1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ 127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ 137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to readpage, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ 193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ 214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ 241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ 285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p = NULL; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 if (result == IO_ERROR) 311 return -EIO; 312 /* 313 * We do not return -ENOENT if there is a hole but page is 314 * uptodate, because it means that there is some MMAPED data 315 * associated with it that is yet to be written to disk. 316 */ 317 if ((args & GET_BLOCK_NO_HOLE) 318 && !PageUptodate(bh_result->b_page)) { 319 return -ENOENT; 320 } 321 return 0; 322 } 323 324 bh = get_last_bh(&path); 325 ih = tp_item_head(&path); 326 if (is_indirect_le_ih(ih)) { 327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 328 329 /* 330 * FIXME: here we could cache indirect item or part of it in 331 * the inode to avoid search_by_key in case of subsequent 332 * access to file 333 */ 334 blocknr = get_block_num(ind_item, path.pos_in_item); 335 ret = 0; 336 if (blocknr) { 337 map_bh(bh_result, inode->i_sb, blocknr); 338 if (path.pos_in_item == 339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 340 set_buffer_boundary(bh_result); 341 } 342 } else 343 /* 344 * We do not return -ENOENT if there is a hole but 345 * page is uptodate, because it means that there is 346 * some MMAPED data associated with it that is 347 * yet to be written to disk. 348 */ 349 if ((args & GET_BLOCK_NO_HOLE) 350 && !PageUptodate(bh_result->b_page)) { 351 ret = -ENOENT; 352 } 353 354 pathrelse(&path); 355 if (p) 356 kunmap(bh_result->b_page); 357 return ret; 358 } 359 /* requested data are in direct item(s) */ 360 if (!(args & GET_BLOCK_READ_DIRECT)) { 361 /* 362 * we are called by bmap. FIXME: we can not map block of file 363 * when it is stored in direct item(s) 364 */ 365 pathrelse(&path); 366 if (p) 367 kunmap(bh_result->b_page); 368 return -ENOENT; 369 } 370 371 /* 372 * if we've got a direct item, and the buffer or page was uptodate, 373 * we don't want to pull data off disk again. skip to the 374 * end, where we map the buffer and return 375 */ 376 if (buffer_uptodate(bh_result)) { 377 goto finished; 378 } else 379 /* 380 * grab_tail_page can trigger calls to reiserfs_get_block on 381 * up to date pages without any buffers. If the page is up 382 * to date, we don't want read old data off disk. Set the up 383 * to date bit on the buffer instead and jump to the end 384 */ 385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 386 set_buffer_uptodate(bh_result); 387 goto finished; 388 } 389 /* read file tail into part of page */ 390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 391 copy_item_head(&tmp_ih, ih); 392 393 /* 394 * we only want to kmap if we are reading the tail into the page. 395 * this is not the common case, so we don't kmap until we are 396 * sure we need to. But, this means the item might move if 397 * kmap schedules 398 */ 399 if (!p) 400 p = (char *)kmap(bh_result->b_page); 401 402 p += offset; 403 memset(p, 0, inode->i_sb->s_blocksize); 404 do { 405 if (!is_direct_le_ih(ih)) { 406 BUG(); 407 } 408 /* 409 * make sure we don't read more bytes than actually exist in 410 * the file. This can happen in odd cases where i_size isn't 411 * correct, and when direct item padding results in a few 412 * extra bytes at the end of the direct item 413 */ 414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 415 break; 416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 417 chars = 418 inode->i_size - (le_ih_k_offset(ih) - 1) - 419 path.pos_in_item; 420 done = 1; 421 } else { 422 chars = ih_item_len(ih) - path.pos_in_item; 423 } 424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 425 426 if (done) 427 break; 428 429 p += chars; 430 431 /* 432 * we done, if read direct item is not the last item of 433 * node FIXME: we could try to check right delimiting key 434 * to see whether direct item continues in the right 435 * neighbor or rely on i_size 436 */ 437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 438 break; 439 440 /* update key to look for the next piece */ 441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 442 result = search_for_position_by_key(inode->i_sb, &key, &path); 443 if (result != POSITION_FOUND) 444 /* i/o error most likely */ 445 break; 446 bh = get_last_bh(&path); 447 ih = tp_item_head(&path); 448 } while (1); 449 450 flush_dcache_page(bh_result->b_page); 451 kunmap(bh_result->b_page); 452 453 finished: 454 pathrelse(&path); 455 456 if (result == IO_ERROR) 457 return -EIO; 458 459 /* 460 * this buffer has valid data, but isn't valid for io. mapping it to 461 * block #0 tells the rest of reiserfs it just has a tail in it 462 */ 463 map_bh(bh_result, inode->i_sb, 0); 464 set_buffer_uptodate(bh_result); 465 return 0; 466 } 467 468 /* 469 * this is called to create file map. So, _get_block_create_0 will not 470 * read direct item 471 */ 472 static int reiserfs_bmap(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 if (!file_capable(inode, block)) 476 return -EFBIG; 477 478 reiserfs_write_lock(inode->i_sb); 479 /* do not read the direct item */ 480 _get_block_create_0(inode, block, bh_result, 0); 481 reiserfs_write_unlock(inode->i_sb); 482 return 0; 483 } 484 485 /* 486 * special version of get_block that is only used by grab_tail_page right 487 * now. It is sent to __block_write_begin, and when you try to get a 488 * block past the end of the file (or a block from a hole) it returns 489 * -ENOENT instead of a valid buffer. __block_write_begin expects to 490 * be able to do i/o on the buffers returned, unless an error value 491 * is also returned. 492 * 493 * So, this allows __block_write_begin to be used for reading a single block 494 * in a page. Where it does not produce a valid page for holes, or past the 495 * end of the file. This turns out to be exactly what we need for reading 496 * tails for conversion. 497 * 498 * The point of the wrapper is forcing a certain value for create, even 499 * though the VFS layer is calling this function with create==1. If you 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 501 * don't use this function. 502 */ 503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 504 struct buffer_head *bh_result, 505 int create) 506 { 507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 508 } 509 510 /* 511 * This is special helper for reiserfs_get_block in case we are executing 512 * direct_IO request. 513 */ 514 static int reiserfs_get_blocks_direct_io(struct inode *inode, 515 sector_t iblock, 516 struct buffer_head *bh_result, 517 int create) 518 { 519 int ret; 520 521 bh_result->b_page = NULL; 522 523 /* 524 * We set the b_size before reiserfs_get_block call since it is 525 * referenced in convert_tail_for_hole() that may be called from 526 * reiserfs_get_block() 527 */ 528 bh_result->b_size = i_blocksize(inode); 529 530 ret = reiserfs_get_block(inode, iblock, bh_result, 531 create | GET_BLOCK_NO_DANGLE); 532 if (ret) 533 goto out; 534 535 /* don't allow direct io onto tail pages */ 536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 537 /* 538 * make sure future calls to the direct io funcs for this 539 * offset in the file fail by unmapping the buffer 540 */ 541 clear_buffer_mapped(bh_result); 542 ret = -EINVAL; 543 } 544 545 /* 546 * Possible unpacked tail. Flush the data before pages have 547 * disappeared 548 */ 549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 550 int err; 551 552 reiserfs_write_lock(inode->i_sb); 553 554 err = reiserfs_commit_for_inode(inode); 555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 556 557 reiserfs_write_unlock(inode->i_sb); 558 559 if (err < 0) 560 ret = err; 561 } 562 out: 563 return ret; 564 } 565 566 /* 567 * helper function for when reiserfs_get_block is called for a hole 568 * but the file tail is still in a direct item 569 * bh_result is the buffer head for the hole 570 * tail_offset is the offset of the start of the tail in the file 571 * 572 * This calls prepare_write, which will start a new transaction 573 * you should not be in a transaction, or have any paths held when you 574 * call this. 575 */ 576 static int convert_tail_for_hole(struct inode *inode, 577 struct buffer_head *bh_result, 578 loff_t tail_offset) 579 { 580 unsigned long index; 581 unsigned long tail_end; 582 unsigned long tail_start; 583 struct page *tail_page; 584 struct page *hole_page = bh_result->b_page; 585 int retval = 0; 586 587 if ((tail_offset & (bh_result->b_size - 1)) != 1) 588 return -EIO; 589 590 /* always try to read until the end of the block */ 591 tail_start = tail_offset & (PAGE_SIZE - 1); 592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 593 594 index = tail_offset >> PAGE_SHIFT; 595 /* 596 * hole_page can be zero in case of direct_io, we are sure 597 * that we cannot get here if we write with O_DIRECT into tail page 598 */ 599 if (!hole_page || index != hole_page->index) { 600 tail_page = grab_cache_page(inode->i_mapping, index); 601 retval = -ENOMEM; 602 if (!tail_page) { 603 goto out; 604 } 605 } else { 606 tail_page = hole_page; 607 } 608 609 /* 610 * we don't have to make sure the conversion did not happen while 611 * we were locking the page because anyone that could convert 612 * must first take i_mutex. 613 * 614 * We must fix the tail page for writing because it might have buffers 615 * that are mapped, but have a block number of 0. This indicates tail 616 * data that has been read directly into the page, and 617 * __block_write_begin won't trigger a get_block in this case. 618 */ 619 fix_tail_page_for_writing(tail_page); 620 retval = __reiserfs_write_begin(tail_page, tail_start, 621 tail_end - tail_start); 622 if (retval) 623 goto unlock; 624 625 /* tail conversion might change the data in the page */ 626 flush_dcache_page(tail_page); 627 628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 629 630 unlock: 631 if (tail_page != hole_page) { 632 unlock_page(tail_page); 633 put_page(tail_page); 634 } 635 out: 636 return retval; 637 } 638 639 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 640 sector_t block, 641 struct inode *inode, 642 b_blocknr_t * allocated_block_nr, 643 struct treepath *path, int flags) 644 { 645 BUG_ON(!th->t_trans_id); 646 647 #ifdef REISERFS_PREALLOCATE 648 if (!(flags & GET_BLOCK_NO_IMUX)) { 649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 650 path, block); 651 } 652 #endif 653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 654 block); 655 } 656 657 int reiserfs_get_block(struct inode *inode, sector_t block, 658 struct buffer_head *bh_result, int create) 659 { 660 int repeat, retval = 0; 661 /* b_blocknr_t is (unsigned) 32 bit int*/ 662 b_blocknr_t allocated_block_nr = 0; 663 INITIALIZE_PATH(path); 664 int pos_in_item; 665 struct cpu_key key; 666 struct buffer_head *bh, *unbh = NULL; 667 struct item_head *ih, tmp_ih; 668 __le32 *item; 669 int done; 670 int fs_gen; 671 struct reiserfs_transaction_handle *th = NULL; 672 /* 673 * space reserved in transaction batch: 674 * . 3 balancings in direct->indirect conversion 675 * . 1 block involved into reiserfs_update_sd() 676 * XXX in practically impossible worst case direct2indirect() 677 * can incur (much) more than 3 balancings. 678 * quota update for user, group 679 */ 680 int jbegin_count = 681 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 683 int version; 684 int dangle = 1; 685 loff_t new_offset = 686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 687 688 reiserfs_write_lock(inode->i_sb); 689 version = get_inode_item_key_version(inode); 690 691 if (!file_capable(inode, block)) { 692 reiserfs_write_unlock(inode->i_sb); 693 return -EFBIG; 694 } 695 696 /* 697 * if !create, we aren't changing the FS, so we don't need to 698 * log anything, so we don't need to start a transaction 699 */ 700 if (!(create & GET_BLOCK_CREATE)) { 701 int ret; 702 /* find number of block-th logical block of the file */ 703 ret = _get_block_create_0(inode, block, bh_result, 704 create | GET_BLOCK_READ_DIRECT); 705 reiserfs_write_unlock(inode->i_sb); 706 return ret; 707 } 708 709 /* 710 * if we're already in a transaction, make sure to close 711 * any new transactions we start in this func 712 */ 713 if ((create & GET_BLOCK_NO_DANGLE) || 714 reiserfs_transaction_running(inode->i_sb)) 715 dangle = 0; 716 717 /* 718 * If file is of such a size, that it might have a tail and 719 * tails are enabled we should mark it as possibly needing 720 * tail packing on close 721 */ 722 if ((have_large_tails(inode->i_sb) 723 && inode->i_size < i_block_size(inode) * 4) 724 || (have_small_tails(inode->i_sb) 725 && inode->i_size < i_block_size(inode))) 726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 727 728 /* set the key of the first byte in the 'block'-th block of file */ 729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 731 start_trans: 732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 733 if (!th) { 734 retval = -ENOMEM; 735 goto failure; 736 } 737 reiserfs_update_inode_transaction(inode); 738 } 739 research: 740 741 retval = search_for_position_by_key(inode->i_sb, &key, &path); 742 if (retval == IO_ERROR) { 743 retval = -EIO; 744 goto failure; 745 } 746 747 bh = get_last_bh(&path); 748 ih = tp_item_head(&path); 749 item = tp_item_body(&path); 750 pos_in_item = path.pos_in_item; 751 752 fs_gen = get_generation(inode->i_sb); 753 copy_item_head(&tmp_ih, ih); 754 755 if (allocation_needed 756 (retval, allocated_block_nr, ih, item, pos_in_item)) { 757 /* we have to allocate block for the unformatted node */ 758 if (!th) { 759 pathrelse(&path); 760 goto start_trans; 761 } 762 763 repeat = 764 _allocate_block(th, block, inode, &allocated_block_nr, 765 &path, create); 766 767 /* 768 * restart the transaction to give the journal a chance to free 769 * some blocks. releases the path, so we have to go back to 770 * research if we succeed on the second try 771 */ 772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 774 retval = restart_transaction(th, inode, &path); 775 if (retval) 776 goto failure; 777 repeat = 778 _allocate_block(th, block, inode, 779 &allocated_block_nr, NULL, create); 780 781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 782 goto research; 783 } 784 if (repeat == QUOTA_EXCEEDED) 785 retval = -EDQUOT; 786 else 787 retval = -ENOSPC; 788 goto failure; 789 } 790 791 if (fs_changed(fs_gen, inode->i_sb) 792 && item_moved(&tmp_ih, &path)) { 793 goto research; 794 } 795 } 796 797 if (indirect_item_found(retval, ih)) { 798 b_blocknr_t unfm_ptr; 799 /* 800 * 'block'-th block is in the file already (there is 801 * corresponding cell in some indirect item). But it may be 802 * zero unformatted node pointer (hole) 803 */ 804 unfm_ptr = get_block_num(item, pos_in_item); 805 if (unfm_ptr == 0) { 806 /* use allocated block to plug the hole */ 807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 808 if (fs_changed(fs_gen, inode->i_sb) 809 && item_moved(&tmp_ih, &path)) { 810 reiserfs_restore_prepared_buffer(inode->i_sb, 811 bh); 812 goto research; 813 } 814 set_buffer_new(bh_result); 815 if (buffer_dirty(bh_result) 816 && reiserfs_data_ordered(inode->i_sb)) 817 reiserfs_add_ordered_list(inode, bh_result); 818 put_block_num(item, pos_in_item, allocated_block_nr); 819 unfm_ptr = allocated_block_nr; 820 journal_mark_dirty(th, bh); 821 reiserfs_update_sd(th, inode); 822 } 823 set_block_dev_mapped(bh_result, unfm_ptr, inode); 824 pathrelse(&path); 825 retval = 0; 826 if (!dangle && th) 827 retval = reiserfs_end_persistent_transaction(th); 828 829 reiserfs_write_unlock(inode->i_sb); 830 831 /* 832 * the item was found, so new blocks were not added to the file 833 * there is no need to make sure the inode is updated with this 834 * transaction 835 */ 836 return retval; 837 } 838 839 if (!th) { 840 pathrelse(&path); 841 goto start_trans; 842 } 843 844 /* 845 * desired position is not found or is in the direct item. We have 846 * to append file with holes up to 'block'-th block converting 847 * direct items to indirect one if necessary 848 */ 849 done = 0; 850 do { 851 if (is_statdata_le_ih(ih)) { 852 __le32 unp = 0; 853 struct cpu_key tmp_key; 854 855 /* indirect item has to be inserted */ 856 make_le_item_head(&tmp_ih, &key, version, 1, 857 TYPE_INDIRECT, UNFM_P_SIZE, 858 0 /* free_space */ ); 859 860 /* 861 * we are going to add 'block'-th block to the file. 862 * Use allocated block for that 863 */ 864 if (cpu_key_k_offset(&key) == 1) { 865 unp = cpu_to_le32(allocated_block_nr); 866 set_block_dev_mapped(bh_result, 867 allocated_block_nr, inode); 868 set_buffer_new(bh_result); 869 done = 1; 870 } 871 tmp_key = key; /* ;) */ 872 set_cpu_key_k_offset(&tmp_key, 1); 873 PATH_LAST_POSITION(&path)++; 874 875 retval = 876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 877 inode, (char *)&unp); 878 if (retval) { 879 reiserfs_free_block(th, inode, 880 allocated_block_nr, 1); 881 /* 882 * retval == -ENOSPC, -EDQUOT or -EIO 883 * or -EEXIST 884 */ 885 goto failure; 886 } 887 } else if (is_direct_le_ih(ih)) { 888 /* direct item has to be converted */ 889 loff_t tail_offset; 890 891 tail_offset = 892 ((le_ih_k_offset(ih) - 893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 894 895 /* 896 * direct item we just found fits into block we have 897 * to map. Convert it into unformatted node: use 898 * bh_result for the conversion 899 */ 900 if (tail_offset == cpu_key_k_offset(&key)) { 901 set_block_dev_mapped(bh_result, 902 allocated_block_nr, inode); 903 unbh = bh_result; 904 done = 1; 905 } else { 906 /* 907 * we have to pad file tail stored in direct 908 * item(s) up to block size and convert it 909 * to unformatted node. FIXME: this should 910 * also get into page cache 911 */ 912 913 pathrelse(&path); 914 /* 915 * ugly, but we can only end the transaction if 916 * we aren't nested 917 */ 918 BUG_ON(!th->t_refcount); 919 if (th->t_refcount == 1) { 920 retval = 921 reiserfs_end_persistent_transaction 922 (th); 923 th = NULL; 924 if (retval) 925 goto failure; 926 } 927 928 retval = 929 convert_tail_for_hole(inode, bh_result, 930 tail_offset); 931 if (retval) { 932 if (retval != -ENOSPC) 933 reiserfs_error(inode->i_sb, 934 "clm-6004", 935 "convert tail failed " 936 "inode %lu, error %d", 937 inode->i_ino, 938 retval); 939 if (allocated_block_nr) { 940 /* 941 * the bitmap, the super, 942 * and the stat data == 3 943 */ 944 if (!th) 945 th = reiserfs_persistent_transaction(inode->i_sb, 3); 946 if (th) 947 reiserfs_free_block(th, 948 inode, 949 allocated_block_nr, 950 1); 951 } 952 goto failure; 953 } 954 goto research; 955 } 956 retval = 957 direct2indirect(th, inode, &path, unbh, 958 tail_offset); 959 if (retval) { 960 reiserfs_unmap_buffer(unbh); 961 reiserfs_free_block(th, inode, 962 allocated_block_nr, 1); 963 goto failure; 964 } 965 /* 966 * it is important the set_buffer_uptodate is done 967 * after the direct2indirect. The buffer might 968 * contain valid data newer than the data on disk 969 * (read by readpage, changed, and then sent here by 970 * writepage). direct2indirect needs to know if unbh 971 * was already up to date, so it can decide if the 972 * data in unbh needs to be replaced with data from 973 * the disk 974 */ 975 set_buffer_uptodate(unbh); 976 977 /* 978 * unbh->b_page == NULL in case of DIRECT_IO request, 979 * this means buffer will disappear shortly, so it 980 * should not be added to 981 */ 982 if (unbh->b_page) { 983 /* 984 * we've converted the tail, so we must 985 * flush unbh before the transaction commits 986 */ 987 reiserfs_add_tail_list(inode, unbh); 988 989 /* 990 * mark it dirty now to prevent commit_write 991 * from adding this buffer to the inode's 992 * dirty buffer list 993 */ 994 /* 995 * AKPM: changed __mark_buffer_dirty to 996 * mark_buffer_dirty(). It's still atomic, 997 * but it sets the page dirty too, which makes 998 * it eligible for writeback at any time by the 999 * VM (which was also the case with 1000 * __mark_buffer_dirty()) 1001 */ 1002 mark_buffer_dirty(unbh); 1003 } 1004 } else { 1005 /* 1006 * append indirect item with holes if needed, when 1007 * appending pointer to 'block'-th block use block, 1008 * which is already allocated 1009 */ 1010 struct cpu_key tmp_key; 1011 /* 1012 * We use this in case we need to allocate 1013 * only one block which is a fastpath 1014 */ 1015 unp_t unf_single = 0; 1016 unp_t *un; 1017 __u64 max_to_insert = 1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1019 UNFM_P_SIZE; 1020 __u64 blocks_needed; 1021 1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1023 "vs-804: invalid position for append"); 1024 /* 1025 * indirect item has to be appended, 1026 * set up key of that position 1027 * (key type is unimportant) 1028 */ 1029 make_cpu_key(&tmp_key, inode, 1030 le_key_k_offset(version, 1031 &ih->ih_key) + 1032 op_bytes_number(ih, 1033 inode->i_sb->s_blocksize), 1034 TYPE_INDIRECT, 3); 1035 1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1037 "green-805: invalid offset"); 1038 blocks_needed = 1039 1 + 1040 ((cpu_key_k_offset(&key) - 1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1042 s_blocksize_bits); 1043 1044 if (blocks_needed == 1) { 1045 un = &unf_single; 1046 } else { 1047 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 1048 if (!un) { 1049 un = &unf_single; 1050 blocks_needed = 1; 1051 max_to_insert = 0; 1052 } 1053 } 1054 if (blocks_needed <= max_to_insert) { 1055 /* 1056 * we are going to add target block to 1057 * the file. Use allocated block for that 1058 */ 1059 un[blocks_needed - 1] = 1060 cpu_to_le32(allocated_block_nr); 1061 set_block_dev_mapped(bh_result, 1062 allocated_block_nr, inode); 1063 set_buffer_new(bh_result); 1064 done = 1; 1065 } else { 1066 /* paste hole to the indirect item */ 1067 /* 1068 * If kmalloc failed, max_to_insert becomes 1069 * zero and it means we only have space for 1070 * one block 1071 */ 1072 blocks_needed = 1073 max_to_insert ? max_to_insert : 1; 1074 } 1075 retval = 1076 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1077 (char *)un, 1078 UNFM_P_SIZE * 1079 blocks_needed); 1080 1081 if (blocks_needed != 1) 1082 kfree(un); 1083 1084 if (retval) { 1085 reiserfs_free_block(th, inode, 1086 allocated_block_nr, 1); 1087 goto failure; 1088 } 1089 if (!done) { 1090 /* 1091 * We need to mark new file size in case 1092 * this function will be interrupted/aborted 1093 * later on. And we may do this only for 1094 * holes. 1095 */ 1096 inode->i_size += 1097 inode->i_sb->s_blocksize * blocks_needed; 1098 } 1099 } 1100 1101 if (done == 1) 1102 break; 1103 1104 /* 1105 * this loop could log more blocks than we had originally 1106 * asked for. So, we have to allow the transaction to end 1107 * if it is too big or too full. Update the inode so things 1108 * are consistent if we crash before the function returns 1109 * release the path so that anybody waiting on the path before 1110 * ending their transaction will be able to continue. 1111 */ 1112 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1113 retval = restart_transaction(th, inode, &path); 1114 if (retval) 1115 goto failure; 1116 } 1117 /* 1118 * inserting indirect pointers for a hole can take a 1119 * long time. reschedule if needed and also release the write 1120 * lock for others. 1121 */ 1122 reiserfs_cond_resched(inode->i_sb); 1123 1124 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1125 if (retval == IO_ERROR) { 1126 retval = -EIO; 1127 goto failure; 1128 } 1129 if (retval == POSITION_FOUND) { 1130 reiserfs_warning(inode->i_sb, "vs-825", 1131 "%K should not be found", &key); 1132 retval = -EEXIST; 1133 if (allocated_block_nr) 1134 reiserfs_free_block(th, inode, 1135 allocated_block_nr, 1); 1136 pathrelse(&path); 1137 goto failure; 1138 } 1139 bh = get_last_bh(&path); 1140 ih = tp_item_head(&path); 1141 item = tp_item_body(&path); 1142 pos_in_item = path.pos_in_item; 1143 } while (1); 1144 1145 retval = 0; 1146 1147 failure: 1148 if (th && (!dangle || (retval && !th->t_trans_id))) { 1149 int err; 1150 if (th->t_trans_id) 1151 reiserfs_update_sd(th, inode); 1152 err = reiserfs_end_persistent_transaction(th); 1153 if (err) 1154 retval = err; 1155 } 1156 1157 reiserfs_write_unlock(inode->i_sb); 1158 reiserfs_check_path(&path); 1159 return retval; 1160 } 1161 1162 static int 1163 reiserfs_readpages(struct file *file, struct address_space *mapping, 1164 struct list_head *pages, unsigned nr_pages) 1165 { 1166 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1167 } 1168 1169 /* 1170 * Compute real number of used bytes by file 1171 * Following three functions can go away when we'll have enough space in 1172 * stat item 1173 */ 1174 static int real_space_diff(struct inode *inode, int sd_size) 1175 { 1176 int bytes; 1177 loff_t blocksize = inode->i_sb->s_blocksize; 1178 1179 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1180 return sd_size; 1181 1182 /* 1183 * End of file is also in full block with indirect reference, so round 1184 * up to the next block. 1185 * 1186 * there is just no way to know if the tail is actually packed 1187 * on the file, so we have to assume it isn't. When we pack the 1188 * tail, we add 4 bytes to pretend there really is an unformatted 1189 * node pointer 1190 */ 1191 bytes = 1192 ((inode->i_size + 1193 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1194 sd_size; 1195 return bytes; 1196 } 1197 1198 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1199 int sd_size) 1200 { 1201 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1202 return inode->i_size + 1203 (loff_t) (real_space_diff(inode, sd_size)); 1204 } 1205 return ((loff_t) real_space_diff(inode, sd_size)) + 1206 (((loff_t) blocks) << 9); 1207 } 1208 1209 /* Compute number of blocks used by file in ReiserFS counting */ 1210 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1211 { 1212 loff_t bytes = inode_get_bytes(inode); 1213 loff_t real_space = real_space_diff(inode, sd_size); 1214 1215 /* keeps fsck and non-quota versions of reiserfs happy */ 1216 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1217 bytes += (loff_t) 511; 1218 } 1219 1220 /* 1221 * files from before the quota patch might i_blocks such that 1222 * bytes < real_space. Deal with that here to prevent it from 1223 * going negative. 1224 */ 1225 if (bytes < real_space) 1226 return 0; 1227 return (bytes - real_space) >> 9; 1228 } 1229 1230 /* 1231 * BAD: new directories have stat data of new type and all other items 1232 * of old type. Version stored in the inode says about body items, so 1233 * in update_stat_data we can not rely on inode, but have to check 1234 * item version directly 1235 */ 1236 1237 /* called by read_locked_inode */ 1238 static void init_inode(struct inode *inode, struct treepath *path) 1239 { 1240 struct buffer_head *bh; 1241 struct item_head *ih; 1242 __u32 rdev; 1243 1244 bh = PATH_PLAST_BUFFER(path); 1245 ih = tp_item_head(path); 1246 1247 copy_key(INODE_PKEY(inode), &ih->ih_key); 1248 1249 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1250 REISERFS_I(inode)->i_flags = 0; 1251 REISERFS_I(inode)->i_prealloc_block = 0; 1252 REISERFS_I(inode)->i_prealloc_count = 0; 1253 REISERFS_I(inode)->i_trans_id = 0; 1254 REISERFS_I(inode)->i_jl = NULL; 1255 reiserfs_init_xattr_rwsem(inode); 1256 1257 if (stat_data_v1(ih)) { 1258 struct stat_data_v1 *sd = 1259 (struct stat_data_v1 *)ih_item_body(bh, ih); 1260 unsigned long blocks; 1261 1262 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1263 set_inode_sd_version(inode, STAT_DATA_V1); 1264 inode->i_mode = sd_v1_mode(sd); 1265 set_nlink(inode, sd_v1_nlink(sd)); 1266 i_uid_write(inode, sd_v1_uid(sd)); 1267 i_gid_write(inode, sd_v1_gid(sd)); 1268 inode->i_size = sd_v1_size(sd); 1269 inode->i_atime.tv_sec = sd_v1_atime(sd); 1270 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1271 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1272 inode->i_atime.tv_nsec = 0; 1273 inode->i_ctime.tv_nsec = 0; 1274 inode->i_mtime.tv_nsec = 0; 1275 1276 inode->i_blocks = sd_v1_blocks(sd); 1277 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1278 blocks = (inode->i_size + 511) >> 9; 1279 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1280 1281 /* 1282 * there was a bug in <=3.5.23 when i_blocks could take 1283 * negative values. Starting from 3.5.17 this value could 1284 * even be stored in stat data. For such files we set 1285 * i_blocks based on file size. Just 2 notes: this can be 1286 * wrong for sparse files. On-disk value will be only 1287 * updated if file's inode will ever change 1288 */ 1289 if (inode->i_blocks > blocks) { 1290 inode->i_blocks = blocks; 1291 } 1292 1293 rdev = sd_v1_rdev(sd); 1294 REISERFS_I(inode)->i_first_direct_byte = 1295 sd_v1_first_direct_byte(sd); 1296 1297 /* 1298 * an early bug in the quota code can give us an odd 1299 * number for the block count. This is incorrect, fix it here. 1300 */ 1301 if (inode->i_blocks & 1) { 1302 inode->i_blocks++; 1303 } 1304 inode_set_bytes(inode, 1305 to_real_used_space(inode, inode->i_blocks, 1306 SD_V1_SIZE)); 1307 /* 1308 * nopack is initially zero for v1 objects. For v2 objects, 1309 * nopack is initialised from sd_attrs 1310 */ 1311 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1312 } else { 1313 /* 1314 * new stat data found, but object may have old items 1315 * (directories and symlinks) 1316 */ 1317 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1318 1319 inode->i_mode = sd_v2_mode(sd); 1320 set_nlink(inode, sd_v2_nlink(sd)); 1321 i_uid_write(inode, sd_v2_uid(sd)); 1322 inode->i_size = sd_v2_size(sd); 1323 i_gid_write(inode, sd_v2_gid(sd)); 1324 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1325 inode->i_atime.tv_sec = sd_v2_atime(sd); 1326 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1327 inode->i_ctime.tv_nsec = 0; 1328 inode->i_mtime.tv_nsec = 0; 1329 inode->i_atime.tv_nsec = 0; 1330 inode->i_blocks = sd_v2_blocks(sd); 1331 rdev = sd_v2_rdev(sd); 1332 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1333 inode->i_generation = 1334 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1335 else 1336 inode->i_generation = sd_v2_generation(sd); 1337 1338 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1339 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1340 else 1341 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1342 REISERFS_I(inode)->i_first_direct_byte = 0; 1343 set_inode_sd_version(inode, STAT_DATA_V2); 1344 inode_set_bytes(inode, 1345 to_real_used_space(inode, inode->i_blocks, 1346 SD_V2_SIZE)); 1347 /* 1348 * read persistent inode attributes from sd and initialise 1349 * generic inode flags from them 1350 */ 1351 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1352 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1353 } 1354 1355 pathrelse(path); 1356 if (S_ISREG(inode->i_mode)) { 1357 inode->i_op = &reiserfs_file_inode_operations; 1358 inode->i_fop = &reiserfs_file_operations; 1359 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1360 } else if (S_ISDIR(inode->i_mode)) { 1361 inode->i_op = &reiserfs_dir_inode_operations; 1362 inode->i_fop = &reiserfs_dir_operations; 1363 } else if (S_ISLNK(inode->i_mode)) { 1364 inode->i_op = &reiserfs_symlink_inode_operations; 1365 inode_nohighmem(inode); 1366 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1367 } else { 1368 inode->i_blocks = 0; 1369 inode->i_op = &reiserfs_special_inode_operations; 1370 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1371 } 1372 } 1373 1374 /* update new stat data with inode fields */ 1375 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1376 { 1377 struct stat_data *sd_v2 = (struct stat_data *)sd; 1378 1379 set_sd_v2_mode(sd_v2, inode->i_mode); 1380 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1381 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1382 set_sd_v2_size(sd_v2, size); 1383 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1384 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1385 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1386 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1387 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1388 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1389 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1390 else 1391 set_sd_v2_generation(sd_v2, inode->i_generation); 1392 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1393 } 1394 1395 /* used to copy inode's fields to old stat data */ 1396 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1397 { 1398 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1399 1400 set_sd_v1_mode(sd_v1, inode->i_mode); 1401 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1402 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1403 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1404 set_sd_v1_size(sd_v1, size); 1405 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1406 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1407 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1408 1409 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1410 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1411 else 1412 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1413 1414 /* Sigh. i_first_direct_byte is back */ 1415 set_sd_v1_first_direct_byte(sd_v1, 1416 REISERFS_I(inode)->i_first_direct_byte); 1417 } 1418 1419 /* 1420 * NOTE, you must prepare the buffer head before sending it here, 1421 * and then log it after the call 1422 */ 1423 static void update_stat_data(struct treepath *path, struct inode *inode, 1424 loff_t size) 1425 { 1426 struct buffer_head *bh; 1427 struct item_head *ih; 1428 1429 bh = PATH_PLAST_BUFFER(path); 1430 ih = tp_item_head(path); 1431 1432 if (!is_statdata_le_ih(ih)) 1433 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1434 INODE_PKEY(inode), ih); 1435 1436 /* path points to old stat data */ 1437 if (stat_data_v1(ih)) { 1438 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1439 } else { 1440 inode2sd(ih_item_body(bh, ih), inode, size); 1441 } 1442 1443 return; 1444 } 1445 1446 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1447 struct inode *inode, loff_t size) 1448 { 1449 struct cpu_key key; 1450 INITIALIZE_PATH(path); 1451 struct buffer_head *bh; 1452 int fs_gen; 1453 struct item_head *ih, tmp_ih; 1454 int retval; 1455 1456 BUG_ON(!th->t_trans_id); 1457 1458 /* key type is unimportant */ 1459 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1460 1461 for (;;) { 1462 int pos; 1463 /* look for the object's stat data */ 1464 retval = search_item(inode->i_sb, &key, &path); 1465 if (retval == IO_ERROR) { 1466 reiserfs_error(inode->i_sb, "vs-13050", 1467 "i/o failure occurred trying to " 1468 "update %K stat data", &key); 1469 return; 1470 } 1471 if (retval == ITEM_NOT_FOUND) { 1472 pos = PATH_LAST_POSITION(&path); 1473 pathrelse(&path); 1474 if (inode->i_nlink == 0) { 1475 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1476 return; 1477 } 1478 reiserfs_warning(inode->i_sb, "vs-13060", 1479 "stat data of object %k (nlink == %d) " 1480 "not found (pos %d)", 1481 INODE_PKEY(inode), inode->i_nlink, 1482 pos); 1483 reiserfs_check_path(&path); 1484 return; 1485 } 1486 1487 /* 1488 * sigh, prepare_for_journal might schedule. When it 1489 * schedules the FS might change. We have to detect that, 1490 * and loop back to the search if the stat data item has moved 1491 */ 1492 bh = get_last_bh(&path); 1493 ih = tp_item_head(&path); 1494 copy_item_head(&tmp_ih, ih); 1495 fs_gen = get_generation(inode->i_sb); 1496 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1497 1498 /* Stat_data item has been moved after scheduling. */ 1499 if (fs_changed(fs_gen, inode->i_sb) 1500 && item_moved(&tmp_ih, &path)) { 1501 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1502 continue; 1503 } 1504 break; 1505 } 1506 update_stat_data(&path, inode, size); 1507 journal_mark_dirty(th, bh); 1508 pathrelse(&path); 1509 return; 1510 } 1511 1512 /* 1513 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1514 * does a make_bad_inode when things go wrong. But, we need to make sure 1515 * and clear the key in the private portion of the inode, otherwise a 1516 * corresponding iput might try to delete whatever object the inode last 1517 * represented. 1518 */ 1519 static void reiserfs_make_bad_inode(struct inode *inode) 1520 { 1521 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1522 make_bad_inode(inode); 1523 } 1524 1525 /* 1526 * initially this function was derived from minix or ext2's analog and 1527 * evolved as the prototype did 1528 */ 1529 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1530 { 1531 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1532 inode->i_ino = args->objectid; 1533 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1534 return 0; 1535 } 1536 1537 /* 1538 * looks for stat data in the tree, and fills up the fields of in-core 1539 * inode stat data fields 1540 */ 1541 void reiserfs_read_locked_inode(struct inode *inode, 1542 struct reiserfs_iget_args *args) 1543 { 1544 INITIALIZE_PATH(path_to_sd); 1545 struct cpu_key key; 1546 unsigned long dirino; 1547 int retval; 1548 1549 dirino = args->dirid; 1550 1551 /* 1552 * set version 1, version 2 could be used too, because stat data 1553 * key is the same in both versions 1554 */ 1555 key.version = KEY_FORMAT_3_5; 1556 key.on_disk_key.k_dir_id = dirino; 1557 key.on_disk_key.k_objectid = inode->i_ino; 1558 key.on_disk_key.k_offset = 0; 1559 key.on_disk_key.k_type = 0; 1560 1561 /* look for the object's stat data */ 1562 retval = search_item(inode->i_sb, &key, &path_to_sd); 1563 if (retval == IO_ERROR) { 1564 reiserfs_error(inode->i_sb, "vs-13070", 1565 "i/o failure occurred trying to find " 1566 "stat data of %K", &key); 1567 reiserfs_make_bad_inode(inode); 1568 return; 1569 } 1570 1571 /* a stale NFS handle can trigger this without it being an error */ 1572 if (retval != ITEM_FOUND) { 1573 pathrelse(&path_to_sd); 1574 reiserfs_make_bad_inode(inode); 1575 clear_nlink(inode); 1576 return; 1577 } 1578 1579 init_inode(inode, &path_to_sd); 1580 1581 /* 1582 * It is possible that knfsd is trying to access inode of a file 1583 * that is being removed from the disk by some other thread. As we 1584 * update sd on unlink all that is required is to check for nlink 1585 * here. This bug was first found by Sizif when debugging 1586 * SquidNG/Butterfly, forgotten, and found again after Philippe 1587 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1588 1589 * More logical fix would require changes in fs/inode.c:iput() to 1590 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1591 * in iget() to return NULL if I_FREEING inode is found in 1592 * hash-table. 1593 */ 1594 1595 /* 1596 * Currently there is one place where it's ok to meet inode with 1597 * nlink==0: processing of open-unlinked and half-truncated files 1598 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1599 */ 1600 if ((inode->i_nlink == 0) && 1601 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1602 reiserfs_warning(inode->i_sb, "vs-13075", 1603 "dead inode read from disk %K. " 1604 "This is likely to be race with knfsd. Ignore", 1605 &key); 1606 reiserfs_make_bad_inode(inode); 1607 } 1608 1609 /* init inode should be relsing */ 1610 reiserfs_check_path(&path_to_sd); 1611 1612 /* 1613 * Stat data v1 doesn't support ACLs. 1614 */ 1615 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1616 cache_no_acl(inode); 1617 } 1618 1619 /* 1620 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1621 * 1622 * @inode: inode from hash table to check 1623 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1624 * 1625 * This function is called by iget5_locked() to distinguish reiserfs inodes 1626 * having the same inode numbers. Such inodes can only exist due to some 1627 * error condition. One of them should be bad. Inodes with identical 1628 * inode numbers (objectids) are distinguished by parent directory ids. 1629 * 1630 */ 1631 int reiserfs_find_actor(struct inode *inode, void *opaque) 1632 { 1633 struct reiserfs_iget_args *args; 1634 1635 args = opaque; 1636 /* args is already in CPU order */ 1637 return (inode->i_ino == args->objectid) && 1638 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1639 } 1640 1641 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1642 { 1643 struct inode *inode; 1644 struct reiserfs_iget_args args; 1645 int depth; 1646 1647 args.objectid = key->on_disk_key.k_objectid; 1648 args.dirid = key->on_disk_key.k_dir_id; 1649 depth = reiserfs_write_unlock_nested(s); 1650 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1651 reiserfs_find_actor, reiserfs_init_locked_inode, 1652 (void *)(&args)); 1653 reiserfs_write_lock_nested(s, depth); 1654 if (!inode) 1655 return ERR_PTR(-ENOMEM); 1656 1657 if (inode->i_state & I_NEW) { 1658 reiserfs_read_locked_inode(inode, &args); 1659 unlock_new_inode(inode); 1660 } 1661 1662 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1663 /* either due to i/o error or a stale NFS handle */ 1664 iput(inode); 1665 inode = NULL; 1666 } 1667 return inode; 1668 } 1669 1670 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1671 u32 objectid, u32 dir_id, u32 generation) 1672 1673 { 1674 struct cpu_key key; 1675 struct inode *inode; 1676 1677 key.on_disk_key.k_objectid = objectid; 1678 key.on_disk_key.k_dir_id = dir_id; 1679 reiserfs_write_lock(sb); 1680 inode = reiserfs_iget(sb, &key); 1681 if (inode && !IS_ERR(inode) && generation != 0 && 1682 generation != inode->i_generation) { 1683 iput(inode); 1684 inode = NULL; 1685 } 1686 reiserfs_write_unlock(sb); 1687 1688 return d_obtain_alias(inode); 1689 } 1690 1691 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1692 int fh_len, int fh_type) 1693 { 1694 /* 1695 * fhtype happens to reflect the number of u32s encoded. 1696 * due to a bug in earlier code, fhtype might indicate there 1697 * are more u32s then actually fitted. 1698 * so if fhtype seems to be more than len, reduce fhtype. 1699 * Valid types are: 1700 * 2 - objectid + dir_id - legacy support 1701 * 3 - objectid + dir_id + generation 1702 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1703 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1704 * 6 - as above plus generation of directory 1705 * 6 does not fit in NFSv2 handles 1706 */ 1707 if (fh_type > fh_len) { 1708 if (fh_type != 6 || fh_len != 5) 1709 reiserfs_warning(sb, "reiserfs-13077", 1710 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1711 fh_type, fh_len); 1712 fh_type = fh_len; 1713 } 1714 if (fh_len < 2) 1715 return NULL; 1716 1717 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1718 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1719 } 1720 1721 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1722 int fh_len, int fh_type) 1723 { 1724 if (fh_type > fh_len) 1725 fh_type = fh_len; 1726 if (fh_type < 4) 1727 return NULL; 1728 1729 return reiserfs_get_dentry(sb, 1730 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1731 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1732 (fh_type == 6) ? fid->raw[5] : 0); 1733 } 1734 1735 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1736 struct inode *parent) 1737 { 1738 int maxlen = *lenp; 1739 1740 if (parent && (maxlen < 5)) { 1741 *lenp = 5; 1742 return FILEID_INVALID; 1743 } else if (maxlen < 3) { 1744 *lenp = 3; 1745 return FILEID_INVALID; 1746 } 1747 1748 data[0] = inode->i_ino; 1749 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1750 data[2] = inode->i_generation; 1751 *lenp = 3; 1752 if (parent) { 1753 data[3] = parent->i_ino; 1754 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1755 *lenp = 5; 1756 if (maxlen >= 6) { 1757 data[5] = parent->i_generation; 1758 *lenp = 6; 1759 } 1760 } 1761 return *lenp; 1762 } 1763 1764 /* 1765 * looks for stat data, then copies fields to it, marks the buffer 1766 * containing stat data as dirty 1767 */ 1768 /* 1769 * reiserfs inodes are never really dirty, since the dirty inode call 1770 * always logs them. This call allows the VFS inode marking routines 1771 * to properly mark inodes for datasync and such, but only actually 1772 * does something when called for a synchronous update. 1773 */ 1774 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1775 { 1776 struct reiserfs_transaction_handle th; 1777 int jbegin_count = 1; 1778 1779 if (inode->i_sb->s_flags & MS_RDONLY) 1780 return -EROFS; 1781 /* 1782 * memory pressure can sometimes initiate write_inode calls with 1783 * sync == 1, 1784 * these cases are just when the system needs ram, not when the 1785 * inode needs to reach disk for safety, and they can safely be 1786 * ignored because the altered inode has already been logged. 1787 */ 1788 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1789 reiserfs_write_lock(inode->i_sb); 1790 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1791 reiserfs_update_sd(&th, inode); 1792 journal_end_sync(&th); 1793 } 1794 reiserfs_write_unlock(inode->i_sb); 1795 } 1796 return 0; 1797 } 1798 1799 /* 1800 * stat data of new object is inserted already, this inserts the item 1801 * containing "." and ".." entries 1802 */ 1803 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1804 struct inode *inode, 1805 struct item_head *ih, struct treepath *path, 1806 struct inode *dir) 1807 { 1808 struct super_block *sb = th->t_super; 1809 char empty_dir[EMPTY_DIR_SIZE]; 1810 char *body = empty_dir; 1811 struct cpu_key key; 1812 int retval; 1813 1814 BUG_ON(!th->t_trans_id); 1815 1816 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1817 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1818 TYPE_DIRENTRY, 3 /*key length */ ); 1819 1820 /* 1821 * compose item head for new item. Directories consist of items of 1822 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1823 * is done by reiserfs_new_inode 1824 */ 1825 if (old_format_only(sb)) { 1826 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1827 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1828 1829 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1830 ih->ih_key.k_objectid, 1831 INODE_PKEY(dir)->k_dir_id, 1832 INODE_PKEY(dir)->k_objectid); 1833 } else { 1834 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1835 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1836 1837 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1838 ih->ih_key.k_objectid, 1839 INODE_PKEY(dir)->k_dir_id, 1840 INODE_PKEY(dir)->k_objectid); 1841 } 1842 1843 /* look for place in the tree for new item */ 1844 retval = search_item(sb, &key, path); 1845 if (retval == IO_ERROR) { 1846 reiserfs_error(sb, "vs-13080", 1847 "i/o failure occurred creating new directory"); 1848 return -EIO; 1849 } 1850 if (retval == ITEM_FOUND) { 1851 pathrelse(path); 1852 reiserfs_warning(sb, "vs-13070", 1853 "object with this key exists (%k)", 1854 &(ih->ih_key)); 1855 return -EEXIST; 1856 } 1857 1858 /* insert item, that is empty directory item */ 1859 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1860 } 1861 1862 /* 1863 * stat data of object has been inserted, this inserts the item 1864 * containing the body of symlink 1865 */ 1866 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1867 struct inode *inode, 1868 struct item_head *ih, 1869 struct treepath *path, const char *symname, 1870 int item_len) 1871 { 1872 struct super_block *sb = th->t_super; 1873 struct cpu_key key; 1874 int retval; 1875 1876 BUG_ON(!th->t_trans_id); 1877 1878 _make_cpu_key(&key, KEY_FORMAT_3_5, 1879 le32_to_cpu(ih->ih_key.k_dir_id), 1880 le32_to_cpu(ih->ih_key.k_objectid), 1881 1, TYPE_DIRECT, 3 /*key length */ ); 1882 1883 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1884 0 /*free_space */ ); 1885 1886 /* look for place in the tree for new item */ 1887 retval = search_item(sb, &key, path); 1888 if (retval == IO_ERROR) { 1889 reiserfs_error(sb, "vs-13080", 1890 "i/o failure occurred creating new symlink"); 1891 return -EIO; 1892 } 1893 if (retval == ITEM_FOUND) { 1894 pathrelse(path); 1895 reiserfs_warning(sb, "vs-13080", 1896 "object with this key exists (%k)", 1897 &(ih->ih_key)); 1898 return -EEXIST; 1899 } 1900 1901 /* insert item, that is body of symlink */ 1902 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1903 } 1904 1905 /* 1906 * inserts the stat data into the tree, and then calls 1907 * reiserfs_new_directory (to insert ".", ".." item if new object is 1908 * directory) or reiserfs_new_symlink (to insert symlink body if new 1909 * object is symlink) or nothing (if new object is regular file) 1910 1911 * NOTE! uid and gid must already be set in the inode. If we return 1912 * non-zero due to an error, we have to drop the quota previously allocated 1913 * for the fresh inode. This can only be done outside a transaction, so 1914 * if we return non-zero, we also end the transaction. 1915 * 1916 * @th: active transaction handle 1917 * @dir: parent directory for new inode 1918 * @mode: mode of new inode 1919 * @symname: symlink contents if inode is symlink 1920 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1921 * symlinks 1922 * @inode: inode to be filled 1923 * @security: optional security context to associate with this inode 1924 */ 1925 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1926 struct inode *dir, umode_t mode, const char *symname, 1927 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1928 strlen (symname) for symlinks) */ 1929 loff_t i_size, struct dentry *dentry, 1930 struct inode *inode, 1931 struct reiserfs_security_handle *security) 1932 { 1933 struct super_block *sb = dir->i_sb; 1934 struct reiserfs_iget_args args; 1935 INITIALIZE_PATH(path_to_key); 1936 struct cpu_key key; 1937 struct item_head ih; 1938 struct stat_data sd; 1939 int retval; 1940 int err; 1941 int depth; 1942 1943 BUG_ON(!th->t_trans_id); 1944 1945 depth = reiserfs_write_unlock_nested(sb); 1946 err = dquot_alloc_inode(inode); 1947 reiserfs_write_lock_nested(sb, depth); 1948 if (err) 1949 goto out_end_trans; 1950 if (!dir->i_nlink) { 1951 err = -EPERM; 1952 goto out_bad_inode; 1953 } 1954 1955 /* item head of new item */ 1956 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1957 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1958 if (!ih.ih_key.k_objectid) { 1959 err = -ENOMEM; 1960 goto out_bad_inode; 1961 } 1962 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1963 if (old_format_only(sb)) 1964 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1965 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1966 else 1967 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1968 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1969 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1970 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1971 1972 depth = reiserfs_write_unlock_nested(inode->i_sb); 1973 err = insert_inode_locked4(inode, args.objectid, 1974 reiserfs_find_actor, &args); 1975 reiserfs_write_lock_nested(inode->i_sb, depth); 1976 if (err) { 1977 err = -EINVAL; 1978 goto out_bad_inode; 1979 } 1980 1981 if (old_format_only(sb)) 1982 /* 1983 * not a perfect generation count, as object ids can be reused, 1984 * but this is as good as reiserfs can do right now. 1985 * note that the private part of inode isn't filled in yet, 1986 * we have to use the directory. 1987 */ 1988 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1989 else 1990 #if defined( USE_INODE_GENERATION_COUNTER ) 1991 inode->i_generation = 1992 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1993 #else 1994 inode->i_generation = ++event; 1995 #endif 1996 1997 /* fill stat data */ 1998 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1999 2000 /* uid and gid must already be set by the caller for quota init */ 2001 2002 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2003 inode->i_size = i_size; 2004 inode->i_blocks = 0; 2005 inode->i_bytes = 0; 2006 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2007 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2008 2009 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2010 REISERFS_I(inode)->i_flags = 0; 2011 REISERFS_I(inode)->i_prealloc_block = 0; 2012 REISERFS_I(inode)->i_prealloc_count = 0; 2013 REISERFS_I(inode)->i_trans_id = 0; 2014 REISERFS_I(inode)->i_jl = NULL; 2015 REISERFS_I(inode)->i_attrs = 2016 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2017 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2018 reiserfs_init_xattr_rwsem(inode); 2019 2020 /* key to search for correct place for new stat data */ 2021 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2022 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2023 TYPE_STAT_DATA, 3 /*key length */ ); 2024 2025 /* find proper place for inserting of stat data */ 2026 retval = search_item(sb, &key, &path_to_key); 2027 if (retval == IO_ERROR) { 2028 err = -EIO; 2029 goto out_bad_inode; 2030 } 2031 if (retval == ITEM_FOUND) { 2032 pathrelse(&path_to_key); 2033 err = -EEXIST; 2034 goto out_bad_inode; 2035 } 2036 if (old_format_only(sb)) { 2037 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2038 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2039 pathrelse(&path_to_key); 2040 err = -EINVAL; 2041 goto out_bad_inode; 2042 } 2043 inode2sd_v1(&sd, inode, inode->i_size); 2044 } else { 2045 inode2sd(&sd, inode, inode->i_size); 2046 } 2047 /* 2048 * store in in-core inode the key of stat data and version all 2049 * object items will have (directory items will have old offset 2050 * format, other new objects will consist of new items) 2051 */ 2052 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2053 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2054 else 2055 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2056 if (old_format_only(sb)) 2057 set_inode_sd_version(inode, STAT_DATA_V1); 2058 else 2059 set_inode_sd_version(inode, STAT_DATA_V2); 2060 2061 /* insert the stat data into the tree */ 2062 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2063 if (REISERFS_I(dir)->new_packing_locality) 2064 th->displace_new_blocks = 1; 2065 #endif 2066 retval = 2067 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2068 (char *)(&sd)); 2069 if (retval) { 2070 err = retval; 2071 reiserfs_check_path(&path_to_key); 2072 goto out_bad_inode; 2073 } 2074 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2075 if (!th->displace_new_blocks) 2076 REISERFS_I(dir)->new_packing_locality = 0; 2077 #endif 2078 if (S_ISDIR(mode)) { 2079 /* insert item with "." and ".." */ 2080 retval = 2081 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2082 } 2083 2084 if (S_ISLNK(mode)) { 2085 /* insert body of symlink */ 2086 if (!old_format_only(sb)) 2087 i_size = ROUND_UP(i_size); 2088 retval = 2089 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2090 i_size); 2091 } 2092 if (retval) { 2093 err = retval; 2094 reiserfs_check_path(&path_to_key); 2095 journal_end(th); 2096 goto out_inserted_sd; 2097 } 2098 2099 if (reiserfs_posixacl(inode->i_sb)) { 2100 reiserfs_write_unlock(inode->i_sb); 2101 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2102 reiserfs_write_lock(inode->i_sb); 2103 if (retval) { 2104 err = retval; 2105 reiserfs_check_path(&path_to_key); 2106 journal_end(th); 2107 goto out_inserted_sd; 2108 } 2109 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 2110 reiserfs_warning(inode->i_sb, "jdm-13090", 2111 "ACLs aren't enabled in the fs, " 2112 "but vfs thinks they are!"); 2113 } else if (IS_PRIVATE(dir)) 2114 inode->i_flags |= S_PRIVATE; 2115 2116 if (security->name) { 2117 reiserfs_write_unlock(inode->i_sb); 2118 retval = reiserfs_security_write(th, inode, security); 2119 reiserfs_write_lock(inode->i_sb); 2120 if (retval) { 2121 err = retval; 2122 reiserfs_check_path(&path_to_key); 2123 retval = journal_end(th); 2124 if (retval) 2125 err = retval; 2126 goto out_inserted_sd; 2127 } 2128 } 2129 2130 reiserfs_update_sd(th, inode); 2131 reiserfs_check_path(&path_to_key); 2132 2133 return 0; 2134 2135 out_bad_inode: 2136 /* Invalidate the object, nothing was inserted yet */ 2137 INODE_PKEY(inode)->k_objectid = 0; 2138 2139 /* Quota change must be inside a transaction for journaling */ 2140 depth = reiserfs_write_unlock_nested(inode->i_sb); 2141 dquot_free_inode(inode); 2142 reiserfs_write_lock_nested(inode->i_sb, depth); 2143 2144 out_end_trans: 2145 journal_end(th); 2146 /* 2147 * Drop can be outside and it needs more credits so it's better 2148 * to have it outside 2149 */ 2150 depth = reiserfs_write_unlock_nested(inode->i_sb); 2151 dquot_drop(inode); 2152 reiserfs_write_lock_nested(inode->i_sb, depth); 2153 inode->i_flags |= S_NOQUOTA; 2154 make_bad_inode(inode); 2155 2156 out_inserted_sd: 2157 clear_nlink(inode); 2158 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2159 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2160 iput(inode); 2161 return err; 2162 } 2163 2164 /* 2165 * finds the tail page in the page cache, 2166 * reads the last block in. 2167 * 2168 * On success, page_result is set to a locked, pinned page, and bh_result 2169 * is set to an up to date buffer for the last block in the file. returns 0. 2170 * 2171 * tail conversion is not done, so bh_result might not be valid for writing 2172 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2173 * trying to write the block. 2174 * 2175 * on failure, nonzero is returned, page_result and bh_result are untouched. 2176 */ 2177 static int grab_tail_page(struct inode *inode, 2178 struct page **page_result, 2179 struct buffer_head **bh_result) 2180 { 2181 2182 /* 2183 * we want the page with the last byte in the file, 2184 * not the page that will hold the next byte for appending 2185 */ 2186 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2187 unsigned long pos = 0; 2188 unsigned long start = 0; 2189 unsigned long blocksize = inode->i_sb->s_blocksize; 2190 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2191 struct buffer_head *bh; 2192 struct buffer_head *head; 2193 struct page *page; 2194 int error; 2195 2196 /* 2197 * we know that we are only called with inode->i_size > 0. 2198 * we also know that a file tail can never be as big as a block 2199 * If i_size % blocksize == 0, our file is currently block aligned 2200 * and it won't need converting or zeroing after a truncate. 2201 */ 2202 if ((offset & (blocksize - 1)) == 0) { 2203 return -ENOENT; 2204 } 2205 page = grab_cache_page(inode->i_mapping, index); 2206 error = -ENOMEM; 2207 if (!page) { 2208 goto out; 2209 } 2210 /* start within the page of the last block in the file */ 2211 start = (offset / blocksize) * blocksize; 2212 2213 error = __block_write_begin(page, start, offset - start, 2214 reiserfs_get_block_create_0); 2215 if (error) 2216 goto unlock; 2217 2218 head = page_buffers(page); 2219 bh = head; 2220 do { 2221 if (pos >= start) { 2222 break; 2223 } 2224 bh = bh->b_this_page; 2225 pos += blocksize; 2226 } while (bh != head); 2227 2228 if (!buffer_uptodate(bh)) { 2229 /* 2230 * note, this should never happen, prepare_write should be 2231 * taking care of this for us. If the buffer isn't up to 2232 * date, I've screwed up the code to find the buffer, or the 2233 * code to call prepare_write 2234 */ 2235 reiserfs_error(inode->i_sb, "clm-6000", 2236 "error reading block %lu", bh->b_blocknr); 2237 error = -EIO; 2238 goto unlock; 2239 } 2240 *bh_result = bh; 2241 *page_result = page; 2242 2243 out: 2244 return error; 2245 2246 unlock: 2247 unlock_page(page); 2248 put_page(page); 2249 return error; 2250 } 2251 2252 /* 2253 * vfs version of truncate file. Must NOT be called with 2254 * a transaction already started. 2255 * 2256 * some code taken from block_truncate_page 2257 */ 2258 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2259 { 2260 struct reiserfs_transaction_handle th; 2261 /* we want the offset for the first byte after the end of the file */ 2262 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2263 unsigned blocksize = inode->i_sb->s_blocksize; 2264 unsigned length; 2265 struct page *page = NULL; 2266 int error; 2267 struct buffer_head *bh = NULL; 2268 int err2; 2269 2270 reiserfs_write_lock(inode->i_sb); 2271 2272 if (inode->i_size > 0) { 2273 error = grab_tail_page(inode, &page, &bh); 2274 if (error) { 2275 /* 2276 * -ENOENT means we truncated past the end of the 2277 * file, and get_block_create_0 could not find a 2278 * block to read in, which is ok. 2279 */ 2280 if (error != -ENOENT) 2281 reiserfs_error(inode->i_sb, "clm-6001", 2282 "grab_tail_page failed %d", 2283 error); 2284 page = NULL; 2285 bh = NULL; 2286 } 2287 } 2288 2289 /* 2290 * so, if page != NULL, we have a buffer head for the offset at 2291 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2292 * then we have an unformatted node. Otherwise, we have a direct item, 2293 * and no zeroing is required on disk. We zero after the truncate, 2294 * because the truncate might pack the item anyway 2295 * (it will unmap bh if it packs). 2296 * 2297 * it is enough to reserve space in transaction for 2 balancings: 2298 * one for "save" link adding and another for the first 2299 * cut_from_item. 1 is for update_sd 2300 */ 2301 error = journal_begin(&th, inode->i_sb, 2302 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2303 if (error) 2304 goto out; 2305 reiserfs_update_inode_transaction(inode); 2306 if (update_timestamps) 2307 /* 2308 * we are doing real truncate: if the system crashes 2309 * before the last transaction of truncating gets committed 2310 * - on reboot the file either appears truncated properly 2311 * or not truncated at all 2312 */ 2313 add_save_link(&th, inode, 1); 2314 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2315 error = journal_end(&th); 2316 if (error) 2317 goto out; 2318 2319 /* check reiserfs_do_truncate after ending the transaction */ 2320 if (err2) { 2321 error = err2; 2322 goto out; 2323 } 2324 2325 if (update_timestamps) { 2326 error = remove_save_link(inode, 1 /* truncate */); 2327 if (error) 2328 goto out; 2329 } 2330 2331 if (page) { 2332 length = offset & (blocksize - 1); 2333 /* if we are not on a block boundary */ 2334 if (length) { 2335 length = blocksize - length; 2336 zero_user(page, offset, length); 2337 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2338 mark_buffer_dirty(bh); 2339 } 2340 } 2341 unlock_page(page); 2342 put_page(page); 2343 } 2344 2345 reiserfs_write_unlock(inode->i_sb); 2346 2347 return 0; 2348 out: 2349 if (page) { 2350 unlock_page(page); 2351 put_page(page); 2352 } 2353 2354 reiserfs_write_unlock(inode->i_sb); 2355 2356 return error; 2357 } 2358 2359 static int map_block_for_writepage(struct inode *inode, 2360 struct buffer_head *bh_result, 2361 unsigned long block) 2362 { 2363 struct reiserfs_transaction_handle th; 2364 int fs_gen; 2365 struct item_head tmp_ih; 2366 struct item_head *ih; 2367 struct buffer_head *bh; 2368 __le32 *item; 2369 struct cpu_key key; 2370 INITIALIZE_PATH(path); 2371 int pos_in_item; 2372 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2373 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2374 int retval; 2375 int use_get_block = 0; 2376 int bytes_copied = 0; 2377 int copy_size; 2378 int trans_running = 0; 2379 2380 /* 2381 * catch places below that try to log something without 2382 * starting a trans 2383 */ 2384 th.t_trans_id = 0; 2385 2386 if (!buffer_uptodate(bh_result)) { 2387 return -EIO; 2388 } 2389 2390 kmap(bh_result->b_page); 2391 start_over: 2392 reiserfs_write_lock(inode->i_sb); 2393 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2394 2395 research: 2396 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2397 if (retval != POSITION_FOUND) { 2398 use_get_block = 1; 2399 goto out; 2400 } 2401 2402 bh = get_last_bh(&path); 2403 ih = tp_item_head(&path); 2404 item = tp_item_body(&path); 2405 pos_in_item = path.pos_in_item; 2406 2407 /* we've found an unformatted node */ 2408 if (indirect_item_found(retval, ih)) { 2409 if (bytes_copied > 0) { 2410 reiserfs_warning(inode->i_sb, "clm-6002", 2411 "bytes_copied %d", bytes_copied); 2412 } 2413 if (!get_block_num(item, pos_in_item)) { 2414 /* crap, we are writing to a hole */ 2415 use_get_block = 1; 2416 goto out; 2417 } 2418 set_block_dev_mapped(bh_result, 2419 get_block_num(item, pos_in_item), inode); 2420 } else if (is_direct_le_ih(ih)) { 2421 char *p; 2422 p = page_address(bh_result->b_page); 2423 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2424 copy_size = ih_item_len(ih) - pos_in_item; 2425 2426 fs_gen = get_generation(inode->i_sb); 2427 copy_item_head(&tmp_ih, ih); 2428 2429 if (!trans_running) { 2430 /* vs-3050 is gone, no need to drop the path */ 2431 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2432 if (retval) 2433 goto out; 2434 reiserfs_update_inode_transaction(inode); 2435 trans_running = 1; 2436 if (fs_changed(fs_gen, inode->i_sb) 2437 && item_moved(&tmp_ih, &path)) { 2438 reiserfs_restore_prepared_buffer(inode->i_sb, 2439 bh); 2440 goto research; 2441 } 2442 } 2443 2444 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2445 2446 if (fs_changed(fs_gen, inode->i_sb) 2447 && item_moved(&tmp_ih, &path)) { 2448 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2449 goto research; 2450 } 2451 2452 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2453 copy_size); 2454 2455 journal_mark_dirty(&th, bh); 2456 bytes_copied += copy_size; 2457 set_block_dev_mapped(bh_result, 0, inode); 2458 2459 /* are there still bytes left? */ 2460 if (bytes_copied < bh_result->b_size && 2461 (byte_offset + bytes_copied) < inode->i_size) { 2462 set_cpu_key_k_offset(&key, 2463 cpu_key_k_offset(&key) + 2464 copy_size); 2465 goto research; 2466 } 2467 } else { 2468 reiserfs_warning(inode->i_sb, "clm-6003", 2469 "bad item inode %lu", inode->i_ino); 2470 retval = -EIO; 2471 goto out; 2472 } 2473 retval = 0; 2474 2475 out: 2476 pathrelse(&path); 2477 if (trans_running) { 2478 int err = journal_end(&th); 2479 if (err) 2480 retval = err; 2481 trans_running = 0; 2482 } 2483 reiserfs_write_unlock(inode->i_sb); 2484 2485 /* this is where we fill in holes in the file. */ 2486 if (use_get_block) { 2487 retval = reiserfs_get_block(inode, block, bh_result, 2488 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2489 | GET_BLOCK_NO_DANGLE); 2490 if (!retval) { 2491 if (!buffer_mapped(bh_result) 2492 || bh_result->b_blocknr == 0) { 2493 /* get_block failed to find a mapped unformatted node. */ 2494 use_get_block = 0; 2495 goto start_over; 2496 } 2497 } 2498 } 2499 kunmap(bh_result->b_page); 2500 2501 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2502 /* 2503 * we've copied data from the page into the direct item, so the 2504 * buffer in the page is now clean, mark it to reflect that. 2505 */ 2506 lock_buffer(bh_result); 2507 clear_buffer_dirty(bh_result); 2508 unlock_buffer(bh_result); 2509 } 2510 return retval; 2511 } 2512 2513 /* 2514 * mason@suse.com: updated in 2.5.54 to follow the same general io 2515 * start/recovery path as __block_write_full_page, along with special 2516 * code to handle reiserfs tails. 2517 */ 2518 static int reiserfs_write_full_page(struct page *page, 2519 struct writeback_control *wbc) 2520 { 2521 struct inode *inode = page->mapping->host; 2522 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2523 int error = 0; 2524 unsigned long block; 2525 sector_t last_block; 2526 struct buffer_head *head, *bh; 2527 int partial = 0; 2528 int nr = 0; 2529 int checked = PageChecked(page); 2530 struct reiserfs_transaction_handle th; 2531 struct super_block *s = inode->i_sb; 2532 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2533 th.t_trans_id = 0; 2534 2535 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2536 if (checked && (current->flags & PF_MEMALLOC)) { 2537 redirty_page_for_writepage(wbc, page); 2538 unlock_page(page); 2539 return 0; 2540 } 2541 2542 /* 2543 * The page dirty bit is cleared before writepage is called, which 2544 * means we have to tell create_empty_buffers to make dirty buffers 2545 * The page really should be up to date at this point, so tossing 2546 * in the BH_Uptodate is just a sanity check. 2547 */ 2548 if (!page_has_buffers(page)) { 2549 create_empty_buffers(page, s->s_blocksize, 2550 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2551 } 2552 head = page_buffers(page); 2553 2554 /* 2555 * last page in the file, zero out any contents past the 2556 * last byte in the file 2557 */ 2558 if (page->index >= end_index) { 2559 unsigned last_offset; 2560 2561 last_offset = inode->i_size & (PAGE_SIZE - 1); 2562 /* no file contents in this page */ 2563 if (page->index >= end_index + 1 || !last_offset) { 2564 unlock_page(page); 2565 return 0; 2566 } 2567 zero_user_segment(page, last_offset, PAGE_SIZE); 2568 } 2569 bh = head; 2570 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2571 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2572 /* first map all the buffers, logging any direct items we find */ 2573 do { 2574 if (block > last_block) { 2575 /* 2576 * This can happen when the block size is less than 2577 * the page size. The corresponding bytes in the page 2578 * were zero filled above 2579 */ 2580 clear_buffer_dirty(bh); 2581 set_buffer_uptodate(bh); 2582 } else if ((checked || buffer_dirty(bh)) && 2583 (!buffer_mapped(bh) || (buffer_mapped(bh) 2584 && bh->b_blocknr == 2585 0))) { 2586 /* 2587 * not mapped yet, or it points to a direct item, search 2588 * the btree for the mapping info, and log any direct 2589 * items found 2590 */ 2591 if ((error = map_block_for_writepage(inode, bh, block))) { 2592 goto fail; 2593 } 2594 } 2595 bh = bh->b_this_page; 2596 block++; 2597 } while (bh != head); 2598 2599 /* 2600 * we start the transaction after map_block_for_writepage, 2601 * because it can create holes in the file (an unbounded operation). 2602 * starting it here, we can make a reliable estimate for how many 2603 * blocks we're going to log 2604 */ 2605 if (checked) { 2606 ClearPageChecked(page); 2607 reiserfs_write_lock(s); 2608 error = journal_begin(&th, s, bh_per_page + 1); 2609 if (error) { 2610 reiserfs_write_unlock(s); 2611 goto fail; 2612 } 2613 reiserfs_update_inode_transaction(inode); 2614 } 2615 /* now go through and lock any dirty buffers on the page */ 2616 do { 2617 get_bh(bh); 2618 if (!buffer_mapped(bh)) 2619 continue; 2620 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2621 continue; 2622 2623 if (checked) { 2624 reiserfs_prepare_for_journal(s, bh, 1); 2625 journal_mark_dirty(&th, bh); 2626 continue; 2627 } 2628 /* 2629 * from this point on, we know the buffer is mapped to a 2630 * real block and not a direct item 2631 */ 2632 if (wbc->sync_mode != WB_SYNC_NONE) { 2633 lock_buffer(bh); 2634 } else { 2635 if (!trylock_buffer(bh)) { 2636 redirty_page_for_writepage(wbc, page); 2637 continue; 2638 } 2639 } 2640 if (test_clear_buffer_dirty(bh)) { 2641 mark_buffer_async_write(bh); 2642 } else { 2643 unlock_buffer(bh); 2644 } 2645 } while ((bh = bh->b_this_page) != head); 2646 2647 if (checked) { 2648 error = journal_end(&th); 2649 reiserfs_write_unlock(s); 2650 if (error) 2651 goto fail; 2652 } 2653 BUG_ON(PageWriteback(page)); 2654 set_page_writeback(page); 2655 unlock_page(page); 2656 2657 /* 2658 * since any buffer might be the only dirty buffer on the page, 2659 * the first submit_bh can bring the page out of writeback. 2660 * be careful with the buffers. 2661 */ 2662 do { 2663 struct buffer_head *next = bh->b_this_page; 2664 if (buffer_async_write(bh)) { 2665 submit_bh(REQ_OP_WRITE, 0, bh); 2666 nr++; 2667 } 2668 put_bh(bh); 2669 bh = next; 2670 } while (bh != head); 2671 2672 error = 0; 2673 done: 2674 if (nr == 0) { 2675 /* 2676 * if this page only had a direct item, it is very possible for 2677 * no io to be required without there being an error. Or, 2678 * someone else could have locked them and sent them down the 2679 * pipe without locking the page 2680 */ 2681 bh = head; 2682 do { 2683 if (!buffer_uptodate(bh)) { 2684 partial = 1; 2685 break; 2686 } 2687 bh = bh->b_this_page; 2688 } while (bh != head); 2689 if (!partial) 2690 SetPageUptodate(page); 2691 end_page_writeback(page); 2692 } 2693 return error; 2694 2695 fail: 2696 /* 2697 * catches various errors, we need to make sure any valid dirty blocks 2698 * get to the media. The page is currently locked and not marked for 2699 * writeback 2700 */ 2701 ClearPageUptodate(page); 2702 bh = head; 2703 do { 2704 get_bh(bh); 2705 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2706 lock_buffer(bh); 2707 mark_buffer_async_write(bh); 2708 } else { 2709 /* 2710 * clear any dirty bits that might have come from 2711 * getting attached to a dirty page 2712 */ 2713 clear_buffer_dirty(bh); 2714 } 2715 bh = bh->b_this_page; 2716 } while (bh != head); 2717 SetPageError(page); 2718 BUG_ON(PageWriteback(page)); 2719 set_page_writeback(page); 2720 unlock_page(page); 2721 do { 2722 struct buffer_head *next = bh->b_this_page; 2723 if (buffer_async_write(bh)) { 2724 clear_buffer_dirty(bh); 2725 submit_bh(REQ_OP_WRITE, 0, bh); 2726 nr++; 2727 } 2728 put_bh(bh); 2729 bh = next; 2730 } while (bh != head); 2731 goto done; 2732 } 2733 2734 static int reiserfs_readpage(struct file *f, struct page *page) 2735 { 2736 return block_read_full_page(page, reiserfs_get_block); 2737 } 2738 2739 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2740 { 2741 struct inode *inode = page->mapping->host; 2742 reiserfs_wait_on_write_block(inode->i_sb); 2743 return reiserfs_write_full_page(page, wbc); 2744 } 2745 2746 static void reiserfs_truncate_failed_write(struct inode *inode) 2747 { 2748 truncate_inode_pages(inode->i_mapping, inode->i_size); 2749 reiserfs_truncate_file(inode, 0); 2750 } 2751 2752 static int reiserfs_write_begin(struct file *file, 2753 struct address_space *mapping, 2754 loff_t pos, unsigned len, unsigned flags, 2755 struct page **pagep, void **fsdata) 2756 { 2757 struct inode *inode; 2758 struct page *page; 2759 pgoff_t index; 2760 int ret; 2761 int old_ref = 0; 2762 2763 inode = mapping->host; 2764 *fsdata = NULL; 2765 if (flags & AOP_FLAG_CONT_EXPAND && 2766 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2767 pos ++; 2768 *fsdata = (void *)(unsigned long)flags; 2769 } 2770 2771 index = pos >> PAGE_SHIFT; 2772 page = grab_cache_page_write_begin(mapping, index, flags); 2773 if (!page) 2774 return -ENOMEM; 2775 *pagep = page; 2776 2777 reiserfs_wait_on_write_block(inode->i_sb); 2778 fix_tail_page_for_writing(page); 2779 if (reiserfs_transaction_running(inode->i_sb)) { 2780 struct reiserfs_transaction_handle *th; 2781 th = (struct reiserfs_transaction_handle *)current-> 2782 journal_info; 2783 BUG_ON(!th->t_refcount); 2784 BUG_ON(!th->t_trans_id); 2785 old_ref = th->t_refcount; 2786 th->t_refcount++; 2787 } 2788 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2789 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2790 struct reiserfs_transaction_handle *th = current->journal_info; 2791 /* 2792 * this gets a little ugly. If reiserfs_get_block returned an 2793 * error and left a transacstion running, we've got to close 2794 * it, and we've got to free handle if it was a persistent 2795 * transaction. 2796 * 2797 * But, if we had nested into an existing transaction, we need 2798 * to just drop the ref count on the handle. 2799 * 2800 * If old_ref == 0, the transaction is from reiserfs_get_block, 2801 * and it was a persistent trans. Otherwise, it was nested 2802 * above. 2803 */ 2804 if (th->t_refcount > old_ref) { 2805 if (old_ref) 2806 th->t_refcount--; 2807 else { 2808 int err; 2809 reiserfs_write_lock(inode->i_sb); 2810 err = reiserfs_end_persistent_transaction(th); 2811 reiserfs_write_unlock(inode->i_sb); 2812 if (err) 2813 ret = err; 2814 } 2815 } 2816 } 2817 if (ret) { 2818 unlock_page(page); 2819 put_page(page); 2820 /* Truncate allocated blocks */ 2821 reiserfs_truncate_failed_write(inode); 2822 } 2823 return ret; 2824 } 2825 2826 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2827 { 2828 struct inode *inode = page->mapping->host; 2829 int ret; 2830 int old_ref = 0; 2831 int depth; 2832 2833 depth = reiserfs_write_unlock_nested(inode->i_sb); 2834 reiserfs_wait_on_write_block(inode->i_sb); 2835 reiserfs_write_lock_nested(inode->i_sb, depth); 2836 2837 fix_tail_page_for_writing(page); 2838 if (reiserfs_transaction_running(inode->i_sb)) { 2839 struct reiserfs_transaction_handle *th; 2840 th = (struct reiserfs_transaction_handle *)current-> 2841 journal_info; 2842 BUG_ON(!th->t_refcount); 2843 BUG_ON(!th->t_trans_id); 2844 old_ref = th->t_refcount; 2845 th->t_refcount++; 2846 } 2847 2848 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2849 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2850 struct reiserfs_transaction_handle *th = current->journal_info; 2851 /* 2852 * this gets a little ugly. If reiserfs_get_block returned an 2853 * error and left a transacstion running, we've got to close 2854 * it, and we've got to free handle if it was a persistent 2855 * transaction. 2856 * 2857 * But, if we had nested into an existing transaction, we need 2858 * to just drop the ref count on the handle. 2859 * 2860 * If old_ref == 0, the transaction is from reiserfs_get_block, 2861 * and it was a persistent trans. Otherwise, it was nested 2862 * above. 2863 */ 2864 if (th->t_refcount > old_ref) { 2865 if (old_ref) 2866 th->t_refcount--; 2867 else { 2868 int err; 2869 reiserfs_write_lock(inode->i_sb); 2870 err = reiserfs_end_persistent_transaction(th); 2871 reiserfs_write_unlock(inode->i_sb); 2872 if (err) 2873 ret = err; 2874 } 2875 } 2876 } 2877 return ret; 2878 2879 } 2880 2881 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2882 { 2883 return generic_block_bmap(as, block, reiserfs_bmap); 2884 } 2885 2886 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2887 loff_t pos, unsigned len, unsigned copied, 2888 struct page *page, void *fsdata) 2889 { 2890 struct inode *inode = page->mapping->host; 2891 int ret = 0; 2892 int update_sd = 0; 2893 struct reiserfs_transaction_handle *th; 2894 unsigned start; 2895 bool locked = false; 2896 2897 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2898 pos ++; 2899 2900 reiserfs_wait_on_write_block(inode->i_sb); 2901 if (reiserfs_transaction_running(inode->i_sb)) 2902 th = current->journal_info; 2903 else 2904 th = NULL; 2905 2906 start = pos & (PAGE_SIZE - 1); 2907 if (unlikely(copied < len)) { 2908 if (!PageUptodate(page)) 2909 copied = 0; 2910 2911 page_zero_new_buffers(page, start + copied, start + len); 2912 } 2913 flush_dcache_page(page); 2914 2915 reiserfs_commit_page(inode, page, start, start + copied); 2916 2917 /* 2918 * generic_commit_write does this for us, but does not update the 2919 * transaction tracking stuff when the size changes. So, we have 2920 * to do the i_size updates here. 2921 */ 2922 if (pos + copied > inode->i_size) { 2923 struct reiserfs_transaction_handle myth; 2924 reiserfs_write_lock(inode->i_sb); 2925 locked = true; 2926 /* 2927 * If the file have grown beyond the border where it 2928 * can have a tail, unmark it as needing a tail 2929 * packing 2930 */ 2931 if ((have_large_tails(inode->i_sb) 2932 && inode->i_size > i_block_size(inode) * 4) 2933 || (have_small_tails(inode->i_sb) 2934 && inode->i_size > i_block_size(inode))) 2935 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2936 2937 ret = journal_begin(&myth, inode->i_sb, 1); 2938 if (ret) 2939 goto journal_error; 2940 2941 reiserfs_update_inode_transaction(inode); 2942 inode->i_size = pos + copied; 2943 /* 2944 * this will just nest into our transaction. It's important 2945 * to use mark_inode_dirty so the inode gets pushed around on 2946 * the dirty lists, and so that O_SYNC works as expected 2947 */ 2948 mark_inode_dirty(inode); 2949 reiserfs_update_sd(&myth, inode); 2950 update_sd = 1; 2951 ret = journal_end(&myth); 2952 if (ret) 2953 goto journal_error; 2954 } 2955 if (th) { 2956 if (!locked) { 2957 reiserfs_write_lock(inode->i_sb); 2958 locked = true; 2959 } 2960 if (!update_sd) 2961 mark_inode_dirty(inode); 2962 ret = reiserfs_end_persistent_transaction(th); 2963 if (ret) 2964 goto out; 2965 } 2966 2967 out: 2968 if (locked) 2969 reiserfs_write_unlock(inode->i_sb); 2970 unlock_page(page); 2971 put_page(page); 2972 2973 if (pos + len > inode->i_size) 2974 reiserfs_truncate_failed_write(inode); 2975 2976 return ret == 0 ? copied : ret; 2977 2978 journal_error: 2979 reiserfs_write_unlock(inode->i_sb); 2980 locked = false; 2981 if (th) { 2982 if (!update_sd) 2983 reiserfs_update_sd(th, inode); 2984 ret = reiserfs_end_persistent_transaction(th); 2985 } 2986 goto out; 2987 } 2988 2989 int reiserfs_commit_write(struct file *f, struct page *page, 2990 unsigned from, unsigned to) 2991 { 2992 struct inode *inode = page->mapping->host; 2993 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 2994 int ret = 0; 2995 int update_sd = 0; 2996 struct reiserfs_transaction_handle *th = NULL; 2997 int depth; 2998 2999 depth = reiserfs_write_unlock_nested(inode->i_sb); 3000 reiserfs_wait_on_write_block(inode->i_sb); 3001 reiserfs_write_lock_nested(inode->i_sb, depth); 3002 3003 if (reiserfs_transaction_running(inode->i_sb)) { 3004 th = current->journal_info; 3005 } 3006 reiserfs_commit_page(inode, page, from, to); 3007 3008 /* 3009 * generic_commit_write does this for us, but does not update the 3010 * transaction tracking stuff when the size changes. So, we have 3011 * to do the i_size updates here. 3012 */ 3013 if (pos > inode->i_size) { 3014 struct reiserfs_transaction_handle myth; 3015 /* 3016 * If the file have grown beyond the border where it 3017 * can have a tail, unmark it as needing a tail 3018 * packing 3019 */ 3020 if ((have_large_tails(inode->i_sb) 3021 && inode->i_size > i_block_size(inode) * 4) 3022 || (have_small_tails(inode->i_sb) 3023 && inode->i_size > i_block_size(inode))) 3024 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3025 3026 ret = journal_begin(&myth, inode->i_sb, 1); 3027 if (ret) 3028 goto journal_error; 3029 3030 reiserfs_update_inode_transaction(inode); 3031 inode->i_size = pos; 3032 /* 3033 * this will just nest into our transaction. It's important 3034 * to use mark_inode_dirty so the inode gets pushed around 3035 * on the dirty lists, and so that O_SYNC works as expected 3036 */ 3037 mark_inode_dirty(inode); 3038 reiserfs_update_sd(&myth, inode); 3039 update_sd = 1; 3040 ret = journal_end(&myth); 3041 if (ret) 3042 goto journal_error; 3043 } 3044 if (th) { 3045 if (!update_sd) 3046 mark_inode_dirty(inode); 3047 ret = reiserfs_end_persistent_transaction(th); 3048 if (ret) 3049 goto out; 3050 } 3051 3052 out: 3053 return ret; 3054 3055 journal_error: 3056 if (th) { 3057 if (!update_sd) 3058 reiserfs_update_sd(th, inode); 3059 ret = reiserfs_end_persistent_transaction(th); 3060 } 3061 3062 return ret; 3063 } 3064 3065 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3066 { 3067 if (reiserfs_attrs(inode->i_sb)) { 3068 if (sd_attrs & REISERFS_SYNC_FL) 3069 inode->i_flags |= S_SYNC; 3070 else 3071 inode->i_flags &= ~S_SYNC; 3072 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3073 inode->i_flags |= S_IMMUTABLE; 3074 else 3075 inode->i_flags &= ~S_IMMUTABLE; 3076 if (sd_attrs & REISERFS_APPEND_FL) 3077 inode->i_flags |= S_APPEND; 3078 else 3079 inode->i_flags &= ~S_APPEND; 3080 if (sd_attrs & REISERFS_NOATIME_FL) 3081 inode->i_flags |= S_NOATIME; 3082 else 3083 inode->i_flags &= ~S_NOATIME; 3084 if (sd_attrs & REISERFS_NOTAIL_FL) 3085 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3086 else 3087 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3088 } 3089 } 3090 3091 /* 3092 * decide if this buffer needs to stay around for data logging or ordered 3093 * write purposes 3094 */ 3095 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3096 { 3097 int ret = 1; 3098 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3099 3100 lock_buffer(bh); 3101 spin_lock(&j->j_dirty_buffers_lock); 3102 if (!buffer_mapped(bh)) { 3103 goto free_jh; 3104 } 3105 /* 3106 * the page is locked, and the only places that log a data buffer 3107 * also lock the page. 3108 */ 3109 if (reiserfs_file_data_log(inode)) { 3110 /* 3111 * very conservative, leave the buffer pinned if 3112 * anyone might need it. 3113 */ 3114 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3115 ret = 0; 3116 } 3117 } else if (buffer_dirty(bh)) { 3118 struct reiserfs_journal_list *jl; 3119 struct reiserfs_jh *jh = bh->b_private; 3120 3121 /* 3122 * why is this safe? 3123 * reiserfs_setattr updates i_size in the on disk 3124 * stat data before allowing vmtruncate to be called. 3125 * 3126 * If buffer was put onto the ordered list for this 3127 * transaction, we know for sure either this transaction 3128 * or an older one already has updated i_size on disk, 3129 * and this ordered data won't be referenced in the file 3130 * if we crash. 3131 * 3132 * if the buffer was put onto the ordered list for an older 3133 * transaction, we need to leave it around 3134 */ 3135 if (jh && (jl = jh->jl) 3136 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3137 ret = 0; 3138 } 3139 free_jh: 3140 if (ret && bh->b_private) { 3141 reiserfs_free_jh(bh); 3142 } 3143 spin_unlock(&j->j_dirty_buffers_lock); 3144 unlock_buffer(bh); 3145 return ret; 3146 } 3147 3148 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3149 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3150 unsigned int length) 3151 { 3152 struct buffer_head *head, *bh, *next; 3153 struct inode *inode = page->mapping->host; 3154 unsigned int curr_off = 0; 3155 unsigned int stop = offset + length; 3156 int partial_page = (offset || length < PAGE_SIZE); 3157 int ret = 1; 3158 3159 BUG_ON(!PageLocked(page)); 3160 3161 if (!partial_page) 3162 ClearPageChecked(page); 3163 3164 if (!page_has_buffers(page)) 3165 goto out; 3166 3167 head = page_buffers(page); 3168 bh = head; 3169 do { 3170 unsigned int next_off = curr_off + bh->b_size; 3171 next = bh->b_this_page; 3172 3173 if (next_off > stop) 3174 goto out; 3175 3176 /* 3177 * is this block fully invalidated? 3178 */ 3179 if (offset <= curr_off) { 3180 if (invalidatepage_can_drop(inode, bh)) 3181 reiserfs_unmap_buffer(bh); 3182 else 3183 ret = 0; 3184 } 3185 curr_off = next_off; 3186 bh = next; 3187 } while (bh != head); 3188 3189 /* 3190 * We release buffers only if the entire page is being invalidated. 3191 * The get_block cached value has been unconditionally invalidated, 3192 * so real IO is not possible anymore. 3193 */ 3194 if (!partial_page && ret) { 3195 ret = try_to_release_page(page, 0); 3196 /* maybe should BUG_ON(!ret); - neilb */ 3197 } 3198 out: 3199 return; 3200 } 3201 3202 static int reiserfs_set_page_dirty(struct page *page) 3203 { 3204 struct inode *inode = page->mapping->host; 3205 if (reiserfs_file_data_log(inode)) { 3206 SetPageChecked(page); 3207 return __set_page_dirty_nobuffers(page); 3208 } 3209 return __set_page_dirty_buffers(page); 3210 } 3211 3212 /* 3213 * Returns 1 if the page's buffers were dropped. The page is locked. 3214 * 3215 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3216 * in the buffers at page_buffers(page). 3217 * 3218 * even in -o notail mode, we can't be sure an old mount without -o notail 3219 * didn't create files with tails. 3220 */ 3221 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3222 { 3223 struct inode *inode = page->mapping->host; 3224 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3225 struct buffer_head *head; 3226 struct buffer_head *bh; 3227 int ret = 1; 3228 3229 WARN_ON(PageChecked(page)); 3230 spin_lock(&j->j_dirty_buffers_lock); 3231 head = page_buffers(page); 3232 bh = head; 3233 do { 3234 if (bh->b_private) { 3235 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3236 reiserfs_free_jh(bh); 3237 } else { 3238 ret = 0; 3239 break; 3240 } 3241 } 3242 bh = bh->b_this_page; 3243 } while (bh != head); 3244 if (ret) 3245 ret = try_to_free_buffers(page); 3246 spin_unlock(&j->j_dirty_buffers_lock); 3247 return ret; 3248 } 3249 3250 /* 3251 * We thank Mingming Cao for helping us understand in great detail what 3252 * to do in this section of the code. 3253 */ 3254 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3255 { 3256 struct file *file = iocb->ki_filp; 3257 struct inode *inode = file->f_mapping->host; 3258 size_t count = iov_iter_count(iter); 3259 ssize_t ret; 3260 3261 ret = blockdev_direct_IO(iocb, inode, iter, 3262 reiserfs_get_blocks_direct_io); 3263 3264 /* 3265 * In case of error extending write may have instantiated a few 3266 * blocks outside i_size. Trim these off again. 3267 */ 3268 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3269 loff_t isize = i_size_read(inode); 3270 loff_t end = iocb->ki_pos + count; 3271 3272 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3273 truncate_setsize(inode, isize); 3274 reiserfs_vfs_truncate_file(inode); 3275 } 3276 } 3277 3278 return ret; 3279 } 3280 3281 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3282 { 3283 struct inode *inode = d_inode(dentry); 3284 unsigned int ia_valid; 3285 int error; 3286 3287 error = setattr_prepare(dentry, attr); 3288 if (error) 3289 return error; 3290 3291 /* must be turned off for recursive notify_change calls */ 3292 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3293 3294 if (is_quota_modification(inode, attr)) { 3295 error = dquot_initialize(inode); 3296 if (error) 3297 return error; 3298 } 3299 reiserfs_write_lock(inode->i_sb); 3300 if (attr->ia_valid & ATTR_SIZE) { 3301 /* 3302 * version 2 items will be caught by the s_maxbytes check 3303 * done for us in vmtruncate 3304 */ 3305 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3306 attr->ia_size > MAX_NON_LFS) { 3307 reiserfs_write_unlock(inode->i_sb); 3308 error = -EFBIG; 3309 goto out; 3310 } 3311 3312 inode_dio_wait(inode); 3313 3314 /* fill in hole pointers in the expanding truncate case. */ 3315 if (attr->ia_size > inode->i_size) { 3316 error = generic_cont_expand_simple(inode, attr->ia_size); 3317 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3318 int err; 3319 struct reiserfs_transaction_handle th; 3320 /* we're changing at most 2 bitmaps, inode + super */ 3321 err = journal_begin(&th, inode->i_sb, 4); 3322 if (!err) { 3323 reiserfs_discard_prealloc(&th, inode); 3324 err = journal_end(&th); 3325 } 3326 if (err) 3327 error = err; 3328 } 3329 if (error) { 3330 reiserfs_write_unlock(inode->i_sb); 3331 goto out; 3332 } 3333 /* 3334 * file size is changed, ctime and mtime are 3335 * to be updated 3336 */ 3337 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3338 } 3339 } 3340 reiserfs_write_unlock(inode->i_sb); 3341 3342 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3343 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3344 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3345 /* stat data of format v3.5 has 16 bit uid and gid */ 3346 error = -EINVAL; 3347 goto out; 3348 } 3349 3350 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3351 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3352 struct reiserfs_transaction_handle th; 3353 int jbegin_count = 3354 2 * 3355 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3356 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3357 2; 3358 3359 error = reiserfs_chown_xattrs(inode, attr); 3360 3361 if (error) 3362 return error; 3363 3364 /* 3365 * (user+group)*(old+new) structure - we count quota 3366 * info and , inode write (sb, inode) 3367 */ 3368 reiserfs_write_lock(inode->i_sb); 3369 error = journal_begin(&th, inode->i_sb, jbegin_count); 3370 reiserfs_write_unlock(inode->i_sb); 3371 if (error) 3372 goto out; 3373 error = dquot_transfer(inode, attr); 3374 reiserfs_write_lock(inode->i_sb); 3375 if (error) { 3376 journal_end(&th); 3377 reiserfs_write_unlock(inode->i_sb); 3378 goto out; 3379 } 3380 3381 /* 3382 * Update corresponding info in inode so that everything 3383 * is in one transaction 3384 */ 3385 if (attr->ia_valid & ATTR_UID) 3386 inode->i_uid = attr->ia_uid; 3387 if (attr->ia_valid & ATTR_GID) 3388 inode->i_gid = attr->ia_gid; 3389 mark_inode_dirty(inode); 3390 error = journal_end(&th); 3391 reiserfs_write_unlock(inode->i_sb); 3392 if (error) 3393 goto out; 3394 } 3395 3396 if ((attr->ia_valid & ATTR_SIZE) && 3397 attr->ia_size != i_size_read(inode)) { 3398 error = inode_newsize_ok(inode, attr->ia_size); 3399 if (!error) { 3400 /* 3401 * Could race against reiserfs_file_release 3402 * if called from NFS, so take tailpack mutex. 3403 */ 3404 mutex_lock(&REISERFS_I(inode)->tailpack); 3405 truncate_setsize(inode, attr->ia_size); 3406 reiserfs_truncate_file(inode, 1); 3407 mutex_unlock(&REISERFS_I(inode)->tailpack); 3408 } 3409 } 3410 3411 if (!error) { 3412 setattr_copy(inode, attr); 3413 mark_inode_dirty(inode); 3414 } 3415 3416 if (!error && reiserfs_posixacl(inode->i_sb)) { 3417 if (attr->ia_valid & ATTR_MODE) 3418 error = reiserfs_acl_chmod(inode); 3419 } 3420 3421 out: 3422 return error; 3423 } 3424 3425 const struct address_space_operations reiserfs_address_space_operations = { 3426 .writepage = reiserfs_writepage, 3427 .readpage = reiserfs_readpage, 3428 .readpages = reiserfs_readpages, 3429 .releasepage = reiserfs_releasepage, 3430 .invalidatepage = reiserfs_invalidatepage, 3431 .write_begin = reiserfs_write_begin, 3432 .write_end = reiserfs_write_end, 3433 .bmap = reiserfs_aop_bmap, 3434 .direct_IO = reiserfs_direct_IO, 3435 .set_page_dirty = reiserfs_set_page_dirty, 3436 }; 3437