xref: /openbmc/linux/fs/reiserfs/objectid.c (revision 367b8112)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/string.h>
6 #include <linux/random.h>
7 #include <linux/time.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_fs_sb.h>
10 
11 // find where objectid map starts
12 #define objectid_map(s,rs) (old_format_only (s) ? \
13                          (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
14 			 (__le32 *)((rs) + 1))
15 
16 #ifdef CONFIG_REISERFS_CHECK
17 
18 static void check_objectid_map(struct super_block *s, __le32 * map)
19 {
20 	if (le32_to_cpu(map[0]) != 1)
21 		reiserfs_panic(s,
22 			       "vs-15010: check_objectid_map: map corrupted: %lx",
23 			       (long unsigned int)le32_to_cpu(map[0]));
24 
25 	// FIXME: add something else here
26 }
27 
28 #else
29 static void check_objectid_map(struct super_block *s, __le32 * map)
30 {;
31 }
32 #endif
33 
34 /* When we allocate objectids we allocate the first unused objectid.
35    Each sequence of objectids in use (the odd sequences) is followed
36    by a sequence of objectids not in use (the even sequences).  We
37    only need to record the last objectid in each of these sequences
38    (both the odd and even sequences) in order to fully define the
39    boundaries of the sequences.  A consequence of allocating the first
40    objectid not in use is that under most conditions this scheme is
41    extremely compact.  The exception is immediately after a sequence
42    of operations which deletes a large number of objects of
43    non-sequential objectids, and even then it will become compact
44    again as soon as more objects are created.  Note that many
45    interesting optimizations of layout could result from complicating
46    objectid assignment, but we have deferred making them for now. */
47 
48 /* get unique object identifier */
49 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
50 {
51 	struct super_block *s = th->t_super;
52 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
53 	__le32 *map = objectid_map(s, rs);
54 	__u32 unused_objectid;
55 
56 	BUG_ON(!th->t_trans_id);
57 
58 	check_objectid_map(s, map);
59 
60 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
61 	/* comment needed -Hans */
62 	unused_objectid = le32_to_cpu(map[1]);
63 	if (unused_objectid == U32_MAX) {
64 		reiserfs_warning(s, "%s: no more object ids", __func__);
65 		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
66 		return 0;
67 	}
68 
69 	/* This incrementation allocates the first unused objectid. That
70 	   is to say, the first entry on the objectid map is the first
71 	   unused objectid, and by incrementing it we use it.  See below
72 	   where we check to see if we eliminated a sequence of unused
73 	   objectids.... */
74 	map[1] = cpu_to_le32(unused_objectid + 1);
75 
76 	/* Now we check to see if we eliminated the last remaining member of
77 	   the first even sequence (and can eliminate the sequence by
78 	   eliminating its last objectid from oids), and can collapse the
79 	   first two odd sequences into one sequence.  If so, then the net
80 	   result is to eliminate a pair of objectids from oids.  We do this
81 	   by shifting the entire map to the left. */
82 	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
83 		memmove(map + 1, map + 3,
84 			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
85 		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
86 	}
87 
88 	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
89 	return unused_objectid;
90 }
91 
92 /* makes object identifier unused */
93 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
94 			       __u32 objectid_to_release)
95 {
96 	struct super_block *s = th->t_super;
97 	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
98 	__le32 *map = objectid_map(s, rs);
99 	int i = 0;
100 
101 	BUG_ON(!th->t_trans_id);
102 	//return;
103 	check_objectid_map(s, map);
104 
105 	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
106 	journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
107 
108 	/* start at the beginning of the objectid map (i = 0) and go to
109 	   the end of it (i = disk_sb->s_oid_cursize).  Linear search is
110 	   what we use, though it is possible that binary search would be
111 	   more efficient after performing lots of deletions (which is
112 	   when oids is large.)  We only check even i's. */
113 	while (i < sb_oid_cursize(rs)) {
114 		if (objectid_to_release == le32_to_cpu(map[i])) {
115 			/* This incrementation unallocates the objectid. */
116 			//map[i]++;
117 			le32_add_cpu(&map[i], 1);
118 
119 			/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
120 			if (map[i] == map[i + 1]) {
121 				/* shrink objectid map */
122 				memmove(map + i, map + i + 2,
123 					(sb_oid_cursize(rs) - i -
124 					 2) * sizeof(__u32));
125 				//disk_sb->s_oid_cursize -= 2;
126 				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
127 
128 				RFALSE(sb_oid_cursize(rs) < 2 ||
129 				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
130 				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
131 				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
132 			}
133 			return;
134 		}
135 
136 		if (objectid_to_release > le32_to_cpu(map[i]) &&
137 		    objectid_to_release < le32_to_cpu(map[i + 1])) {
138 			/* size of objectid map is not changed */
139 			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
140 				//objectid_map[i+1]--;
141 				le32_add_cpu(&map[i + 1], -1);
142 				return;
143 			}
144 
145 			/* JDM comparing two little-endian values for equality -- safe */
146 			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
147 				/* objectid map must be expanded, but there is no space */
148 				PROC_INFO_INC(s, leaked_oid);
149 				return;
150 			}
151 
152 			/* expand the objectid map */
153 			memmove(map + i + 3, map + i + 1,
154 				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
155 			map[i + 1] = cpu_to_le32(objectid_to_release);
156 			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
157 			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
158 			return;
159 		}
160 		i += 2;
161 	}
162 
163 	reiserfs_warning(s,
164 			 "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)",
165 			 (long unsigned)objectid_to_release);
166 }
167 
168 int reiserfs_convert_objectid_map_v1(struct super_block *s)
169 {
170 	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
171 	int cur_size = sb_oid_cursize(disk_sb);
172 	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
173 	int old_max = sb_oid_maxsize(disk_sb);
174 	struct reiserfs_super_block_v1 *disk_sb_v1;
175 	__le32 *objectid_map, *new_objectid_map;
176 	int i;
177 
178 	disk_sb_v1 =
179 	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
180 	objectid_map = (__le32 *) (disk_sb_v1 + 1);
181 	new_objectid_map = (__le32 *) (disk_sb + 1);
182 
183 	if (cur_size > new_size) {
184 		/* mark everyone used that was listed as free at the end of the objectid
185 		 ** map
186 		 */
187 		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
188 		set_sb_oid_cursize(disk_sb, new_size);
189 	}
190 	/* move the smaller objectid map past the end of the new super */
191 	for (i = new_size - 1; i >= 0; i--) {
192 		objectid_map[i + (old_max - new_size)] = objectid_map[i];
193 	}
194 
195 	/* set the max size so we don't overflow later */
196 	set_sb_oid_maxsize(disk_sb, new_size);
197 
198 	/* Zero out label and generate random UUID */
199 	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
200 	generate_random_uuid(disk_sb->s_uuid);
201 
202 	/* finally, zero out the unused chunk of the new super */
203 	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
204 	return 0;
205 }
206