xref: /openbmc/linux/fs/reiserfs/inode.c (revision cf028200)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 
25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int depth;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	depth = reiserfs_write_lock_once(inode->i_sb);
43 
44 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46 		reiserfs_delete_xattrs(inode);
47 
48 		if (journal_begin(&th, inode->i_sb, jbegin_count))
49 			goto out;
50 		reiserfs_update_inode_transaction(inode);
51 
52 		reiserfs_discard_prealloc(&th, inode);
53 
54 		err = reiserfs_delete_object(&th, inode);
55 
56 		/* Do quota update inside a transaction for journaled quotas. We must do that
57 		 * after delete_object so that quota updates go into the same transaction as
58 		 * stat data deletion */
59 		if (!err)
60 			dquot_free_inode(inode);
61 
62 		if (journal_end(&th, inode->i_sb, jbegin_count))
63 			goto out;
64 
65 		/* check return value from reiserfs_delete_object after
66 		 * ending the transaction
67 		 */
68 		if (err)
69 		    goto out;
70 
71 		/* all items of file are deleted, so we can remove "save" link */
72 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73 								 * about an error here */
74 	} else {
75 		/* no object items are in the tree */
76 		;
77 	}
78       out:
79 	reiserfs_write_unlock_once(inode->i_sb, depth);
80 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
81 	dquot_drop(inode);
82 	inode->i_blocks = 0;
83 	return;
84 
85 no_delete:
86 	clear_inode(inode);
87 	dquot_drop(inode);
88 }
89 
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 			  __u32 objectid, loff_t offset, int type, int length)
92 {
93 	key->version = version;
94 
95 	key->on_disk_key.k_dir_id = dirid;
96 	key->on_disk_key.k_objectid = objectid;
97 	set_cpu_key_k_offset(key, offset);
98 	set_cpu_key_k_type(key, type);
99 	key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103    offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 		  int type, int length)
106 {
107 	_make_cpu_key(key, get_inode_item_key_version(inode),
108 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 		      length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 			      int version,
118 			      loff_t offset, int type, int length,
119 			      int entry_count /*or ih_free_space */ )
120 {
121 	if (key) {
122 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 		ih->ih_key.k_objectid =
124 		    cpu_to_le32(key->on_disk_key.k_objectid);
125 	}
126 	put_ih_version(ih, version);
127 	set_le_ih_k_offset(ih, offset);
128 	set_le_ih_k_type(ih, type);
129 	put_ih_item_len(ih, length);
130 	/*    set_ih_free_space (ih, 0); */
131 	// for directory items it is entry count, for directs and stat
132 	// datas - 0xffff, for indirects - 0
133 	put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh.  Not too eager for that....
140 //  I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in.  But, Vladimir has a really good idea here.  Think
145 ** about what happens for reading a file.  For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item.  This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right.  But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it.  So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers.  Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 	struct buffer_head *head, *next, *bh;
171 
172 	if (page && page_has_buffers(page)) {
173 		head = page_buffers(page);
174 		bh = head;
175 		do {
176 			next = bh->b_this_page;
177 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 				reiserfs_unmap_buffer(bh);
179 			}
180 			bh = next;
181 		} while (bh != head);
182 	}
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186    done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 				    struct item_head *ih,
189 				    __le32 * item, int pos_in_item)
190 {
191 	if (allocated)
192 		return 0;
193 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 	    get_block_num(item, pos_in_item))
195 		return 0;
196 	return 1;
197 }
198 
199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 					b_blocknr_t block, struct inode *inode)
206 {
207 	map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218 		return 1;
219 
220 	return 0;
221 }
222 
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 			       struct inode *inode, struct treepath *path)
225 {
226 	struct super_block *s = th->t_super;
227 	int len = th->t_blocks_allocated;
228 	int err;
229 
230 	BUG_ON(!th->t_trans_id);
231 	BUG_ON(!th->t_refcount);
232 
233 	pathrelse(path);
234 
235 	/* we cannot restart while nested */
236 	if (th->t_refcount > 1) {
237 		return 0;
238 	}
239 	reiserfs_update_sd(th, inode);
240 	err = journal_end(th, s, len);
241 	if (!err) {
242 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 		if (!err)
244 			reiserfs_update_inode_transaction(inode);
245 	}
246 	return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 			       struct buffer_head *bh_result, int args)
259 {
260 	INITIALIZE_PATH(path);
261 	struct cpu_key key;
262 	struct buffer_head *bh;
263 	struct item_head *ih, tmp_ih;
264 	b_blocknr_t blocknr;
265 	char *p = NULL;
266 	int chars;
267 	int ret;
268 	int result;
269 	int done = 0;
270 	unsigned long offset;
271 
272 	// prepare the key to look for the 'block'-th block of file
273 	make_cpu_key(&key, inode,
274 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 		     3);
276 
277 	result = search_for_position_by_key(inode->i_sb, &key, &path);
278 	if (result != POSITION_FOUND) {
279 		pathrelse(&path);
280 		if (p)
281 			kunmap(bh_result->b_page);
282 		if (result == IO_ERROR)
283 			return -EIO;
284 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 		// That there is some MMAPED data associated with it that is yet to be written to disk.
286 		if ((args & GET_BLOCK_NO_HOLE)
287 		    && !PageUptodate(bh_result->b_page)) {
288 			return -ENOENT;
289 		}
290 		return 0;
291 	}
292 	//
293 	bh = get_last_bh(&path);
294 	ih = get_ih(&path);
295 	if (is_indirect_le_ih(ih)) {
296 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298 		/* FIXME: here we could cache indirect item or part of it in
299 		   the inode to avoid search_by_key in case of subsequent
300 		   access to file */
301 		blocknr = get_block_num(ind_item, path.pos_in_item);
302 		ret = 0;
303 		if (blocknr) {
304 			map_bh(bh_result, inode->i_sb, blocknr);
305 			if (path.pos_in_item ==
306 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 				set_buffer_boundary(bh_result);
308 			}
309 		} else
310 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312 		if ((args & GET_BLOCK_NO_HOLE)
313 			    && !PageUptodate(bh_result->b_page)) {
314 			ret = -ENOENT;
315 		}
316 
317 		pathrelse(&path);
318 		if (p)
319 			kunmap(bh_result->b_page);
320 		return ret;
321 	}
322 	// requested data are in direct item(s)
323 	if (!(args & GET_BLOCK_READ_DIRECT)) {
324 		// we are called by bmap. FIXME: we can not map block of file
325 		// when it is stored in direct item(s)
326 		pathrelse(&path);
327 		if (p)
328 			kunmap(bh_result->b_page);
329 		return -ENOENT;
330 	}
331 
332 	/* if we've got a direct item, and the buffer or page was uptodate,
333 	 ** we don't want to pull data off disk again.  skip to the
334 	 ** end, where we map the buffer and return
335 	 */
336 	if (buffer_uptodate(bh_result)) {
337 		goto finished;
338 	} else
339 		/*
340 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 		 ** pages without any buffers.  If the page is up to date, we don't want
342 		 ** read old data off disk.  Set the up to date bit on the buffer instead
343 		 ** and jump to the end
344 		 */
345 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 		set_buffer_uptodate(bh_result);
347 		goto finished;
348 	}
349 	// read file tail into part of page
350 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 	copy_item_head(&tmp_ih, ih);
352 
353 	/* we only want to kmap if we are reading the tail into the page.
354 	 ** this is not the common case, so we don't kmap until we are
355 	 ** sure we need to.  But, this means the item might move if
356 	 ** kmap schedules
357 	 */
358 	if (!p)
359 		p = (char *)kmap(bh_result->b_page);
360 
361 	p += offset;
362 	memset(p, 0, inode->i_sb->s_blocksize);
363 	do {
364 		if (!is_direct_le_ih(ih)) {
365 			BUG();
366 		}
367 		/* make sure we don't read more bytes than actually exist in
368 		 ** the file.  This can happen in odd cases where i_size isn't
369 		 ** correct, and when direct item padding results in a few
370 		 ** extra bytes at the end of the direct item
371 		 */
372 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 			break;
374 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 			chars =
376 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377 			    path.pos_in_item;
378 			done = 1;
379 		} else {
380 			chars = ih_item_len(ih) - path.pos_in_item;
381 		}
382 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384 		if (done)
385 			break;
386 
387 		p += chars;
388 
389 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 			// we done, if read direct item is not the last item of
391 			// node FIXME: we could try to check right delimiting key
392 			// to see whether direct item continues in the right
393 			// neighbor or rely on i_size
394 			break;
395 
396 		// update key to look for the next piece
397 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 		result = search_for_position_by_key(inode->i_sb, &key, &path);
399 		if (result != POSITION_FOUND)
400 			// i/o error most likely
401 			break;
402 		bh = get_last_bh(&path);
403 		ih = get_ih(&path);
404 	} while (1);
405 
406 	flush_dcache_page(bh_result->b_page);
407 	kunmap(bh_result->b_page);
408 
409       finished:
410 	pathrelse(&path);
411 
412 	if (result == IO_ERROR)
413 		return -EIO;
414 
415 	/* this buffer has valid data, but isn't valid for io.  mapping it to
416 	 * block #0 tells the rest of reiserfs it just has a tail in it
417 	 */
418 	map_bh(bh_result, inode->i_sb, 0);
419 	set_buffer_uptodate(bh_result);
420 	return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 			 struct buffer_head *bh_result, int create)
427 {
428 	if (!file_capable(inode, block))
429 		return -EFBIG;
430 
431 	reiserfs_write_lock(inode->i_sb);
432 	/* do not read the direct item */
433 	_get_block_create_0(inode, block, bh_result, 0);
434 	reiserfs_write_unlock(inode->i_sb);
435 	return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now.  It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page.  Where it does not produce a valid page for holes, or past the
447 ** end of the file.  This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1.  If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 				       struct buffer_head *bh_result,
457 				       int create)
458 {
459 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463    direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 					 sector_t iblock,
466 					 struct buffer_head *bh_result,
467 					 int create)
468 {
469 	int ret;
470 
471 	bh_result->b_page = NULL;
472 
473 	/* We set the b_size before reiserfs_get_block call since it is
474 	   referenced in convert_tail_for_hole() that may be called from
475 	   reiserfs_get_block() */
476 	bh_result->b_size = (1 << inode->i_blkbits);
477 
478 	ret = reiserfs_get_block(inode, iblock, bh_result,
479 				 create | GET_BLOCK_NO_DANGLE);
480 	if (ret)
481 		goto out;
482 
483 	/* don't allow direct io onto tail pages */
484 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 		/* make sure future calls to the direct io funcs for this offset
486 		 ** in the file fail by unmapping the buffer
487 		 */
488 		clear_buffer_mapped(bh_result);
489 		ret = -EINVAL;
490 	}
491 	/* Possible unpacked tail. Flush the data before pages have
492 	   disappeared */
493 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 		int err;
495 
496 		reiserfs_write_lock(inode->i_sb);
497 
498 		err = reiserfs_commit_for_inode(inode);
499 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501 		reiserfs_write_unlock(inode->i_sb);
502 
503 		if (err < 0)
504 			ret = err;
505 	}
506       out:
507 	return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
520 static int convert_tail_for_hole(struct inode *inode,
521 				 struct buffer_head *bh_result,
522 				 loff_t tail_offset)
523 {
524 	unsigned long index;
525 	unsigned long tail_end;
526 	unsigned long tail_start;
527 	struct page *tail_page;
528 	struct page *hole_page = bh_result->b_page;
529 	int retval = 0;
530 
531 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 		return -EIO;
533 
534 	/* always try to read until the end of the block */
535 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538 	index = tail_offset >> PAGE_CACHE_SHIFT;
539 	/* hole_page can be zero in case of direct_io, we are sure
540 	   that we cannot get here if we write with O_DIRECT into
541 	   tail page */
542 	if (!hole_page || index != hole_page->index) {
543 		tail_page = grab_cache_page(inode->i_mapping, index);
544 		retval = -ENOMEM;
545 		if (!tail_page) {
546 			goto out;
547 		}
548 	} else {
549 		tail_page = hole_page;
550 	}
551 
552 	/* we don't have to make sure the conversion did not happen while
553 	 ** we were locking the page because anyone that could convert
554 	 ** must first take i_mutex.
555 	 **
556 	 ** We must fix the tail page for writing because it might have buffers
557 	 ** that are mapped, but have a block number of 0.  This indicates tail
558 	 ** data that has been read directly into the page, and
559 	 ** __block_write_begin won't trigger a get_block in this case.
560 	 */
561 	fix_tail_page_for_writing(tail_page);
562 	retval = __reiserfs_write_begin(tail_page, tail_start,
563 				      tail_end - tail_start);
564 	if (retval)
565 		goto unlock;
566 
567 	/* tail conversion might change the data in the page */
568 	flush_dcache_page(tail_page);
569 
570 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572       unlock:
573 	if (tail_page != hole_page) {
574 		unlock_page(tail_page);
575 		page_cache_release(tail_page);
576 	}
577       out:
578 	return retval;
579 }
580 
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 				  sector_t block,
583 				  struct inode *inode,
584 				  b_blocknr_t * allocated_block_nr,
585 				  struct treepath *path, int flags)
586 {
587 	BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590 	if (!(flags & GET_BLOCK_NO_IMUX)) {
591 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 						  path, block);
593 	}
594 #endif
595 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 					 block);
597 }
598 
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 		       struct buffer_head *bh_result, int create)
601 {
602 	int repeat, retval = 0;
603 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604 	INITIALIZE_PATH(path);
605 	int pos_in_item;
606 	struct cpu_key key;
607 	struct buffer_head *bh, *unbh = NULL;
608 	struct item_head *ih, tmp_ih;
609 	__le32 *item;
610 	int done;
611 	int fs_gen;
612 	int lock_depth;
613 	struct reiserfs_transaction_handle *th = NULL;
614 	/* space reserved in transaction batch:
615 	   . 3 balancings in direct->indirect conversion
616 	   . 1 block involved into reiserfs_update_sd()
617 	   XXX in practically impossible worst case direct2indirect()
618 	   can incur (much) more than 3 balancings.
619 	   quota update for user, group */
620 	int jbegin_count =
621 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 	int version;
624 	int dangle = 1;
625 	loff_t new_offset =
626 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 	version = get_inode_item_key_version(inode);
630 
631 	if (!file_capable(inode, block)) {
632 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 		return -EFBIG;
634 	}
635 
636 	/* if !create, we aren't changing the FS, so we don't need to
637 	 ** log anything, so we don't need to start a transaction
638 	 */
639 	if (!(create & GET_BLOCK_CREATE)) {
640 		int ret;
641 		/* find number of block-th logical block of the file */
642 		ret = _get_block_create_0(inode, block, bh_result,
643 					  create | GET_BLOCK_READ_DIRECT);
644 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 		return ret;
646 	}
647 	/*
648 	 * if we're already in a transaction, make sure to close
649 	 * any new transactions we start in this func
650 	 */
651 	if ((create & GET_BLOCK_NO_DANGLE) ||
652 	    reiserfs_transaction_running(inode->i_sb))
653 		dangle = 0;
654 
655 	/* If file is of such a size, that it might have a tail and tails are enabled
656 	 ** we should mark it as possibly needing tail packing on close
657 	 */
658 	if ((have_large_tails(inode->i_sb)
659 	     && inode->i_size < i_block_size(inode) * 4)
660 	    || (have_small_tails(inode->i_sb)
661 		&& inode->i_size < i_block_size(inode)))
662 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664 	/* set the key of the first byte in the 'block'-th block of file */
665 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 	      start_trans:
668 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 		if (!th) {
670 			retval = -ENOMEM;
671 			goto failure;
672 		}
673 		reiserfs_update_inode_transaction(inode);
674 	}
675       research:
676 
677 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 	if (retval == IO_ERROR) {
679 		retval = -EIO;
680 		goto failure;
681 	}
682 
683 	bh = get_last_bh(&path);
684 	ih = get_ih(&path);
685 	item = get_item(&path);
686 	pos_in_item = path.pos_in_item;
687 
688 	fs_gen = get_generation(inode->i_sb);
689 	copy_item_head(&tmp_ih, ih);
690 
691 	if (allocation_needed
692 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 		/* we have to allocate block for the unformatted node */
694 		if (!th) {
695 			pathrelse(&path);
696 			goto start_trans;
697 		}
698 
699 		repeat =
700 		    _allocate_block(th, block, inode, &allocated_block_nr,
701 				    &path, create);
702 
703 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 			/* restart the transaction to give the journal a chance to free
705 			 ** some blocks.  releases the path, so we have to go back to
706 			 ** research if we succeed on the second try
707 			 */
708 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 			retval = restart_transaction(th, inode, &path);
710 			if (retval)
711 				goto failure;
712 			repeat =
713 			    _allocate_block(th, block, inode,
714 					    &allocated_block_nr, NULL, create);
715 
716 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 				goto research;
718 			}
719 			if (repeat == QUOTA_EXCEEDED)
720 				retval = -EDQUOT;
721 			else
722 				retval = -ENOSPC;
723 			goto failure;
724 		}
725 
726 		if (fs_changed(fs_gen, inode->i_sb)
727 		    && item_moved(&tmp_ih, &path)) {
728 			goto research;
729 		}
730 	}
731 
732 	if (indirect_item_found(retval, ih)) {
733 		b_blocknr_t unfm_ptr;
734 		/* 'block'-th block is in the file already (there is
735 		   corresponding cell in some indirect item). But it may be
736 		   zero unformatted node pointer (hole) */
737 		unfm_ptr = get_block_num(item, pos_in_item);
738 		if (unfm_ptr == 0) {
739 			/* use allocated block to plug the hole */
740 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 			if (fs_changed(fs_gen, inode->i_sb)
742 			    && item_moved(&tmp_ih, &path)) {
743 				reiserfs_restore_prepared_buffer(inode->i_sb,
744 								 bh);
745 				goto research;
746 			}
747 			set_buffer_new(bh_result);
748 			if (buffer_dirty(bh_result)
749 			    && reiserfs_data_ordered(inode->i_sb))
750 				reiserfs_add_ordered_list(inode, bh_result);
751 			put_block_num(item, pos_in_item, allocated_block_nr);
752 			unfm_ptr = allocated_block_nr;
753 			journal_mark_dirty(th, inode->i_sb, bh);
754 			reiserfs_update_sd(th, inode);
755 		}
756 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 		pathrelse(&path);
758 		retval = 0;
759 		if (!dangle && th)
760 			retval = reiserfs_end_persistent_transaction(th);
761 
762 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764 		/* the item was found, so new blocks were not added to the file
765 		 ** there is no need to make sure the inode is updated with this
766 		 ** transaction
767 		 */
768 		return retval;
769 	}
770 
771 	if (!th) {
772 		pathrelse(&path);
773 		goto start_trans;
774 	}
775 
776 	/* desired position is not found or is in the direct item. We have
777 	   to append file with holes up to 'block'-th block converting
778 	   direct items to indirect one if necessary */
779 	done = 0;
780 	do {
781 		if (is_statdata_le_ih(ih)) {
782 			__le32 unp = 0;
783 			struct cpu_key tmp_key;
784 
785 			/* indirect item has to be inserted */
786 			make_le_item_head(&tmp_ih, &key, version, 1,
787 					  TYPE_INDIRECT, UNFM_P_SIZE,
788 					  0 /* free_space */ );
789 
790 			if (cpu_key_k_offset(&key) == 1) {
791 				/* we are going to add 'block'-th block to the file. Use
792 				   allocated block for that */
793 				unp = cpu_to_le32(allocated_block_nr);
794 				set_block_dev_mapped(bh_result,
795 						     allocated_block_nr, inode);
796 				set_buffer_new(bh_result);
797 				done = 1;
798 			}
799 			tmp_key = key;	// ;)
800 			set_cpu_key_k_offset(&tmp_key, 1);
801 			PATH_LAST_POSITION(&path)++;
802 
803 			retval =
804 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 						 inode, (char *)&unp);
806 			if (retval) {
807 				reiserfs_free_block(th, inode,
808 						    allocated_block_nr, 1);
809 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 			}
811 			//mark_tail_converted (inode);
812 		} else if (is_direct_le_ih(ih)) {
813 			/* direct item has to be converted */
814 			loff_t tail_offset;
815 
816 			tail_offset =
817 			    ((le_ih_k_offset(ih) -
818 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 			if (tail_offset == cpu_key_k_offset(&key)) {
820 				/* direct item we just found fits into block we have
821 				   to map. Convert it into unformatted node: use
822 				   bh_result for the conversion */
823 				set_block_dev_mapped(bh_result,
824 						     allocated_block_nr, inode);
825 				unbh = bh_result;
826 				done = 1;
827 			} else {
828 				/* we have to padd file tail stored in direct item(s)
829 				   up to block size and convert it to unformatted
830 				   node. FIXME: this should also get into page cache */
831 
832 				pathrelse(&path);
833 				/*
834 				 * ugly, but we can only end the transaction if
835 				 * we aren't nested
836 				 */
837 				BUG_ON(!th->t_refcount);
838 				if (th->t_refcount == 1) {
839 					retval =
840 					    reiserfs_end_persistent_transaction
841 					    (th);
842 					th = NULL;
843 					if (retval)
844 						goto failure;
845 				}
846 
847 				retval =
848 				    convert_tail_for_hole(inode, bh_result,
849 							  tail_offset);
850 				if (retval) {
851 					if (retval != -ENOSPC)
852 						reiserfs_error(inode->i_sb,
853 							"clm-6004",
854 							"convert tail failed "
855 							"inode %lu, error %d",
856 							inode->i_ino,
857 							retval);
858 					if (allocated_block_nr) {
859 						/* the bitmap, the super, and the stat data == 3 */
860 						if (!th)
861 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 						if (th)
863 							reiserfs_free_block(th,
864 									    inode,
865 									    allocated_block_nr,
866 									    1);
867 					}
868 					goto failure;
869 				}
870 				goto research;
871 			}
872 			retval =
873 			    direct2indirect(th, inode, &path, unbh,
874 					    tail_offset);
875 			if (retval) {
876 				reiserfs_unmap_buffer(unbh);
877 				reiserfs_free_block(th, inode,
878 						    allocated_block_nr, 1);
879 				goto failure;
880 			}
881 			/* it is important the set_buffer_uptodate is done after
882 			 ** the direct2indirect.  The buffer might contain valid
883 			 ** data newer than the data on disk (read by readpage, changed,
884 			 ** and then sent here by writepage).  direct2indirect needs
885 			 ** to know if unbh was already up to date, so it can decide
886 			 ** if the data in unbh needs to be replaced with data from
887 			 ** the disk
888 			 */
889 			set_buffer_uptodate(unbh);
890 
891 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 			   buffer will disappear shortly, so it should not be added to
893 			 */
894 			if (unbh->b_page) {
895 				/* we've converted the tail, so we must
896 				 ** flush unbh before the transaction commits
897 				 */
898 				reiserfs_add_tail_list(inode, unbh);
899 
900 				/* mark it dirty now to prevent commit_write from adding
901 				 ** this buffer to the inode's dirty buffer list
902 				 */
903 				/*
904 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 				 * It's still atomic, but it sets the page dirty too,
906 				 * which makes it eligible for writeback at any time by the
907 				 * VM (which was also the case with __mark_buffer_dirty())
908 				 */
909 				mark_buffer_dirty(unbh);
910 			}
911 		} else {
912 			/* append indirect item with holes if needed, when appending
913 			   pointer to 'block'-th block use block, which is already
914 			   allocated */
915 			struct cpu_key tmp_key;
916 			unp_t unf_single = 0;	// We use this in case we need to allocate only
917 			// one block which is a fastpath
918 			unp_t *un;
919 			__u64 max_to_insert =
920 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 			    UNFM_P_SIZE;
922 			__u64 blocks_needed;
923 
924 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 			       "vs-804: invalid position for append");
926 			/* indirect item has to be appended, set up key of that position */
927 			make_cpu_key(&tmp_key, inode,
928 				     le_key_k_offset(version,
929 						     &(ih->ih_key)) +
930 				     op_bytes_number(ih,
931 						     inode->i_sb->s_blocksize),
932 				     //pos_in_item * inode->i_sb->s_blocksize,
933 				     TYPE_INDIRECT, 3);	// key type is unimportant
934 
935 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 			       "green-805: invalid offset");
937 			blocks_needed =
938 			    1 +
939 			    ((cpu_key_k_offset(&key) -
940 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 			     s_blocksize_bits);
942 
943 			if (blocks_needed == 1) {
944 				un = &unf_single;
945 			} else {
946 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 				if (!un) {
948 					un = &unf_single;
949 					blocks_needed = 1;
950 					max_to_insert = 0;
951 				}
952 			}
953 			if (blocks_needed <= max_to_insert) {
954 				/* we are going to add target block to the file. Use allocated
955 				   block for that */
956 				un[blocks_needed - 1] =
957 				    cpu_to_le32(allocated_block_nr);
958 				set_block_dev_mapped(bh_result,
959 						     allocated_block_nr, inode);
960 				set_buffer_new(bh_result);
961 				done = 1;
962 			} else {
963 				/* paste hole to the indirect item */
964 				/* If kmalloc failed, max_to_insert becomes zero and it means we
965 				   only have space for one block */
966 				blocks_needed =
967 				    max_to_insert ? max_to_insert : 1;
968 			}
969 			retval =
970 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 						     (char *)un,
972 						     UNFM_P_SIZE *
973 						     blocks_needed);
974 
975 			if (blocks_needed != 1)
976 				kfree(un);
977 
978 			if (retval) {
979 				reiserfs_free_block(th, inode,
980 						    allocated_block_nr, 1);
981 				goto failure;
982 			}
983 			if (!done) {
984 				/* We need to mark new file size in case this function will be
985 				   interrupted/aborted later on. And we may do this only for
986 				   holes. */
987 				inode->i_size +=
988 				    inode->i_sb->s_blocksize * blocks_needed;
989 			}
990 		}
991 
992 		if (done == 1)
993 			break;
994 
995 		/* this loop could log more blocks than we had originally asked
996 		 ** for.  So, we have to allow the transaction to end if it is
997 		 ** too big or too full.  Update the inode so things are
998 		 ** consistent if we crash before the function returns
999 		 **
1000 		 ** release the path so that anybody waiting on the path before
1001 		 ** ending their transaction will be able to continue.
1002 		 */
1003 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 			retval = restart_transaction(th, inode, &path);
1005 			if (retval)
1006 				goto failure;
1007 		}
1008 		/*
1009 		 * inserting indirect pointers for a hole can take a
1010 		 * long time.  reschedule if needed and also release the write
1011 		 * lock for others.
1012 		 */
1013 		if (need_resched()) {
1014 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 			schedule();
1016 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 		}
1018 
1019 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 		if (retval == IO_ERROR) {
1021 			retval = -EIO;
1022 			goto failure;
1023 		}
1024 		if (retval == POSITION_FOUND) {
1025 			reiserfs_warning(inode->i_sb, "vs-825",
1026 					 "%K should not be found", &key);
1027 			retval = -EEXIST;
1028 			if (allocated_block_nr)
1029 				reiserfs_free_block(th, inode,
1030 						    allocated_block_nr, 1);
1031 			pathrelse(&path);
1032 			goto failure;
1033 		}
1034 		bh = get_last_bh(&path);
1035 		ih = get_ih(&path);
1036 		item = get_item(&path);
1037 		pos_in_item = path.pos_in_item;
1038 	} while (1);
1039 
1040 	retval = 0;
1041 
1042       failure:
1043 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 		int err;
1045 		if (th->t_trans_id)
1046 			reiserfs_update_sd(th, inode);
1047 		err = reiserfs_end_persistent_transaction(th);
1048 		if (err)
1049 			retval = err;
1050 	}
1051 
1052 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 	reiserfs_check_path(&path);
1054 	return retval;
1055 }
1056 
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 		   struct list_head *pages, unsigned nr_pages)
1060 {
1061 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 	int bytes;
1070 	loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 		return sd_size;
1074 
1075 	/* End of file is also in full block with indirect reference, so round
1076 	 ** up to the next block.
1077 	 **
1078 	 ** there is just no way to know if the tail is actually packed
1079 	 ** on the file, so we have to assume it isn't.  When we pack the
1080 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 	 ** node pointer
1082 	 */
1083 	bytes =
1084 	    ((inode->i_size +
1085 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 	    sd_size;
1087 	return bytes;
1088 }
1089 
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 					int sd_size)
1092 {
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		return inode->i_size +
1095 		    (loff_t) (real_space_diff(inode, sd_size));
1096 	}
1097 	return ((loff_t) real_space_diff(inode, sd_size)) +
1098 	    (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 	loff_t bytes = inode_get_bytes(inode);
1105 	loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107 	/* keeps fsck and non-quota versions of reiserfs happy */
1108 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 		bytes += (loff_t) 511;
1110 	}
1111 
1112 	/* files from before the quota patch might i_blocks such that
1113 	 ** bytes < real_space.  Deal with that here to prevent it from
1114 	 ** going negative.
1115 	 */
1116 	if (bytes < real_space)
1117 		return 0;
1118 	return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 	struct buffer_head *bh;
1132 	struct item_head *ih;
1133 	__u32 rdev;
1134 	//int version = ITEM_VERSION_1;
1135 
1136 	bh = PATH_PLAST_BUFFER(path);
1137 	ih = PATH_PITEM_HEAD(path);
1138 
1139 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 	REISERFS_I(inode)->i_flags = 0;
1143 	REISERFS_I(inode)->i_prealloc_block = 0;
1144 	REISERFS_I(inode)->i_prealloc_count = 0;
1145 	REISERFS_I(inode)->i_trans_id = 0;
1146 	REISERFS_I(inode)->i_jl = NULL;
1147 	reiserfs_init_xattr_rwsem(inode);
1148 
1149 	if (stat_data_v1(ih)) {
1150 		struct stat_data_v1 *sd =
1151 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 		unsigned long blocks;
1153 
1154 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 		set_inode_sd_version(inode, STAT_DATA_V1);
1156 		inode->i_mode = sd_v1_mode(sd);
1157 		set_nlink(inode, sd_v1_nlink(sd));
1158 		i_uid_write(inode, sd_v1_uid(sd));
1159 		i_gid_write(inode, sd_v1_gid(sd));
1160 		inode->i_size = sd_v1_size(sd);
1161 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 		inode->i_atime.tv_nsec = 0;
1165 		inode->i_ctime.tv_nsec = 0;
1166 		inode->i_mtime.tv_nsec = 0;
1167 
1168 		inode->i_blocks = sd_v1_blocks(sd);
1169 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 		blocks = (inode->i_size + 511) >> 9;
1171 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 		if (inode->i_blocks > blocks) {
1173 			// there was a bug in <=3.5.23 when i_blocks could take negative
1174 			// values. Starting from 3.5.17 this value could even be stored in
1175 			// stat data. For such files we set i_blocks based on file
1176 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 			// only updated if file's inode will ever change
1178 			inode->i_blocks = blocks;
1179 		}
1180 
1181 		rdev = sd_v1_rdev(sd);
1182 		REISERFS_I(inode)->i_first_direct_byte =
1183 		    sd_v1_first_direct_byte(sd);
1184 		/* an early bug in the quota code can give us an odd number for the
1185 		 ** block count.  This is incorrect, fix it here.
1186 		 */
1187 		if (inode->i_blocks & 1) {
1188 			inode->i_blocks++;
1189 		}
1190 		inode_set_bytes(inode,
1191 				to_real_used_space(inode, inode->i_blocks,
1192 						   SD_V1_SIZE));
1193 		/* nopack is initially zero for v1 objects. For v2 objects,
1194 		   nopack is initialised from sd_attrs */
1195 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 	} else {
1197 		// new stat data found, but object may have old items
1198 		// (directories and symlinks)
1199 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201 		inode->i_mode = sd_v2_mode(sd);
1202 		set_nlink(inode, sd_v2_nlink(sd));
1203 		i_uid_write(inode, sd_v2_uid(sd));
1204 		inode->i_size = sd_v2_size(sd);
1205 		i_gid_write(inode, sd_v2_gid(sd));
1206 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 		inode->i_ctime.tv_nsec = 0;
1210 		inode->i_mtime.tv_nsec = 0;
1211 		inode->i_atime.tv_nsec = 0;
1212 		inode->i_blocks = sd_v2_blocks(sd);
1213 		rdev = sd_v2_rdev(sd);
1214 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 			inode->i_generation =
1216 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 		else
1218 			inode->i_generation = sd_v2_generation(sd);
1219 
1220 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 		else
1223 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 		REISERFS_I(inode)->i_first_direct_byte = 0;
1225 		set_inode_sd_version(inode, STAT_DATA_V2);
1226 		inode_set_bytes(inode,
1227 				to_real_used_space(inode, inode->i_blocks,
1228 						   SD_V2_SIZE));
1229 		/* read persistent inode attributes from sd and initialise
1230 		   generic inode flags from them */
1231 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 	}
1234 
1235 	pathrelse(path);
1236 	if (S_ISREG(inode->i_mode)) {
1237 		inode->i_op = &reiserfs_file_inode_operations;
1238 		inode->i_fop = &reiserfs_file_operations;
1239 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 	} else if (S_ISDIR(inode->i_mode)) {
1241 		inode->i_op = &reiserfs_dir_inode_operations;
1242 		inode->i_fop = &reiserfs_dir_operations;
1243 	} else if (S_ISLNK(inode->i_mode)) {
1244 		inode->i_op = &reiserfs_symlink_inode_operations;
1245 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 	} else {
1247 		inode->i_blocks = 0;
1248 		inode->i_op = &reiserfs_special_inode_operations;
1249 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 	}
1251 }
1252 
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 	__u16 flags;
1258 
1259 	set_sd_v2_mode(sd_v2, inode->i_mode);
1260 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1262 	set_sd_v2_size(sd_v2, size);
1263 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1264 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 	else
1271 		set_sd_v2_generation(sd_v2, inode->i_generation);
1272 	flags = REISERFS_I(inode)->i_attrs;
1273 	i_attrs_to_sd_attrs(inode, &flags);
1274 	set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282 	set_sd_v1_mode(sd_v1, inode->i_mode);
1283 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1284 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1285 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 	set_sd_v1_size(sd_v1, size);
1287 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 	else
1294 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296 	// Sigh. i_first_direct_byte is back
1297 	set_sd_v1_first_direct_byte(sd_v1,
1298 				    REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 			     loff_t size)
1306 {
1307 	struct buffer_head *bh;
1308 	struct item_head *ih;
1309 
1310 	bh = PATH_PLAST_BUFFER(path);
1311 	ih = PATH_PITEM_HEAD(path);
1312 
1313 	if (!is_statdata_le_ih(ih))
1314 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 			       INODE_PKEY(inode), ih);
1316 
1317 	if (stat_data_v1(ih)) {
1318 		// path points to old stat data
1319 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 	} else {
1321 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 	}
1323 
1324 	return;
1325 }
1326 
1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 			     struct inode *inode, loff_t size)
1329 {
1330 	struct cpu_key key;
1331 	INITIALIZE_PATH(path);
1332 	struct buffer_head *bh;
1333 	int fs_gen;
1334 	struct item_head *ih, tmp_ih;
1335 	int retval;
1336 
1337 	BUG_ON(!th->t_trans_id);
1338 
1339 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340 
1341 	for (;;) {
1342 		int pos;
1343 		/* look for the object's stat data */
1344 		retval = search_item(inode->i_sb, &key, &path);
1345 		if (retval == IO_ERROR) {
1346 			reiserfs_error(inode->i_sb, "vs-13050",
1347 				       "i/o failure occurred trying to "
1348 				       "update %K stat data", &key);
1349 			return;
1350 		}
1351 		if (retval == ITEM_NOT_FOUND) {
1352 			pos = PATH_LAST_POSITION(&path);
1353 			pathrelse(&path);
1354 			if (inode->i_nlink == 0) {
1355 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 				return;
1357 			}
1358 			reiserfs_warning(inode->i_sb, "vs-13060",
1359 					 "stat data of object %k (nlink == %d) "
1360 					 "not found (pos %d)",
1361 					 INODE_PKEY(inode), inode->i_nlink,
1362 					 pos);
1363 			reiserfs_check_path(&path);
1364 			return;
1365 		}
1366 
1367 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368 		 ** FS might change.  We have to detect that, and loop back to the
1369 		 ** search if the stat data item has moved
1370 		 */
1371 		bh = get_last_bh(&path);
1372 		ih = get_ih(&path);
1373 		copy_item_head(&tmp_ih, ih);
1374 		fs_gen = get_generation(inode->i_sb);
1375 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 		if (fs_changed(fs_gen, inode->i_sb)
1377 		    && item_moved(&tmp_ih, &path)) {
1378 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 			continue;	/* Stat_data item has been moved after scheduling. */
1380 		}
1381 		break;
1382 	}
1383 	update_stat_data(&path, inode, size);
1384 	journal_mark_dirty(th, th->t_super, bh);
1385 	pathrelse(&path);
1386 	return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 	make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 	inode->i_ino = args->objectid;
1410 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 	return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415    inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 				struct reiserfs_iget_args *args)
1418 {
1419 	INITIALIZE_PATH(path_to_sd);
1420 	struct cpu_key key;
1421 	unsigned long dirino;
1422 	int retval;
1423 
1424 	dirino = args->dirid;
1425 
1426 	/* set version 1, version 2 could be used too, because stat data
1427 	   key is the same in both versions */
1428 	key.version = KEY_FORMAT_3_5;
1429 	key.on_disk_key.k_dir_id = dirino;
1430 	key.on_disk_key.k_objectid = inode->i_ino;
1431 	key.on_disk_key.k_offset = 0;
1432 	key.on_disk_key.k_type = 0;
1433 
1434 	/* look for the object's stat data */
1435 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 	if (retval == IO_ERROR) {
1437 		reiserfs_error(inode->i_sb, "vs-13070",
1438 			       "i/o failure occurred trying to find "
1439 			       "stat data of %K", &key);
1440 		reiserfs_make_bad_inode(inode);
1441 		return;
1442 	}
1443 	if (retval != ITEM_FOUND) {
1444 		/* a stale NFS handle can trigger this without it being an error */
1445 		pathrelse(&path_to_sd);
1446 		reiserfs_make_bad_inode(inode);
1447 		clear_nlink(inode);
1448 		return;
1449 	}
1450 
1451 	init_inode(inode, &path_to_sd);
1452 
1453 	/* It is possible that knfsd is trying to access inode of a file
1454 	   that is being removed from the disk by some other thread. As we
1455 	   update sd on unlink all that is required is to check for nlink
1456 	   here. This bug was first found by Sizif when debugging
1457 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459 
1460 	   More logical fix would require changes in fs/inode.c:iput() to
1461 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 	   in iget() to return NULL if I_FREEING inode is found in
1463 	   hash-table. */
1464 	/* Currently there is one place where it's ok to meet inode with
1465 	   nlink==0: processing of open-unlinked and half-truncated files
1466 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 	if ((inode->i_nlink == 0) &&
1468 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 		reiserfs_warning(inode->i_sb, "vs-13075",
1470 				 "dead inode read from disk %K. "
1471 				 "This is likely to be race with knfsd. Ignore",
1472 				 &key);
1473 		reiserfs_make_bad_inode(inode);
1474 	}
1475 
1476 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477 
1478 	/*
1479 	 * Stat data v1 doesn't support ACLs.
1480 	 */
1481 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 		cache_no_acl(inode);
1483 }
1484 
1485 /**
1486  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487  *
1488  * @inode:    inode from hash table to check
1489  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490  *
1491  * This function is called by iget5_locked() to distinguish reiserfs inodes
1492  * having the same inode numbers. Such inodes can only exist due to some
1493  * error condition. One of them should be bad. Inodes with identical
1494  * inode numbers (objectids) are distinguished by parent directory ids.
1495  *
1496  */
1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1498 {
1499 	struct reiserfs_iget_args *args;
1500 
1501 	args = opaque;
1502 	/* args is already in CPU order */
1503 	return (inode->i_ino == args->objectid) &&
1504 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505 }
1506 
1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508 {
1509 	struct inode *inode;
1510 	struct reiserfs_iget_args args;
1511 
1512 	args.objectid = key->on_disk_key.k_objectid;
1513 	args.dirid = key->on_disk_key.k_dir_id;
1514 	reiserfs_write_unlock(s);
1515 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517 			     (void *)(&args));
1518 	reiserfs_write_lock(s);
1519 	if (!inode)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	if (inode->i_state & I_NEW) {
1523 		reiserfs_read_locked_inode(inode, &args);
1524 		unlock_new_inode(inode);
1525 	}
1526 
1527 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 		/* either due to i/o error or a stale NFS handle */
1529 		iput(inode);
1530 		inode = NULL;
1531 	}
1532 	return inode;
1533 }
1534 
1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 	u32 objectid, u32 dir_id, u32 generation)
1537 
1538 {
1539 	struct cpu_key key;
1540 	struct inode *inode;
1541 
1542 	key.on_disk_key.k_objectid = objectid;
1543 	key.on_disk_key.k_dir_id = dir_id;
1544 	reiserfs_write_lock(sb);
1545 	inode = reiserfs_iget(sb, &key);
1546 	if (inode && !IS_ERR(inode) && generation != 0 &&
1547 	    generation != inode->i_generation) {
1548 		iput(inode);
1549 		inode = NULL;
1550 	}
1551 	reiserfs_write_unlock(sb);
1552 
1553 	return d_obtain_alias(inode);
1554 }
1555 
1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 		int fh_len, int fh_type)
1558 {
1559 	/* fhtype happens to reflect the number of u32s encoded.
1560 	 * due to a bug in earlier code, fhtype might indicate there
1561 	 * are more u32s then actually fitted.
1562 	 * so if fhtype seems to be more than len, reduce fhtype.
1563 	 * Valid types are:
1564 	 *   2 - objectid + dir_id - legacy support
1565 	 *   3 - objectid + dir_id + generation
1566 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568 	 *   6 - as above plus generation of directory
1569 	 * 6 does not fit in NFSv2 handles
1570 	 */
1571 	if (fh_type > fh_len) {
1572 		if (fh_type != 6 || fh_len != 5)
1573 			reiserfs_warning(sb, "reiserfs-13077",
1574 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 				fh_type, fh_len);
1576 		fh_type = fh_len;
1577 	}
1578 	if (fh_len < 2)
1579 		return NULL;
1580 
1581 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583 }
1584 
1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586 		int fh_len, int fh_type)
1587 {
1588 	if (fh_type > fh_len)
1589 		fh_type = fh_len;
1590 	if (fh_type < 4)
1591 		return NULL;
1592 
1593 	return reiserfs_get_dentry(sb,
1594 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596 		(fh_type == 6) ? fid->raw[5] : 0);
1597 }
1598 
1599 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600 		       struct inode *parent)
1601 {
1602 	int maxlen = *lenp;
1603 
1604 	if (parent && (maxlen < 5)) {
1605 		*lenp = 5;
1606 		return 255;
1607 	} else if (maxlen < 3) {
1608 		*lenp = 3;
1609 		return 255;
1610 	}
1611 
1612 	data[0] = inode->i_ino;
1613 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614 	data[2] = inode->i_generation;
1615 	*lenp = 3;
1616 	if (parent) {
1617 		data[3] = parent->i_ino;
1618 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619 		*lenp = 5;
1620 		if (maxlen >= 6) {
1621 			data[5] = parent->i_generation;
1622 			*lenp = 6;
1623 		}
1624 	}
1625 	return *lenp;
1626 }
1627 
1628 /* looks for stat data, then copies fields to it, marks the buffer
1629    containing stat data as dirty */
1630 /* reiserfs inodes are never really dirty, since the dirty inode call
1631 ** always logs them.  This call allows the VFS inode marking routines
1632 ** to properly mark inodes for datasync and such, but only actually
1633 ** does something when called for a synchronous update.
1634 */
1635 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1636 {
1637 	struct reiserfs_transaction_handle th;
1638 	int jbegin_count = 1;
1639 
1640 	if (inode->i_sb->s_flags & MS_RDONLY)
1641 		return -EROFS;
1642 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643 	 ** these cases are just when the system needs ram, not when the
1644 	 ** inode needs to reach disk for safety, and they can safely be
1645 	 ** ignored because the altered inode has already been logged.
1646 	 */
1647 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648 		reiserfs_write_lock(inode->i_sb);
1649 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650 			reiserfs_update_sd(&th, inode);
1651 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1652 		}
1653 		reiserfs_write_unlock(inode->i_sb);
1654 	}
1655 	return 0;
1656 }
1657 
1658 /* stat data of new object is inserted already, this inserts the item
1659    containing "." and ".." entries */
1660 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661 				  struct inode *inode,
1662 				  struct item_head *ih, struct treepath *path,
1663 				  struct inode *dir)
1664 {
1665 	struct super_block *sb = th->t_super;
1666 	char empty_dir[EMPTY_DIR_SIZE];
1667 	char *body = empty_dir;
1668 	struct cpu_key key;
1669 	int retval;
1670 
1671 	BUG_ON(!th->t_trans_id);
1672 
1673 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675 		      TYPE_DIRENTRY, 3 /*key length */ );
1676 
1677 	/* compose item head for new item. Directories consist of items of
1678 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679 	   is done by reiserfs_new_inode */
1680 	if (old_format_only(sb)) {
1681 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1683 
1684 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685 				       ih->ih_key.k_objectid,
1686 				       INODE_PKEY(dir)->k_dir_id,
1687 				       INODE_PKEY(dir)->k_objectid);
1688 	} else {
1689 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1690 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1691 
1692 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693 				    ih->ih_key.k_objectid,
1694 				    INODE_PKEY(dir)->k_dir_id,
1695 				    INODE_PKEY(dir)->k_objectid);
1696 	}
1697 
1698 	/* look for place in the tree for new item */
1699 	retval = search_item(sb, &key, path);
1700 	if (retval == IO_ERROR) {
1701 		reiserfs_error(sb, "vs-13080",
1702 			       "i/o failure occurred creating new directory");
1703 		return -EIO;
1704 	}
1705 	if (retval == ITEM_FOUND) {
1706 		pathrelse(path);
1707 		reiserfs_warning(sb, "vs-13070",
1708 				 "object with this key exists (%k)",
1709 				 &(ih->ih_key));
1710 		return -EEXIST;
1711 	}
1712 
1713 	/* insert item, that is empty directory item */
1714 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1715 }
1716 
1717 /* stat data of object has been inserted, this inserts the item
1718    containing the body of symlink */
1719 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1720 				struct item_head *ih,
1721 				struct treepath *path, const char *symname,
1722 				int item_len)
1723 {
1724 	struct super_block *sb = th->t_super;
1725 	struct cpu_key key;
1726 	int retval;
1727 
1728 	BUG_ON(!th->t_trans_id);
1729 
1730 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1731 		      le32_to_cpu(ih->ih_key.k_dir_id),
1732 		      le32_to_cpu(ih->ih_key.k_objectid),
1733 		      1, TYPE_DIRECT, 3 /*key length */ );
1734 
1735 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736 			  0 /*free_space */ );
1737 
1738 	/* look for place in the tree for new item */
1739 	retval = search_item(sb, &key, path);
1740 	if (retval == IO_ERROR) {
1741 		reiserfs_error(sb, "vs-13080",
1742 			       "i/o failure occurred creating new symlink");
1743 		return -EIO;
1744 	}
1745 	if (retval == ITEM_FOUND) {
1746 		pathrelse(path);
1747 		reiserfs_warning(sb, "vs-13080",
1748 				 "object with this key exists (%k)",
1749 				 &(ih->ih_key));
1750 		return -EEXIST;
1751 	}
1752 
1753 	/* insert item, that is body of symlink */
1754 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1755 }
1756 
1757 /* inserts the stat data into the tree, and then calls
1758    reiserfs_new_directory (to insert ".", ".." item if new object is
1759    directory) or reiserfs_new_symlink (to insert symlink body if new
1760    object is symlink) or nothing (if new object is regular file)
1761 
1762    NOTE! uid and gid must already be set in the inode.  If we return
1763    non-zero due to an error, we have to drop the quota previously allocated
1764    for the fresh inode.  This can only be done outside a transaction, so
1765    if we return non-zero, we also end the transaction.  */
1766 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1767 		       struct inode *dir, umode_t mode, const char *symname,
1768 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769 		          strlen (symname) for symlinks) */
1770 		       loff_t i_size, struct dentry *dentry,
1771 		       struct inode *inode,
1772 		       struct reiserfs_security_handle *security)
1773 {
1774 	struct super_block *sb;
1775 	struct reiserfs_iget_args args;
1776 	INITIALIZE_PATH(path_to_key);
1777 	struct cpu_key key;
1778 	struct item_head ih;
1779 	struct stat_data sd;
1780 	int retval;
1781 	int err;
1782 
1783 	BUG_ON(!th->t_trans_id);
1784 
1785 	reiserfs_write_unlock(inode->i_sb);
1786 	err = dquot_alloc_inode(inode);
1787 	reiserfs_write_lock(inode->i_sb);
1788 	if (err)
1789 		goto out_end_trans;
1790 	if (!dir->i_nlink) {
1791 		err = -EPERM;
1792 		goto out_bad_inode;
1793 	}
1794 
1795 	sb = dir->i_sb;
1796 
1797 	/* item head of new item */
1798 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1799 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1800 	if (!ih.ih_key.k_objectid) {
1801 		err = -ENOMEM;
1802 		goto out_bad_inode;
1803 	}
1804 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1805 	if (old_format_only(sb))
1806 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1807 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1808 	else
1809 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1810 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1811 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1812 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1813 	if (insert_inode_locked4(inode, args.objectid,
1814 			     reiserfs_find_actor, &args) < 0) {
1815 		err = -EINVAL;
1816 		goto out_bad_inode;
1817 	}
1818 	if (old_format_only(sb))
1819 		/* not a perfect generation count, as object ids can be reused, but
1820 		 ** this is as good as reiserfs can do right now.
1821 		 ** note that the private part of inode isn't filled in yet, we have
1822 		 ** to use the directory.
1823 		 */
1824 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1825 	else
1826 #if defined( USE_INODE_GENERATION_COUNTER )
1827 		inode->i_generation =
1828 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1829 #else
1830 		inode->i_generation = ++event;
1831 #endif
1832 
1833 	/* fill stat data */
1834 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1835 
1836 	/* uid and gid must already be set by the caller for quota init */
1837 
1838 	/* symlink cannot be immutable or append only, right? */
1839 	if (S_ISLNK(inode->i_mode))
1840 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1841 
1842 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1843 	inode->i_size = i_size;
1844 	inode->i_blocks = 0;
1845 	inode->i_bytes = 0;
1846 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1847 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1848 
1849 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1850 	REISERFS_I(inode)->i_flags = 0;
1851 	REISERFS_I(inode)->i_prealloc_block = 0;
1852 	REISERFS_I(inode)->i_prealloc_count = 0;
1853 	REISERFS_I(inode)->i_trans_id = 0;
1854 	REISERFS_I(inode)->i_jl = NULL;
1855 	REISERFS_I(inode)->i_attrs =
1856 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1857 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1858 	reiserfs_init_xattr_rwsem(inode);
1859 
1860 	/* key to search for correct place for new stat data */
1861 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1862 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1863 		      TYPE_STAT_DATA, 3 /*key length */ );
1864 
1865 	/* find proper place for inserting of stat data */
1866 	retval = search_item(sb, &key, &path_to_key);
1867 	if (retval == IO_ERROR) {
1868 		err = -EIO;
1869 		goto out_bad_inode;
1870 	}
1871 	if (retval == ITEM_FOUND) {
1872 		pathrelse(&path_to_key);
1873 		err = -EEXIST;
1874 		goto out_bad_inode;
1875 	}
1876 	if (old_format_only(sb)) {
1877 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1878 			pathrelse(&path_to_key);
1879 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1880 			err = -EINVAL;
1881 			goto out_bad_inode;
1882 		}
1883 		inode2sd_v1(&sd, inode, inode->i_size);
1884 	} else {
1885 		inode2sd(&sd, inode, inode->i_size);
1886 	}
1887 	// store in in-core inode the key of stat data and version all
1888 	// object items will have (directory items will have old offset
1889 	// format, other new objects will consist of new items)
1890 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1891 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1892 	else
1893 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1894 	if (old_format_only(sb))
1895 		set_inode_sd_version(inode, STAT_DATA_V1);
1896 	else
1897 		set_inode_sd_version(inode, STAT_DATA_V2);
1898 
1899 	/* insert the stat data into the tree */
1900 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1901 	if (REISERFS_I(dir)->new_packing_locality)
1902 		th->displace_new_blocks = 1;
1903 #endif
1904 	retval =
1905 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1906 				 (char *)(&sd));
1907 	if (retval) {
1908 		err = retval;
1909 		reiserfs_check_path(&path_to_key);
1910 		goto out_bad_inode;
1911 	}
1912 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1913 	if (!th->displace_new_blocks)
1914 		REISERFS_I(dir)->new_packing_locality = 0;
1915 #endif
1916 	if (S_ISDIR(mode)) {
1917 		/* insert item with "." and ".." */
1918 		retval =
1919 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1920 	}
1921 
1922 	if (S_ISLNK(mode)) {
1923 		/* insert body of symlink */
1924 		if (!old_format_only(sb))
1925 			i_size = ROUND_UP(i_size);
1926 		retval =
1927 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1928 					 i_size);
1929 	}
1930 	if (retval) {
1931 		err = retval;
1932 		reiserfs_check_path(&path_to_key);
1933 		journal_end(th, th->t_super, th->t_blocks_allocated);
1934 		goto out_inserted_sd;
1935 	}
1936 
1937 	if (reiserfs_posixacl(inode->i_sb)) {
1938 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1939 		if (retval) {
1940 			err = retval;
1941 			reiserfs_check_path(&path_to_key);
1942 			journal_end(th, th->t_super, th->t_blocks_allocated);
1943 			goto out_inserted_sd;
1944 		}
1945 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1946 		reiserfs_warning(inode->i_sb, "jdm-13090",
1947 				 "ACLs aren't enabled in the fs, "
1948 				 "but vfs thinks they are!");
1949 	} else if (IS_PRIVATE(dir))
1950 		inode->i_flags |= S_PRIVATE;
1951 
1952 	if (security->name) {
1953 		retval = reiserfs_security_write(th, inode, security);
1954 		if (retval) {
1955 			err = retval;
1956 			reiserfs_check_path(&path_to_key);
1957 			retval = journal_end(th, th->t_super,
1958 					     th->t_blocks_allocated);
1959 			if (retval)
1960 				err = retval;
1961 			goto out_inserted_sd;
1962 		}
1963 	}
1964 
1965 	reiserfs_update_sd(th, inode);
1966 	reiserfs_check_path(&path_to_key);
1967 
1968 	return 0;
1969 
1970 /* it looks like you can easily compress these two goto targets into
1971  * one.  Keeping it like this doesn't actually hurt anything, and they
1972  * are place holders for what the quota code actually needs.
1973  */
1974       out_bad_inode:
1975 	/* Invalidate the object, nothing was inserted yet */
1976 	INODE_PKEY(inode)->k_objectid = 0;
1977 
1978 	/* Quota change must be inside a transaction for journaling */
1979 	dquot_free_inode(inode);
1980 
1981       out_end_trans:
1982 	journal_end(th, th->t_super, th->t_blocks_allocated);
1983 	reiserfs_write_unlock(inode->i_sb);
1984 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1985 	dquot_drop(inode);
1986 	reiserfs_write_lock(inode->i_sb);
1987 	inode->i_flags |= S_NOQUOTA;
1988 	make_bad_inode(inode);
1989 
1990       out_inserted_sd:
1991 	clear_nlink(inode);
1992 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1993 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1994 	iput(inode);
1995 	return err;
1996 }
1997 
1998 /*
1999 ** finds the tail page in the page cache,
2000 ** reads the last block in.
2001 **
2002 ** On success, page_result is set to a locked, pinned page, and bh_result
2003 ** is set to an up to date buffer for the last block in the file.  returns 0.
2004 **
2005 ** tail conversion is not done, so bh_result might not be valid for writing
2006 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2007 ** trying to write the block.
2008 **
2009 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2010 */
2011 static int grab_tail_page(struct inode *inode,
2012 			  struct page **page_result,
2013 			  struct buffer_head **bh_result)
2014 {
2015 
2016 	/* we want the page with the last byte in the file,
2017 	 ** not the page that will hold the next byte for appending
2018 	 */
2019 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2020 	unsigned long pos = 0;
2021 	unsigned long start = 0;
2022 	unsigned long blocksize = inode->i_sb->s_blocksize;
2023 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2024 	struct buffer_head *bh;
2025 	struct buffer_head *head;
2026 	struct page *page;
2027 	int error;
2028 
2029 	/* we know that we are only called with inode->i_size > 0.
2030 	 ** we also know that a file tail can never be as big as a block
2031 	 ** If i_size % blocksize == 0, our file is currently block aligned
2032 	 ** and it won't need converting or zeroing after a truncate.
2033 	 */
2034 	if ((offset & (blocksize - 1)) == 0) {
2035 		return -ENOENT;
2036 	}
2037 	page = grab_cache_page(inode->i_mapping, index);
2038 	error = -ENOMEM;
2039 	if (!page) {
2040 		goto out;
2041 	}
2042 	/* start within the page of the last block in the file */
2043 	start = (offset / blocksize) * blocksize;
2044 
2045 	error = __block_write_begin(page, start, offset - start,
2046 				    reiserfs_get_block_create_0);
2047 	if (error)
2048 		goto unlock;
2049 
2050 	head = page_buffers(page);
2051 	bh = head;
2052 	do {
2053 		if (pos >= start) {
2054 			break;
2055 		}
2056 		bh = bh->b_this_page;
2057 		pos += blocksize;
2058 	} while (bh != head);
2059 
2060 	if (!buffer_uptodate(bh)) {
2061 		/* note, this should never happen, prepare_write should
2062 		 ** be taking care of this for us.  If the buffer isn't up to date,
2063 		 ** I've screwed up the code to find the buffer, or the code to
2064 		 ** call prepare_write
2065 		 */
2066 		reiserfs_error(inode->i_sb, "clm-6000",
2067 			       "error reading block %lu", bh->b_blocknr);
2068 		error = -EIO;
2069 		goto unlock;
2070 	}
2071 	*bh_result = bh;
2072 	*page_result = page;
2073 
2074       out:
2075 	return error;
2076 
2077       unlock:
2078 	unlock_page(page);
2079 	page_cache_release(page);
2080 	return error;
2081 }
2082 
2083 /*
2084 ** vfs version of truncate file.  Must NOT be called with
2085 ** a transaction already started.
2086 **
2087 ** some code taken from block_truncate_page
2088 */
2089 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2090 {
2091 	struct reiserfs_transaction_handle th;
2092 	/* we want the offset for the first byte after the end of the file */
2093 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2094 	unsigned blocksize = inode->i_sb->s_blocksize;
2095 	unsigned length;
2096 	struct page *page = NULL;
2097 	int error;
2098 	struct buffer_head *bh = NULL;
2099 	int err2;
2100 	int lock_depth;
2101 
2102 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2103 
2104 	if (inode->i_size > 0) {
2105 		error = grab_tail_page(inode, &page, &bh);
2106 		if (error) {
2107 			// -ENOENT means we truncated past the end of the file,
2108 			// and get_block_create_0 could not find a block to read in,
2109 			// which is ok.
2110 			if (error != -ENOENT)
2111 				reiserfs_error(inode->i_sb, "clm-6001",
2112 					       "grab_tail_page failed %d",
2113 					       error);
2114 			page = NULL;
2115 			bh = NULL;
2116 		}
2117 	}
2118 
2119 	/* so, if page != NULL, we have a buffer head for the offset at
2120 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2121 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2122 	 ** and no zeroing is required on disk.  We zero after the truncate,
2123 	 ** because the truncate might pack the item anyway
2124 	 ** (it will unmap bh if it packs).
2125 	 */
2126 	/* it is enough to reserve space in transaction for 2 balancings:
2127 	   one for "save" link adding and another for the first
2128 	   cut_from_item. 1 is for update_sd */
2129 	error = journal_begin(&th, inode->i_sb,
2130 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2131 	if (error)
2132 		goto out;
2133 	reiserfs_update_inode_transaction(inode);
2134 	if (update_timestamps)
2135 		/* we are doing real truncate: if the system crashes before the last
2136 		   transaction of truncating gets committed - on reboot the file
2137 		   either appears truncated properly or not truncated at all */
2138 		add_save_link(&th, inode, 1);
2139 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2140 	error =
2141 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2142 	if (error)
2143 		goto out;
2144 
2145 	/* check reiserfs_do_truncate after ending the transaction */
2146 	if (err2) {
2147 		error = err2;
2148   		goto out;
2149 	}
2150 
2151 	if (update_timestamps) {
2152 		error = remove_save_link(inode, 1 /* truncate */);
2153 		if (error)
2154 			goto out;
2155 	}
2156 
2157 	if (page) {
2158 		length = offset & (blocksize - 1);
2159 		/* if we are not on a block boundary */
2160 		if (length) {
2161 			length = blocksize - length;
2162 			zero_user(page, offset, length);
2163 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2164 				mark_buffer_dirty(bh);
2165 			}
2166 		}
2167 		unlock_page(page);
2168 		page_cache_release(page);
2169 	}
2170 
2171 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2172 
2173 	return 0;
2174       out:
2175 	if (page) {
2176 		unlock_page(page);
2177 		page_cache_release(page);
2178 	}
2179 
2180 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2181 
2182 	return error;
2183 }
2184 
2185 static int map_block_for_writepage(struct inode *inode,
2186 				   struct buffer_head *bh_result,
2187 				   unsigned long block)
2188 {
2189 	struct reiserfs_transaction_handle th;
2190 	int fs_gen;
2191 	struct item_head tmp_ih;
2192 	struct item_head *ih;
2193 	struct buffer_head *bh;
2194 	__le32 *item;
2195 	struct cpu_key key;
2196 	INITIALIZE_PATH(path);
2197 	int pos_in_item;
2198 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2199 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2200 	int retval;
2201 	int use_get_block = 0;
2202 	int bytes_copied = 0;
2203 	int copy_size;
2204 	int trans_running = 0;
2205 
2206 	/* catch places below that try to log something without starting a trans */
2207 	th.t_trans_id = 0;
2208 
2209 	if (!buffer_uptodate(bh_result)) {
2210 		return -EIO;
2211 	}
2212 
2213 	kmap(bh_result->b_page);
2214       start_over:
2215 	reiserfs_write_lock(inode->i_sb);
2216 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2217 
2218       research:
2219 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2220 	if (retval != POSITION_FOUND) {
2221 		use_get_block = 1;
2222 		goto out;
2223 	}
2224 
2225 	bh = get_last_bh(&path);
2226 	ih = get_ih(&path);
2227 	item = get_item(&path);
2228 	pos_in_item = path.pos_in_item;
2229 
2230 	/* we've found an unformatted node */
2231 	if (indirect_item_found(retval, ih)) {
2232 		if (bytes_copied > 0) {
2233 			reiserfs_warning(inode->i_sb, "clm-6002",
2234 					 "bytes_copied %d", bytes_copied);
2235 		}
2236 		if (!get_block_num(item, pos_in_item)) {
2237 			/* crap, we are writing to a hole */
2238 			use_get_block = 1;
2239 			goto out;
2240 		}
2241 		set_block_dev_mapped(bh_result,
2242 				     get_block_num(item, pos_in_item), inode);
2243 	} else if (is_direct_le_ih(ih)) {
2244 		char *p;
2245 		p = page_address(bh_result->b_page);
2246 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2247 		copy_size = ih_item_len(ih) - pos_in_item;
2248 
2249 		fs_gen = get_generation(inode->i_sb);
2250 		copy_item_head(&tmp_ih, ih);
2251 
2252 		if (!trans_running) {
2253 			/* vs-3050 is gone, no need to drop the path */
2254 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2255 			if (retval)
2256 				goto out;
2257 			reiserfs_update_inode_transaction(inode);
2258 			trans_running = 1;
2259 			if (fs_changed(fs_gen, inode->i_sb)
2260 			    && item_moved(&tmp_ih, &path)) {
2261 				reiserfs_restore_prepared_buffer(inode->i_sb,
2262 								 bh);
2263 				goto research;
2264 			}
2265 		}
2266 
2267 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2268 
2269 		if (fs_changed(fs_gen, inode->i_sb)
2270 		    && item_moved(&tmp_ih, &path)) {
2271 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2272 			goto research;
2273 		}
2274 
2275 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2276 		       copy_size);
2277 
2278 		journal_mark_dirty(&th, inode->i_sb, bh);
2279 		bytes_copied += copy_size;
2280 		set_block_dev_mapped(bh_result, 0, inode);
2281 
2282 		/* are there still bytes left? */
2283 		if (bytes_copied < bh_result->b_size &&
2284 		    (byte_offset + bytes_copied) < inode->i_size) {
2285 			set_cpu_key_k_offset(&key,
2286 					     cpu_key_k_offset(&key) +
2287 					     copy_size);
2288 			goto research;
2289 		}
2290 	} else {
2291 		reiserfs_warning(inode->i_sb, "clm-6003",
2292 				 "bad item inode %lu", inode->i_ino);
2293 		retval = -EIO;
2294 		goto out;
2295 	}
2296 	retval = 0;
2297 
2298       out:
2299 	pathrelse(&path);
2300 	if (trans_running) {
2301 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2302 		if (err)
2303 			retval = err;
2304 		trans_running = 0;
2305 	}
2306 	reiserfs_write_unlock(inode->i_sb);
2307 
2308 	/* this is where we fill in holes in the file. */
2309 	if (use_get_block) {
2310 		retval = reiserfs_get_block(inode, block, bh_result,
2311 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2312 					    | GET_BLOCK_NO_DANGLE);
2313 		if (!retval) {
2314 			if (!buffer_mapped(bh_result)
2315 			    || bh_result->b_blocknr == 0) {
2316 				/* get_block failed to find a mapped unformatted node. */
2317 				use_get_block = 0;
2318 				goto start_over;
2319 			}
2320 		}
2321 	}
2322 	kunmap(bh_result->b_page);
2323 
2324 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2325 		/* we've copied data from the page into the direct item, so the
2326 		 * buffer in the page is now clean, mark it to reflect that.
2327 		 */
2328 		lock_buffer(bh_result);
2329 		clear_buffer_dirty(bh_result);
2330 		unlock_buffer(bh_result);
2331 	}
2332 	return retval;
2333 }
2334 
2335 /*
2336  * mason@suse.com: updated in 2.5.54 to follow the same general io
2337  * start/recovery path as __block_write_full_page, along with special
2338  * code to handle reiserfs tails.
2339  */
2340 static int reiserfs_write_full_page(struct page *page,
2341 				    struct writeback_control *wbc)
2342 {
2343 	struct inode *inode = page->mapping->host;
2344 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2345 	int error = 0;
2346 	unsigned long block;
2347 	sector_t last_block;
2348 	struct buffer_head *head, *bh;
2349 	int partial = 0;
2350 	int nr = 0;
2351 	int checked = PageChecked(page);
2352 	struct reiserfs_transaction_handle th;
2353 	struct super_block *s = inode->i_sb;
2354 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2355 	th.t_trans_id = 0;
2356 
2357 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2358 	if (checked && (current->flags & PF_MEMALLOC)) {
2359 		redirty_page_for_writepage(wbc, page);
2360 		unlock_page(page);
2361 		return 0;
2362 	}
2363 
2364 	/* The page dirty bit is cleared before writepage is called, which
2365 	 * means we have to tell create_empty_buffers to make dirty buffers
2366 	 * The page really should be up to date at this point, so tossing
2367 	 * in the BH_Uptodate is just a sanity check.
2368 	 */
2369 	if (!page_has_buffers(page)) {
2370 		create_empty_buffers(page, s->s_blocksize,
2371 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2372 	}
2373 	head = page_buffers(page);
2374 
2375 	/* last page in the file, zero out any contents past the
2376 	 ** last byte in the file
2377 	 */
2378 	if (page->index >= end_index) {
2379 		unsigned last_offset;
2380 
2381 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2382 		/* no file contents in this page */
2383 		if (page->index >= end_index + 1 || !last_offset) {
2384 			unlock_page(page);
2385 			return 0;
2386 		}
2387 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2388 	}
2389 	bh = head;
2390 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2391 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2392 	/* first map all the buffers, logging any direct items we find */
2393 	do {
2394 		if (block > last_block) {
2395 			/*
2396 			 * This can happen when the block size is less than
2397 			 * the page size.  The corresponding bytes in the page
2398 			 * were zero filled above
2399 			 */
2400 			clear_buffer_dirty(bh);
2401 			set_buffer_uptodate(bh);
2402 		} else if ((checked || buffer_dirty(bh)) &&
2403 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2404 						       && bh->b_blocknr ==
2405 						       0))) {
2406 			/* not mapped yet, or it points to a direct item, search
2407 			 * the btree for the mapping info, and log any direct
2408 			 * items found
2409 			 */
2410 			if ((error = map_block_for_writepage(inode, bh, block))) {
2411 				goto fail;
2412 			}
2413 		}
2414 		bh = bh->b_this_page;
2415 		block++;
2416 	} while (bh != head);
2417 
2418 	/*
2419 	 * we start the transaction after map_block_for_writepage,
2420 	 * because it can create holes in the file (an unbounded operation).
2421 	 * starting it here, we can make a reliable estimate for how many
2422 	 * blocks we're going to log
2423 	 */
2424 	if (checked) {
2425 		ClearPageChecked(page);
2426 		reiserfs_write_lock(s);
2427 		error = journal_begin(&th, s, bh_per_page + 1);
2428 		if (error) {
2429 			reiserfs_write_unlock(s);
2430 			goto fail;
2431 		}
2432 		reiserfs_update_inode_transaction(inode);
2433 	}
2434 	/* now go through and lock any dirty buffers on the page */
2435 	do {
2436 		get_bh(bh);
2437 		if (!buffer_mapped(bh))
2438 			continue;
2439 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2440 			continue;
2441 
2442 		if (checked) {
2443 			reiserfs_prepare_for_journal(s, bh, 1);
2444 			journal_mark_dirty(&th, s, bh);
2445 			continue;
2446 		}
2447 		/* from this point on, we know the buffer is mapped to a
2448 		 * real block and not a direct item
2449 		 */
2450 		if (wbc->sync_mode != WB_SYNC_NONE) {
2451 			lock_buffer(bh);
2452 		} else {
2453 			if (!trylock_buffer(bh)) {
2454 				redirty_page_for_writepage(wbc, page);
2455 				continue;
2456 			}
2457 		}
2458 		if (test_clear_buffer_dirty(bh)) {
2459 			mark_buffer_async_write(bh);
2460 		} else {
2461 			unlock_buffer(bh);
2462 		}
2463 	} while ((bh = bh->b_this_page) != head);
2464 
2465 	if (checked) {
2466 		error = journal_end(&th, s, bh_per_page + 1);
2467 		reiserfs_write_unlock(s);
2468 		if (error)
2469 			goto fail;
2470 	}
2471 	BUG_ON(PageWriteback(page));
2472 	set_page_writeback(page);
2473 	unlock_page(page);
2474 
2475 	/*
2476 	 * since any buffer might be the only dirty buffer on the page,
2477 	 * the first submit_bh can bring the page out of writeback.
2478 	 * be careful with the buffers.
2479 	 */
2480 	do {
2481 		struct buffer_head *next = bh->b_this_page;
2482 		if (buffer_async_write(bh)) {
2483 			submit_bh(WRITE, bh);
2484 			nr++;
2485 		}
2486 		put_bh(bh);
2487 		bh = next;
2488 	} while (bh != head);
2489 
2490 	error = 0;
2491       done:
2492 	if (nr == 0) {
2493 		/*
2494 		 * if this page only had a direct item, it is very possible for
2495 		 * no io to be required without there being an error.  Or,
2496 		 * someone else could have locked them and sent them down the
2497 		 * pipe without locking the page
2498 		 */
2499 		bh = head;
2500 		do {
2501 			if (!buffer_uptodate(bh)) {
2502 				partial = 1;
2503 				break;
2504 			}
2505 			bh = bh->b_this_page;
2506 		} while (bh != head);
2507 		if (!partial)
2508 			SetPageUptodate(page);
2509 		end_page_writeback(page);
2510 	}
2511 	return error;
2512 
2513       fail:
2514 	/* catches various errors, we need to make sure any valid dirty blocks
2515 	 * get to the media.  The page is currently locked and not marked for
2516 	 * writeback
2517 	 */
2518 	ClearPageUptodate(page);
2519 	bh = head;
2520 	do {
2521 		get_bh(bh);
2522 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2523 			lock_buffer(bh);
2524 			mark_buffer_async_write(bh);
2525 		} else {
2526 			/*
2527 			 * clear any dirty bits that might have come from getting
2528 			 * attached to a dirty page
2529 			 */
2530 			clear_buffer_dirty(bh);
2531 		}
2532 		bh = bh->b_this_page;
2533 	} while (bh != head);
2534 	SetPageError(page);
2535 	BUG_ON(PageWriteback(page));
2536 	set_page_writeback(page);
2537 	unlock_page(page);
2538 	do {
2539 		struct buffer_head *next = bh->b_this_page;
2540 		if (buffer_async_write(bh)) {
2541 			clear_buffer_dirty(bh);
2542 			submit_bh(WRITE, bh);
2543 			nr++;
2544 		}
2545 		put_bh(bh);
2546 		bh = next;
2547 	} while (bh != head);
2548 	goto done;
2549 }
2550 
2551 static int reiserfs_readpage(struct file *f, struct page *page)
2552 {
2553 	return block_read_full_page(page, reiserfs_get_block);
2554 }
2555 
2556 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2557 {
2558 	struct inode *inode = page->mapping->host;
2559 	reiserfs_wait_on_write_block(inode->i_sb);
2560 	return reiserfs_write_full_page(page, wbc);
2561 }
2562 
2563 static void reiserfs_truncate_failed_write(struct inode *inode)
2564 {
2565 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2566 	reiserfs_truncate_file(inode, 0);
2567 }
2568 
2569 static int reiserfs_write_begin(struct file *file,
2570 				struct address_space *mapping,
2571 				loff_t pos, unsigned len, unsigned flags,
2572 				struct page **pagep, void **fsdata)
2573 {
2574 	struct inode *inode;
2575 	struct page *page;
2576 	pgoff_t index;
2577 	int ret;
2578 	int old_ref = 0;
2579 
2580  	inode = mapping->host;
2581 	*fsdata = 0;
2582  	if (flags & AOP_FLAG_CONT_EXPAND &&
2583  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2584  		pos ++;
2585 		*fsdata = (void *)(unsigned long)flags;
2586 	}
2587 
2588 	index = pos >> PAGE_CACHE_SHIFT;
2589 	page = grab_cache_page_write_begin(mapping, index, flags);
2590 	if (!page)
2591 		return -ENOMEM;
2592 	*pagep = page;
2593 
2594 	reiserfs_wait_on_write_block(inode->i_sb);
2595 	fix_tail_page_for_writing(page);
2596 	if (reiserfs_transaction_running(inode->i_sb)) {
2597 		struct reiserfs_transaction_handle *th;
2598 		th = (struct reiserfs_transaction_handle *)current->
2599 		    journal_info;
2600 		BUG_ON(!th->t_refcount);
2601 		BUG_ON(!th->t_trans_id);
2602 		old_ref = th->t_refcount;
2603 		th->t_refcount++;
2604 	}
2605 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2606 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2607 		struct reiserfs_transaction_handle *th = current->journal_info;
2608 		/* this gets a little ugly.  If reiserfs_get_block returned an
2609 		 * error and left a transacstion running, we've got to close it,
2610 		 * and we've got to free handle if it was a persistent transaction.
2611 		 *
2612 		 * But, if we had nested into an existing transaction, we need
2613 		 * to just drop the ref count on the handle.
2614 		 *
2615 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2616 		 * and it was a persistent trans.  Otherwise, it was nested above.
2617 		 */
2618 		if (th->t_refcount > old_ref) {
2619 			if (old_ref)
2620 				th->t_refcount--;
2621 			else {
2622 				int err;
2623 				reiserfs_write_lock(inode->i_sb);
2624 				err = reiserfs_end_persistent_transaction(th);
2625 				reiserfs_write_unlock(inode->i_sb);
2626 				if (err)
2627 					ret = err;
2628 			}
2629 		}
2630 	}
2631 	if (ret) {
2632 		unlock_page(page);
2633 		page_cache_release(page);
2634 		/* Truncate allocated blocks */
2635 		reiserfs_truncate_failed_write(inode);
2636 	}
2637 	return ret;
2638 }
2639 
2640 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2641 {
2642 	struct inode *inode = page->mapping->host;
2643 	int ret;
2644 	int old_ref = 0;
2645 
2646 	reiserfs_write_unlock(inode->i_sb);
2647 	reiserfs_wait_on_write_block(inode->i_sb);
2648 	reiserfs_write_lock(inode->i_sb);
2649 
2650 	fix_tail_page_for_writing(page);
2651 	if (reiserfs_transaction_running(inode->i_sb)) {
2652 		struct reiserfs_transaction_handle *th;
2653 		th = (struct reiserfs_transaction_handle *)current->
2654 		    journal_info;
2655 		BUG_ON(!th->t_refcount);
2656 		BUG_ON(!th->t_trans_id);
2657 		old_ref = th->t_refcount;
2658 		th->t_refcount++;
2659 	}
2660 
2661 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2662 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2663 		struct reiserfs_transaction_handle *th = current->journal_info;
2664 		/* this gets a little ugly.  If reiserfs_get_block returned an
2665 		 * error and left a transacstion running, we've got to close it,
2666 		 * and we've got to free handle if it was a persistent transaction.
2667 		 *
2668 		 * But, if we had nested into an existing transaction, we need
2669 		 * to just drop the ref count on the handle.
2670 		 *
2671 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2672 		 * and it was a persistent trans.  Otherwise, it was nested above.
2673 		 */
2674 		if (th->t_refcount > old_ref) {
2675 			if (old_ref)
2676 				th->t_refcount--;
2677 			else {
2678 				int err;
2679 				reiserfs_write_lock(inode->i_sb);
2680 				err = reiserfs_end_persistent_transaction(th);
2681 				reiserfs_write_unlock(inode->i_sb);
2682 				if (err)
2683 					ret = err;
2684 			}
2685 		}
2686 	}
2687 	return ret;
2688 
2689 }
2690 
2691 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2692 {
2693 	return generic_block_bmap(as, block, reiserfs_bmap);
2694 }
2695 
2696 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2697 			      loff_t pos, unsigned len, unsigned copied,
2698 			      struct page *page, void *fsdata)
2699 {
2700 	struct inode *inode = page->mapping->host;
2701 	int ret = 0;
2702 	int update_sd = 0;
2703 	struct reiserfs_transaction_handle *th;
2704 	unsigned start;
2705 	int lock_depth = 0;
2706 	bool locked = false;
2707 
2708 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2709 		pos ++;
2710 
2711 	reiserfs_wait_on_write_block(inode->i_sb);
2712 	if (reiserfs_transaction_running(inode->i_sb))
2713 		th = current->journal_info;
2714 	else
2715 		th = NULL;
2716 
2717 	start = pos & (PAGE_CACHE_SIZE - 1);
2718 	if (unlikely(copied < len)) {
2719 		if (!PageUptodate(page))
2720 			copied = 0;
2721 
2722 		page_zero_new_buffers(page, start + copied, start + len);
2723 	}
2724 	flush_dcache_page(page);
2725 
2726 	reiserfs_commit_page(inode, page, start, start + copied);
2727 
2728 	/* generic_commit_write does this for us, but does not update the
2729 	 ** transaction tracking stuff when the size changes.  So, we have
2730 	 ** to do the i_size updates here.
2731 	 */
2732 	if (pos + copied > inode->i_size) {
2733 		struct reiserfs_transaction_handle myth;
2734 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2735 		locked = true;
2736 		/* If the file have grown beyond the border where it
2737 		   can have a tail, unmark it as needing a tail
2738 		   packing */
2739 		if ((have_large_tails(inode->i_sb)
2740 		     && inode->i_size > i_block_size(inode) * 4)
2741 		    || (have_small_tails(inode->i_sb)
2742 			&& inode->i_size > i_block_size(inode)))
2743 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2744 
2745 		ret = journal_begin(&myth, inode->i_sb, 1);
2746 		if (ret)
2747 			goto journal_error;
2748 
2749 		reiserfs_update_inode_transaction(inode);
2750 		inode->i_size = pos + copied;
2751 		/*
2752 		 * this will just nest into our transaction.  It's important
2753 		 * to use mark_inode_dirty so the inode gets pushed around on the
2754 		 * dirty lists, and so that O_SYNC works as expected
2755 		 */
2756 		mark_inode_dirty(inode);
2757 		reiserfs_update_sd(&myth, inode);
2758 		update_sd = 1;
2759 		ret = journal_end(&myth, inode->i_sb, 1);
2760 		if (ret)
2761 			goto journal_error;
2762 	}
2763 	if (th) {
2764 		if (!locked) {
2765 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2766 			locked = true;
2767 		}
2768 		if (!update_sd)
2769 			mark_inode_dirty(inode);
2770 		ret = reiserfs_end_persistent_transaction(th);
2771 		if (ret)
2772 			goto out;
2773 	}
2774 
2775       out:
2776 	if (locked)
2777 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2778 	unlock_page(page);
2779 	page_cache_release(page);
2780 
2781 	if (pos + len > inode->i_size)
2782 		reiserfs_truncate_failed_write(inode);
2783 
2784 	return ret == 0 ? copied : ret;
2785 
2786       journal_error:
2787 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2788 	locked = false;
2789 	if (th) {
2790 		if (!update_sd)
2791 			reiserfs_update_sd(th, inode);
2792 		ret = reiserfs_end_persistent_transaction(th);
2793 	}
2794 	goto out;
2795 }
2796 
2797 int reiserfs_commit_write(struct file *f, struct page *page,
2798 			  unsigned from, unsigned to)
2799 {
2800 	struct inode *inode = page->mapping->host;
2801 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2802 	int ret = 0;
2803 	int update_sd = 0;
2804 	struct reiserfs_transaction_handle *th = NULL;
2805 
2806 	reiserfs_write_unlock(inode->i_sb);
2807 	reiserfs_wait_on_write_block(inode->i_sb);
2808 	reiserfs_write_lock(inode->i_sb);
2809 
2810 	if (reiserfs_transaction_running(inode->i_sb)) {
2811 		th = current->journal_info;
2812 	}
2813 	reiserfs_commit_page(inode, page, from, to);
2814 
2815 	/* generic_commit_write does this for us, but does not update the
2816 	 ** transaction tracking stuff when the size changes.  So, we have
2817 	 ** to do the i_size updates here.
2818 	 */
2819 	if (pos > inode->i_size) {
2820 		struct reiserfs_transaction_handle myth;
2821 		/* If the file have grown beyond the border where it
2822 		   can have a tail, unmark it as needing a tail
2823 		   packing */
2824 		if ((have_large_tails(inode->i_sb)
2825 		     && inode->i_size > i_block_size(inode) * 4)
2826 		    || (have_small_tails(inode->i_sb)
2827 			&& inode->i_size > i_block_size(inode)))
2828 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2829 
2830 		ret = journal_begin(&myth, inode->i_sb, 1);
2831 		if (ret)
2832 			goto journal_error;
2833 
2834 		reiserfs_update_inode_transaction(inode);
2835 		inode->i_size = pos;
2836 		/*
2837 		 * this will just nest into our transaction.  It's important
2838 		 * to use mark_inode_dirty so the inode gets pushed around on the
2839 		 * dirty lists, and so that O_SYNC works as expected
2840 		 */
2841 		mark_inode_dirty(inode);
2842 		reiserfs_update_sd(&myth, inode);
2843 		update_sd = 1;
2844 		ret = journal_end(&myth, inode->i_sb, 1);
2845 		if (ret)
2846 			goto journal_error;
2847 	}
2848 	if (th) {
2849 		if (!update_sd)
2850 			mark_inode_dirty(inode);
2851 		ret = reiserfs_end_persistent_transaction(th);
2852 		if (ret)
2853 			goto out;
2854 	}
2855 
2856       out:
2857 	return ret;
2858 
2859       journal_error:
2860 	if (th) {
2861 		if (!update_sd)
2862 			reiserfs_update_sd(th, inode);
2863 		ret = reiserfs_end_persistent_transaction(th);
2864 	}
2865 
2866 	return ret;
2867 }
2868 
2869 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2870 {
2871 	if (reiserfs_attrs(inode->i_sb)) {
2872 		if (sd_attrs & REISERFS_SYNC_FL)
2873 			inode->i_flags |= S_SYNC;
2874 		else
2875 			inode->i_flags &= ~S_SYNC;
2876 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2877 			inode->i_flags |= S_IMMUTABLE;
2878 		else
2879 			inode->i_flags &= ~S_IMMUTABLE;
2880 		if (sd_attrs & REISERFS_APPEND_FL)
2881 			inode->i_flags |= S_APPEND;
2882 		else
2883 			inode->i_flags &= ~S_APPEND;
2884 		if (sd_attrs & REISERFS_NOATIME_FL)
2885 			inode->i_flags |= S_NOATIME;
2886 		else
2887 			inode->i_flags &= ~S_NOATIME;
2888 		if (sd_attrs & REISERFS_NOTAIL_FL)
2889 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2890 		else
2891 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2892 	}
2893 }
2894 
2895 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2896 {
2897 	if (reiserfs_attrs(inode->i_sb)) {
2898 		if (inode->i_flags & S_IMMUTABLE)
2899 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2900 		else
2901 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2902 		if (inode->i_flags & S_SYNC)
2903 			*sd_attrs |= REISERFS_SYNC_FL;
2904 		else
2905 			*sd_attrs &= ~REISERFS_SYNC_FL;
2906 		if (inode->i_flags & S_NOATIME)
2907 			*sd_attrs |= REISERFS_NOATIME_FL;
2908 		else
2909 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2910 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2911 			*sd_attrs |= REISERFS_NOTAIL_FL;
2912 		else
2913 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2914 	}
2915 }
2916 
2917 /* decide if this buffer needs to stay around for data logging or ordered
2918 ** write purposes
2919 */
2920 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2921 {
2922 	int ret = 1;
2923 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2924 
2925 	lock_buffer(bh);
2926 	spin_lock(&j->j_dirty_buffers_lock);
2927 	if (!buffer_mapped(bh)) {
2928 		goto free_jh;
2929 	}
2930 	/* the page is locked, and the only places that log a data buffer
2931 	 * also lock the page.
2932 	 */
2933 	if (reiserfs_file_data_log(inode)) {
2934 		/*
2935 		 * very conservative, leave the buffer pinned if
2936 		 * anyone might need it.
2937 		 */
2938 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2939 			ret = 0;
2940 		}
2941 	} else  if (buffer_dirty(bh)) {
2942 		struct reiserfs_journal_list *jl;
2943 		struct reiserfs_jh *jh = bh->b_private;
2944 
2945 		/* why is this safe?
2946 		 * reiserfs_setattr updates i_size in the on disk
2947 		 * stat data before allowing vmtruncate to be called.
2948 		 *
2949 		 * If buffer was put onto the ordered list for this
2950 		 * transaction, we know for sure either this transaction
2951 		 * or an older one already has updated i_size on disk,
2952 		 * and this ordered data won't be referenced in the file
2953 		 * if we crash.
2954 		 *
2955 		 * if the buffer was put onto the ordered list for an older
2956 		 * transaction, we need to leave it around
2957 		 */
2958 		if (jh && (jl = jh->jl)
2959 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2960 			ret = 0;
2961 	}
2962       free_jh:
2963 	if (ret && bh->b_private) {
2964 		reiserfs_free_jh(bh);
2965 	}
2966 	spin_unlock(&j->j_dirty_buffers_lock);
2967 	unlock_buffer(bh);
2968 	return ret;
2969 }
2970 
2971 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2972 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2973 {
2974 	struct buffer_head *head, *bh, *next;
2975 	struct inode *inode = page->mapping->host;
2976 	unsigned int curr_off = 0;
2977 	int ret = 1;
2978 
2979 	BUG_ON(!PageLocked(page));
2980 
2981 	if (offset == 0)
2982 		ClearPageChecked(page);
2983 
2984 	if (!page_has_buffers(page))
2985 		goto out;
2986 
2987 	head = page_buffers(page);
2988 	bh = head;
2989 	do {
2990 		unsigned int next_off = curr_off + bh->b_size;
2991 		next = bh->b_this_page;
2992 
2993 		/*
2994 		 * is this block fully invalidated?
2995 		 */
2996 		if (offset <= curr_off) {
2997 			if (invalidatepage_can_drop(inode, bh))
2998 				reiserfs_unmap_buffer(bh);
2999 			else
3000 				ret = 0;
3001 		}
3002 		curr_off = next_off;
3003 		bh = next;
3004 	} while (bh != head);
3005 
3006 	/*
3007 	 * We release buffers only if the entire page is being invalidated.
3008 	 * The get_block cached value has been unconditionally invalidated,
3009 	 * so real IO is not possible anymore.
3010 	 */
3011 	if (!offset && ret) {
3012 		ret = try_to_release_page(page, 0);
3013 		/* maybe should BUG_ON(!ret); - neilb */
3014 	}
3015       out:
3016 	return;
3017 }
3018 
3019 static int reiserfs_set_page_dirty(struct page *page)
3020 {
3021 	struct inode *inode = page->mapping->host;
3022 	if (reiserfs_file_data_log(inode)) {
3023 		SetPageChecked(page);
3024 		return __set_page_dirty_nobuffers(page);
3025 	}
3026 	return __set_page_dirty_buffers(page);
3027 }
3028 
3029 /*
3030  * Returns 1 if the page's buffers were dropped.  The page is locked.
3031  *
3032  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3033  * in the buffers at page_buffers(page).
3034  *
3035  * even in -o notail mode, we can't be sure an old mount without -o notail
3036  * didn't create files with tails.
3037  */
3038 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3039 {
3040 	struct inode *inode = page->mapping->host;
3041 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3042 	struct buffer_head *head;
3043 	struct buffer_head *bh;
3044 	int ret = 1;
3045 
3046 	WARN_ON(PageChecked(page));
3047 	spin_lock(&j->j_dirty_buffers_lock);
3048 	head = page_buffers(page);
3049 	bh = head;
3050 	do {
3051 		if (bh->b_private) {
3052 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3053 				reiserfs_free_jh(bh);
3054 			} else {
3055 				ret = 0;
3056 				break;
3057 			}
3058 		}
3059 		bh = bh->b_this_page;
3060 	} while (bh != head);
3061 	if (ret)
3062 		ret = try_to_free_buffers(page);
3063 	spin_unlock(&j->j_dirty_buffers_lock);
3064 	return ret;
3065 }
3066 
3067 /* We thank Mingming Cao for helping us understand in great detail what
3068    to do in this section of the code. */
3069 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3070 				  const struct iovec *iov, loff_t offset,
3071 				  unsigned long nr_segs)
3072 {
3073 	struct file *file = iocb->ki_filp;
3074 	struct inode *inode = file->f_mapping->host;
3075 	ssize_t ret;
3076 
3077 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3078 				  reiserfs_get_blocks_direct_io);
3079 
3080 	/*
3081 	 * In case of error extending write may have instantiated a few
3082 	 * blocks outside i_size. Trim these off again.
3083 	 */
3084 	if (unlikely((rw & WRITE) && ret < 0)) {
3085 		loff_t isize = i_size_read(inode);
3086 		loff_t end = offset + iov_length(iov, nr_segs);
3087 
3088 		if (end > isize)
3089 			vmtruncate(inode, isize);
3090 	}
3091 
3092 	return ret;
3093 }
3094 
3095 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3096 {
3097 	struct inode *inode = dentry->d_inode;
3098 	unsigned int ia_valid;
3099 	int depth;
3100 	int error;
3101 
3102 	error = inode_change_ok(inode, attr);
3103 	if (error)
3104 		return error;
3105 
3106 	/* must be turned off for recursive notify_change calls */
3107 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3108 
3109 	if (is_quota_modification(inode, attr))
3110 		dquot_initialize(inode);
3111 	depth = reiserfs_write_lock_once(inode->i_sb);
3112 	if (attr->ia_valid & ATTR_SIZE) {
3113 		/* version 2 items will be caught by the s_maxbytes check
3114 		 ** done for us in vmtruncate
3115 		 */
3116 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3117 		    attr->ia_size > MAX_NON_LFS) {
3118 			error = -EFBIG;
3119 			goto out;
3120 		}
3121 
3122 		inode_dio_wait(inode);
3123 
3124 		/* fill in hole pointers in the expanding truncate case. */
3125 		if (attr->ia_size > inode->i_size) {
3126 			error = generic_cont_expand_simple(inode, attr->ia_size);
3127 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3128 				int err;
3129 				struct reiserfs_transaction_handle th;
3130 				/* we're changing at most 2 bitmaps, inode + super */
3131 				err = journal_begin(&th, inode->i_sb, 4);
3132 				if (!err) {
3133 					reiserfs_discard_prealloc(&th, inode);
3134 					err = journal_end(&th, inode->i_sb, 4);
3135 				}
3136 				if (err)
3137 					error = err;
3138 			}
3139 			if (error)
3140 				goto out;
3141 			/*
3142 			 * file size is changed, ctime and mtime are
3143 			 * to be updated
3144 			 */
3145 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3146 		}
3147 	}
3148 
3149 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3150 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3151 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3152 		/* stat data of format v3.5 has 16 bit uid and gid */
3153 		error = -EINVAL;
3154 		goto out;
3155 	}
3156 
3157 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3158 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3159 		struct reiserfs_transaction_handle th;
3160 		int jbegin_count =
3161 		    2 *
3162 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3163 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3164 		    2;
3165 
3166 		error = reiserfs_chown_xattrs(inode, attr);
3167 
3168 		if (error)
3169 			return error;
3170 
3171 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3172 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3173 		if (error)
3174 			goto out;
3175 		reiserfs_write_unlock_once(inode->i_sb, depth);
3176 		error = dquot_transfer(inode, attr);
3177 		depth = reiserfs_write_lock_once(inode->i_sb);
3178 		if (error) {
3179 			journal_end(&th, inode->i_sb, jbegin_count);
3180 			goto out;
3181 		}
3182 
3183 		/* Update corresponding info in inode so that everything is in
3184 		 * one transaction */
3185 		if (attr->ia_valid & ATTR_UID)
3186 			inode->i_uid = attr->ia_uid;
3187 		if (attr->ia_valid & ATTR_GID)
3188 			inode->i_gid = attr->ia_gid;
3189 		mark_inode_dirty(inode);
3190 		error = journal_end(&th, inode->i_sb, jbegin_count);
3191 		if (error)
3192 			goto out;
3193 	}
3194 
3195 	/*
3196 	 * Relax the lock here, as it might truncate the
3197 	 * inode pages and wait for inode pages locks.
3198 	 * To release such page lock, the owner needs the
3199 	 * reiserfs lock
3200 	 */
3201 	reiserfs_write_unlock_once(inode->i_sb, depth);
3202 	if ((attr->ia_valid & ATTR_SIZE) &&
3203 	    attr->ia_size != i_size_read(inode))
3204 		error = vmtruncate(inode, attr->ia_size);
3205 
3206 	if (!error) {
3207 		setattr_copy(inode, attr);
3208 		mark_inode_dirty(inode);
3209 	}
3210 	depth = reiserfs_write_lock_once(inode->i_sb);
3211 
3212 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3213 		if (attr->ia_valid & ATTR_MODE)
3214 			error = reiserfs_acl_chmod(inode);
3215 	}
3216 
3217       out:
3218 	reiserfs_write_unlock_once(inode->i_sb, depth);
3219 
3220 	return error;
3221 }
3222 
3223 const struct address_space_operations reiserfs_address_space_operations = {
3224 	.writepage = reiserfs_writepage,
3225 	.readpage = reiserfs_readpage,
3226 	.readpages = reiserfs_readpages,
3227 	.releasepage = reiserfs_releasepage,
3228 	.invalidatepage = reiserfs_invalidatepage,
3229 	.write_begin = reiserfs_write_begin,
3230 	.write_end = reiserfs_write_end,
3231 	.bmap = reiserfs_aop_bmap,
3232 	.direct_IO = reiserfs_direct_IO,
3233 	.set_page_dirty = reiserfs_set_page_dirty,
3234 };
3235