXX */ 475 long int lbytes[5]; /* XXX */ 476 long int rbytes[5]; /* XXX */ 477 stat_cnt_t get_neighbors[5]; 478 stat_cnt_t get_neighbors_restart[5]; 479 stat_cnt_t need_l_neighbor[5]; 480 stat_cnt_t need_r_neighbor[5]; 481 482 stat_cnt_t free_block; 483 struct __scan_bitmap_stats { 484 stat_cnt_t call; 485 stat_cnt_t wait; 486 stat_cnt_t bmap; 487 stat_cnt_t retry; 488 stat_cnt_t in_journal_hint; 489 stat_cnt_t in_journal_nohint; 490 stat_cnt_t stolen; 491 } scan_bitmap; 492 struct __journal_stats { 493 stat_cnt_t in_journal; 494 stat_cnt_t in_journal_bitmap; 495 stat_cnt_t in_journal_reusable; 496 stat_cnt_t lock_journal; 497 stat_cnt_t lock_journal_wait; 498 stat_cnt_t journal_being; 499 stat_cnt_t journal_relock_writers; 500 stat_cnt_t journal_relock_wcount; 501 stat_cnt_t mark_dirty; 502 stat_cnt_t mark_dirty_already; 503 stat_cnt_t mark_dirty_notjournal; 504 stat_cnt_t restore_prepared; 505 stat_cnt_t prepare; 506 stat_cnt_t prepare_retry; 507 } journal; 508 } reiserfs_proc_info_data_t; 509 #else 510 typedef struct reiserfs_proc_info_data { 511 } reiserfs_proc_info_data_t; 512 #endif 513 514 /* Number of quota types we support */ 515 #define REISERFS_MAXQUOTAS 2 516 517 /* reiserfs union of in-core super block data */ 518 struct reiserfs_sb_info { 519 /* Buffer containing the super block */ 520 struct buffer_head *s_sbh; 521 522 /* Pointer to the on-disk super block in the buffer */ 523 struct reiserfs_super_block *s_rs; 524 struct reiserfs_bitmap_info *s_ap_bitmap; 525 526 /* pointer to journal information */ 527 struct reiserfs_journal *s_journal; 528 529 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 530 531 /* Serialize writers access, replace the old bkl */ 532 struct mutex lock; 533 534 /* Owner of the lock (can be recursive) */ 535 struct task_struct *lock_owner; 536 537 /* Depth of the lock, start from -1 like the bkl */ 538 int lock_depth; 539 540 struct workqueue_struct *commit_wq; 541 542 /* Comment? -Hans */ 543 void (*end_io_handler) (struct buffer_head *, int); 544 545 /* 546 * pointer to function which is used to sort names in directory. 547 * Set on mount 548 */ 549 hashf_t s_hash_function; 550 551 /* reiserfs's mount options are set here */ 552 unsigned long s_mount_opt; 553 554 /* This is a structure that describes block allocator options */ 555 struct { 556 /* Bitfield for enable/disable kind of options */ 557 unsigned long bits; 558 559 /* 560 * size started from which we consider file 561 * to be a large one (in blocks) 562 */ 563 unsigned long large_file_size; 564 565 int border; /* percentage of disk, border takes */ 566 567 /* 568 * Minimal file size (in blocks) starting 569 * from which we do preallocations 570 */ 571 int preallocmin; 572 573 /* 574 * Number of blocks we try to prealloc when file 575 * reaches preallocmin size (in blocks) or prealloc_list 576 is empty. 577 */ 578 int preallocsize; 579 } s_alloc_options; 580 581 /* Comment? -Hans */ 582 wait_queue_head_t s_wait; 583 /* increased by one every time the tree gets re-balanced */ 584 atomic_t s_generation_counter; 585 586 /* File system properties. Currently holds on-disk FS format */ 587 unsigned long s_properties; 588 589 /* session statistics */ 590 int s_disk_reads; 591 int s_disk_writes; 592 int s_fix_nodes; 593 int s_do_balance; 594 int s_unneeded_left_neighbor; 595 int s_good_search_by_key_reada; 596 int s_bmaps; 597 int s_bmaps_without_search; 598 int s_direct2indirect; 599 int s_indirect2direct; 600 601 /* 602 * set up when it's ok for reiserfs_read_inode2() to read from 603 * disk inode with nlink==0. Currently this is only used during 604 * finish_unfinished() processing at mount time 605 */ 606 int s_is_unlinked_ok; 607 608 reiserfs_proc_info_data_t s_proc_info_data; 609 struct proc_dir_entry *procdir; 610 611 /* amount of blocks reserved for further allocations */ 612 int reserved_blocks; 613 614 615 /* this lock on now only used to protect reserved_blocks variable */ 616 spinlock_t bitmap_lock; 617 struct dentry *priv_root; /* root of /.reiserfs_priv */ 618 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 619 int j_errno; 620 621 int work_queued; /* non-zero delayed work is queued */ 622 struct delayed_work old_work; /* old transactions flush delayed work */ 623 spinlock_t old_work_lock; /* protects old_work and work_queued */ 624 625 #ifdef CONFIG_QUOTA 626 char *s_qf_names[REISERFS_MAXQUOTAS]; 627 int s_jquota_fmt; 628 #endif 629 char *s_jdev; /* Stored jdev for mount option showing */ 630 #ifdef CONFIG_REISERFS_CHECK 631 632 /* 633 * Detects whether more than one copy of tb exists per superblock 634 * as a means of checking whether do_balance is executing 635 * concurrently against another tree reader/writer on a same 636 * mount point. 637 */ 638 struct tree_balance *cur_tb; 639 #endif 640 }; 641 642 /* Definitions of reiserfs on-disk properties: */ 643 #define REISERFS_3_5 0 644 #define REISERFS_3_6 1 645 #define REISERFS_OLD_FORMAT 2 646 647 /* Mount options */ 648 enum reiserfs_mount_options { 649 /* large tails will be created in a session */ 650 REISERFS_LARGETAIL, 651 /* 652 * small (for files less than block size) tails will 653 * be created in a session 654 */ 655 REISERFS_SMALLTAIL, 656 657 /* replay journal and return 0. Use by fsck */ 658 REPLAYONLY, 659 660 /* 661 * -o conv: causes conversion of old format super block to the 662 * new format. If not specified - old partition will be dealt 663 * with in a manner of 3.5.x 664 */ 665 REISERFS_CONVERT, 666 667 /* 668 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting 669 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this 670 * option is not required. If the normal autodection code can't 671 * determine which hash to use (because both hashes had the same 672 * value for a file) use this option to force a specific hash. 673 * It won't allow you to override the existing hash on the FS, so 674 * if you have a tea hash disk, and mount with -o hash=rupasov, 675 * the mount will fail. 676 */ 677 FORCE_TEA_HASH, /* try to force tea hash on mount */ 678 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 679 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 680 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 681 682 REISERFS_DATA_LOG, 683 REISERFS_DATA_ORDERED, 684 REISERFS_DATA_WRITEBACK, 685 686 /* 687 * used for testing experimental features, makes benchmarking new 688 * features with and without more convenient, should never be used by 689 * users in any code shipped to users (ideally) 690 */ 691 692 REISERFS_NO_BORDER, 693 REISERFS_NO_UNHASHED_RELOCATION, 694 REISERFS_HASHED_RELOCATION, 695 REISERFS_ATTRS, 696 REISERFS_XATTRS_USER, 697 REISERFS_POSIXACL, 698 REISERFS_EXPOSE_PRIVROOT, 699 REISERFS_BARRIER_NONE, 700 REISERFS_BARRIER_FLUSH, 701 702 /* Actions on error */ 703 REISERFS_ERROR_PANIC, 704 REISERFS_ERROR_RO, 705 REISERFS_ERROR_CONTINUE, 706 707 REISERFS_USRQUOTA, /* User quota option specified */ 708 REISERFS_GRPQUOTA, /* Group quota option specified */ 709 710 REISERFS_TEST1, 711 REISERFS_TEST2, 712 REISERFS_TEST3, 713 REISERFS_TEST4, 714 REISERFS_UNSUPPORTED_OPT, 715 }; 716 717 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 718 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 719 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 720 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 721 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 722 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 723 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 724 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 725 726 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 727 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 728 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 729 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 730 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 731 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 732 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 733 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 734 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 735 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 736 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 737 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 738 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 739 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 740 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 741 742 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 743 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 744 745 void reiserfs_file_buffer(struct buffer_head *bh, int list); 746 extern struct file_system_type reiserfs_fs_type; 747 int reiserfs_resize(struct super_block *, unsigned long); 748 749 #define CARRY_ON 0 750 #define SCHEDULE_OCCURRED 1 751 752 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 753 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 754 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 755 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 756 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 757 758 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 759 760 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 761 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 762 *journal) 763 { 764 return test_bit(J_ABORTED, &journal->j_state); 765 } 766 767 /* 768 * Locking primitives. The write lock is a per superblock 769 * special mutex that has properties close to the Big Kernel Lock 770 * which was used in the previous locking scheme. 771 */ 772 void reiserfs_write_lock(struct super_block *s); 773 void reiserfs_write_unlock(struct super_block *s); 774 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 775 void reiserfs_write_lock_nested(struct super_block *s, int depth); 776 777 #ifdef CONFIG_REISERFS_CHECK 778 void reiserfs_lock_check_recursive(struct super_block *s); 779 #else 780 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 781 #endif 782 783 /* 784 * Several mutexes depend on the write lock. 785 * However sometimes we want to relax the write lock while we hold 786 * these mutexes, according to the release/reacquire on schedule() 787 * properties of the Bkl that were used. 788 * Reiserfs performances and locking were based on this scheme. 789 * Now that the write lock is a mutex and not the bkl anymore, doing so 790 * may result in a deadlock: 791 * 792 * A acquire write_lock 793 * A acquire j_commit_mutex 794 * A release write_lock and wait for something 795 * B acquire write_lock 796 * B can't acquire j_commit_mutex and sleep 797 * A can't acquire write lock anymore 798 * deadlock 799 * 800 * What we do here is avoiding such deadlock by playing the same game 801 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 802 * we release the write lock, wait a bit and then retry. 803 * 804 * The mutexes concerned by this hack are: 805 * - The commit mutex of a journal list 806 * - The flush mutex 807 * - The journal lock 808 * - The inode mutex 809 */ 810 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 811 struct super_block *s) 812 { 813 int depth; 814 815 depth = reiserfs_write_unlock_nested(s); 816 mutex_lock(m); 817 reiserfs_write_lock_nested(s, depth); 818 } 819 820 static inline void 821 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 822 struct super_block *s) 823 { 824 int depth; 825 826 depth = reiserfs_write_unlock_nested(s); 827 mutex_lock_nested(m, subclass); 828 reiserfs_write_lock_nested(s, depth); 829 } 830 831 static inline void 832 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 833 { 834 int depth; 835 depth = reiserfs_write_unlock_nested(s); 836 down_read(sem); 837 reiserfs_write_lock_nested(s, depth); 838 } 839 840 /* 841 * When we schedule, we usually want to also release the write lock, 842 * according to the previous bkl based locking scheme of reiserfs. 843 */ 844 static inline void reiserfs_cond_resched(struct super_block *s) 845 { 846 if (need_resched()) { 847 int depth; 848 849 depth = reiserfs_write_unlock_nested(s); 850 schedule(); 851 reiserfs_write_lock_nested(s, depth); 852 } 853 } 854 855 struct fid; 856 857 /* 858 * in reading the #defines, it may help to understand that they employ 859 * the following abbreviations: 860 * 861 * B = Buffer 862 * I = Item header 863 * H = Height within the tree (should be changed to LEV) 864 * N = Number of the item in the node 865 * STAT = stat data 866 * DEH = Directory Entry Header 867 * EC = Entry Count 868 * E = Entry number 869 * UL = Unsigned Long 870 * BLKH = BLocK Header 871 * UNFM = UNForMatted node 872 * DC = Disk Child 873 * P = Path 874 * 875 * These #defines are named by concatenating these abbreviations, 876 * where first comes the arguments, and last comes the return value, 877 * of the macro. 878 */ 879 880 #define USE_INODE_GENERATION_COUNTER 881 882 #define REISERFS_PREALLOCATE 883 #define DISPLACE_NEW_PACKING_LOCALITIES 884 #define PREALLOCATION_SIZE 9 885 886 /* n must be power of 2 */ 887 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 888 889 /* 890 * to be ok for alpha and others we have to align structures to 8 byte 891 * boundary. 892 * FIXME: do not change 4 by anything else: there is code which relies on that 893 */ 894 #define ROUND_UP(x) _ROUND_UP(x,8LL) 895 896 /* 897 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 898 * messages. 899 */ 900 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 901 902 void __reiserfs_warning(struct super_block *s, const char *id, 903 const char *func, const char *fmt, ...); 904 #define reiserfs_warning(s, id, fmt, args...) \ 905 __reiserfs_warning(s, id, __func__, fmt, ##args) 906 /* assertions handling */ 907 908 /* always check a condition and panic if it's false. */ 909 #define __RASSERT(cond, scond, format, args...) \ 910 do { \ 911 if (!(cond)) \ 912 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 913 __FILE__ ":%i:%s: " format "\n", \ 914 __LINE__, __func__ , ##args); \ 915 } while (0) 916 917 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 918 919 #if defined( CONFIG_REISERFS_CHECK ) 920 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 921 #else 922 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 923 #endif 924 925 #define CONSTF __attribute_const__ 926 /* 927 * Disk Data Structures 928 */ 929 930 /*************************************************************************** 931 * SUPER BLOCK * 932 ***************************************************************************/ 933 934 /* 935 * Structure of super block on disk, a version of which in RAM is often 936 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger 937 * structure containing fields never written to disk. 938 */ 939 #define UNSET_HASH 0 /* Detect hash on disk */ 940 #define TEA_HASH 1 941 #define YURA_HASH 2 942 #define R5_HASH 3 943 #define DEFAULT_HASH R5_HASH 944 945 struct journal_params { 946 /* where does journal start from on its * device */ 947 __le32 jp_journal_1st_block; 948 949 /* journal device st_rdev */ 950 __le32 jp_journal_dev; 951 952 /* size of the journal */ 953 __le32 jp_journal_size; 954 955 /* max number of blocks in a transaction. */ 956 __le32 jp_journal_trans_max; 957 958 /* 959 * random value made on fs creation 960 * (this was sb_journal_block_count) 961 */ 962 __le32 jp_journal_magic; 963 964 /* max number of blocks to batch into a trans */ 965 __le32 jp_journal_max_batch; 966 967 /* in seconds, how old can an async commit be */ 968 __le32 jp_journal_max_commit_age; 969 970 /* in seconds, how old can a transaction be */ 971 __le32 jp_journal_max_trans_age; 972 }; 973 974 /* this is the super from 3.5.X, where X >= 10 */ 975 struct reiserfs_super_block_v1 { 976 __le32 s_block_count; /* blocks count */ 977 __le32 s_free_blocks; /* free blocks count */ 978 __le32 s_root_block; /* root block number */ 979 struct journal_params s_journal; 980 __le16 s_blocksize; /* block size */ 981 982 /* max size of object id array, see get_objectid() commentary */ 983 __le16 s_oid_maxsize; 984 __le16 s_oid_cursize; /* current size of object id array */ 985 986 /* this is set to 1 when filesystem was umounted, to 2 - when not */ 987 __le16 s_umount_state; 988 989 /* 990 * reiserfs magic string indicates that file system is reiserfs: 991 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" 992 */ 993 char s_magic[10]; 994 995 /* 996 * it is set to used by fsck to mark which 997 * phase of rebuilding is done 998 */ 999 __le16 s_fs_state; 1000 /* 1001 * indicate, what hash function is being use 1002 * to sort names in a directory 1003 */ 1004 __le32 s_hash_function_code; 1005 __le16 s_tree_height; /* height of disk tree */ 1006 1007 /* 1008 * amount of bitmap blocks needed to address 1009 * each block of file system 1010 */ 1011 __le16 s_bmap_nr; 1012 1013 /* 1014 * this field is only reliable on filesystem with non-standard journal 1015 */ 1016 __le16 s_version; 1017 1018 /* 1019 * size in blocks of journal area on main device, we need to 1020 * keep after making fs with non-standard journal 1021 */ 1022 __le16 s_reserved_for_journal; 1023 } __attribute__ ((__packed__)); 1024 1025 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 1026 1027 /* this is the on disk super block */ 1028 struct reiserfs_super_block { 1029 struct reiserfs_super_block_v1 s_v1; 1030 __le32 s_inode_generation; 1031 1032 /* Right now used only by inode-attributes, if enabled */ 1033 __le32 s_flags; 1034 1035 unsigned char s_uuid[16]; /* filesystem unique identifier */ 1036 unsigned char s_label[16]; /* filesystem volume label */ 1037 __le16 s_mnt_count; /* Count of mounts since last fsck */ 1038 __le16 s_max_mnt_count; /* Maximum mounts before check */ 1039 __le32 s_lastcheck; /* Timestamp of last fsck */ 1040 __le32 s_check_interval; /* Interval between checks */ 1041 1042 /* 1043 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() 1044 * so any additions must be updated there as well. */ 1045 char s_unused[76]; 1046 } __attribute__ ((__packed__)); 1047 1048 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 1049 1050 #define REISERFS_VERSION_1 0 1051 #define REISERFS_VERSION_2 2 1052 1053 /* on-disk super block fields converted to cpu form */ 1054 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 1055 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 1056 #define SB_BLOCKSIZE(s) \ 1057 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 1058 #define SB_BLOCK_COUNT(s) \ 1059 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 1060 #define SB_FREE_BLOCKS(s) \ 1061 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 1062 #define SB_REISERFS_MAGIC(s) \ 1063 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 1064 #define SB_ROOT_BLOCK(s) \ 1065 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 1066 #define SB_TREE_HEIGHT(s) \ 1067 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 1068 #define SB_REISERFS_STATE(s) \ 1069 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 1070 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 1071 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 1072 1073 #define PUT_SB_BLOCK_COUNT(s, val) \ 1074 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 1075 #define PUT_SB_FREE_BLOCKS(s, val) \ 1076 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 1077 #define PUT_SB_ROOT_BLOCK(s, val) \ 1078 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 1079 #define PUT_SB_TREE_HEIGHT(s, val) \ 1080 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 1081 #define PUT_SB_REISERFS_STATE(s, val) \ 1082 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 1083 #define PUT_SB_VERSION(s, val) \ 1084 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 1085 #define PUT_SB_BMAP_NR(s, val) \ 1086 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 1087 1088 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 1089 #define SB_ONDISK_JOURNAL_SIZE(s) \ 1090 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 1091 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 1092 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 1093 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 1094 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 1095 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 1096 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 1097 1098 #define is_block_in_log_or_reserved_area(s, block) \ 1099 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 1100 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 1101 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 1102 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 1103 1104 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 1105 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 1106 int is_reiserfs_jr(struct reiserfs_super_block *rs); 1107 1108 /* 1109 * ReiserFS leaves the first 64k unused, so that partition labels have 1110 * enough space. If someone wants to write a fancy bootloader that 1111 * needs more than 64k, let us know, and this will be increased in size. 1112 * This number must be larger than than the largest block size on any 1113 * platform, or code will break. -Hans 1114 */ 1115 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 1116 #define REISERFS_FIRST_BLOCK unused_define 1117 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 1118 1119 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 1120 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 1121 1122 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 1123 #define CARRY_ON 0 1124 #define REPEAT_SEARCH -1 1125 #define IO_ERROR -2 1126 #define NO_DISK_SPACE -3 1127 #define NO_BALANCING_NEEDED (-4) 1128 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 1129 #define QUOTA_EXCEEDED -6 1130 1131 typedef __u32 b_blocknr_t; 1132 typedef __le32 unp_t; 1133 1134 struct unfm_nodeinfo { 1135 unp_t unfm_nodenum; 1136 unsigned short unfm_freespace; 1137 }; 1138 1139 /* there are two formats of keys: 3.5 and 3.6 */ 1140 #define KEY_FORMAT_3_5 0 1141 #define KEY_FORMAT_3_6 1 1142 1143 /* there are two stat datas */ 1144 #define STAT_DATA_V1 0 1145 #define STAT_DATA_V2 1 1146 1147 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 1148 { 1149 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 1150 } 1151 1152 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 1153 { 1154 return sb->s_fs_info; 1155 } 1156 1157 /* 1158 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 1159 * which overflows on large file systems. 1160 */ 1161 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 1162 { 1163 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 1164 } 1165 1166 static inline int bmap_would_wrap(unsigned bmap_nr) 1167 { 1168 return bmap_nr > ((1LL << 16) - 1); 1169 } 1170 1171 /* 1172 * this says about version of key of all items (but stat data) the 1173 * object consists of 1174 */ 1175 #define get_inode_item_key_version( inode ) \ 1176 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 1177 1178 #define set_inode_item_key_version( inode, version ) \ 1179 ({ if((version)==KEY_FORMAT_3_6) \ 1180 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 1181 else \ 1182 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 1183 1184 #define get_inode_sd_version(inode) \ 1185 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 1186 1187 #define set_inode_sd_version(inode, version) \ 1188 ({ if((version)==STAT_DATA_V2) \ 1189 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1190 else \ 1191 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1192 1193 /* 1194 * This is an aggressive tail suppression policy, I am hoping it 1195 * improves our benchmarks. The principle behind it is that percentage 1196 * space saving is what matters, not absolute space saving. This is 1197 * non-intuitive, but it helps to understand it if you consider that the 1198 * cost to access 4 blocks is not much more than the cost to access 1 1199 * block, if you have to do a seek and rotate. A tail risks a 1200 * non-linear disk access that is significant as a percentage of total 1201 * time cost for a 4 block file and saves an amount of space that is 1202 * less significant as a percentage of space, or so goes the hypothesis. 1203 * -Hans 1204 */ 1205 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1206 (\ 1207 (!(n_tail_size)) || \ 1208 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1209 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1210 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1211 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1212 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1213 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1214 ( ( (n_file_size) >= (n_block_size) ) && \ 1215 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1216 ) 1217 1218 /* 1219 * Another strategy for tails, this one means only create a tail if all the 1220 * file would fit into one DIRECT item. 1221 * Primary intention for this one is to increase performance by decreasing 1222 * seeking. 1223 */ 1224 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1225 (\ 1226 (!(n_tail_size)) || \ 1227 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1228 ) 1229 1230 /* 1231 * values for s_umount_state field 1232 */ 1233 #define REISERFS_VALID_FS 1 1234 #define REISERFS_ERROR_FS 2 1235 1236 /* 1237 * there are 5 item types currently 1238 */ 1239 #define TYPE_STAT_DATA 0 1240 #define TYPE_INDIRECT 1 1241 #define TYPE_DIRECT 2 1242 #define TYPE_DIRENTRY 3 1243 #define TYPE_MAXTYPE 3 1244 #define TYPE_ANY 15 /* FIXME: comment is required */ 1245 1246 /*************************************************************************** 1247 * KEY & ITEM HEAD * 1248 ***************************************************************************/ 1249 1250 /* * directories use this key as well as old files */ 1251 struct offset_v1 { 1252 __le32 k_offset; 1253 __le32 k_uniqueness; 1254 } __attribute__ ((__packed__)); 1255 1256 struct offset_v2 { 1257 __le64 v; 1258 } __attribute__ ((__packed__)); 1259 1260 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1261 { 1262 __u8 type = le64_to_cpu(v2->v) >> 60; 1263 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1264 } 1265 1266 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1267 { 1268 v2->v = 1269 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1270 } 1271 1272 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1273 { 1274 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1275 } 1276 1277 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1278 { 1279 offset &= (~0ULL >> 4); 1280 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1281 } 1282 1283 /* 1284 * Key of an item determines its location in the S+tree, and 1285 * is composed of 4 components 1286 */ 1287 struct reiserfs_key { 1288 /* packing locality: by default parent directory object id */ 1289 __le32 k_dir_id; 1290 1291 __le32 k_objectid; /* object identifier */ 1292 union { 1293 struct offset_v1 k_offset_v1; 1294 struct offset_v2 k_offset_v2; 1295 } __attribute__ ((__packed__)) u; 1296 } __attribute__ ((__packed__)); 1297 1298 struct in_core_key { 1299 /* packing locality: by default parent directory object id */ 1300 __u32 k_dir_id; 1301 __u32 k_objectid; /* object identifier */ 1302 __u64 k_offset; 1303 __u8 k_type; 1304 }; 1305 1306 struct cpu_key { 1307 struct in_core_key on_disk_key; 1308 int version; 1309 /* 3 in all cases but direct2indirect and indirect2direct conversion */ 1310 int key_length; 1311 }; 1312 1313 /* 1314 * Our function for comparing keys can compare keys of different 1315 * lengths. It takes as a parameter the length of the keys it is to 1316 * compare. These defines are used in determining what is to be passed 1317 * to it as that parameter. 1318 */ 1319 #define REISERFS_FULL_KEY_LEN 4 1320 #define REISERFS_SHORT_KEY_LEN 2 1321 1322 /* The result of the key compare */ 1323 #define FIRST_GREATER 1 1324 #define SECOND_GREATER -1 1325 #define KEYS_IDENTICAL 0 1326 #define KEY_FOUND 1 1327 #define KEY_NOT_FOUND 0 1328 1329 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1330 1331 /* return values for search_by_key and clones */ 1332 #define ITEM_FOUND 1 1333 #define ITEM_NOT_FOUND 0 1334 #define ENTRY_FOUND 1 1335 #define ENTRY_NOT_FOUND 0 1336 #define DIRECTORY_NOT_FOUND -1 1337 #define REGULAR_FILE_FOUND -2 1338 #define DIRECTORY_FOUND -3 1339 #define BYTE_FOUND 1 1340 #define BYTE_NOT_FOUND 0 1341 #define FILE_NOT_FOUND -1 1342 1343 #define POSITION_FOUND 1 1344 #define POSITION_NOT_FOUND 0 1345 1346 /* return values for reiserfs_find_entry and search_by_entry_key */ 1347 #define NAME_FOUND 1 1348 #define NAME_NOT_FOUND 0 1349 #define GOTO_PREVIOUS_ITEM 2 1350 #define NAME_FOUND_INVISIBLE 3 1351 1352 /* 1353 * Everything in the filesystem is stored as a set of items. The 1354 * item head contains the key of the item, its free space (for 1355 * indirect items) and specifies the location of the item itself 1356 * within the block. 1357 */ 1358 1359 struct item_head { 1360 /* 1361 * Everything in the tree is found by searching for it based on 1362 * its key. 1363 */ 1364 struct reiserfs_key ih_key; 1365 union { 1366 /* 1367 * The free space in the last unformatted node of an 1368 * indirect item if this is an indirect item. This 1369 * equals 0xFFFF iff this is a direct item or stat data 1370 * item. Note that the key, not this field, is used to 1371 * determine the item type, and thus which field this 1372 * union contains. 1373 */ 1374 __le16 ih_free_space_reserved; 1375 1376 /* 1377 * Iff this is a directory item, this field equals the 1378 * number of directory entries in the directory item. 1379 */ 1380 __le16 ih_entry_count; 1381 } __attribute__ ((__packed__)) u; 1382 __le16 ih_item_len; /* total size of the item body */ 1383 1384 /* an offset to the item body within the block */ 1385 __le16 ih_item_location; 1386 1387 /* 1388 * 0 for all old items, 2 for new ones. Highest bit is set by fsck 1389 * temporary, cleaned after all done 1390 */ 1391 __le16 ih_version; 1392 } __attribute__ ((__packed__)); 1393 /* size of item header */ 1394 #define IH_SIZE (sizeof(struct item_head)) 1395 1396 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1397 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1398 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1399 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1400 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1401 1402 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1403 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1404 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1405 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1406 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1407 1408 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1409 1410 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1411 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1412 1413 /* 1414 * these operate on indirect items, where you've got an array of ints 1415 * at a possibly unaligned location. These are a noop on ia32 1416 * 1417 * p is the array of __u32, i is the index into the array, v is the value 1418 * to store there. 1419 */ 1420 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1421 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1422 1423 /* * in old version uniqueness field shows key type */ 1424 #define V1_SD_UNIQUENESS 0 1425 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1426 #define V1_DIRECT_UNIQUENESS 0xffffffff 1427 #define V1_DIRENTRY_UNIQUENESS 500 1428 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ 1429 1430 /* here are conversion routines */ 1431 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1432 static inline int uniqueness2type(__u32 uniqueness) 1433 { 1434 switch ((int)uniqueness) { 1435 case V1_SD_UNIQUENESS: 1436 return TYPE_STAT_DATA; 1437 case V1_INDIRECT_UNIQUENESS: 1438 return TYPE_INDIRECT; 1439 case V1_DIRECT_UNIQUENESS: 1440 return TYPE_DIRECT; 1441 case V1_DIRENTRY_UNIQUENESS: 1442 return TYPE_DIRENTRY; 1443 case V1_ANY_UNIQUENESS: 1444 default: 1445 return TYPE_ANY; 1446 } 1447 } 1448 1449 static inline __u32 type2uniqueness(int type) CONSTF; 1450 static inline __u32 type2uniqueness(int type) 1451 { 1452 switch (type) { 1453 case TYPE_STAT_DATA: 1454 return V1_SD_UNIQUENESS; 1455 case TYPE_INDIRECT: 1456 return V1_INDIRECT_UNIQUENESS; 1457 case TYPE_DIRECT: 1458 return V1_DIRECT_UNIQUENESS; 1459 case TYPE_DIRENTRY: 1460 return V1_DIRENTRY_UNIQUENESS; 1461 case TYPE_ANY: 1462 default: 1463 return V1_ANY_UNIQUENESS; 1464 } 1465 } 1466 1467 /* 1468 * key is pointer to on disk key which is stored in le, result is cpu, 1469 * there is no way to get version of object from key, so, provide 1470 * version to these defines 1471 */ 1472 static inline loff_t le_key_k_offset(int version, 1473 const struct reiserfs_key *key) 1474 { 1475 return (version == KEY_FORMAT_3_5) ? 1476 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1477 offset_v2_k_offset(&(key->u.k_offset_v2)); 1478 } 1479 1480 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1481 { 1482 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1483 } 1484 1485 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1486 { 1487 if (version == KEY_FORMAT_3_5) { 1488 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); 1489 return uniqueness2type(val); 1490 } else 1491 return offset_v2_k_type(&(key->u.k_offset_v2)); 1492 } 1493 1494 static inline loff_t le_ih_k_type(const struct item_head *ih) 1495 { 1496 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1497 } 1498 1499 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1500 loff_t offset) 1501 { 1502 if (version == KEY_FORMAT_3_5) 1503 key->u.k_offset_v1.k_offset = cpu_to_le32(offset); 1504 else 1505 set_offset_v2_k_offset(&key->u.k_offset_v2, offset); 1506 } 1507 1508 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, 1509 loff_t offset) 1510 { 1511 set_le_key_k_offset(version, key, 1512 le_key_k_offset(version, key) + offset); 1513 } 1514 1515 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) 1516 { 1517 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1518 } 1519 1520 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1521 { 1522 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1523 } 1524 1525 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1526 int type) 1527 { 1528 if (version == KEY_FORMAT_3_5) { 1529 type = type2uniqueness(type); 1530 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); 1531 } else 1532 set_offset_v2_k_type(&key->u.k_offset_v2, type); 1533 } 1534 1535 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1536 { 1537 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1538 } 1539 1540 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1541 { 1542 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1543 } 1544 1545 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1546 { 1547 return le_key_k_type(version, key) == TYPE_DIRECT; 1548 } 1549 1550 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1551 { 1552 return le_key_k_type(version, key) == TYPE_INDIRECT; 1553 } 1554 1555 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1556 { 1557 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1558 } 1559 1560 /* item header has version. */ 1561 static inline int is_direntry_le_ih(struct item_head *ih) 1562 { 1563 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1564 } 1565 1566 static inline int is_direct_le_ih(struct item_head *ih) 1567 { 1568 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1569 } 1570 1571 static inline int is_indirect_le_ih(struct item_head *ih) 1572 { 1573 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1574 } 1575 1576 static inline int is_statdata_le_ih(struct item_head *ih) 1577 { 1578 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1579 } 1580 1581 /* key is pointer to cpu key, result is cpu */ 1582 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1583 { 1584 return key->on_disk_key.k_offset; 1585 } 1586 1587 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1588 { 1589 return key->on_disk_key.k_type; 1590 } 1591 1592 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1593 { 1594 key->on_disk_key.k_offset = offset; 1595 } 1596 1597 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1598 { 1599 key->on_disk_key.k_type = type; 1600 } 1601 1602 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1603 { 1604 key->on_disk_key.k_offset--; 1605 } 1606 1607 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1608 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1609 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1610 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1611 1612 /* are these used ? */ 1613 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1614 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1615 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1616 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1617 1618 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1619 (!COMP_SHORT_KEYS(ih, key) && \ 1620 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1621 1622 /* maximal length of item */ 1623 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1624 #define MIN_ITEM_LEN 1 1625 1626 /* object identifier for root dir */ 1627 #define REISERFS_ROOT_OBJECTID 2 1628 #define REISERFS_ROOT_PARENT_OBJECTID 1 1629 1630 extern struct reiserfs_key root_key; 1631 1632 /* 1633 * Picture represents a leaf of the S+tree 1634 * ______________________________________________________ 1635 * | | Array of | | | 1636 * |Block | Object-Item | F r e e | Objects- | 1637 * | head | Headers | S p a c e | Items | 1638 * |______|_______________|___________________|___________| 1639 */ 1640 1641 /* 1642 * Header of a disk block. More precisely, header of a formatted leaf 1643 * or internal node, and not the header of an unformatted node. 1644 */ 1645 struct block_head { 1646 __le16 blk_level; /* Level of a block in the tree. */ 1647 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1648 __le16 blk_free_space; /* Block free space in bytes. */ 1649 __le16 blk_reserved; 1650 /* dump this in v4/planA */ 1651 1652 /* kept only for compatibility */ 1653 struct reiserfs_key blk_right_delim_key; 1654 }; 1655 1656 #define BLKH_SIZE (sizeof(struct block_head)) 1657 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1658 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1659 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1660 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1661 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1662 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1663 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1664 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1665 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1666 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1667 1668 /* values for blk_level field of the struct block_head */ 1669 1670 /* 1671 * When node gets removed from the tree its blk_level is set to FREE_LEVEL. 1672 * It is then used to see whether the node is still in the tree 1673 */ 1674 #define FREE_LEVEL 0 1675 1676 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1677 1678 /* 1679 * Given the buffer head of a formatted node, resolve to the 1680 * block head of that node. 1681 */ 1682 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1683 /* Number of items that are in buffer. */ 1684 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1685 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1686 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1687 1688 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1689 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1690 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1691 1692 /* Get right delimiting key. -- little endian */ 1693 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1694 1695 /* Does the buffer contain a disk leaf. */ 1696 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1697 1698 /* Does the buffer contain a disk internal node */ 1699 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1700 && B_LEVEL(bh) <= MAX_HEIGHT) 1701 1702 /*************************************************************************** 1703 * STAT DATA * 1704 ***************************************************************************/ 1705 1706 /* 1707 * old stat data is 32 bytes long. We are going to distinguish new one by 1708 * different size 1709 */ 1710 struct stat_data_v1 { 1711 __le16 sd_mode; /* file type, permissions */ 1712 __le16 sd_nlink; /* number of hard links */ 1713 __le16 sd_uid; /* owner */ 1714 __le16 sd_gid; /* group */ 1715 __le32 sd_size; /* file size */ 1716 __le32 sd_atime; /* time of last access */ 1717 __le32 sd_mtime; /* time file was last modified */ 1718 1719 /* 1720 * time inode (stat data) was last changed 1721 * (except changes to sd_atime and sd_mtime) 1722 */ 1723 __le32 sd_ctime; 1724 union { 1725 __le32 sd_rdev; 1726 __le32 sd_blocks; /* number of blocks file uses */ 1727 } __attribute__ ((__packed__)) u; 1728 1729 /* 1730 * first byte of file which is stored in a direct item: except that if 1731 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no 1732 * direct item. The existence of this field really grates on me. 1733 * Let's replace it with a macro based on sd_size and our tail 1734 * suppression policy. Someday. -Hans 1735 */ 1736 __le32 sd_first_direct_byte; 1737 } __attribute__ ((__packed__)); 1738 1739 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1740 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1741 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1742 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1743 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1744 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1745 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1746 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1747 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1748 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1749 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1750 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1751 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1752 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1753 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1754 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1755 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1756 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1757 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1758 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1759 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1760 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1761 #define sd_v1_first_direct_byte(sdp) \ 1762 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1763 #define set_sd_v1_first_direct_byte(sdp,v) \ 1764 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1765 1766 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1767 1768 /* 1769 * we want common flags to have the same values as in ext2, 1770 * so chattr(1) will work without problems 1771 */ 1772 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1773 #define REISERFS_APPEND_FL FS_APPEND_FL 1774 #define REISERFS_SYNC_FL FS_SYNC_FL 1775 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1776 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1777 #define REISERFS_SECRM_FL FS_SECRM_FL 1778 #define REISERFS_UNRM_FL FS_UNRM_FL 1779 #define REISERFS_COMPR_FL FS_COMPR_FL 1780 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1781 1782 /* persistent flags that file inherits from the parent directory */ 1783 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1784 REISERFS_SYNC_FL | \ 1785 REISERFS_NOATIME_FL | \ 1786 REISERFS_NODUMP_FL | \ 1787 REISERFS_SECRM_FL | \ 1788 REISERFS_COMPR_FL | \ 1789 REISERFS_NOTAIL_FL ) 1790 1791 /* 1792 * Stat Data on disk (reiserfs version of UFS disk inode minus the 1793 * address blocks) 1794 */ 1795 struct stat_data { 1796 __le16 sd_mode; /* file type, permissions */ 1797 __le16 sd_attrs; /* persistent inode flags */ 1798 __le32 sd_nlink; /* number of hard links */ 1799 __le64 sd_size; /* file size */ 1800 __le32 sd_uid; /* owner */ 1801 __le32 sd_gid; /* group */ 1802 __le32 sd_atime; /* time of last access */ 1803 __le32 sd_mtime; /* time file was last modified */ 1804 1805 /* 1806 * time inode (stat data) was last changed 1807 * (except changes to sd_atime and sd_mtime) 1808 */ 1809 __le32 sd_ctime; 1810 __le32 sd_blocks; 1811 union { 1812 __le32 sd_rdev; 1813 __le32 sd_generation; 1814 } __attribute__ ((__packed__)) u; 1815 } __attribute__ ((__packed__)); 1816 1817 /* this is 44 bytes long */ 1818 #define SD_SIZE (sizeof(struct stat_data)) 1819 #define SD_V2_SIZE SD_SIZE 1820 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1821 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1822 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1823 /* sd_reserved */ 1824 /* set_sd_reserved */ 1825 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1826 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1827 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1828 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1829 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1830 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1831 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1832 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1833 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1834 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1835 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1836 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1837 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1838 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1839 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1840 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1841 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1842 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1843 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1844 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1845 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1846 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1847 1848 /*************************************************************************** 1849 * DIRECTORY STRUCTURE * 1850 ***************************************************************************/ 1851 /* 1852 * Picture represents the structure of directory items 1853 * ________________________________________________ 1854 * | Array of | | | | | | 1855 * | directory |N-1| N-2 | .... | 1st |0th| 1856 * | entry headers | | | | | | 1857 * |_______________|___|_____|________|_______|___| 1858 * <---- directory entries ------> 1859 * 1860 * First directory item has k_offset component 1. We store "." and ".." 1861 * in one item, always, we never split "." and ".." into differing 1862 * items. This makes, among other things, the code for removing 1863 * directories simpler. 1864 */ 1865 #define SD_OFFSET 0 1866 #define SD_UNIQUENESS 0 1867 #define DOT_OFFSET 1 1868 #define DOT_DOT_OFFSET 2 1869 #define DIRENTRY_UNIQUENESS 500 1870 1871 #define FIRST_ITEM_OFFSET 1 1872 1873 /* 1874 * Q: How to get key of object pointed to by entry from entry? 1875 * 1876 * A: Each directory entry has its header. This header has deh_dir_id 1877 * and deh_objectid fields, those are key of object, entry points to 1878 */ 1879 1880 /* 1881 * NOT IMPLEMENTED: 1882 * Directory will someday contain stat data of object 1883 */ 1884 1885 struct reiserfs_de_head { 1886 __le32 deh_offset; /* third component of the directory entry key */ 1887 1888 /* 1889 * objectid of the parent directory of the object, that is referenced 1890 * by directory entry 1891 */ 1892 __le32 deh_dir_id; 1893 1894 /* objectid of the object, that is referenced by directory entry */ 1895 __le32 deh_objectid; 1896 __le16 deh_location; /* offset of name in the whole item */ 1897 1898 /* 1899 * whether 1) entry contains stat data (for future), and 1900 * 2) whether entry is hidden (unlinked) 1901 */ 1902 __le16 deh_state; 1903 } __attribute__ ((__packed__)); 1904 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1905 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1906 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1907 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1908 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1909 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1910 1911 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1912 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1913 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1914 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1915 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1916 1917 /* empty directory contains two entries "." and ".." and their headers */ 1918 #define EMPTY_DIR_SIZE \ 1919 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1)) 1920 1921 /* old format directories have this size when empty */ 1922 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1923 1924 #define DEH_Statdata 0 /* not used now */ 1925 #define DEH_Visible 2 1926 1927 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1928 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1929 # define ADDR_UNALIGNED_BITS (3) 1930 #endif 1931 1932 /* 1933 * These are only used to manipulate deh_state. 1934 * Because of this, we'll use the ext2_ bit routines, 1935 * since they are little endian 1936 */ 1937 #ifdef ADDR_UNALIGNED_BITS 1938 1939 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1940 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1941 1942 # define set_bit_unaligned(nr, addr) \ 1943 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1944 # define clear_bit_unaligned(nr, addr) \ 1945 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1946 # define test_bit_unaligned(nr, addr) \ 1947 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1948 1949 #else 1950 1951 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1952 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1953 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1954 1955 #endif 1956 1957 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1958 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1959 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1960 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1961 1962 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1963 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1964 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1965 1966 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1967 __le32 par_dirid, __le32 par_objid); 1968 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1969 __le32 par_dirid, __le32 par_objid); 1970 1971 /* two entries per block (at least) */ 1972 #define REISERFS_MAX_NAME(block_size) 255 1973 1974 /* 1975 * this structure is used for operations on directory entries. It is 1976 * not a disk structure. 1977 * 1978 * When reiserfs_find_entry or search_by_entry_key find directory 1979 * entry, they return filled reiserfs_dir_entry structure 1980 */ 1981 struct reiserfs_dir_entry { 1982 struct buffer_head *de_bh; 1983 int de_item_num; 1984 struct item_head *de_ih; 1985 int de_entry_num; 1986 struct reiserfs_de_head *de_deh; 1987 int de_entrylen; 1988 int de_namelen; 1989 char *de_name; 1990 unsigned long *de_gen_number_bit_string; 1991 1992 __u32 de_dir_id; 1993 __u32 de_objectid; 1994 1995 struct cpu_key de_entry_key; 1996 }; 1997 1998 /* 1999 * these defines are useful when a particular member of 2000 * a reiserfs_dir_entry is needed 2001 */ 2002 2003 /* pointer to file name, stored in entry */ 2004 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ 2005 (ih_item_body(bh, ih) + deh_location(deh)) 2006 2007 /* length of name */ 2008 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 2009 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 2010 2011 /* hash value occupies bits from 7 up to 30 */ 2012 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 2013 /* generation number occupies 7 bits starting from 0 up to 6 */ 2014 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 2015 #define MAX_GENERATION_NUMBER 127 2016 2017 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 2018 2019 /* 2020 * Picture represents an internal node of the reiserfs tree 2021 * ______________________________________________________ 2022 * | | Array of | Array of | Free | 2023 * |block | keys | pointers | space | 2024 * | head | N | N+1 | | 2025 * |______|_______________|___________________|___________| 2026 */ 2027 2028 /*************************************************************************** 2029 * DISK CHILD * 2030 ***************************************************************************/ 2031 /* 2032 * Disk child pointer: 2033 * The pointer from an internal node of the tree to a node that is on disk. 2034 */ 2035 struct disk_child { 2036 __le32 dc_block_number; /* Disk child's block number. */ 2037 __le16 dc_size; /* Disk child's used space. */ 2038 __le16 dc_reserved; 2039 }; 2040 2041 #define DC_SIZE (sizeof(struct disk_child)) 2042 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 2043 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 2044 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 2045 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 2046 2047 /* Get disk child by buffer header and position in the tree node. */ 2048 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 2049 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 2050 2051 /* Get disk child number by buffer header and position in the tree node. */ 2052 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 2053 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 2054 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 2055 2056 /* maximal value of field child_size in structure disk_child */ 2057 /* child size is the combined size of all items and their headers */ 2058 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 2059 2060 /* amount of used space in buffer (not including block head) */ 2061 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 2062 2063 /* max and min number of keys in internal node */ 2064 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 2065 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 2066 2067 /*************************************************************************** 2068 * PATH STRUCTURES AND DEFINES * 2069 ***************************************************************************/ 2070 2071 /* 2072 * search_by_key fills up the path from the root to the leaf as it descends 2073 * the tree looking for the key. It uses reiserfs_bread to try to find 2074 * buffers in the cache given their block number. If it does not find 2075 * them in the cache it reads them from disk. For each node search_by_key 2076 * finds using reiserfs_bread it then uses bin_search to look through that 2077 * node. bin_search will find the position of the block_number of the next 2078 * node if it is looking through an internal node. If it is looking through 2079 * a leaf node bin_search will find the position of the item which has key 2080 * either equal to given key, or which is the maximal key less than the 2081 * given key. 2082 */ 2083 2084 struct path_element { 2085 /* Pointer to the buffer at the path in the tree. */ 2086 struct buffer_head *pe_buffer; 2087 /* Position in the tree node which is placed in the buffer above. */ 2088 int pe_position; 2089 }; 2090 2091 /* 2092 * maximal height of a tree. don't change this without 2093 * changing JOURNAL_PER_BALANCE_CNT 2094 */ 2095 #define MAX_HEIGHT 5 2096 2097 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 2098 #define EXTENDED_MAX_HEIGHT 7 2099 2100 /* Must be equal to at least 2. */ 2101 #define FIRST_PATH_ELEMENT_OFFSET 2 2102 2103 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 2104 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 2105 2106 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 2107 #define MAX_FEB_SIZE 6 2108 2109 /* 2110 * We need to keep track of who the ancestors of nodes are. When we 2111 * perform a search we record which nodes were visited while 2112 * descending the tree looking for the node we searched for. This list 2113 * of nodes is called the path. This information is used while 2114 * performing balancing. Note that this path information may become 2115 * invalid, and this means we must check it when using it to see if it 2116 * is still valid. You'll need to read search_by_key and the comments 2117 * in it, especially about decrement_counters_in_path(), to understand 2118 * this structure. 2119 * 2120 * Paths make the code so much harder to work with and debug.... An 2121 * enormous number of bugs are due to them, and trying to write or modify 2122 * code that uses them just makes my head hurt. They are based on an 2123 * excessive effort to avoid disturbing the precious VFS code.:-( The 2124 * gods only know how we are going to SMP the code that uses them. 2125 * znodes are the way! 2126 */ 2127 2128 #define PATH_READA 0x1 /* do read ahead */ 2129 #define PATH_READA_BACK 0x2 /* read backwards */ 2130 2131 struct treepath { 2132 int path_length; /* Length of the array above. */ 2133 int reada; 2134 /* Array of the path elements. */ 2135 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; 2136 int pos_in_item; 2137 }; 2138 2139 #define pos_in_item(path) ((path)->pos_in_item) 2140 2141 #define INITIALIZE_PATH(var) \ 2142 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 2143 2144 /* Get path element by path and path position. */ 2145 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 2146 2147 /* Get buffer header at the path by path and path position. */ 2148 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 2149 2150 /* Get position in the element at the path by path and path position. */ 2151 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 2152 2153 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 2154 2155 /* 2156 * you know, to the person who didn't write this the macro name does not 2157 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or 2158 * maybe we should just focus on dumping paths... -Hans 2159 */ 2160 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 2161 2162 /* 2163 * in do_balance leaf has h == 0 in contrast with path structure, 2164 * where root has level == 0. That is why we need these defines 2165 */ 2166 2167 /* tb->S[h] */ 2168 #define PATH_H_PBUFFER(path, h) \ 2169 PATH_OFFSET_PBUFFER(path, path->path_length - (h)) 2170 2171 /* tb->F[h] or tb->S[0]->b_parent */ 2172 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) 2173 2174 #define PATH_H_POSITION(path, h) \ 2175 PATH_OFFSET_POSITION(path, path->path_length - (h)) 2176 2177 /* tb->S[h]->b_item_order */ 2178 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) 2179 2180 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 2181 2182 static inline void *reiserfs_node_data(const struct buffer_head *bh) 2183 { 2184 return bh->b_data + sizeof(struct block_head); 2185 } 2186 2187 /* get key from internal node */ 2188 static inline struct reiserfs_key *internal_key(struct buffer_head *bh, 2189 int item_num) 2190 { 2191 struct reiserfs_key *key = reiserfs_node_data(bh); 2192 2193 return &key[item_num]; 2194 } 2195 2196 /* get the item header from leaf node */ 2197 static inline struct item_head *item_head(const struct buffer_head *bh, 2198 int item_num) 2199 { 2200 struct item_head *ih = reiserfs_node_data(bh); 2201 2202 return &ih[item_num]; 2203 } 2204 2205 /* get the key from leaf node */ 2206 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, 2207 int item_num) 2208 { 2209 return &item_head(bh, item_num)->ih_key; 2210 } 2211 2212 static inline void *ih_item_body(const struct buffer_head *bh, 2213 const struct item_head *ih) 2214 { 2215 return bh->b_data + ih_location(ih); 2216 } 2217 2218 /* get item body from leaf node */ 2219 static inline void *item_body(const struct buffer_head *bh, int item_num) 2220 { 2221 return ih_item_body(bh, item_head(bh, item_num)); 2222 } 2223 2224 static inline struct item_head *tp_item_head(const struct treepath *path) 2225 { 2226 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2227 } 2228 2229 static inline void *tp_item_body(const struct treepath *path) 2230 { 2231 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2232 } 2233 2234 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 2235 #define get_item_pos(path) PATH_LAST_POSITION(path) 2236 #define item_moved(ih,path) comp_items(ih, path) 2237 #define path_changed(ih,path) comp_items (ih, path) 2238 2239 /* array of the entry headers */ 2240 /* get item body */ 2241 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) 2242 2243 /* 2244 * length of the directory entry in directory item. This define 2245 * calculates length of i-th directory entry using directory entry 2246 * locations from dir entry head. When it calculates length of 0-th 2247 * directory entry, it uses length of whole item in place of entry 2248 * location of the non-existent following entry in the calculation. 2249 * See picture above. 2250 */ 2251 static inline int entry_length(const struct buffer_head *bh, 2252 const struct item_head *ih, int pos_in_item) 2253 { 2254 struct reiserfs_de_head *deh; 2255 2256 deh = B_I_DEH(bh, ih) + pos_in_item; 2257 if (pos_in_item) 2258 return deh_location(deh - 1) - deh_location(deh); 2259 2260 return ih_item_len(ih) - deh_location(deh); 2261 } 2262 2263 /*************************************************************************** 2264 * MISC * 2265 ***************************************************************************/ 2266 2267 /* Size of pointer to the unformatted node. */ 2268 #define UNFM_P_SIZE (sizeof(unp_t)) 2269 #define UNFM_P_SHIFT 2 2270 2271 /* in in-core inode key is stored on le form */ 2272 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 2273 2274 #define MAX_UL_INT 0xffffffff 2275 #define MAX_INT 0x7ffffff 2276 #define MAX_US_INT 0xffff 2277 2278 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 2279 static inline loff_t max_reiserfs_offset(struct inode *inode) 2280 { 2281 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 2282 return (loff_t) U32_MAX; 2283 2284 return (loff_t) ((~(__u64) 0) >> 4); 2285 } 2286 2287 #define MAX_KEY_OBJECTID MAX_UL_INT 2288 2289 #define MAX_B_NUM MAX_UL_INT 2290 #define MAX_FC_NUM MAX_US_INT 2291 2292 /* the purpose is to detect overflow of an unsigned short */ 2293 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 2294 2295 /* 2296 * The following defines are used in reiserfs_insert_item 2297 * and reiserfs_append_item 2298 */ 2299 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ 2300 #define REISERFS_USER_MEM 1 /* user memory mode */ 2301 2302 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 2303 #define get_generation(s) atomic_read (&fs_generation(s)) 2304 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 2305 #define __fs_changed(gen,s) (gen != get_generation (s)) 2306 #define fs_changed(gen,s) \ 2307 ({ \ 2308 reiserfs_cond_resched(s); \ 2309 __fs_changed(gen, s); \ 2310 }) 2311 2312 /*************************************************************************** 2313 * FIXATE NODES * 2314 ***************************************************************************/ 2315 2316 #define VI_TYPE_LEFT_MERGEABLE 1 2317 #define VI_TYPE_RIGHT_MERGEABLE 2 2318 2319 /* 2320 * To make any changes in the tree we always first find node, that 2321 * contains item to be changed/deleted or place to insert a new 2322 * item. We call this node S. To do balancing we need to decide what 2323 * we will shift to left/right neighbor, or to a new node, where new 2324 * item will be etc. To make this analysis simpler we build virtual 2325 * node. Virtual node is an array of items, that will replace items of 2326 * node S. (For instance if we are going to delete an item, virtual 2327 * node does not contain it). Virtual node keeps information about 2328 * item sizes and types, mergeability of first and last items, sizes 2329 * of all entries in directory item. We use this array of items when 2330 * calculating what we can shift to neighbors and how many nodes we 2331 * have to have if we do not any shiftings, if we shift to left/right 2332 * neighbor or to both. 2333 */ 2334 struct virtual_item { 2335 int vi_index; /* index in the array of item operations */ 2336 unsigned short vi_type; /* left/right mergeability */ 2337 2338 /* length of item that it will have after balancing */ 2339 unsigned short vi_item_len; 2340 2341 struct item_head *vi_ih; 2342 const char *vi_item; /* body of item (old or new) */ 2343 const void *vi_new_data; /* 0 always but paste mode */ 2344 void *vi_uarea; /* item specific area */ 2345 }; 2346 2347 struct virtual_node { 2348 /* this is a pointer to the free space in the buffer */ 2349 char *vn_free_ptr; 2350 2351 unsigned short vn_nr_item; /* number of items in virtual node */ 2352 2353 /* 2354 * size of node , that node would have if it has 2355 * unlimited size and no balancing is performed 2356 */ 2357 short vn_size; 2358 2359 /* mode of balancing (paste, insert, delete, cut) */ 2360 short vn_mode; 2361 2362 short vn_affected_item_num; 2363 short vn_pos_in_item; 2364 2365 /* item header of inserted item, 0 for other modes */ 2366 struct item_head *vn_ins_ih; 2367 const void *vn_data; 2368 2369 /* array of items (including a new one, excluding item to be deleted) */ 2370 struct virtual_item *vn_vi; 2371 }; 2372 2373 /* used by directory items when creating virtual nodes */ 2374 struct direntry_uarea { 2375 int flags; 2376 __u16 entry_count; 2377 __u16 entry_sizes[1]; 2378 } __attribute__ ((__packed__)); 2379 2380 /*************************************************************************** 2381 * TREE BALANCE * 2382 ***************************************************************************/ 2383 2384 /* 2385 * This temporary structure is used in tree balance algorithms, and 2386 * constructed as we go to the extent that its various parts are 2387 * needed. It contains arrays of nodes that can potentially be 2388 * involved in the balancing of node S, and parameters that define how 2389 * each of the nodes must be balanced. Note that in these algorithms 2390 * for balancing the worst case is to need to balance the current node 2391 * S and the left and right neighbors and all of their parents plus 2392 * create a new node. We implement S1 balancing for the leaf nodes 2393 * and S0 balancing for the internal nodes (S1 and S0 are defined in 2394 * our papers.) 2395 */ 2396 2397 /* size of the array of buffers to free at end of do_balance */ 2398 #define MAX_FREE_BLOCK 7 2399 2400 /* maximum number of FEB blocknrs on a single level */ 2401 #define MAX_AMOUNT_NEEDED 2 2402 2403 /* someday somebody will prefix every field in this struct with tb_ */ 2404 struct tree_balance { 2405 int tb_mode; 2406 int need_balance_dirty; 2407 struct super_block *tb_sb; 2408 struct reiserfs_transaction_handle *transaction_handle; 2409 struct treepath *tb_path; 2410 2411 /* array of left neighbors of nodes in the path */ 2412 struct buffer_head *L[MAX_HEIGHT]; 2413 2414 /* array of right neighbors of nodes in the path */ 2415 struct buffer_head *R[MAX_HEIGHT]; 2416 2417 /* array of fathers of the left neighbors */ 2418 struct buffer_head *FL[MAX_HEIGHT]; 2419 2420 /* array of fathers of the right neighbors */ 2421 struct buffer_head *FR[MAX_HEIGHT]; 2422 /* array of common parents of center node and its left neighbor */ 2423 struct buffer_head *CFL[MAX_HEIGHT]; 2424 2425 /* array of common parents of center node and its right neighbor */ 2426 struct buffer_head *CFR[MAX_HEIGHT]; 2427 2428 /* 2429 * array of empty buffers. Number of buffers in array equals 2430 * cur_blknum. 2431 */ 2432 struct buffer_head *FEB[MAX_FEB_SIZE]; 2433 struct buffer_head *used[MAX_FEB_SIZE]; 2434 struct buffer_head *thrown[MAX_FEB_SIZE]; 2435 2436 /* 2437 * array of number of items which must be shifted to the left in 2438 * order to balance the current node; for leaves includes item that 2439 * will be partially shifted; for internal nodes, it is the number 2440 * of child pointers rather than items. It includes the new item 2441 * being created. The code sometimes subtracts one to get the 2442 * number of wholly shifted items for other purposes. 2443 */ 2444 int lnum[MAX_HEIGHT]; 2445 2446 /* substitute right for left in comment above */ 2447 int rnum[MAX_HEIGHT]; 2448 2449 /* 2450 * array indexed by height h mapping the key delimiting L[h] and 2451 * S[h] to its item number within the node CFL[h] 2452 */ 2453 int lkey[MAX_HEIGHT]; 2454 2455 /* substitute r for l in comment above */ 2456 int rkey[MAX_HEIGHT]; 2457 2458 /* 2459 * the number of bytes by we are trying to add or remove from 2460 * S[h]. A negative value means removing. 2461 */ 2462 int insert_size[MAX_HEIGHT]; 2463 2464 /* 2465 * number of nodes that will replace node S[h] after balancing 2466 * on the level h of the tree. If 0 then S is being deleted, 2467 * if 1 then S is remaining and no new nodes are being created, 2468 * if 2 or 3 then 1 or 2 new nodes is being created 2469 */ 2470 int blknum[MAX_HEIGHT]; 2471 2472 /* fields that are used only for balancing leaves of the tree */ 2473 2474 /* number of empty blocks having been already allocated */ 2475 int cur_blknum; 2476 2477 /* number of items that fall into left most node when S[0] splits */ 2478 int s0num; 2479 2480 /* 2481 * number of bytes which can flow to the left neighbor from the left 2482 * most liquid item that cannot be shifted from S[0] entirely 2483 * if -1 then nothing will be partially shifted 2484 */ 2485 int lbytes; 2486 2487 /* 2488 * number of bytes which will flow to the right neighbor from the right 2489 * most liquid item that cannot be shifted from S[0] entirely 2490 * if -1 then nothing will be partially shifted 2491 */ 2492 int rbytes; 2493 2494 2495 /* 2496 * index into the array of item headers in 2497 * S[0] of the affected item 2498 */ 2499 int item_pos; 2500 2501 /* new nodes allocated to hold what could not fit into S */ 2502 struct buffer_head *S_new[2]; 2503 2504 /* 2505 * number of items that will be placed into nodes in S_new 2506 * when S[0] splits 2507 */ 2508 int snum[2]; 2509 2510 /* 2511 * number of bytes which flow to nodes in S_new when S[0] splits 2512 * note: if S[0] splits into 3 nodes, then items do not need to be cut 2513 */ 2514 int sbytes[2]; 2515 2516 int pos_in_item; 2517 int zeroes_num; 2518 2519 /* 2520 * buffers which are to be freed after do_balance finishes 2521 * by unfix_nodes 2522 */ 2523 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; 2524 2525 /* 2526 * kmalloced memory. Used to create virtual node and keep 2527 * map of dirtied bitmap blocks 2528 */ 2529 char *vn_buf; 2530 2531 int vn_buf_size; /* size of the vn_buf */ 2532 2533 /* VN starts after bitmap of bitmap blocks */ 2534 struct virtual_node *tb_vn; 2535 2536 /* 2537 * saved value of `reiserfs_generation' counter see 2538 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h 2539 */ 2540 int fs_gen; 2541 2542 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2543 /* 2544 * key pointer, to pass to block allocator or 2545 * another low-level subsystem 2546 */ 2547 struct in_core_key key; 2548 #endif 2549 }; 2550 2551 /* These are modes of balancing */ 2552 2553 /* When inserting an item. */ 2554 #define M_INSERT 'i' 2555 /* 2556 * When inserting into (directories only) or appending onto an already 2557 * existent item. 2558 */ 2559 #define M_PASTE 'p' 2560 /* When deleting an item. */ 2561 #define M_DELETE 'd' 2562 /* When truncating an item or removing an entry from a (directory) item. */ 2563 #define M_CUT 'c' 2564 2565 /* used when balancing on leaf level skipped (in reiserfsck) */ 2566 #define M_INTERNAL 'n' 2567 2568 /* 2569 * When further balancing is not needed, then do_balance does not need 2570 * to be called. 2571 */ 2572 #define M_SKIP_BALANCING 's' 2573 #define M_CONVERT 'v' 2574 2575 /* modes of leaf_move_items */ 2576 #define LEAF_FROM_S_TO_L 0 2577 #define LEAF_FROM_S_TO_R 1 2578 #define LEAF_FROM_R_TO_L 2 2579 #define LEAF_FROM_L_TO_R 3 2580 #define LEAF_FROM_S_TO_SNEW 4 2581 2582 #define FIRST_TO_LAST 0 2583 #define LAST_TO_FIRST 1 2584 2585 /* 2586 * used in do_balance for passing parent of node information that has 2587 * been gotten from tb struct 2588 */ 2589 struct buffer_info { 2590 struct tree_balance *tb; 2591 struct buffer_head *bi_bh; 2592 struct buffer_head *bi_parent; 2593 int bi_position; 2594 }; 2595 2596 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2597 { 2598 return tb ? tb->tb_sb : NULL; 2599 } 2600 2601 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2602 { 2603 return bi ? sb_from_tb(bi->tb) : NULL; 2604 } 2605 2606 /* 2607 * there are 4 types of items: stat data, directory item, indirect, direct. 2608 * +-------------------+------------+--------------+------------+ 2609 * | | k_offset | k_uniqueness | mergeable? | 2610 * +-------------------+------------+--------------+------------+ 2611 * | stat data | 0 | 0 | no | 2612 * +-------------------+------------+--------------+------------+ 2613 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | 2614 * | non 1st directory | hash value | UNIQUENESS | yes | 2615 * | item | | | | 2616 * +-------------------+------------+--------------+------------+ 2617 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | 2618 * +-------------------+------------+--------------+------------+ 2619 * | direct item | offset + 1 |TYPE_DIRECT | [2] | 2620 * +-------------------+------------+--------------+------------+ 2621 * 2622 * [1] if this is not the first indirect item of the object 2623 * [2] if this is not the first direct item of the object 2624 */ 2625 2626 struct item_operations { 2627 int (*bytes_number) (struct item_head * ih, int block_size); 2628 void (*decrement_key) (struct cpu_key *); 2629 int (*is_left_mergeable) (struct reiserfs_key * ih, 2630 unsigned long bsize); 2631 void (*print_item) (struct item_head *, char *item); 2632 void (*check_item) (struct item_head *, char *item); 2633 2634 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2635 int is_affected, int insert_size); 2636 int (*check_left) (struct virtual_item * vi, int free, 2637 int start_skip, int end_skip); 2638 int (*check_right) (struct virtual_item * vi, int free); 2639 int (*part_size) (struct virtual_item * vi, int from, int to); 2640 int (*unit_num) (struct virtual_item * vi); 2641 void (*print_vi) (struct virtual_item * vi); 2642 }; 2643 2644 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2645 2646 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2647 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2648 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2649 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2650 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2651 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2652 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2653 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2654 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2655 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2656 2657 #define COMP_SHORT_KEYS comp_short_keys 2658 2659 /* number of blocks pointed to by the indirect item */ 2660 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2661 2662 /* 2663 * the used space within the unformatted node corresponding 2664 * to pos within the item pointed to by ih 2665 */ 2666 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2667 2668 /* 2669 * number of bytes contained by the direct item or the 2670 * unformatted nodes the indirect item points to 2671 */ 2672 2673 /* following defines use reiserfs buffer header and item header */ 2674 2675 /* get stat-data */ 2676 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2677 2678 /* this is 3976 for size==4096 */ 2679 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2680 2681 /* 2682 * indirect items consist of entries which contain blocknrs, pos 2683 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2684 * blocknr contained by the entry pos points to 2685 */ 2686 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ 2687 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) 2688 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ 2689 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) 2690 2691 struct reiserfs_iget_args { 2692 __u32 objectid; 2693 __u32 dirid; 2694 }; 2695 2696 /*************************************************************************** 2697 * FUNCTION DECLARATIONS * 2698 ***************************************************************************/ 2699 2700 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2701 2702 #define journal_trans_half(blocksize) \ 2703 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) 2704 2705 /* journal.c see journal.c for all the comments here */ 2706 2707 /* first block written in a commit. */ 2708 struct reiserfs_journal_desc { 2709 __le32 j_trans_id; /* id of commit */ 2710 2711 /* length of commit. len +1 is the commit block */ 2712 __le32 j_len; 2713 2714 __le32 j_mount_id; /* mount id of this trans */ 2715 __le32 j_realblock[1]; /* real locations for each block */ 2716 }; 2717 2718 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2719 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2720 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2721 2722 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2723 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2724 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2725 2726 /* last block written in a commit */ 2727 struct reiserfs_journal_commit { 2728 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2729 __le32 j_len; /* ditto */ 2730 __le32 j_realblock[1]; /* real locations for each block */ 2731 }; 2732 2733 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2734 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2735 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2736 2737 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2738 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2739 2740 /* 2741 * this header block gets written whenever a transaction is considered 2742 * fully flushed, and is more recent than the last fully flushed transaction. 2743 * fully flushed means all the log blocks and all the real blocks are on 2744 * disk, and this transaction does not need to be replayed. 2745 */ 2746 struct reiserfs_journal_header { 2747 /* id of last fully flushed transaction */ 2748 __le32 j_last_flush_trans_id; 2749 2750 /* offset in the log of where to start replay after a crash */ 2751 __le32 j_first_unflushed_offset; 2752 2753 __le32 j_mount_id; 2754 /* 12 */ struct journal_params jh_journal; 2755 }; 2756 2757 /* biggest tunable defines are right here */ 2758 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2759 2760 /* biggest possible single transaction, don't change for now (8/3/99) */ 2761 #define JOURNAL_TRANS_MAX_DEFAULT 1024 2762 #define JOURNAL_TRANS_MIN_DEFAULT 256 2763 2764 /* 2765 * max blocks to batch into one transaction, 2766 * don't make this any bigger than 900 2767 */ 2768 #define JOURNAL_MAX_BATCH_DEFAULT 900 2769 #define JOURNAL_MIN_RATIO 2 2770 #define JOURNAL_MAX_COMMIT_AGE 30 2771 #define JOURNAL_MAX_TRANS_AGE 30 2772 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2773 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2774 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2775 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2776 2777 #ifdef CONFIG_QUOTA 2778 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2779 /* We need to update data and inode (atime) */ 2780 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2781 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2782 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2783 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2784 /* same as with INIT */ 2785 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2786 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2787 #else 2788 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2789 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2790 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2791 #endif 2792 2793 /* 2794 * both of these can be as low as 1, or as high as you want. The min is the 2795 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2796 * as needed, and released when transactions are committed. On release, if 2797 * the current number of nodes is > max, the node is freed, otherwise, 2798 * it is put on a free list for faster use later. 2799 */ 2800 #define REISERFS_MIN_BITMAP_NODES 10 2801 #define REISERFS_MAX_BITMAP_NODES 100 2802 2803 /* these are based on journal hash size of 8192 */ 2804 #define JBH_HASH_SHIFT 13 2805 #define JBH_HASH_MASK 8191 2806 2807 #define _jhashfn(sb,block) \ 2808 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2809 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2810 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2811 2812 /* We need these to make journal.c code more readable */ 2813 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2814 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2815 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) 2816 2817 enum reiserfs_bh_state_bits { 2818 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2819 BH_JDirty_wait, 2820 /* 2821 * disk block was taken off free list before being in a 2822 * finished transaction, or written to disk. Can be reused immed. 2823 */ 2824 BH_JNew, 2825 BH_JPrepared, 2826 BH_JRestore_dirty, 2827 BH_JTest, /* debugging only will go away */ 2828 }; 2829 2830 BUFFER_FNS(JDirty, journaled); 2831 TAS_BUFFER_FNS(JDirty, journaled); 2832 BUFFER_FNS(JDirty_wait, journal_dirty); 2833 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2834 BUFFER_FNS(JNew, journal_new); 2835 TAS_BUFFER_FNS(JNew, journal_new); 2836 BUFFER_FNS(JPrepared, journal_prepared); 2837 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2838 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2839 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2840 BUFFER_FNS(JTest, journal_test); 2841 TAS_BUFFER_FNS(JTest, journal_test); 2842 2843 /* transaction handle which is passed around for all journal calls */ 2844 struct reiserfs_transaction_handle { 2845 /* 2846 * super for this FS when journal_begin was called. saves calls to 2847 * reiserfs_get_super also used by nested transactions to make 2848 * sure they are nesting on the right FS _must_ be first 2849 * in the handle 2850 */ 2851 struct super_block *t_super; 2852 2853 int t_refcount; 2854 int t_blocks_logged; /* number of blocks this writer has logged */ 2855 int t_blocks_allocated; /* number of blocks this writer allocated */ 2856 2857 /* sanity check, equals the current trans id */ 2858 unsigned int t_trans_id; 2859 2860 void *t_handle_save; /* save existing current->journal_info */ 2861 2862 /* 2863 * if new block allocation occurres, that block 2864 * should be displaced from others 2865 */ 2866 unsigned displace_new_blocks:1; 2867 2868 struct list_head t_list; 2869 }; 2870 2871 /* 2872 * used to keep track of ordered and tail writes, attached to the buffer 2873 * head through b_journal_head. 2874 */ 2875 struct reiserfs_jh { 2876 struct reiserfs_journal_list *jl; 2877 struct buffer_head *bh; 2878 struct list_head list; 2879 }; 2880 2881 void reiserfs_free_jh(struct buffer_head *bh); 2882 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2883 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2884 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2885 struct buffer_head *bh); 2886 2887 static inline int reiserfs_file_data_log(struct inode *inode) 2888 { 2889 if (reiserfs_data_log(inode->i_sb) || 2890 (REISERFS_I(inode)->i_flags & i_data_log)) 2891 return 1; 2892 return 0; 2893 } 2894 2895 static inline int reiserfs_transaction_running(struct super_block *s) 2896 { 2897 struct reiserfs_transaction_handle *th = current->journal_info; 2898 if (th && th->t_super == s) 2899 return 1; 2900 if (th && th->t_super == NULL) 2901 BUG(); 2902 return 0; 2903 } 2904 2905 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2906 { 2907 return th->t_blocks_allocated - th->t_blocks_logged; 2908 } 2909 2910 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2911 super_block 2912 *, 2913 int count); 2914 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2915 void reiserfs_vfs_truncate_file(struct inode *inode); 2916 int reiserfs_commit_page(struct inode *inode, struct page *page, 2917 unsigned from, unsigned to); 2918 void reiserfs_flush_old_commits(struct super_block *); 2919 int reiserfs_commit_for_inode(struct inode *); 2920 int reiserfs_inode_needs_commit(struct inode *); 2921 void reiserfs_update_inode_transaction(struct inode *); 2922 void reiserfs_wait_on_write_block(struct super_block *s); 2923 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2924 void reiserfs_allow_writes(struct super_block *s); 2925 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2926 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2927 int wait); 2928 void reiserfs_restore_prepared_buffer(struct super_block *, 2929 struct buffer_head *bh); 2930 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2931 unsigned int); 2932 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2933 int journal_release_error(struct reiserfs_transaction_handle *, 2934 struct super_block *); 2935 int journal_end(struct reiserfs_transaction_handle *); 2936 int journal_end_sync(struct reiserfs_transaction_handle *); 2937 int journal_mark_freed(struct reiserfs_transaction_handle *, 2938 struct super_block *, b_blocknr_t blocknr); 2939 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2940 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2941 int bit_nr, int searchall, b_blocknr_t *next); 2942 int journal_begin(struct reiserfs_transaction_handle *, 2943 struct super_block *sb, unsigned long); 2944 int journal_join_abort(struct reiserfs_transaction_handle *, 2945 struct super_block *sb); 2946 void reiserfs_abort_journal(struct super_block *sb, int errno); 2947 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2948 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2949 struct reiserfs_list_bitmap *, unsigned int); 2950 2951 void reiserfs_schedule_old_flush(struct super_block *s); 2952 void reiserfs_cancel_old_flush(struct super_block *s); 2953 void add_save_link(struct reiserfs_transaction_handle *th, 2954 struct inode *inode, int truncate); 2955 int remove_save_link(struct inode *inode, int truncate); 2956 2957 /* objectid.c */ 2958 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2959 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2960 __u32 objectid_to_release); 2961 int reiserfs_convert_objectid_map_v1(struct super_block *); 2962 2963 /* stree.c */ 2964 int B_IS_IN_TREE(const struct buffer_head *); 2965 extern void copy_item_head(struct item_head *to, 2966 const struct item_head *from); 2967 2968 /* first key is in cpu form, second - le */ 2969 extern int comp_short_keys(const struct reiserfs_key *le_key, 2970 const struct cpu_key *cpu_key); 2971 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2972 2973 /* both are in le form */ 2974 extern int comp_le_keys(const struct reiserfs_key *, 2975 const struct reiserfs_key *); 2976 extern int comp_short_le_keys(const struct reiserfs_key *, 2977 const struct reiserfs_key *); 2978 2979 /* * get key version from on disk key - kludge */ 2980 static inline int le_key_version(const struct reiserfs_key *key) 2981 { 2982 int type; 2983 2984 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2985 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2986 && type != TYPE_DIRENTRY) 2987 return KEY_FORMAT_3_5; 2988 2989 return KEY_FORMAT_3_6; 2990 2991 } 2992 2993 static inline void copy_key(struct reiserfs_key *to, 2994 const struct reiserfs_key *from) 2995 { 2996 memcpy(to, from, KEY_SIZE); 2997 } 2998 2999 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 3000 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 3001 const struct super_block *sb); 3002 int search_by_key(struct super_block *, const struct cpu_key *, 3003 struct treepath *, int); 3004 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 3005 int search_for_position_by_key(struct super_block *sb, 3006 const struct cpu_key *cpu_key, 3007 struct treepath *search_path); 3008 extern void decrement_bcount(struct buffer_head *bh); 3009 void decrement_counters_in_path(struct treepath *search_path); 3010 void pathrelse(struct treepath *search_path); 3011 int reiserfs_check_path(struct treepath *p); 3012 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 3013 3014 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 3015 struct treepath *path, 3016 const struct cpu_key *key, 3017 struct item_head *ih, 3018 struct inode *inode, const char *body); 3019 3020 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 3021 struct treepath *path, 3022 const struct cpu_key *key, 3023 struct inode *inode, 3024 const char *body, int paste_size); 3025 3026 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 3027 struct treepath *path, 3028 struct cpu_key *key, 3029 struct inode *inode, 3030 struct page *page, loff_t new_file_size); 3031 3032 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 3033 struct treepath *path, 3034 const struct cpu_key *key, 3035 struct inode *inode, struct buffer_head *un_bh); 3036 3037 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 3038 struct inode *inode, struct reiserfs_key *key); 3039 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 3040 struct inode *inode); 3041 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 3042 struct inode *inode, struct page *, 3043 int update_timestamps); 3044 3045 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 3046 #define file_size(inode) ((inode)->i_size) 3047 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 3048 3049 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 3050 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 3051 3052 void padd_item(char *item, int total_length, int length); 3053 3054 /* inode.c */ 3055 /* args for the create parameter of reiserfs_get_block */ 3056 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 3057 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 3058 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 3059 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 3060 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 3061 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 3062 3063 void reiserfs_read_locked_inode(struct inode *inode, 3064 struct reiserfs_iget_args *args); 3065 int reiserfs_find_actor(struct inode *inode, void *p); 3066 int reiserfs_init_locked_inode(struct inode *inode, void *p); 3067 void reiserfs_evict_inode(struct inode *inode); 3068 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3069 int reiserfs_get_block(struct inode *inode, sector_t block, 3070 struct buffer_head *bh_result, int create); 3071 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3072 int fh_len, int fh_type); 3073 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 3074 int fh_len, int fh_type); 3075 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 3076 struct inode *parent); 3077 3078 int reiserfs_truncate_file(struct inode *, int update_timestamps); 3079 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 3080 int type, int key_length); 3081 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 3082 int version, 3083 loff_t offset, int type, int length, int entry_count); 3084 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 3085 3086 struct reiserfs_security_handle; 3087 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 3088 struct inode *dir, umode_t mode, 3089 const char *symname, loff_t i_size, 3090 struct dentry *dentry, struct inode *inode, 3091 struct reiserfs_security_handle *security); 3092 3093 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 3094 struct inode *inode, loff_t size); 3095 3096 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 3097 struct inode *inode) 3098 { 3099 reiserfs_update_sd_size(th, inode, inode->i_size); 3100 } 3101 3102 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 3103 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); 3104 3105 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 3106 3107 /* namei.c */ 3108 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 3109 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 3110 struct treepath *path, struct reiserfs_dir_entry *de); 3111 struct dentry *reiserfs_get_parent(struct dentry *); 3112 3113 #ifdef CONFIG_REISERFS_PROC_INFO 3114 int reiserfs_proc_info_init(struct super_block *sb); 3115 int reiserfs_proc_info_done(struct super_block *sb); 3116 int reiserfs_proc_info_global_init(void); 3117 int reiserfs_proc_info_global_done(void); 3118 3119 #define PROC_EXP( e ) e 3120 3121 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 3122 #define PROC_INFO_MAX( sb, field, value ) \ 3123 __PINFO( sb ).field = \ 3124 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 3125 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 3126 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 3127 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 3128 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 3129 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 3130 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 3131 #else 3132 static inline int reiserfs_proc_info_init(struct super_block *sb) 3133 { 3134 return 0; 3135 } 3136 3137 static inline int reiserfs_proc_info_done(struct super_block *sb) 3138 { 3139 return 0; 3140 } 3141 3142 static inline int reiserfs_proc_info_global_init(void) 3143 { 3144 return 0; 3145 } 3146 3147 static inline int reiserfs_proc_info_global_done(void) 3148 { 3149 return 0; 3150 } 3151 3152 #define PROC_EXP( e ) 3153 #define VOID_V ( ( void ) 0 ) 3154 #define PROC_INFO_MAX( sb, field, value ) VOID_V 3155 #define PROC_INFO_INC( sb, field ) VOID_V 3156 #define PROC_INFO_ADD( sb, field, val ) VOID_V 3157 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 3158 #endif 3159 3160 /* dir.c */ 3161 extern const struct inode_operations reiserfs_dir_inode_operations; 3162 extern const struct inode_operations reiserfs_symlink_inode_operations; 3163 extern const struct inode_operations reiserfs_special_inode_operations; 3164 extern const struct file_operations reiserfs_dir_operations; 3165 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 3166 3167 /* tail_conversion.c */ 3168 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 3169 struct treepath *, struct buffer_head *, loff_t); 3170 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 3171 struct page *, struct treepath *, const struct cpu_key *, 3172 loff_t, char *); 3173 void reiserfs_unmap_buffer(struct buffer_head *); 3174 3175 /* file.c */ 3176 extern const struct inode_operations reiserfs_file_inode_operations; 3177 extern const struct file_operations reiserfs_file_operations; 3178 extern const struct address_space_operations reiserfs_address_space_operations; 3179 3180 /* fix_nodes.c */ 3181 3182 int fix_nodes(int n_op_mode, struct tree_balance *tb, 3183 struct item_head *ins_ih, const void *); 3184 void unfix_nodes(struct tree_balance *); 3185 3186 /* prints.c */ 3187 void __reiserfs_panic(struct super_block *s, const char *id, 3188 const char *function, const char *fmt, ...) 3189 __attribute__ ((noreturn)); 3190 #define reiserfs_panic(s, id, fmt, args...) \ 3191 __reiserfs_panic(s, id, __func__, fmt, ##args) 3192 void __reiserfs_error(struct super_block *s, const char *id, 3193 const char *function, const char *fmt, ...); 3194 #define reiserfs_error(s, id, fmt, args...) \ 3195 __reiserfs_error(s, id, __func__, fmt, ##args) 3196 void reiserfs_info(struct super_block *s, const char *fmt, ...); 3197 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 3198 void print_indirect_item(struct buffer_head *bh, int item_num); 3199 void store_print_tb(struct tree_balance *tb); 3200 void print_cur_tb(char *mes); 3201 void print_de(struct reiserfs_dir_entry *de); 3202 void print_bi(struct buffer_info *bi, char *mes); 3203 #define PRINT_LEAF_ITEMS 1 /* print all items */ 3204 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 3205 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 3206 void print_block(struct buffer_head *bh, ...); 3207 void print_bmap(struct super_block *s, int silent); 3208 void print_bmap_block(int i, char *data, int size, int silent); 3209 /*void print_super_block (struct super_block * s, char * mes);*/ 3210 void print_objectid_map(struct super_block *s); 3211 void print_block_head(struct buffer_head *bh, char *mes); 3212 void check_leaf(struct buffer_head *bh); 3213 void check_internal(struct buffer_head *bh); 3214 void print_statistics(struct super_block *s); 3215 char *reiserfs_hashname(int code); 3216 3217 /* lbalance.c */ 3218 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 3219 int mov_bytes, struct buffer_head *Snew); 3220 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 3221 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 3222 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 3223 int del_num, int del_bytes); 3224 void leaf_insert_into_buf(struct buffer_info *bi, int before, 3225 struct item_head * const inserted_item_ih, 3226 const char * const inserted_item_body, 3227 int zeros_number); 3228 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 3229 int pos_in_item, int paste_size, 3230 const char * const body, int zeros_number); 3231 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 3232 int pos_in_item, int cut_size); 3233 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 3234 int new_entry_count, struct reiserfs_de_head *new_dehs, 3235 const char *records, int paste_size); 3236 /* ibalance.c */ 3237 int balance_internal(struct tree_balance *, int, int, struct item_head *, 3238 struct buffer_head **); 3239 3240 /* do_balance.c */ 3241 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 3242 struct buffer_head *bh, int flag); 3243 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 3244 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 3245 3246 void do_balance(struct tree_balance *tb, struct item_head *ih, 3247 const char *body, int flag); 3248 void reiserfs_invalidate_buffer(struct tree_balance *tb, 3249 struct buffer_head *bh); 3250 3251 int get_left_neighbor_position(struct tree_balance *tb, int h); 3252 int get_right_neighbor_position(struct tree_balance *tb, int h); 3253 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 3254 struct buffer_head *, int); 3255 void make_empty_node(struct buffer_info *); 3256 struct buffer_head *get_FEB(struct tree_balance *); 3257 3258 /* bitmap.c */ 3259 3260 /* 3261 * structure contains hints for block allocator, and it is a container for 3262 * arguments, such as node, search path, transaction_handle, etc. 3263 */ 3264 struct __reiserfs_blocknr_hint { 3265 /* inode passed to allocator, if we allocate unf. nodes */ 3266 struct inode *inode; 3267 3268 sector_t block; /* file offset, in blocks */ 3269 struct in_core_key key; 3270 3271 /* 3272 * search path, used by allocator to deternine search_start by 3273 * various ways 3274 */ 3275 struct treepath *path; 3276 3277 /* 3278 * transaction handle is needed to log super blocks 3279 * and bitmap blocks changes 3280 */ 3281 struct reiserfs_transaction_handle *th; 3282 3283 b_blocknr_t beg, end; 3284 3285 /* 3286 * a field used to transfer search start value (block number) 3287 * between different block allocator procedures 3288 * (determine_search_start() and others) 3289 */ 3290 b_blocknr_t search_start; 3291 3292 /* 3293 * is set in determine_prealloc_size() function, 3294 * used by underlayed function that do actual allocation 3295 */ 3296 int prealloc_size; 3297 3298 /* 3299 * the allocator uses different polices for getting disk 3300 * space for formatted/unformatted blocks with/without preallocation 3301 */ 3302 unsigned formatted_node:1; 3303 unsigned preallocate:1; 3304 }; 3305 3306 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 3307 3308 int reiserfs_parse_alloc_options(struct super_block *, char *); 3309 void reiserfs_init_alloc_options(struct super_block *s); 3310 3311 /* 3312 * given a directory, this will tell you what packing locality 3313 * to use for a new object underneat it. The locality is returned 3314 * in disk byte order (le). 3315 */ 3316 __le32 reiserfs_choose_packing(struct inode *dir); 3317 3318 void show_alloc_options(struct seq_file *seq, struct super_block *s); 3319 int reiserfs_init_bitmap_cache(struct super_block *sb); 3320 void reiserfs_free_bitmap_cache(struct super_block *sb); 3321 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 3322 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 3323 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 3324 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 3325 b_blocknr_t, int for_unformatted); 3326 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 3327 int); 3328 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 3329 b_blocknr_t * new_blocknrs, 3330 int amount_needed) 3331 { 3332 reiserfs_blocknr_hint_t hint = { 3333 .th = tb->transaction_handle, 3334 .path = tb->tb_path, 3335 .inode = NULL, 3336 .key = tb->key, 3337 .block = 0, 3338 .formatted_node = 1 3339 }; 3340 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 3341 0); 3342 } 3343 3344 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 3345 *th, struct inode *inode, 3346 b_blocknr_t * new_blocknrs, 3347 struct treepath *path, 3348 sector_t block) 3349 { 3350 reiserfs_blocknr_hint_t hint = { 3351 .th = th, 3352 .path = path, 3353 .inode = inode, 3354 .block = block, 3355 .formatted_node = 0, 3356 .preallocate = 0 3357 }; 3358 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3359 } 3360 3361 #ifdef REISERFS_PREALLOCATE 3362 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 3363 *th, struct inode *inode, 3364 b_blocknr_t * new_blocknrs, 3365 struct treepath *path, 3366 sector_t block) 3367 { 3368 reiserfs_blocknr_hint_t hint = { 3369 .th = th, 3370 .path = path, 3371 .inode = inode, 3372 .block = block, 3373 .formatted_node = 0, 3374 .preallocate = 1 3375 }; 3376 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3377 } 3378 3379 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 3380 struct inode *inode); 3381 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 3382 #endif 3383 3384 /* hashes.c */ 3385 __u32 keyed_hash(const signed char *msg, int len); 3386 __u32 yura_hash(const signed char *msg, int len); 3387 __u32 r5_hash(const signed char *msg, int len); 3388 3389 #define reiserfs_set_le_bit __set_bit_le 3390 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 3391 #define reiserfs_clear_le_bit __clear_bit_le 3392 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 3393 #define reiserfs_test_le_bit test_bit_le 3394 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 3395 3396 /* 3397 * sometimes reiserfs_truncate may require to allocate few new blocks 3398 * to perform indirect2direct conversion. People probably used to 3399 * think, that truncate should work without problems on a filesystem 3400 * without free disk space. They may complain that they can not 3401 * truncate due to lack of free disk space. This spare space allows us 3402 * to not worry about it. 500 is probably too much, but it should be 3403 * absolutely safe 3404 */ 3405 #define SPARE_SPACE 500 3406 3407 /* prototypes from ioctl.c */ 3408 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3409 long reiserfs_compat_ioctl(struct file *filp, 3410 unsigned int cmd, unsigned long arg); 3411 int reiserfs_unpack(struct inode *inode, struct file *filp); 3412