xref: /openbmc/linux/fs/reiserfs/objectid.c (revision 87c2ce3b)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/config.h>
6 #include <linux/string.h>
7 #include <linux/random.h>
8 #include <linux/time.h>
9 #include <linux/reiserfs_fs.h>
10 #include <linux/reiserfs_fs_sb.h>
11 
12 // find where objectid map starts
13 #define objectid_map(s,rs) (old_format_only (s) ? \
14                          (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
15 			 (__le32 *)((rs) + 1))
16 
17 #ifdef CONFIG_REISERFS_CHECK
18 
19 static void check_objectid_map(struct super_block *s, __le32 * map)
20 {
21 	if (le32_to_cpu(map[0]) != 1)
22 		reiserfs_panic(s,
23 			       "vs-15010: check_objectid_map: map corrupted: %lx",
24 			       (long unsigned int)le32_to_cpu(map[0]));
25 
26 	// FIXME: add something else here
27 }
28 
29 #else
30 static void check_objectid_map(struct super_block *s, __le32 * map)
31 {;
32 }
33 #endif
34 
35 /* When we allocate objectids we allocate the first unused objectid.
36    Each sequence of objectids in use (the odd sequences) is followed
37    by a sequence of objectids not in use (the even sequences).  We
38    only need to record the last objectid in each of these sequences
39    (both the odd and even sequences) in order to fully define the
40    boundaries of the sequences.  A consequence of allocating the first
41    objectid not in use is that under most conditions this scheme is
42    extremely compact.  The exception is immediately after a sequence
43    of operations which deletes a large number of objects of
44    non-sequential objectids, and even then it will become compact
45    again as soon as more objects are created.  Note that many
46    interesting optimizations of layout could result from complicating
47    objectid assignment, but we have deferred making them for now. */
48 
49 /* get unique object identifier */
50 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
51 {
52 	struct super_block *s = th->t_super;
53 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
54 	__le32 *map = objectid_map(s, rs);
55 	__u32 unused_objectid;
56 
57 	BUG_ON(!th->t_trans_id);
58 
59 	check_objectid_map(s, map);
60 
61 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
62 	/* comment needed -Hans */
63 	unused_objectid = le32_to_cpu(map[1]);
64 	if (unused_objectid == U32_MAX) {
65 		reiserfs_warning(s, "%s: no more object ids", __FUNCTION__);
66 		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
67 		return 0;
68 	}
69 
70 	/* This incrementation allocates the first unused objectid. That
71 	   is to say, the first entry on the objectid map is the first
72 	   unused objectid, and by incrementing it we use it.  See below
73 	   where we check to see if we eliminated a sequence of unused
74 	   objectids.... */
75 	map[1] = cpu_to_le32(unused_objectid + 1);
76 
77 	/* Now we check to see if we eliminated the last remaining member of
78 	   the first even sequence (and can eliminate the sequence by
79 	   eliminating its last objectid from oids), and can collapse the
80 	   first two odd sequences into one sequence.  If so, then the net
81 	   result is to eliminate a pair of objectids from oids.  We do this
82 	   by shifting the entire map to the left. */
83 	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
84 		memmove(map + 1, map + 3,
85 			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
86 		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
87 	}
88 
89 	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
90 	return unused_objectid;
91 }
92 
93 /* makes object identifier unused */
94 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
95 			       __u32 objectid_to_release)
96 {
97 	struct super_block *s = th->t_super;
98 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
99 	__le32 *map = objectid_map(s, rs);
100 	int i = 0;
101 
102 	BUG_ON(!th->t_trans_id);
103 	//return;
104 	check_objectid_map(s, map);
105 
106 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
107 	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
108 
109 	/* start at the beginning of the objectid map (i = 0) and go to
110 	   the end of it (i = disk_sb->s_oid_cursize).  Linear search is
111 	   what we use, though it is possible that binary search would be
112 	   more efficient after performing lots of deletions (which is
113 	   when oids is large.)  We only check even i's. */
114 	while (i < sb_oid_cursize(rs)) {
115 		if (objectid_to_release == le32_to_cpu(map[i])) {
116 			/* This incrementation unallocates the objectid. */
117 			//map[i]++;
118 			map[i] = cpu_to_le32(le32_to_cpu(map[i]) + 1);
119 
120 			/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
121 			if (map[i] == map[i + 1]) {
122 				/* shrink objectid map */
123 				memmove(map + i, map + i + 2,
124 					(sb_oid_cursize(rs) - i -
125 					 2) * sizeof(__u32));
126 				//disk_sb->s_oid_cursize -= 2;
127 				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
128 
129 				RFALSE(sb_oid_cursize(rs) < 2 ||
130 				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
131 				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
132 				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
133 			}
134 			return;
135 		}
136 
137 		if (objectid_to_release > le32_to_cpu(map[i]) &&
138 		    objectid_to_release < le32_to_cpu(map[i + 1])) {
139 			/* size of objectid map is not changed */
140 			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
141 				//objectid_map[i+1]--;
142 				map[i + 1] =
143 				    cpu_to_le32(le32_to_cpu(map[i + 1]) - 1);
144 				return;
145 			}
146 
147 			/* JDM comparing two little-endian values for equality -- safe */
148 			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
149 				/* objectid map must be expanded, but there is no space */
150 				PROC_INFO_INC(s, leaked_oid);
151 				return;
152 			}
153 
154 			/* expand the objectid map */
155 			memmove(map + i + 3, map + i + 1,
156 				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
157 			map[i + 1] = cpu_to_le32(objectid_to_release);
158 			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
159 			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
160 			return;
161 		}
162 		i += 2;
163 	}
164 
165 	reiserfs_warning(s,
166 			 "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)",
167 			 (long unsigned)objectid_to_release);
168 }
169 
170 int reiserfs_convert_objectid_map_v1(struct super_block *s)
171 {
172 	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
173 	int cur_size = sb_oid_cursize(disk_sb);
174 	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
175 	int old_max = sb_oid_maxsize(disk_sb);
176 	struct reiserfs_super_block_v1 *disk_sb_v1;
177 	__le32 *objectid_map, *new_objectid_map;
178 	int i;
179 
180 	disk_sb_v1 =
181 	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
182 	objectid_map = (__le32 *) (disk_sb_v1 + 1);
183 	new_objectid_map = (__le32 *) (disk_sb + 1);
184 
185 	if (cur_size > new_size) {
186 		/* mark everyone used that was listed as free at the end of the objectid
187 		 ** map
188 		 */
189 		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
190 		set_sb_oid_cursize(disk_sb, new_size);
191 	}
192 	/* move the smaller objectid map past the end of the new super */
193 	for (i = new_size - 1; i >= 0; i--) {
194 		objectid_map[i + (old_max - new_size)] = objectid_map[i];
195 	}
196 
197 	/* set the max size so we don't overflow later */
198 	set_sb_oid_maxsize(disk_sb, new_size);
199 
200 	/* Zero out label and generate random UUID */
201 	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
202 	generate_random_uuid(disk_sb->s_uuid);
203 
204 	/* finally, zero out the unused chunk of the new super */
205 	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
206 	return 0;
207 }
208