xref: /openbmc/linux/fs/reiserfs/objectid.c (revision de3a9980)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/uuid.h>
8 #include "reiserfs.h"
9 
10 /* find where objectid map starts */
11 #define objectid_map(s,rs) (old_format_only (s) ? \
12                          (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
13 			 (__le32 *)((rs) + 1))
14 
15 #ifdef CONFIG_REISERFS_CHECK
16 
17 static void check_objectid_map(struct super_block *s, __le32 * map)
18 {
19 	if (le32_to_cpu(map[0]) != 1)
20 		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
21 			       (long unsigned int)le32_to_cpu(map[0]));
22 
23 	/* FIXME: add something else here */
24 }
25 
26 #else
27 static void check_objectid_map(struct super_block *s, __le32 * map)
28 {;
29 }
30 #endif
31 
32 /*
33  * When we allocate objectids we allocate the first unused objectid.
34  * Each sequence of objectids in use (the odd sequences) is followed
35  * by a sequence of objectids not in use (the even sequences).  We
36  * only need to record the last objectid in each of these sequences
37  * (both the odd and even sequences) in order to fully define the
38  * boundaries of the sequences.  A consequence of allocating the first
39  * objectid not in use is that under most conditions this scheme is
40  * extremely compact.  The exception is immediately after a sequence
41  * of operations which deletes a large number of objects of
42  * non-sequential objectids, and even then it will become compact
43  * again as soon as more objects are created.  Note that many
44  * interesting optimizations of layout could result from complicating
45  * objectid assignment, but we have deferred making them for now.
46  */
47 
48 /* get unique object identifier */
49 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
50 {
51 	struct super_block *s = th->t_super;
52 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
53 	__le32 *map = objectid_map(s, rs);
54 	__u32 unused_objectid;
55 
56 	BUG_ON(!th->t_trans_id);
57 
58 	check_objectid_map(s, map);
59 
60 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
61 	/* comment needed -Hans */
62 	unused_objectid = le32_to_cpu(map[1]);
63 	if (unused_objectid == U32_MAX) {
64 		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
65 		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
66 		return 0;
67 	}
68 
69 	/*
70 	 * This incrementation allocates the first unused objectid. That
71 	 * is to say, the first entry on the objectid map is the first
72 	 * unused objectid, and by incrementing it we use it.  See below
73 	 * where we check to see if we eliminated a sequence of unused
74 	 * objectids....
75 	 */
76 	map[1] = cpu_to_le32(unused_objectid + 1);
77 
78 	/*
79 	 * Now we check to see if we eliminated the last remaining member of
80 	 * the first even sequence (and can eliminate the sequence by
81 	 * eliminating its last objectid from oids), and can collapse the
82 	 * first two odd sequences into one sequence.  If so, then the net
83 	 * result is to eliminate a pair of objectids from oids.  We do this
84 	 * by shifting the entire map to the left.
85 	 */
86 	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
87 		memmove(map + 1, map + 3,
88 			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
89 		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
90 	}
91 
92 	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
93 	return unused_objectid;
94 }
95 
96 /* makes object identifier unused */
97 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
98 			       __u32 objectid_to_release)
99 {
100 	struct super_block *s = th->t_super;
101 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
102 	__le32 *map = objectid_map(s, rs);
103 	int i = 0;
104 
105 	BUG_ON(!th->t_trans_id);
106 	/*return; */
107 	check_objectid_map(s, map);
108 
109 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
110 	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
111 
112 	/*
113 	 * start at the beginning of the objectid map (i = 0) and go to
114 	 * the end of it (i = disk_sb->s_oid_cursize).  Linear search is
115 	 * what we use, though it is possible that binary search would be
116 	 * more efficient after performing lots of deletions (which is
117 	 * when oids is large.)  We only check even i's.
118 	 */
119 	while (i < sb_oid_cursize(rs)) {
120 		if (objectid_to_release == le32_to_cpu(map[i])) {
121 			/* This incrementation unallocates the objectid. */
122 			le32_add_cpu(&map[i], 1);
123 
124 			/*
125 			 * Did we unallocate the last member of an
126 			 * odd sequence, and can shrink oids?
127 			 */
128 			if (map[i] == map[i + 1]) {
129 				/* shrink objectid map */
130 				memmove(map + i, map + i + 2,
131 					(sb_oid_cursize(rs) - i -
132 					 2) * sizeof(__u32));
133 				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
134 
135 				RFALSE(sb_oid_cursize(rs) < 2 ||
136 				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
137 				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
138 				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
139 			}
140 			return;
141 		}
142 
143 		if (objectid_to_release > le32_to_cpu(map[i]) &&
144 		    objectid_to_release < le32_to_cpu(map[i + 1])) {
145 			/* size of objectid map is not changed */
146 			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
147 				le32_add_cpu(&map[i + 1], -1);
148 				return;
149 			}
150 
151 			/*
152 			 * JDM comparing two little-endian values for
153 			 * equality -- safe
154 			 */
155 			/*
156 			 * objectid map must be expanded, but
157 			 * there is no space
158 			 */
159 			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
160 				PROC_INFO_INC(s, leaked_oid);
161 				return;
162 			}
163 
164 			/* expand the objectid map */
165 			memmove(map + i + 3, map + i + 1,
166 				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
167 			map[i + 1] = cpu_to_le32(objectid_to_release);
168 			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
169 			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
170 			return;
171 		}
172 		i += 2;
173 	}
174 
175 	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
176 		       (long unsigned)objectid_to_release);
177 }
178 
179 int reiserfs_convert_objectid_map_v1(struct super_block *s)
180 {
181 	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
182 	int cur_size = sb_oid_cursize(disk_sb);
183 	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
184 	int old_max = sb_oid_maxsize(disk_sb);
185 	struct reiserfs_super_block_v1 *disk_sb_v1;
186 	__le32 *objectid_map;
187 	int i;
188 
189 	disk_sb_v1 =
190 	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
191 	objectid_map = (__le32 *) (disk_sb_v1 + 1);
192 
193 	if (cur_size > new_size) {
194 		/*
195 		 * mark everyone used that was listed as free at
196 		 * the end of the objectid map
197 		 */
198 		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
199 		set_sb_oid_cursize(disk_sb, new_size);
200 	}
201 	/* move the smaller objectid map past the end of the new super */
202 	for (i = new_size - 1; i >= 0; i--) {
203 		objectid_map[i + (old_max - new_size)] = objectid_map[i];
204 	}
205 
206 	/* set the max size so we don't overflow later */
207 	set_sb_oid_maxsize(disk_sb, new_size);
208 
209 	/* Zero out label and generate random UUID */
210 	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
211 	generate_random_uuid(disk_sb->s_uuid);
212 
213 	/* finally, zero out the unused chunk of the new super */
214 	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
215 	return 0;
216 }
217