xref: /openbmc/linux/fs/reiserfs/inode.c (revision c21b37f6)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 
21 static int reiserfs_commit_write(struct file *f, struct page *page,
22 				 unsigned from, unsigned to);
23 static int reiserfs_prepare_write(struct file *f, struct page *page,
24 				  unsigned from, unsigned to);
25 
26 void reiserfs_delete_inode(struct inode *inode)
27 {
28 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 	int jbegin_count =
30 	    JOURNAL_PER_BALANCE_CNT * 2 +
31 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 	struct reiserfs_transaction_handle th;
33 	int err;
34 
35 	truncate_inode_pages(&inode->i_data, 0);
36 
37 	reiserfs_write_lock(inode->i_sb);
38 
39 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
40 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
41 		reiserfs_delete_xattrs(inode);
42 
43 		if (journal_begin(&th, inode->i_sb, jbegin_count))
44 			goto out;
45 		reiserfs_update_inode_transaction(inode);
46 
47 		err = reiserfs_delete_object(&th, inode);
48 
49 		/* Do quota update inside a transaction for journaled quotas. We must do that
50 		 * after delete_object so that quota updates go into the same transaction as
51 		 * stat data deletion */
52 		if (!err)
53 			DQUOT_FREE_INODE(inode);
54 
55 		if (journal_end(&th, inode->i_sb, jbegin_count))
56 			goto out;
57 
58 		/* check return value from reiserfs_delete_object after
59 		 * ending the transaction
60 		 */
61 		if (err)
62 		    goto out;
63 
64 		/* all items of file are deleted, so we can remove "save" link */
65 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
66 								 * about an error here */
67 	} else {
68 		/* no object items are in the tree */
69 		;
70 	}
71       out:
72 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
73 	inode->i_blocks = 0;
74 	reiserfs_write_unlock(inode->i_sb);
75 }
76 
77 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
78 			  __u32 objectid, loff_t offset, int type, int length)
79 {
80 	key->version = version;
81 
82 	key->on_disk_key.k_dir_id = dirid;
83 	key->on_disk_key.k_objectid = objectid;
84 	set_cpu_key_k_offset(key, offset);
85 	set_cpu_key_k_type(key, type);
86 	key->key_length = length;
87 }
88 
89 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
90    offset and type of key */
91 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
92 		  int type, int length)
93 {
94 	_make_cpu_key(key, get_inode_item_key_version(inode),
95 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
96 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
97 		      length);
98 }
99 
100 //
101 // when key is 0, do not set version and short key
102 //
103 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
104 			      int version,
105 			      loff_t offset, int type, int length,
106 			      int entry_count /*or ih_free_space */ )
107 {
108 	if (key) {
109 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
110 		ih->ih_key.k_objectid =
111 		    cpu_to_le32(key->on_disk_key.k_objectid);
112 	}
113 	put_ih_version(ih, version);
114 	set_le_ih_k_offset(ih, offset);
115 	set_le_ih_k_type(ih, type);
116 	put_ih_item_len(ih, length);
117 	/*    set_ih_free_space (ih, 0); */
118 	// for directory items it is entry count, for directs and stat
119 	// datas - 0xffff, for indirects - 0
120 	put_ih_entry_count(ih, entry_count);
121 }
122 
123 //
124 // FIXME: we might cache recently accessed indirect item
125 
126 // Ugh.  Not too eager for that....
127 //  I cut the code until such time as I see a convincing argument (benchmark).
128 // I don't want a bloated inode struct..., and I don't like code complexity....
129 
130 /* cutting the code is fine, since it really isn't in use yet and is easy
131 ** to add back in.  But, Vladimir has a really good idea here.  Think
132 ** about what happens for reading a file.  For each page,
133 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
134 ** an indirect item.  This indirect item has X number of pointers, where
135 ** X is a big number if we've done the block allocation right.  But,
136 ** we only use one or two of these pointers during each call to readpage,
137 ** needlessly researching again later on.
138 **
139 ** The size of the cache could be dynamic based on the size of the file.
140 **
141 ** I'd also like to see us cache the location the stat data item, since
142 ** we are needlessly researching for that frequently.
143 **
144 ** --chris
145 */
146 
147 /* If this page has a file tail in it, and
148 ** it was read in by get_block_create_0, the page data is valid,
149 ** but tail is still sitting in a direct item, and we can't write to
150 ** it.  So, look through this page, and check all the mapped buffers
151 ** to make sure they have valid block numbers.  Any that don't need
152 ** to be unmapped, so that block_prepare_write will correctly call
153 ** reiserfs_get_block to convert the tail into an unformatted node
154 */
155 static inline void fix_tail_page_for_writing(struct page *page)
156 {
157 	struct buffer_head *head, *next, *bh;
158 
159 	if (page && page_has_buffers(page)) {
160 		head = page_buffers(page);
161 		bh = head;
162 		do {
163 			next = bh->b_this_page;
164 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
165 				reiserfs_unmap_buffer(bh);
166 			}
167 			bh = next;
168 		} while (bh != head);
169 	}
170 }
171 
172 /* reiserfs_get_block does not need to allocate a block only if it has been
173    done already or non-hole position has been found in the indirect item */
174 static inline int allocation_needed(int retval, b_blocknr_t allocated,
175 				    struct item_head *ih,
176 				    __le32 * item, int pos_in_item)
177 {
178 	if (allocated)
179 		return 0;
180 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
181 	    get_block_num(item, pos_in_item))
182 		return 0;
183 	return 1;
184 }
185 
186 static inline int indirect_item_found(int retval, struct item_head *ih)
187 {
188 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
189 }
190 
191 static inline void set_block_dev_mapped(struct buffer_head *bh,
192 					b_blocknr_t block, struct inode *inode)
193 {
194 	map_bh(bh, inode->i_sb, block);
195 }
196 
197 //
198 // files which were created in the earlier version can not be longer,
199 // than 2 gb
200 //
201 static int file_capable(struct inode *inode, long block)
202 {
203 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
204 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
205 		return 1;
206 
207 	return 0;
208 }
209 
210 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
211 				   struct inode *inode, struct treepath *path)
212 {
213 	struct super_block *s = th->t_super;
214 	int len = th->t_blocks_allocated;
215 	int err;
216 
217 	BUG_ON(!th->t_trans_id);
218 	BUG_ON(!th->t_refcount);
219 
220 	pathrelse(path);
221 
222 	/* we cannot restart while nested */
223 	if (th->t_refcount > 1) {
224 		return 0;
225 	}
226 	reiserfs_update_sd(th, inode);
227 	err = journal_end(th, s, len);
228 	if (!err) {
229 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
230 		if (!err)
231 			reiserfs_update_inode_transaction(inode);
232 	}
233 	return err;
234 }
235 
236 // it is called by get_block when create == 0. Returns block number
237 // for 'block'-th logical block of file. When it hits direct item it
238 // returns 0 (being called from bmap) or read direct item into piece
239 // of page (bh_result)
240 
241 // Please improve the english/clarity in the comment above, as it is
242 // hard to understand.
243 
244 static int _get_block_create_0(struct inode *inode, long block,
245 			       struct buffer_head *bh_result, int args)
246 {
247 	INITIALIZE_PATH(path);
248 	struct cpu_key key;
249 	struct buffer_head *bh;
250 	struct item_head *ih, tmp_ih;
251 	int fs_gen;
252 	int blocknr;
253 	char *p = NULL;
254 	int chars;
255 	int ret;
256 	int result;
257 	int done = 0;
258 	unsigned long offset;
259 
260 	// prepare the key to look for the 'block'-th block of file
261 	make_cpu_key(&key, inode,
262 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
263 		     3);
264 
265       research:
266 	result = search_for_position_by_key(inode->i_sb, &key, &path);
267 	if (result != POSITION_FOUND) {
268 		pathrelse(&path);
269 		if (p)
270 			kunmap(bh_result->b_page);
271 		if (result == IO_ERROR)
272 			return -EIO;
273 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
274 		// That there is some MMAPED data associated with it that is yet to be written to disk.
275 		if ((args & GET_BLOCK_NO_HOLE)
276 		    && !PageUptodate(bh_result->b_page)) {
277 			return -ENOENT;
278 		}
279 		return 0;
280 	}
281 	//
282 	bh = get_last_bh(&path);
283 	ih = get_ih(&path);
284 	if (is_indirect_le_ih(ih)) {
285 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
286 
287 		/* FIXME: here we could cache indirect item or part of it in
288 		   the inode to avoid search_by_key in case of subsequent
289 		   access to file */
290 		blocknr = get_block_num(ind_item, path.pos_in_item);
291 		ret = 0;
292 		if (blocknr) {
293 			map_bh(bh_result, inode->i_sb, blocknr);
294 			if (path.pos_in_item ==
295 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
296 				set_buffer_boundary(bh_result);
297 			}
298 		} else
299 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
300 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
301 		if ((args & GET_BLOCK_NO_HOLE)
302 			    && !PageUptodate(bh_result->b_page)) {
303 			ret = -ENOENT;
304 		}
305 
306 		pathrelse(&path);
307 		if (p)
308 			kunmap(bh_result->b_page);
309 		return ret;
310 	}
311 	// requested data are in direct item(s)
312 	if (!(args & GET_BLOCK_READ_DIRECT)) {
313 		// we are called by bmap. FIXME: we can not map block of file
314 		// when it is stored in direct item(s)
315 		pathrelse(&path);
316 		if (p)
317 			kunmap(bh_result->b_page);
318 		return -ENOENT;
319 	}
320 
321 	/* if we've got a direct item, and the buffer or page was uptodate,
322 	 ** we don't want to pull data off disk again.  skip to the
323 	 ** end, where we map the buffer and return
324 	 */
325 	if (buffer_uptodate(bh_result)) {
326 		goto finished;
327 	} else
328 		/*
329 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
330 		 ** pages without any buffers.  If the page is up to date, we don't want
331 		 ** read old data off disk.  Set the up to date bit on the buffer instead
332 		 ** and jump to the end
333 		 */
334 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
335 		set_buffer_uptodate(bh_result);
336 		goto finished;
337 	}
338 	// read file tail into part of page
339 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
340 	fs_gen = get_generation(inode->i_sb);
341 	copy_item_head(&tmp_ih, ih);
342 
343 	/* we only want to kmap if we are reading the tail into the page.
344 	 ** this is not the common case, so we don't kmap until we are
345 	 ** sure we need to.  But, this means the item might move if
346 	 ** kmap schedules
347 	 */
348 	if (!p) {
349 		p = (char *)kmap(bh_result->b_page);
350 		if (fs_changed(fs_gen, inode->i_sb)
351 		    && item_moved(&tmp_ih, &path)) {
352 			goto research;
353 		}
354 	}
355 	p += offset;
356 	memset(p, 0, inode->i_sb->s_blocksize);
357 	do {
358 		if (!is_direct_le_ih(ih)) {
359 			BUG();
360 		}
361 		/* make sure we don't read more bytes than actually exist in
362 		 ** the file.  This can happen in odd cases where i_size isn't
363 		 ** correct, and when direct item padding results in a few
364 		 ** extra bytes at the end of the direct item
365 		 */
366 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
367 			break;
368 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
369 			chars =
370 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
371 			    path.pos_in_item;
372 			done = 1;
373 		} else {
374 			chars = ih_item_len(ih) - path.pos_in_item;
375 		}
376 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
377 
378 		if (done)
379 			break;
380 
381 		p += chars;
382 
383 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
384 			// we done, if read direct item is not the last item of
385 			// node FIXME: we could try to check right delimiting key
386 			// to see whether direct item continues in the right
387 			// neighbor or rely on i_size
388 			break;
389 
390 		// update key to look for the next piece
391 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
392 		result = search_for_position_by_key(inode->i_sb, &key, &path);
393 		if (result != POSITION_FOUND)
394 			// i/o error most likely
395 			break;
396 		bh = get_last_bh(&path);
397 		ih = get_ih(&path);
398 	} while (1);
399 
400 	flush_dcache_page(bh_result->b_page);
401 	kunmap(bh_result->b_page);
402 
403       finished:
404 	pathrelse(&path);
405 
406 	if (result == IO_ERROR)
407 		return -EIO;
408 
409 	/* this buffer has valid data, but isn't valid for io.  mapping it to
410 	 * block #0 tells the rest of reiserfs it just has a tail in it
411 	 */
412 	map_bh(bh_result, inode->i_sb, 0);
413 	set_buffer_uptodate(bh_result);
414 	return 0;
415 }
416 
417 // this is called to create file map. So, _get_block_create_0 will not
418 // read direct item
419 static int reiserfs_bmap(struct inode *inode, sector_t block,
420 			 struct buffer_head *bh_result, int create)
421 {
422 	if (!file_capable(inode, block))
423 		return -EFBIG;
424 
425 	reiserfs_write_lock(inode->i_sb);
426 	/* do not read the direct item */
427 	_get_block_create_0(inode, block, bh_result, 0);
428 	reiserfs_write_unlock(inode->i_sb);
429 	return 0;
430 }
431 
432 /* special version of get_block that is only used by grab_tail_page right
433 ** now.  It is sent to block_prepare_write, and when you try to get a
434 ** block past the end of the file (or a block from a hole) it returns
435 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
436 ** be able to do i/o on the buffers returned, unless an error value
437 ** is also returned.
438 **
439 ** So, this allows block_prepare_write to be used for reading a single block
440 ** in a page.  Where it does not produce a valid page for holes, or past the
441 ** end of the file.  This turns out to be exactly what we need for reading
442 ** tails for conversion.
443 **
444 ** The point of the wrapper is forcing a certain value for create, even
445 ** though the VFS layer is calling this function with create==1.  If you
446 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
447 ** don't use this function.
448 */
449 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
450 				       struct buffer_head *bh_result,
451 				       int create)
452 {
453 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
454 }
455 
456 /* This is special helper for reiserfs_get_block in case we are executing
457    direct_IO request. */
458 static int reiserfs_get_blocks_direct_io(struct inode *inode,
459 					 sector_t iblock,
460 					 struct buffer_head *bh_result,
461 					 int create)
462 {
463 	int ret;
464 
465 	bh_result->b_page = NULL;
466 
467 	/* We set the b_size before reiserfs_get_block call since it is
468 	   referenced in convert_tail_for_hole() that may be called from
469 	   reiserfs_get_block() */
470 	bh_result->b_size = (1 << inode->i_blkbits);
471 
472 	ret = reiserfs_get_block(inode, iblock, bh_result,
473 				 create | GET_BLOCK_NO_DANGLE);
474 	if (ret)
475 		goto out;
476 
477 	/* don't allow direct io onto tail pages */
478 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
479 		/* make sure future calls to the direct io funcs for this offset
480 		 ** in the file fail by unmapping the buffer
481 		 */
482 		clear_buffer_mapped(bh_result);
483 		ret = -EINVAL;
484 	}
485 	/* Possible unpacked tail. Flush the data before pages have
486 	   disappeared */
487 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
488 		int err;
489 		lock_kernel();
490 		err = reiserfs_commit_for_inode(inode);
491 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
492 		unlock_kernel();
493 		if (err < 0)
494 			ret = err;
495 	}
496       out:
497 	return ret;
498 }
499 
500 /*
501 ** helper function for when reiserfs_get_block is called for a hole
502 ** but the file tail is still in a direct item
503 ** bh_result is the buffer head for the hole
504 ** tail_offset is the offset of the start of the tail in the file
505 **
506 ** This calls prepare_write, which will start a new transaction
507 ** you should not be in a transaction, or have any paths held when you
508 ** call this.
509 */
510 static int convert_tail_for_hole(struct inode *inode,
511 				 struct buffer_head *bh_result,
512 				 loff_t tail_offset)
513 {
514 	unsigned long index;
515 	unsigned long tail_end;
516 	unsigned long tail_start;
517 	struct page *tail_page;
518 	struct page *hole_page = bh_result->b_page;
519 	int retval = 0;
520 
521 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
522 		return -EIO;
523 
524 	/* always try to read until the end of the block */
525 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
526 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
527 
528 	index = tail_offset >> PAGE_CACHE_SHIFT;
529 	/* hole_page can be zero in case of direct_io, we are sure
530 	   that we cannot get here if we write with O_DIRECT into
531 	   tail page */
532 	if (!hole_page || index != hole_page->index) {
533 		tail_page = grab_cache_page(inode->i_mapping, index);
534 		retval = -ENOMEM;
535 		if (!tail_page) {
536 			goto out;
537 		}
538 	} else {
539 		tail_page = hole_page;
540 	}
541 
542 	/* we don't have to make sure the conversion did not happen while
543 	 ** we were locking the page because anyone that could convert
544 	 ** must first take i_mutex.
545 	 **
546 	 ** We must fix the tail page for writing because it might have buffers
547 	 ** that are mapped, but have a block number of 0.  This indicates tail
548 	 ** data that has been read directly into the page, and block_prepare_write
549 	 ** won't trigger a get_block in this case.
550 	 */
551 	fix_tail_page_for_writing(tail_page);
552 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
553 	if (retval)
554 		goto unlock;
555 
556 	/* tail conversion might change the data in the page */
557 	flush_dcache_page(tail_page);
558 
559 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
560 
561       unlock:
562 	if (tail_page != hole_page) {
563 		unlock_page(tail_page);
564 		page_cache_release(tail_page);
565 	}
566       out:
567 	return retval;
568 }
569 
570 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
571 				  long block,
572 				  struct inode *inode,
573 				  b_blocknr_t * allocated_block_nr,
574 				  struct treepath *path, int flags)
575 {
576 	BUG_ON(!th->t_trans_id);
577 
578 #ifdef REISERFS_PREALLOCATE
579 	if (!(flags & GET_BLOCK_NO_IMUX)) {
580 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
581 						  path, block);
582 	}
583 #endif
584 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
585 					 block);
586 }
587 
588 int reiserfs_get_block(struct inode *inode, sector_t block,
589 		       struct buffer_head *bh_result, int create)
590 {
591 	int repeat, retval = 0;
592 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
593 	INITIALIZE_PATH(path);
594 	int pos_in_item;
595 	struct cpu_key key;
596 	struct buffer_head *bh, *unbh = NULL;
597 	struct item_head *ih, tmp_ih;
598 	__le32 *item;
599 	int done;
600 	int fs_gen;
601 	struct reiserfs_transaction_handle *th = NULL;
602 	/* space reserved in transaction batch:
603 	   . 3 balancings in direct->indirect conversion
604 	   . 1 block involved into reiserfs_update_sd()
605 	   XXX in practically impossible worst case direct2indirect()
606 	   can incur (much) more than 3 balancings.
607 	   quota update for user, group */
608 	int jbegin_count =
609 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
610 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
611 	int version;
612 	int dangle = 1;
613 	loff_t new_offset =
614 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
615 
616 	/* bad.... */
617 	reiserfs_write_lock(inode->i_sb);
618 	version = get_inode_item_key_version(inode);
619 
620 	if (!file_capable(inode, block)) {
621 		reiserfs_write_unlock(inode->i_sb);
622 		return -EFBIG;
623 	}
624 
625 	/* if !create, we aren't changing the FS, so we don't need to
626 	 ** log anything, so we don't need to start a transaction
627 	 */
628 	if (!(create & GET_BLOCK_CREATE)) {
629 		int ret;
630 		/* find number of block-th logical block of the file */
631 		ret = _get_block_create_0(inode, block, bh_result,
632 					  create | GET_BLOCK_READ_DIRECT);
633 		reiserfs_write_unlock(inode->i_sb);
634 		return ret;
635 	}
636 	/*
637 	 * if we're already in a transaction, make sure to close
638 	 * any new transactions we start in this func
639 	 */
640 	if ((create & GET_BLOCK_NO_DANGLE) ||
641 	    reiserfs_transaction_running(inode->i_sb))
642 		dangle = 0;
643 
644 	/* If file is of such a size, that it might have a tail and tails are enabled
645 	 ** we should mark it as possibly needing tail packing on close
646 	 */
647 	if ((have_large_tails(inode->i_sb)
648 	     && inode->i_size < i_block_size(inode) * 4)
649 	    || (have_small_tails(inode->i_sb)
650 		&& inode->i_size < i_block_size(inode)))
651 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
652 
653 	/* set the key of the first byte in the 'block'-th block of file */
654 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
655 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
656 	      start_trans:
657 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
658 		if (!th) {
659 			retval = -ENOMEM;
660 			goto failure;
661 		}
662 		reiserfs_update_inode_transaction(inode);
663 	}
664       research:
665 
666 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
667 	if (retval == IO_ERROR) {
668 		retval = -EIO;
669 		goto failure;
670 	}
671 
672 	bh = get_last_bh(&path);
673 	ih = get_ih(&path);
674 	item = get_item(&path);
675 	pos_in_item = path.pos_in_item;
676 
677 	fs_gen = get_generation(inode->i_sb);
678 	copy_item_head(&tmp_ih, ih);
679 
680 	if (allocation_needed
681 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
682 		/* we have to allocate block for the unformatted node */
683 		if (!th) {
684 			pathrelse(&path);
685 			goto start_trans;
686 		}
687 
688 		repeat =
689 		    _allocate_block(th, block, inode, &allocated_block_nr,
690 				    &path, create);
691 
692 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
693 			/* restart the transaction to give the journal a chance to free
694 			 ** some blocks.  releases the path, so we have to go back to
695 			 ** research if we succeed on the second try
696 			 */
697 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
698 			retval = restart_transaction(th, inode, &path);
699 			if (retval)
700 				goto failure;
701 			repeat =
702 			    _allocate_block(th, block, inode,
703 					    &allocated_block_nr, NULL, create);
704 
705 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
706 				goto research;
707 			}
708 			if (repeat == QUOTA_EXCEEDED)
709 				retval = -EDQUOT;
710 			else
711 				retval = -ENOSPC;
712 			goto failure;
713 		}
714 
715 		if (fs_changed(fs_gen, inode->i_sb)
716 		    && item_moved(&tmp_ih, &path)) {
717 			goto research;
718 		}
719 	}
720 
721 	if (indirect_item_found(retval, ih)) {
722 		b_blocknr_t unfm_ptr;
723 		/* 'block'-th block is in the file already (there is
724 		   corresponding cell in some indirect item). But it may be
725 		   zero unformatted node pointer (hole) */
726 		unfm_ptr = get_block_num(item, pos_in_item);
727 		if (unfm_ptr == 0) {
728 			/* use allocated block to plug the hole */
729 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
730 			if (fs_changed(fs_gen, inode->i_sb)
731 			    && item_moved(&tmp_ih, &path)) {
732 				reiserfs_restore_prepared_buffer(inode->i_sb,
733 								 bh);
734 				goto research;
735 			}
736 			set_buffer_new(bh_result);
737 			if (buffer_dirty(bh_result)
738 			    && reiserfs_data_ordered(inode->i_sb))
739 				reiserfs_add_ordered_list(inode, bh_result);
740 			put_block_num(item, pos_in_item, allocated_block_nr);
741 			unfm_ptr = allocated_block_nr;
742 			journal_mark_dirty(th, inode->i_sb, bh);
743 			reiserfs_update_sd(th, inode);
744 		}
745 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
746 		pathrelse(&path);
747 		retval = 0;
748 		if (!dangle && th)
749 			retval = reiserfs_end_persistent_transaction(th);
750 
751 		reiserfs_write_unlock(inode->i_sb);
752 
753 		/* the item was found, so new blocks were not added to the file
754 		 ** there is no need to make sure the inode is updated with this
755 		 ** transaction
756 		 */
757 		return retval;
758 	}
759 
760 	if (!th) {
761 		pathrelse(&path);
762 		goto start_trans;
763 	}
764 
765 	/* desired position is not found or is in the direct item. We have
766 	   to append file with holes up to 'block'-th block converting
767 	   direct items to indirect one if necessary */
768 	done = 0;
769 	do {
770 		if (is_statdata_le_ih(ih)) {
771 			__le32 unp = 0;
772 			struct cpu_key tmp_key;
773 
774 			/* indirect item has to be inserted */
775 			make_le_item_head(&tmp_ih, &key, version, 1,
776 					  TYPE_INDIRECT, UNFM_P_SIZE,
777 					  0 /* free_space */ );
778 
779 			if (cpu_key_k_offset(&key) == 1) {
780 				/* we are going to add 'block'-th block to the file. Use
781 				   allocated block for that */
782 				unp = cpu_to_le32(allocated_block_nr);
783 				set_block_dev_mapped(bh_result,
784 						     allocated_block_nr, inode);
785 				set_buffer_new(bh_result);
786 				done = 1;
787 			}
788 			tmp_key = key;	// ;)
789 			set_cpu_key_k_offset(&tmp_key, 1);
790 			PATH_LAST_POSITION(&path)++;
791 
792 			retval =
793 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
794 						 inode, (char *)&unp);
795 			if (retval) {
796 				reiserfs_free_block(th, inode,
797 						    allocated_block_nr, 1);
798 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
799 			}
800 			//mark_tail_converted (inode);
801 		} else if (is_direct_le_ih(ih)) {
802 			/* direct item has to be converted */
803 			loff_t tail_offset;
804 
805 			tail_offset =
806 			    ((le_ih_k_offset(ih) -
807 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
808 			if (tail_offset == cpu_key_k_offset(&key)) {
809 				/* direct item we just found fits into block we have
810 				   to map. Convert it into unformatted node: use
811 				   bh_result for the conversion */
812 				set_block_dev_mapped(bh_result,
813 						     allocated_block_nr, inode);
814 				unbh = bh_result;
815 				done = 1;
816 			} else {
817 				/* we have to padd file tail stored in direct item(s)
818 				   up to block size and convert it to unformatted
819 				   node. FIXME: this should also get into page cache */
820 
821 				pathrelse(&path);
822 				/*
823 				 * ugly, but we can only end the transaction if
824 				 * we aren't nested
825 				 */
826 				BUG_ON(!th->t_refcount);
827 				if (th->t_refcount == 1) {
828 					retval =
829 					    reiserfs_end_persistent_transaction
830 					    (th);
831 					th = NULL;
832 					if (retval)
833 						goto failure;
834 				}
835 
836 				retval =
837 				    convert_tail_for_hole(inode, bh_result,
838 							  tail_offset);
839 				if (retval) {
840 					if (retval != -ENOSPC)
841 						reiserfs_warning(inode->i_sb,
842 								 "clm-6004: convert tail failed inode %lu, error %d",
843 								 inode->i_ino,
844 								 retval);
845 					if (allocated_block_nr) {
846 						/* the bitmap, the super, and the stat data == 3 */
847 						if (!th)
848 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
849 						if (th)
850 							reiserfs_free_block(th,
851 									    inode,
852 									    allocated_block_nr,
853 									    1);
854 					}
855 					goto failure;
856 				}
857 				goto research;
858 			}
859 			retval =
860 			    direct2indirect(th, inode, &path, unbh,
861 					    tail_offset);
862 			if (retval) {
863 				reiserfs_unmap_buffer(unbh);
864 				reiserfs_free_block(th, inode,
865 						    allocated_block_nr, 1);
866 				goto failure;
867 			}
868 			/* it is important the set_buffer_uptodate is done after
869 			 ** the direct2indirect.  The buffer might contain valid
870 			 ** data newer than the data on disk (read by readpage, changed,
871 			 ** and then sent here by writepage).  direct2indirect needs
872 			 ** to know if unbh was already up to date, so it can decide
873 			 ** if the data in unbh needs to be replaced with data from
874 			 ** the disk
875 			 */
876 			set_buffer_uptodate(unbh);
877 
878 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
879 			   buffer will disappear shortly, so it should not be added to
880 			 */
881 			if (unbh->b_page) {
882 				/* we've converted the tail, so we must
883 				 ** flush unbh before the transaction commits
884 				 */
885 				reiserfs_add_tail_list(inode, unbh);
886 
887 				/* mark it dirty now to prevent commit_write from adding
888 				 ** this buffer to the inode's dirty buffer list
889 				 */
890 				/*
891 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
892 				 * It's still atomic, but it sets the page dirty too,
893 				 * which makes it eligible for writeback at any time by the
894 				 * VM (which was also the case with __mark_buffer_dirty())
895 				 */
896 				mark_buffer_dirty(unbh);
897 			}
898 		} else {
899 			/* append indirect item with holes if needed, when appending
900 			   pointer to 'block'-th block use block, which is already
901 			   allocated */
902 			struct cpu_key tmp_key;
903 			unp_t unf_single = 0;	// We use this in case we need to allocate only
904 			// one block which is a fastpath
905 			unp_t *un;
906 			__u64 max_to_insert =
907 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
908 			    UNFM_P_SIZE;
909 			__u64 blocks_needed;
910 
911 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
912 			       "vs-804: invalid position for append");
913 			/* indirect item has to be appended, set up key of that position */
914 			make_cpu_key(&tmp_key, inode,
915 				     le_key_k_offset(version,
916 						     &(ih->ih_key)) +
917 				     op_bytes_number(ih,
918 						     inode->i_sb->s_blocksize),
919 				     //pos_in_item * inode->i_sb->s_blocksize,
920 				     TYPE_INDIRECT, 3);	// key type is unimportant
921 
922 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
923 			       "green-805: invalid offset");
924 			blocks_needed =
925 			    1 +
926 			    ((cpu_key_k_offset(&key) -
927 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
928 			     s_blocksize_bits);
929 
930 			if (blocks_needed == 1) {
931 				un = &unf_single;
932 			} else {
933 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
934 				if (!un) {
935 					un = &unf_single;
936 					blocks_needed = 1;
937 					max_to_insert = 0;
938 				}
939 			}
940 			if (blocks_needed <= max_to_insert) {
941 				/* we are going to add target block to the file. Use allocated
942 				   block for that */
943 				un[blocks_needed - 1] =
944 				    cpu_to_le32(allocated_block_nr);
945 				set_block_dev_mapped(bh_result,
946 						     allocated_block_nr, inode);
947 				set_buffer_new(bh_result);
948 				done = 1;
949 			} else {
950 				/* paste hole to the indirect item */
951 				/* If kmalloc failed, max_to_insert becomes zero and it means we
952 				   only have space for one block */
953 				blocks_needed =
954 				    max_to_insert ? max_to_insert : 1;
955 			}
956 			retval =
957 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
958 						     (char *)un,
959 						     UNFM_P_SIZE *
960 						     blocks_needed);
961 
962 			if (blocks_needed != 1)
963 				kfree(un);
964 
965 			if (retval) {
966 				reiserfs_free_block(th, inode,
967 						    allocated_block_nr, 1);
968 				goto failure;
969 			}
970 			if (!done) {
971 				/* We need to mark new file size in case this function will be
972 				   interrupted/aborted later on. And we may do this only for
973 				   holes. */
974 				inode->i_size +=
975 				    inode->i_sb->s_blocksize * blocks_needed;
976 			}
977 		}
978 
979 		if (done == 1)
980 			break;
981 
982 		/* this loop could log more blocks than we had originally asked
983 		 ** for.  So, we have to allow the transaction to end if it is
984 		 ** too big or too full.  Update the inode so things are
985 		 ** consistent if we crash before the function returns
986 		 **
987 		 ** release the path so that anybody waiting on the path before
988 		 ** ending their transaction will be able to continue.
989 		 */
990 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
991 			retval = restart_transaction(th, inode, &path);
992 			if (retval)
993 				goto failure;
994 		}
995 		/* inserting indirect pointers for a hole can take a
996 		 ** long time.  reschedule if needed
997 		 */
998 		cond_resched();
999 
1000 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1001 		if (retval == IO_ERROR) {
1002 			retval = -EIO;
1003 			goto failure;
1004 		}
1005 		if (retval == POSITION_FOUND) {
1006 			reiserfs_warning(inode->i_sb,
1007 					 "vs-825: reiserfs_get_block: "
1008 					 "%K should not be found", &key);
1009 			retval = -EEXIST;
1010 			if (allocated_block_nr)
1011 				reiserfs_free_block(th, inode,
1012 						    allocated_block_nr, 1);
1013 			pathrelse(&path);
1014 			goto failure;
1015 		}
1016 		bh = get_last_bh(&path);
1017 		ih = get_ih(&path);
1018 		item = get_item(&path);
1019 		pos_in_item = path.pos_in_item;
1020 	} while (1);
1021 
1022 	retval = 0;
1023 
1024       failure:
1025 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1026 		int err;
1027 		if (th->t_trans_id)
1028 			reiserfs_update_sd(th, inode);
1029 		err = reiserfs_end_persistent_transaction(th);
1030 		if (err)
1031 			retval = err;
1032 	}
1033 
1034 	reiserfs_write_unlock(inode->i_sb);
1035 	reiserfs_check_path(&path);
1036 	return retval;
1037 }
1038 
1039 static int
1040 reiserfs_readpages(struct file *file, struct address_space *mapping,
1041 		   struct list_head *pages, unsigned nr_pages)
1042 {
1043 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1044 }
1045 
1046 /* Compute real number of used bytes by file
1047  * Following three functions can go away when we'll have enough space in stat item
1048  */
1049 static int real_space_diff(struct inode *inode, int sd_size)
1050 {
1051 	int bytes;
1052 	loff_t blocksize = inode->i_sb->s_blocksize;
1053 
1054 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1055 		return sd_size;
1056 
1057 	/* End of file is also in full block with indirect reference, so round
1058 	 ** up to the next block.
1059 	 **
1060 	 ** there is just no way to know if the tail is actually packed
1061 	 ** on the file, so we have to assume it isn't.  When we pack the
1062 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1063 	 ** node pointer
1064 	 */
1065 	bytes =
1066 	    ((inode->i_size +
1067 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1068 	    sd_size;
1069 	return bytes;
1070 }
1071 
1072 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1073 					int sd_size)
1074 {
1075 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1076 		return inode->i_size +
1077 		    (loff_t) (real_space_diff(inode, sd_size));
1078 	}
1079 	return ((loff_t) real_space_diff(inode, sd_size)) +
1080 	    (((loff_t) blocks) << 9);
1081 }
1082 
1083 /* Compute number of blocks used by file in ReiserFS counting */
1084 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1085 {
1086 	loff_t bytes = inode_get_bytes(inode);
1087 	loff_t real_space = real_space_diff(inode, sd_size);
1088 
1089 	/* keeps fsck and non-quota versions of reiserfs happy */
1090 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1091 		bytes += (loff_t) 511;
1092 	}
1093 
1094 	/* files from before the quota patch might i_blocks such that
1095 	 ** bytes < real_space.  Deal with that here to prevent it from
1096 	 ** going negative.
1097 	 */
1098 	if (bytes < real_space)
1099 		return 0;
1100 	return (bytes - real_space) >> 9;
1101 }
1102 
1103 //
1104 // BAD: new directories have stat data of new type and all other items
1105 // of old type. Version stored in the inode says about body items, so
1106 // in update_stat_data we can not rely on inode, but have to check
1107 // item version directly
1108 //
1109 
1110 // called by read_locked_inode
1111 static void init_inode(struct inode *inode, struct treepath *path)
1112 {
1113 	struct buffer_head *bh;
1114 	struct item_head *ih;
1115 	__u32 rdev;
1116 	//int version = ITEM_VERSION_1;
1117 
1118 	bh = PATH_PLAST_BUFFER(path);
1119 	ih = PATH_PITEM_HEAD(path);
1120 
1121 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1122 
1123 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1124 	REISERFS_I(inode)->i_flags = 0;
1125 	REISERFS_I(inode)->i_prealloc_block = 0;
1126 	REISERFS_I(inode)->i_prealloc_count = 0;
1127 	REISERFS_I(inode)->i_trans_id = 0;
1128 	REISERFS_I(inode)->i_jl = NULL;
1129 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1130 	reiserfs_init_acl_access(inode);
1131 	reiserfs_init_acl_default(inode);
1132 	reiserfs_init_xattr_rwsem(inode);
1133 
1134 	if (stat_data_v1(ih)) {
1135 		struct stat_data_v1 *sd =
1136 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1137 		unsigned long blocks;
1138 
1139 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1140 		set_inode_sd_version(inode, STAT_DATA_V1);
1141 		inode->i_mode = sd_v1_mode(sd);
1142 		inode->i_nlink = sd_v1_nlink(sd);
1143 		inode->i_uid = sd_v1_uid(sd);
1144 		inode->i_gid = sd_v1_gid(sd);
1145 		inode->i_size = sd_v1_size(sd);
1146 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1147 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1148 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1149 		inode->i_atime.tv_nsec = 0;
1150 		inode->i_ctime.tv_nsec = 0;
1151 		inode->i_mtime.tv_nsec = 0;
1152 
1153 		inode->i_blocks = sd_v1_blocks(sd);
1154 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1155 		blocks = (inode->i_size + 511) >> 9;
1156 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1157 		if (inode->i_blocks > blocks) {
1158 			// there was a bug in <=3.5.23 when i_blocks could take negative
1159 			// values. Starting from 3.5.17 this value could even be stored in
1160 			// stat data. For such files we set i_blocks based on file
1161 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1162 			// only updated if file's inode will ever change
1163 			inode->i_blocks = blocks;
1164 		}
1165 
1166 		rdev = sd_v1_rdev(sd);
1167 		REISERFS_I(inode)->i_first_direct_byte =
1168 		    sd_v1_first_direct_byte(sd);
1169 		/* an early bug in the quota code can give us an odd number for the
1170 		 ** block count.  This is incorrect, fix it here.
1171 		 */
1172 		if (inode->i_blocks & 1) {
1173 			inode->i_blocks++;
1174 		}
1175 		inode_set_bytes(inode,
1176 				to_real_used_space(inode, inode->i_blocks,
1177 						   SD_V1_SIZE));
1178 		/* nopack is initially zero for v1 objects. For v2 objects,
1179 		   nopack is initialised from sd_attrs */
1180 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1181 	} else {
1182 		// new stat data found, but object may have old items
1183 		// (directories and symlinks)
1184 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1185 
1186 		inode->i_mode = sd_v2_mode(sd);
1187 		inode->i_nlink = sd_v2_nlink(sd);
1188 		inode->i_uid = sd_v2_uid(sd);
1189 		inode->i_size = sd_v2_size(sd);
1190 		inode->i_gid = sd_v2_gid(sd);
1191 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1192 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1193 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1194 		inode->i_ctime.tv_nsec = 0;
1195 		inode->i_mtime.tv_nsec = 0;
1196 		inode->i_atime.tv_nsec = 0;
1197 		inode->i_blocks = sd_v2_blocks(sd);
1198 		rdev = sd_v2_rdev(sd);
1199 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1200 			inode->i_generation =
1201 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1202 		else
1203 			inode->i_generation = sd_v2_generation(sd);
1204 
1205 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1206 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1207 		else
1208 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1209 		REISERFS_I(inode)->i_first_direct_byte = 0;
1210 		set_inode_sd_version(inode, STAT_DATA_V2);
1211 		inode_set_bytes(inode,
1212 				to_real_used_space(inode, inode->i_blocks,
1213 						   SD_V2_SIZE));
1214 		/* read persistent inode attributes from sd and initalise
1215 		   generic inode flags from them */
1216 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1217 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1218 	}
1219 
1220 	pathrelse(path);
1221 	if (S_ISREG(inode->i_mode)) {
1222 		inode->i_op = &reiserfs_file_inode_operations;
1223 		inode->i_fop = &reiserfs_file_operations;
1224 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1225 	} else if (S_ISDIR(inode->i_mode)) {
1226 		inode->i_op = &reiserfs_dir_inode_operations;
1227 		inode->i_fop = &reiserfs_dir_operations;
1228 	} else if (S_ISLNK(inode->i_mode)) {
1229 		inode->i_op = &reiserfs_symlink_inode_operations;
1230 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 	} else {
1232 		inode->i_blocks = 0;
1233 		inode->i_op = &reiserfs_special_inode_operations;
1234 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1235 	}
1236 }
1237 
1238 // update new stat data with inode fields
1239 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1240 {
1241 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1242 	__u16 flags;
1243 
1244 	set_sd_v2_mode(sd_v2, inode->i_mode);
1245 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1246 	set_sd_v2_uid(sd_v2, inode->i_uid);
1247 	set_sd_v2_size(sd_v2, size);
1248 	set_sd_v2_gid(sd_v2, inode->i_gid);
1249 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1250 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1251 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1252 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1253 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1254 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1255 	else
1256 		set_sd_v2_generation(sd_v2, inode->i_generation);
1257 	flags = REISERFS_I(inode)->i_attrs;
1258 	i_attrs_to_sd_attrs(inode, &flags);
1259 	set_sd_v2_attrs(sd_v2, flags);
1260 }
1261 
1262 // used to copy inode's fields to old stat data
1263 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1264 {
1265 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1266 
1267 	set_sd_v1_mode(sd_v1, inode->i_mode);
1268 	set_sd_v1_uid(sd_v1, inode->i_uid);
1269 	set_sd_v1_gid(sd_v1, inode->i_gid);
1270 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1271 	set_sd_v1_size(sd_v1, size);
1272 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1273 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1274 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1275 
1276 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1277 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1278 	else
1279 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1280 
1281 	// Sigh. i_first_direct_byte is back
1282 	set_sd_v1_first_direct_byte(sd_v1,
1283 				    REISERFS_I(inode)->i_first_direct_byte);
1284 }
1285 
1286 /* NOTE, you must prepare the buffer head before sending it here,
1287 ** and then log it after the call
1288 */
1289 static void update_stat_data(struct treepath *path, struct inode *inode,
1290 			     loff_t size)
1291 {
1292 	struct buffer_head *bh;
1293 	struct item_head *ih;
1294 
1295 	bh = PATH_PLAST_BUFFER(path);
1296 	ih = PATH_PITEM_HEAD(path);
1297 
1298 	if (!is_statdata_le_ih(ih))
1299 		reiserfs_panic(inode->i_sb,
1300 			       "vs-13065: update_stat_data: key %k, found item %h",
1301 			       INODE_PKEY(inode), ih);
1302 
1303 	if (stat_data_v1(ih)) {
1304 		// path points to old stat data
1305 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1306 	} else {
1307 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1308 	}
1309 
1310 	return;
1311 }
1312 
1313 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1314 			     struct inode *inode, loff_t size)
1315 {
1316 	struct cpu_key key;
1317 	INITIALIZE_PATH(path);
1318 	struct buffer_head *bh;
1319 	int fs_gen;
1320 	struct item_head *ih, tmp_ih;
1321 	int retval;
1322 
1323 	BUG_ON(!th->t_trans_id);
1324 
1325 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1326 
1327 	for (;;) {
1328 		int pos;
1329 		/* look for the object's stat data */
1330 		retval = search_item(inode->i_sb, &key, &path);
1331 		if (retval == IO_ERROR) {
1332 			reiserfs_warning(inode->i_sb,
1333 					 "vs-13050: reiserfs_update_sd: "
1334 					 "i/o failure occurred trying to update %K stat data",
1335 					 &key);
1336 			return;
1337 		}
1338 		if (retval == ITEM_NOT_FOUND) {
1339 			pos = PATH_LAST_POSITION(&path);
1340 			pathrelse(&path);
1341 			if (inode->i_nlink == 0) {
1342 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 				return;
1344 			}
1345 			reiserfs_warning(inode->i_sb,
1346 					 "vs-13060: reiserfs_update_sd: "
1347 					 "stat data of object %k (nlink == %d) not found (pos %d)",
1348 					 INODE_PKEY(inode), inode->i_nlink,
1349 					 pos);
1350 			reiserfs_check_path(&path);
1351 			return;
1352 		}
1353 
1354 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1355 		 ** FS might change.  We have to detect that, and loop back to the
1356 		 ** search if the stat data item has moved
1357 		 */
1358 		bh = get_last_bh(&path);
1359 		ih = get_ih(&path);
1360 		copy_item_head(&tmp_ih, ih);
1361 		fs_gen = get_generation(inode->i_sb);
1362 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 		if (fs_changed(fs_gen, inode->i_sb)
1364 		    && item_moved(&tmp_ih, &path)) {
1365 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 			continue;	/* Stat_data item has been moved after scheduling. */
1367 		}
1368 		break;
1369 	}
1370 	update_stat_data(&path, inode, size);
1371 	journal_mark_dirty(th, th->t_super, bh);
1372 	pathrelse(&path);
1373 	return;
1374 }
1375 
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1381 */
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1383 {
1384 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 	make_bad_inode(inode);
1386 }
1387 
1388 //
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1391 //
1392 
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1394 {
1395 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 	inode->i_ino = args->objectid;
1397 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 	return 0;
1399 }
1400 
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402    inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 				struct reiserfs_iget_args *args)
1405 {
1406 	INITIALIZE_PATH(path_to_sd);
1407 	struct cpu_key key;
1408 	unsigned long dirino;
1409 	int retval;
1410 
1411 	dirino = args->dirid;
1412 
1413 	/* set version 1, version 2 could be used too, because stat data
1414 	   key is the same in both versions */
1415 	key.version = KEY_FORMAT_3_5;
1416 	key.on_disk_key.k_dir_id = dirino;
1417 	key.on_disk_key.k_objectid = inode->i_ino;
1418 	key.on_disk_key.k_offset = 0;
1419 	key.on_disk_key.k_type = 0;
1420 
1421 	/* look for the object's stat data */
1422 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 	if (retval == IO_ERROR) {
1424 		reiserfs_warning(inode->i_sb,
1425 				 "vs-13070: reiserfs_read_locked_inode: "
1426 				 "i/o failure occurred trying to find stat data of %K",
1427 				 &key);
1428 		reiserfs_make_bad_inode(inode);
1429 		return;
1430 	}
1431 	if (retval != ITEM_FOUND) {
1432 		/* a stale NFS handle can trigger this without it being an error */
1433 		pathrelse(&path_to_sd);
1434 		reiserfs_make_bad_inode(inode);
1435 		inode->i_nlink = 0;
1436 		return;
1437 	}
1438 
1439 	init_inode(inode, &path_to_sd);
1440 
1441 	/* It is possible that knfsd is trying to access inode of a file
1442 	   that is being removed from the disk by some other thread. As we
1443 	   update sd on unlink all that is required is to check for nlink
1444 	   here. This bug was first found by Sizif when debugging
1445 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1446 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1447 
1448 	   More logical fix would require changes in fs/inode.c:iput() to
1449 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1450 	   in iget() to return NULL if I_FREEING inode is found in
1451 	   hash-table. */
1452 	/* Currently there is one place where it's ok to meet inode with
1453 	   nlink==0: processing of open-unlinked and half-truncated files
1454 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1455 	if ((inode->i_nlink == 0) &&
1456 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1457 		reiserfs_warning(inode->i_sb,
1458 				 "vs-13075: reiserfs_read_locked_inode: "
1459 				 "dead inode read from disk %K. "
1460 				 "This is likely to be race with knfsd. Ignore",
1461 				 &key);
1462 		reiserfs_make_bad_inode(inode);
1463 	}
1464 
1465 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1466 
1467 }
1468 
1469 /**
1470  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1471  *
1472  * @inode:    inode from hash table to check
1473  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1474  *
1475  * This function is called by iget5_locked() to distinguish reiserfs inodes
1476  * having the same inode numbers. Such inodes can only exist due to some
1477  * error condition. One of them should be bad. Inodes with identical
1478  * inode numbers (objectids) are distinguished by parent directory ids.
1479  *
1480  */
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1482 {
1483 	struct reiserfs_iget_args *args;
1484 
1485 	args = opaque;
1486 	/* args is already in CPU order */
1487 	return (inode->i_ino == args->objectid) &&
1488 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1489 }
1490 
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1492 {
1493 	struct inode *inode;
1494 	struct reiserfs_iget_args args;
1495 
1496 	args.objectid = key->on_disk_key.k_objectid;
1497 	args.dirid = key->on_disk_key.k_dir_id;
1498 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1500 			     (void *)(&args));
1501 	if (!inode)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	if (inode->i_state & I_NEW) {
1505 		reiserfs_read_locked_inode(inode, &args);
1506 		unlock_new_inode(inode);
1507 	}
1508 
1509 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 		/* either due to i/o error or a stale NFS handle */
1511 		iput(inode);
1512 		inode = NULL;
1513 	}
1514 	return inode;
1515 }
1516 
1517 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1518 {
1519 	__u32 *data = vobjp;
1520 	struct cpu_key key;
1521 	struct dentry *result;
1522 	struct inode *inode;
1523 
1524 	key.on_disk_key.k_objectid = data[0];
1525 	key.on_disk_key.k_dir_id = data[1];
1526 	reiserfs_write_lock(sb);
1527 	inode = reiserfs_iget(sb, &key);
1528 	if (inode && !IS_ERR(inode) && data[2] != 0 &&
1529 	    data[2] != inode->i_generation) {
1530 		iput(inode);
1531 		inode = NULL;
1532 	}
1533 	reiserfs_write_unlock(sb);
1534 	if (!inode)
1535 		inode = ERR_PTR(-ESTALE);
1536 	if (IS_ERR(inode))
1537 		return ERR_PTR(PTR_ERR(inode));
1538 	result = d_alloc_anon(inode);
1539 	if (!result) {
1540 		iput(inode);
1541 		return ERR_PTR(-ENOMEM);
1542 	}
1543 	return result;
1544 }
1545 
1546 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1547 				  int len, int fhtype,
1548 				  int (*acceptable) (void *contect,
1549 						     struct dentry * de),
1550 				  void *context)
1551 {
1552 	__u32 obj[3], parent[3];
1553 
1554 	/* fhtype happens to reflect the number of u32s encoded.
1555 	 * due to a bug in earlier code, fhtype might indicate there
1556 	 * are more u32s then actually fitted.
1557 	 * so if fhtype seems to be more than len, reduce fhtype.
1558 	 * Valid types are:
1559 	 *   2 - objectid + dir_id - legacy support
1560 	 *   3 - objectid + dir_id + generation
1561 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1563 	 *   6 - as above plus generation of directory
1564 	 * 6 does not fit in NFSv2 handles
1565 	 */
1566 	if (fhtype > len) {
1567 		if (fhtype != 6 || len != 5)
1568 			reiserfs_warning(sb,
1569 					 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 					 fhtype, len);
1571 		fhtype = 5;
1572 	}
1573 
1574 	obj[0] = data[0];
1575 	obj[1] = data[1];
1576 	if (fhtype == 3 || fhtype >= 5)
1577 		obj[2] = data[2];
1578 	else
1579 		obj[2] = 0;	/* generation number */
1580 
1581 	if (fhtype >= 4) {
1582 		parent[0] = data[fhtype >= 5 ? 3 : 2];
1583 		parent[1] = data[fhtype >= 5 ? 4 : 3];
1584 		if (fhtype == 6)
1585 			parent[2] = data[5];
1586 		else
1587 			parent[2] = 0;
1588 	}
1589 	return sb->s_export_op->find_exported_dentry(sb, obj,
1590 						     fhtype < 4 ? NULL : parent,
1591 						     acceptable, context);
1592 }
1593 
1594 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1595 		       int need_parent)
1596 {
1597 	struct inode *inode = dentry->d_inode;
1598 	int maxlen = *lenp;
1599 
1600 	if (maxlen < 3)
1601 		return 255;
1602 
1603 	data[0] = inode->i_ino;
1604 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1605 	data[2] = inode->i_generation;
1606 	*lenp = 3;
1607 	/* no room for directory info? return what we've stored so far */
1608 	if (maxlen < 5 || !need_parent)
1609 		return 3;
1610 
1611 	spin_lock(&dentry->d_lock);
1612 	inode = dentry->d_parent->d_inode;
1613 	data[3] = inode->i_ino;
1614 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 	*lenp = 5;
1616 	if (maxlen >= 6) {
1617 		data[5] = inode->i_generation;
1618 		*lenp = 6;
1619 	}
1620 	spin_unlock(&dentry->d_lock);
1621 	return *lenp;
1622 }
1623 
1624 /* looks for stat data, then copies fields to it, marks the buffer
1625    containing stat data as dirty */
1626 /* reiserfs inodes are never really dirty, since the dirty inode call
1627 ** always logs them.  This call allows the VFS inode marking routines
1628 ** to properly mark inodes for datasync and such, but only actually
1629 ** does something when called for a synchronous update.
1630 */
1631 int reiserfs_write_inode(struct inode *inode, int do_sync)
1632 {
1633 	struct reiserfs_transaction_handle th;
1634 	int jbegin_count = 1;
1635 
1636 	if (inode->i_sb->s_flags & MS_RDONLY)
1637 		return -EROFS;
1638 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639 	 ** these cases are just when the system needs ram, not when the
1640 	 ** inode needs to reach disk for safety, and they can safely be
1641 	 ** ignored because the altered inode has already been logged.
1642 	 */
1643 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1644 		reiserfs_write_lock(inode->i_sb);
1645 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646 			reiserfs_update_sd(&th, inode);
1647 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1648 		}
1649 		reiserfs_write_unlock(inode->i_sb);
1650 	}
1651 	return 0;
1652 }
1653 
1654 /* stat data of new object is inserted already, this inserts the item
1655    containing "." and ".." entries */
1656 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657 				  struct inode *inode,
1658 				  struct item_head *ih, struct treepath *path,
1659 				  struct inode *dir)
1660 {
1661 	struct super_block *sb = th->t_super;
1662 	char empty_dir[EMPTY_DIR_SIZE];
1663 	char *body = empty_dir;
1664 	struct cpu_key key;
1665 	int retval;
1666 
1667 	BUG_ON(!th->t_trans_id);
1668 
1669 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671 		      TYPE_DIRENTRY, 3 /*key length */ );
1672 
1673 	/* compose item head for new item. Directories consist of items of
1674 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675 	   is done by reiserfs_new_inode */
1676 	if (old_format_only(sb)) {
1677 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679 
1680 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681 				       ih->ih_key.k_objectid,
1682 				       INODE_PKEY(dir)->k_dir_id,
1683 				       INODE_PKEY(dir)->k_objectid);
1684 	} else {
1685 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687 
1688 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689 				    ih->ih_key.k_objectid,
1690 				    INODE_PKEY(dir)->k_dir_id,
1691 				    INODE_PKEY(dir)->k_objectid);
1692 	}
1693 
1694 	/* look for place in the tree for new item */
1695 	retval = search_item(sb, &key, path);
1696 	if (retval == IO_ERROR) {
1697 		reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1698 				 "i/o failure occurred creating new directory");
1699 		return -EIO;
1700 	}
1701 	if (retval == ITEM_FOUND) {
1702 		pathrelse(path);
1703 		reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1704 				 "object with this key exists (%k)",
1705 				 &(ih->ih_key));
1706 		return -EEXIST;
1707 	}
1708 
1709 	/* insert item, that is empty directory item */
1710 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711 }
1712 
1713 /* stat data of object has been inserted, this inserts the item
1714    containing the body of symlink */
1715 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1716 				struct item_head *ih,
1717 				struct treepath *path, const char *symname,
1718 				int item_len)
1719 {
1720 	struct super_block *sb = th->t_super;
1721 	struct cpu_key key;
1722 	int retval;
1723 
1724 	BUG_ON(!th->t_trans_id);
1725 
1726 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1727 		      le32_to_cpu(ih->ih_key.k_dir_id),
1728 		      le32_to_cpu(ih->ih_key.k_objectid),
1729 		      1, TYPE_DIRECT, 3 /*key length */ );
1730 
1731 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732 			  0 /*free_space */ );
1733 
1734 	/* look for place in the tree for new item */
1735 	retval = search_item(sb, &key, path);
1736 	if (retval == IO_ERROR) {
1737 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1738 				 "i/o failure occurred creating new symlink");
1739 		return -EIO;
1740 	}
1741 	if (retval == ITEM_FOUND) {
1742 		pathrelse(path);
1743 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1744 				 "object with this key exists (%k)",
1745 				 &(ih->ih_key));
1746 		return -EEXIST;
1747 	}
1748 
1749 	/* insert item, that is body of symlink */
1750 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751 }
1752 
1753 /* inserts the stat data into the tree, and then calls
1754    reiserfs_new_directory (to insert ".", ".." item if new object is
1755    directory) or reiserfs_new_symlink (to insert symlink body if new
1756    object is symlink) or nothing (if new object is regular file)
1757 
1758    NOTE! uid and gid must already be set in the inode.  If we return
1759    non-zero due to an error, we have to drop the quota previously allocated
1760    for the fresh inode.  This can only be done outside a transaction, so
1761    if we return non-zero, we also end the transaction.  */
1762 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763 		       struct inode *dir, int mode, const char *symname,
1764 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765 		          strlen (symname) for symlinks) */
1766 		       loff_t i_size, struct dentry *dentry,
1767 		       struct inode *inode)
1768 {
1769 	struct super_block *sb;
1770 	INITIALIZE_PATH(path_to_key);
1771 	struct cpu_key key;
1772 	struct item_head ih;
1773 	struct stat_data sd;
1774 	int retval;
1775 	int err;
1776 
1777 	BUG_ON(!th->t_trans_id);
1778 
1779 	if (DQUOT_ALLOC_INODE(inode)) {
1780 		err = -EDQUOT;
1781 		goto out_end_trans;
1782 	}
1783 	if (!dir->i_nlink) {
1784 		err = -EPERM;
1785 		goto out_bad_inode;
1786 	}
1787 
1788 	sb = dir->i_sb;
1789 
1790 	/* item head of new item */
1791 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1792 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1793 	if (!ih.ih_key.k_objectid) {
1794 		err = -ENOMEM;
1795 		goto out_bad_inode;
1796 	}
1797 	if (old_format_only(sb))
1798 		/* not a perfect generation count, as object ids can be reused, but
1799 		 ** this is as good as reiserfs can do right now.
1800 		 ** note that the private part of inode isn't filled in yet, we have
1801 		 ** to use the directory.
1802 		 */
1803 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1804 	else
1805 #if defined( USE_INODE_GENERATION_COUNTER )
1806 		inode->i_generation =
1807 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1808 #else
1809 		inode->i_generation = ++event;
1810 #endif
1811 
1812 	/* fill stat data */
1813 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1814 
1815 	/* uid and gid must already be set by the caller for quota init */
1816 
1817 	/* symlink cannot be immutable or append only, right? */
1818 	if (S_ISLNK(inode->i_mode))
1819 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1820 
1821 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1822 	inode->i_size = i_size;
1823 	inode->i_blocks = 0;
1824 	inode->i_bytes = 0;
1825 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1826 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1827 
1828 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1829 	REISERFS_I(inode)->i_flags = 0;
1830 	REISERFS_I(inode)->i_prealloc_block = 0;
1831 	REISERFS_I(inode)->i_prealloc_count = 0;
1832 	REISERFS_I(inode)->i_trans_id = 0;
1833 	REISERFS_I(inode)->i_jl = NULL;
1834 	REISERFS_I(inode)->i_attrs =
1835 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1836 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1837 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1838 	reiserfs_init_acl_access(inode);
1839 	reiserfs_init_acl_default(inode);
1840 	reiserfs_init_xattr_rwsem(inode);
1841 
1842 	if (old_format_only(sb))
1843 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1844 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1845 	else
1846 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1847 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1848 
1849 	/* key to search for correct place for new stat data */
1850 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1851 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1852 		      TYPE_STAT_DATA, 3 /*key length */ );
1853 
1854 	/* find proper place for inserting of stat data */
1855 	retval = search_item(sb, &key, &path_to_key);
1856 	if (retval == IO_ERROR) {
1857 		err = -EIO;
1858 		goto out_bad_inode;
1859 	}
1860 	if (retval == ITEM_FOUND) {
1861 		pathrelse(&path_to_key);
1862 		err = -EEXIST;
1863 		goto out_bad_inode;
1864 	}
1865 	if (old_format_only(sb)) {
1866 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1867 			pathrelse(&path_to_key);
1868 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1869 			err = -EINVAL;
1870 			goto out_bad_inode;
1871 		}
1872 		inode2sd_v1(&sd, inode, inode->i_size);
1873 	} else {
1874 		inode2sd(&sd, inode, inode->i_size);
1875 	}
1876 	// these do not go to on-disk stat data
1877 	inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1878 
1879 	// store in in-core inode the key of stat data and version all
1880 	// object items will have (directory items will have old offset
1881 	// format, other new objects will consist of new items)
1882 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1883 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1884 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1885 	else
1886 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1887 	if (old_format_only(sb))
1888 		set_inode_sd_version(inode, STAT_DATA_V1);
1889 	else
1890 		set_inode_sd_version(inode, STAT_DATA_V2);
1891 
1892 	/* insert the stat data into the tree */
1893 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1894 	if (REISERFS_I(dir)->new_packing_locality)
1895 		th->displace_new_blocks = 1;
1896 #endif
1897 	retval =
1898 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1899 				 (char *)(&sd));
1900 	if (retval) {
1901 		err = retval;
1902 		reiserfs_check_path(&path_to_key);
1903 		goto out_bad_inode;
1904 	}
1905 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1906 	if (!th->displace_new_blocks)
1907 		REISERFS_I(dir)->new_packing_locality = 0;
1908 #endif
1909 	if (S_ISDIR(mode)) {
1910 		/* insert item with "." and ".." */
1911 		retval =
1912 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1913 	}
1914 
1915 	if (S_ISLNK(mode)) {
1916 		/* insert body of symlink */
1917 		if (!old_format_only(sb))
1918 			i_size = ROUND_UP(i_size);
1919 		retval =
1920 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1921 					 i_size);
1922 	}
1923 	if (retval) {
1924 		err = retval;
1925 		reiserfs_check_path(&path_to_key);
1926 		journal_end(th, th->t_super, th->t_blocks_allocated);
1927 		goto out_inserted_sd;
1928 	}
1929 
1930 	/* XXX CHECK THIS */
1931 	if (reiserfs_posixacl(inode->i_sb)) {
1932 		retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1933 		if (retval) {
1934 			err = retval;
1935 			reiserfs_check_path(&path_to_key);
1936 			journal_end(th, th->t_super, th->t_blocks_allocated);
1937 			goto out_inserted_sd;
1938 		}
1939 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1940 		reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1941 				 "but vfs thinks they are!");
1942 	} else if (is_reiserfs_priv_object(dir)) {
1943 		reiserfs_mark_inode_private(inode);
1944 	}
1945 
1946 	insert_inode_hash(inode);
1947 	reiserfs_update_sd(th, inode);
1948 	reiserfs_check_path(&path_to_key);
1949 
1950 	return 0;
1951 
1952 /* it looks like you can easily compress these two goto targets into
1953  * one.  Keeping it like this doesn't actually hurt anything, and they
1954  * are place holders for what the quota code actually needs.
1955  */
1956       out_bad_inode:
1957 	/* Invalidate the object, nothing was inserted yet */
1958 	INODE_PKEY(inode)->k_objectid = 0;
1959 
1960 	/* Quota change must be inside a transaction for journaling */
1961 	DQUOT_FREE_INODE(inode);
1962 
1963       out_end_trans:
1964 	journal_end(th, th->t_super, th->t_blocks_allocated);
1965 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1966 	DQUOT_DROP(inode);
1967 	inode->i_flags |= S_NOQUOTA;
1968 	make_bad_inode(inode);
1969 
1970       out_inserted_sd:
1971 	inode->i_nlink = 0;
1972 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1973 
1974 	/* If we were inheriting an ACL, we need to release the lock so that
1975 	 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1976 	 * code really needs to be reworked, but this will take care of it
1977 	 * for now. -jeffm */
1978 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1979 	if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1980 		reiserfs_write_unlock_xattrs(dir->i_sb);
1981 		iput(inode);
1982 		reiserfs_write_lock_xattrs(dir->i_sb);
1983 	} else
1984 #endif
1985 		iput(inode);
1986 	return err;
1987 }
1988 
1989 /*
1990 ** finds the tail page in the page cache,
1991 ** reads the last block in.
1992 **
1993 ** On success, page_result is set to a locked, pinned page, and bh_result
1994 ** is set to an up to date buffer for the last block in the file.  returns 0.
1995 **
1996 ** tail conversion is not done, so bh_result might not be valid for writing
1997 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1998 ** trying to write the block.
1999 **
2000 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2001 */
2002 static int grab_tail_page(struct inode *p_s_inode,
2003 			  struct page **page_result,
2004 			  struct buffer_head **bh_result)
2005 {
2006 
2007 	/* we want the page with the last byte in the file,
2008 	 ** not the page that will hold the next byte for appending
2009 	 */
2010 	unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2011 	unsigned long pos = 0;
2012 	unsigned long start = 0;
2013 	unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2014 	unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2015 	struct buffer_head *bh;
2016 	struct buffer_head *head;
2017 	struct page *page;
2018 	int error;
2019 
2020 	/* we know that we are only called with inode->i_size > 0.
2021 	 ** we also know that a file tail can never be as big as a block
2022 	 ** If i_size % blocksize == 0, our file is currently block aligned
2023 	 ** and it won't need converting or zeroing after a truncate.
2024 	 */
2025 	if ((offset & (blocksize - 1)) == 0) {
2026 		return -ENOENT;
2027 	}
2028 	page = grab_cache_page(p_s_inode->i_mapping, index);
2029 	error = -ENOMEM;
2030 	if (!page) {
2031 		goto out;
2032 	}
2033 	/* start within the page of the last block in the file */
2034 	start = (offset / blocksize) * blocksize;
2035 
2036 	error = block_prepare_write(page, start, offset,
2037 				    reiserfs_get_block_create_0);
2038 	if (error)
2039 		goto unlock;
2040 
2041 	head = page_buffers(page);
2042 	bh = head;
2043 	do {
2044 		if (pos >= start) {
2045 			break;
2046 		}
2047 		bh = bh->b_this_page;
2048 		pos += blocksize;
2049 	} while (bh != head);
2050 
2051 	if (!buffer_uptodate(bh)) {
2052 		/* note, this should never happen, prepare_write should
2053 		 ** be taking care of this for us.  If the buffer isn't up to date,
2054 		 ** I've screwed up the code to find the buffer, or the code to
2055 		 ** call prepare_write
2056 		 */
2057 		reiserfs_warning(p_s_inode->i_sb,
2058 				 "clm-6000: error reading block %lu on dev %s",
2059 				 bh->b_blocknr,
2060 				 reiserfs_bdevname(p_s_inode->i_sb));
2061 		error = -EIO;
2062 		goto unlock;
2063 	}
2064 	*bh_result = bh;
2065 	*page_result = page;
2066 
2067       out:
2068 	return error;
2069 
2070       unlock:
2071 	unlock_page(page);
2072 	page_cache_release(page);
2073 	return error;
2074 }
2075 
2076 /*
2077 ** vfs version of truncate file.  Must NOT be called with
2078 ** a transaction already started.
2079 **
2080 ** some code taken from block_truncate_page
2081 */
2082 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2083 {
2084 	struct reiserfs_transaction_handle th;
2085 	/* we want the offset for the first byte after the end of the file */
2086 	unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2087 	unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2088 	unsigned length;
2089 	struct page *page = NULL;
2090 	int error;
2091 	struct buffer_head *bh = NULL;
2092 	int err2;
2093 
2094 	reiserfs_write_lock(p_s_inode->i_sb);
2095 
2096 	if (p_s_inode->i_size > 0) {
2097 		if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2098 			// -ENOENT means we truncated past the end of the file,
2099 			// and get_block_create_0 could not find a block to read in,
2100 			// which is ok.
2101 			if (error != -ENOENT)
2102 				reiserfs_warning(p_s_inode->i_sb,
2103 						 "clm-6001: grab_tail_page failed %d",
2104 						 error);
2105 			page = NULL;
2106 			bh = NULL;
2107 		}
2108 	}
2109 
2110 	/* so, if page != NULL, we have a buffer head for the offset at
2111 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2112 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2113 	 ** and no zeroing is required on disk.  We zero after the truncate,
2114 	 ** because the truncate might pack the item anyway
2115 	 ** (it will unmap bh if it packs).
2116 	 */
2117 	/* it is enough to reserve space in transaction for 2 balancings:
2118 	   one for "save" link adding and another for the first
2119 	   cut_from_item. 1 is for update_sd */
2120 	error = journal_begin(&th, p_s_inode->i_sb,
2121 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2122 	if (error)
2123 		goto out;
2124 	reiserfs_update_inode_transaction(p_s_inode);
2125 	if (update_timestamps)
2126 		/* we are doing real truncate: if the system crashes before the last
2127 		   transaction of truncating gets committed - on reboot the file
2128 		   either appears truncated properly or not truncated at all */
2129 		add_save_link(&th, p_s_inode, 1);
2130 	err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2131 	error =
2132 	    journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2133 	if (error)
2134 		goto out;
2135 
2136 	/* check reiserfs_do_truncate after ending the transaction */
2137 	if (err2) {
2138 		error = err2;
2139   		goto out;
2140 	}
2141 
2142 	if (update_timestamps) {
2143 		error = remove_save_link(p_s_inode, 1 /* truncate */ );
2144 		if (error)
2145 			goto out;
2146 	}
2147 
2148 	if (page) {
2149 		length = offset & (blocksize - 1);
2150 		/* if we are not on a block boundary */
2151 		if (length) {
2152 			length = blocksize - length;
2153 			zero_user_page(page, offset, length, KM_USER0);
2154 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2155 				mark_buffer_dirty(bh);
2156 			}
2157 		}
2158 		unlock_page(page);
2159 		page_cache_release(page);
2160 	}
2161 
2162 	reiserfs_write_unlock(p_s_inode->i_sb);
2163 	return 0;
2164       out:
2165 	if (page) {
2166 		unlock_page(page);
2167 		page_cache_release(page);
2168 	}
2169 	reiserfs_write_unlock(p_s_inode->i_sb);
2170 	return error;
2171 }
2172 
2173 static int map_block_for_writepage(struct inode *inode,
2174 				   struct buffer_head *bh_result,
2175 				   unsigned long block)
2176 {
2177 	struct reiserfs_transaction_handle th;
2178 	int fs_gen;
2179 	struct item_head tmp_ih;
2180 	struct item_head *ih;
2181 	struct buffer_head *bh;
2182 	__le32 *item;
2183 	struct cpu_key key;
2184 	INITIALIZE_PATH(path);
2185 	int pos_in_item;
2186 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2187 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2188 	int retval;
2189 	int use_get_block = 0;
2190 	int bytes_copied = 0;
2191 	int copy_size;
2192 	int trans_running = 0;
2193 
2194 	/* catch places below that try to log something without starting a trans */
2195 	th.t_trans_id = 0;
2196 
2197 	if (!buffer_uptodate(bh_result)) {
2198 		return -EIO;
2199 	}
2200 
2201 	kmap(bh_result->b_page);
2202       start_over:
2203 	reiserfs_write_lock(inode->i_sb);
2204 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2205 
2206       research:
2207 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2208 	if (retval != POSITION_FOUND) {
2209 		use_get_block = 1;
2210 		goto out;
2211 	}
2212 
2213 	bh = get_last_bh(&path);
2214 	ih = get_ih(&path);
2215 	item = get_item(&path);
2216 	pos_in_item = path.pos_in_item;
2217 
2218 	/* we've found an unformatted node */
2219 	if (indirect_item_found(retval, ih)) {
2220 		if (bytes_copied > 0) {
2221 			reiserfs_warning(inode->i_sb,
2222 					 "clm-6002: bytes_copied %d",
2223 					 bytes_copied);
2224 		}
2225 		if (!get_block_num(item, pos_in_item)) {
2226 			/* crap, we are writing to a hole */
2227 			use_get_block = 1;
2228 			goto out;
2229 		}
2230 		set_block_dev_mapped(bh_result,
2231 				     get_block_num(item, pos_in_item), inode);
2232 	} else if (is_direct_le_ih(ih)) {
2233 		char *p;
2234 		p = page_address(bh_result->b_page);
2235 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2236 		copy_size = ih_item_len(ih) - pos_in_item;
2237 
2238 		fs_gen = get_generation(inode->i_sb);
2239 		copy_item_head(&tmp_ih, ih);
2240 
2241 		if (!trans_running) {
2242 			/* vs-3050 is gone, no need to drop the path */
2243 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2244 			if (retval)
2245 				goto out;
2246 			reiserfs_update_inode_transaction(inode);
2247 			trans_running = 1;
2248 			if (fs_changed(fs_gen, inode->i_sb)
2249 			    && item_moved(&tmp_ih, &path)) {
2250 				reiserfs_restore_prepared_buffer(inode->i_sb,
2251 								 bh);
2252 				goto research;
2253 			}
2254 		}
2255 
2256 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2257 
2258 		if (fs_changed(fs_gen, inode->i_sb)
2259 		    && item_moved(&tmp_ih, &path)) {
2260 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2261 			goto research;
2262 		}
2263 
2264 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2265 		       copy_size);
2266 
2267 		journal_mark_dirty(&th, inode->i_sb, bh);
2268 		bytes_copied += copy_size;
2269 		set_block_dev_mapped(bh_result, 0, inode);
2270 
2271 		/* are there still bytes left? */
2272 		if (bytes_copied < bh_result->b_size &&
2273 		    (byte_offset + bytes_copied) < inode->i_size) {
2274 			set_cpu_key_k_offset(&key,
2275 					     cpu_key_k_offset(&key) +
2276 					     copy_size);
2277 			goto research;
2278 		}
2279 	} else {
2280 		reiserfs_warning(inode->i_sb,
2281 				 "clm-6003: bad item inode %lu, device %s",
2282 				 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2283 		retval = -EIO;
2284 		goto out;
2285 	}
2286 	retval = 0;
2287 
2288       out:
2289 	pathrelse(&path);
2290 	if (trans_running) {
2291 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2292 		if (err)
2293 			retval = err;
2294 		trans_running = 0;
2295 	}
2296 	reiserfs_write_unlock(inode->i_sb);
2297 
2298 	/* this is where we fill in holes in the file. */
2299 	if (use_get_block) {
2300 		retval = reiserfs_get_block(inode, block, bh_result,
2301 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2302 					    | GET_BLOCK_NO_DANGLE);
2303 		if (!retval) {
2304 			if (!buffer_mapped(bh_result)
2305 			    || bh_result->b_blocknr == 0) {
2306 				/* get_block failed to find a mapped unformatted node. */
2307 				use_get_block = 0;
2308 				goto start_over;
2309 			}
2310 		}
2311 	}
2312 	kunmap(bh_result->b_page);
2313 
2314 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2315 		/* we've copied data from the page into the direct item, so the
2316 		 * buffer in the page is now clean, mark it to reflect that.
2317 		 */
2318 		lock_buffer(bh_result);
2319 		clear_buffer_dirty(bh_result);
2320 		unlock_buffer(bh_result);
2321 	}
2322 	return retval;
2323 }
2324 
2325 /*
2326  * mason@suse.com: updated in 2.5.54 to follow the same general io
2327  * start/recovery path as __block_write_full_page, along with special
2328  * code to handle reiserfs tails.
2329  */
2330 static int reiserfs_write_full_page(struct page *page,
2331 				    struct writeback_control *wbc)
2332 {
2333 	struct inode *inode = page->mapping->host;
2334 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2335 	int error = 0;
2336 	unsigned long block;
2337 	sector_t last_block;
2338 	struct buffer_head *head, *bh;
2339 	int partial = 0;
2340 	int nr = 0;
2341 	int checked = PageChecked(page);
2342 	struct reiserfs_transaction_handle th;
2343 	struct super_block *s = inode->i_sb;
2344 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2345 	th.t_trans_id = 0;
2346 
2347 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2348 	if (checked && (current->flags & PF_MEMALLOC)) {
2349 		redirty_page_for_writepage(wbc, page);
2350 		unlock_page(page);
2351 		return 0;
2352 	}
2353 
2354 	/* The page dirty bit is cleared before writepage is called, which
2355 	 * means we have to tell create_empty_buffers to make dirty buffers
2356 	 * The page really should be up to date at this point, so tossing
2357 	 * in the BH_Uptodate is just a sanity check.
2358 	 */
2359 	if (!page_has_buffers(page)) {
2360 		create_empty_buffers(page, s->s_blocksize,
2361 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2362 	}
2363 	head = page_buffers(page);
2364 
2365 	/* last page in the file, zero out any contents past the
2366 	 ** last byte in the file
2367 	 */
2368 	if (page->index >= end_index) {
2369 		unsigned last_offset;
2370 
2371 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2372 		/* no file contents in this page */
2373 		if (page->index >= end_index + 1 || !last_offset) {
2374 			unlock_page(page);
2375 			return 0;
2376 		}
2377 		zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0);
2378 	}
2379 	bh = head;
2380 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2381 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2382 	/* first map all the buffers, logging any direct items we find */
2383 	do {
2384 		if (block > last_block) {
2385 			/*
2386 			 * This can happen when the block size is less than
2387 			 * the page size.  The corresponding bytes in the page
2388 			 * were zero filled above
2389 			 */
2390 			clear_buffer_dirty(bh);
2391 			set_buffer_uptodate(bh);
2392 		} else if ((checked || buffer_dirty(bh)) &&
2393 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2394 						       && bh->b_blocknr ==
2395 						       0))) {
2396 			/* not mapped yet, or it points to a direct item, search
2397 			 * the btree for the mapping info, and log any direct
2398 			 * items found
2399 			 */
2400 			if ((error = map_block_for_writepage(inode, bh, block))) {
2401 				goto fail;
2402 			}
2403 		}
2404 		bh = bh->b_this_page;
2405 		block++;
2406 	} while (bh != head);
2407 
2408 	/*
2409 	 * we start the transaction after map_block_for_writepage,
2410 	 * because it can create holes in the file (an unbounded operation).
2411 	 * starting it here, we can make a reliable estimate for how many
2412 	 * blocks we're going to log
2413 	 */
2414 	if (checked) {
2415 		ClearPageChecked(page);
2416 		reiserfs_write_lock(s);
2417 		error = journal_begin(&th, s, bh_per_page + 1);
2418 		if (error) {
2419 			reiserfs_write_unlock(s);
2420 			goto fail;
2421 		}
2422 		reiserfs_update_inode_transaction(inode);
2423 	}
2424 	/* now go through and lock any dirty buffers on the page */
2425 	do {
2426 		get_bh(bh);
2427 		if (!buffer_mapped(bh))
2428 			continue;
2429 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2430 			continue;
2431 
2432 		if (checked) {
2433 			reiserfs_prepare_for_journal(s, bh, 1);
2434 			journal_mark_dirty(&th, s, bh);
2435 			continue;
2436 		}
2437 		/* from this point on, we know the buffer is mapped to a
2438 		 * real block and not a direct item
2439 		 */
2440 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2441 			lock_buffer(bh);
2442 		} else {
2443 			if (test_set_buffer_locked(bh)) {
2444 				redirty_page_for_writepage(wbc, page);
2445 				continue;
2446 			}
2447 		}
2448 		if (test_clear_buffer_dirty(bh)) {
2449 			mark_buffer_async_write(bh);
2450 		} else {
2451 			unlock_buffer(bh);
2452 		}
2453 	} while ((bh = bh->b_this_page) != head);
2454 
2455 	if (checked) {
2456 		error = journal_end(&th, s, bh_per_page + 1);
2457 		reiserfs_write_unlock(s);
2458 		if (error)
2459 			goto fail;
2460 	}
2461 	BUG_ON(PageWriteback(page));
2462 	set_page_writeback(page);
2463 	unlock_page(page);
2464 
2465 	/*
2466 	 * since any buffer might be the only dirty buffer on the page,
2467 	 * the first submit_bh can bring the page out of writeback.
2468 	 * be careful with the buffers.
2469 	 */
2470 	do {
2471 		struct buffer_head *next = bh->b_this_page;
2472 		if (buffer_async_write(bh)) {
2473 			submit_bh(WRITE, bh);
2474 			nr++;
2475 		}
2476 		put_bh(bh);
2477 		bh = next;
2478 	} while (bh != head);
2479 
2480 	error = 0;
2481       done:
2482 	if (nr == 0) {
2483 		/*
2484 		 * if this page only had a direct item, it is very possible for
2485 		 * no io to be required without there being an error.  Or,
2486 		 * someone else could have locked them and sent them down the
2487 		 * pipe without locking the page
2488 		 */
2489 		bh = head;
2490 		do {
2491 			if (!buffer_uptodate(bh)) {
2492 				partial = 1;
2493 				break;
2494 			}
2495 			bh = bh->b_this_page;
2496 		} while (bh != head);
2497 		if (!partial)
2498 			SetPageUptodate(page);
2499 		end_page_writeback(page);
2500 	}
2501 	return error;
2502 
2503       fail:
2504 	/* catches various errors, we need to make sure any valid dirty blocks
2505 	 * get to the media.  The page is currently locked and not marked for
2506 	 * writeback
2507 	 */
2508 	ClearPageUptodate(page);
2509 	bh = head;
2510 	do {
2511 		get_bh(bh);
2512 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2513 			lock_buffer(bh);
2514 			mark_buffer_async_write(bh);
2515 		} else {
2516 			/*
2517 			 * clear any dirty bits that might have come from getting
2518 			 * attached to a dirty page
2519 			 */
2520 			clear_buffer_dirty(bh);
2521 		}
2522 		bh = bh->b_this_page;
2523 	} while (bh != head);
2524 	SetPageError(page);
2525 	BUG_ON(PageWriteback(page));
2526 	set_page_writeback(page);
2527 	unlock_page(page);
2528 	do {
2529 		struct buffer_head *next = bh->b_this_page;
2530 		if (buffer_async_write(bh)) {
2531 			clear_buffer_dirty(bh);
2532 			submit_bh(WRITE, bh);
2533 			nr++;
2534 		}
2535 		put_bh(bh);
2536 		bh = next;
2537 	} while (bh != head);
2538 	goto done;
2539 }
2540 
2541 static int reiserfs_readpage(struct file *f, struct page *page)
2542 {
2543 	return block_read_full_page(page, reiserfs_get_block);
2544 }
2545 
2546 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2547 {
2548 	struct inode *inode = page->mapping->host;
2549 	reiserfs_wait_on_write_block(inode->i_sb);
2550 	return reiserfs_write_full_page(page, wbc);
2551 }
2552 
2553 static int reiserfs_prepare_write(struct file *f, struct page *page,
2554 				  unsigned from, unsigned to)
2555 {
2556 	struct inode *inode = page->mapping->host;
2557 	int ret;
2558 	int old_ref = 0;
2559 
2560 	reiserfs_wait_on_write_block(inode->i_sb);
2561 	fix_tail_page_for_writing(page);
2562 	if (reiserfs_transaction_running(inode->i_sb)) {
2563 		struct reiserfs_transaction_handle *th;
2564 		th = (struct reiserfs_transaction_handle *)current->
2565 		    journal_info;
2566 		BUG_ON(!th->t_refcount);
2567 		BUG_ON(!th->t_trans_id);
2568 		old_ref = th->t_refcount;
2569 		th->t_refcount++;
2570 	}
2571 
2572 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2573 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2574 		struct reiserfs_transaction_handle *th = current->journal_info;
2575 		/* this gets a little ugly.  If reiserfs_get_block returned an
2576 		 * error and left a transacstion running, we've got to close it,
2577 		 * and we've got to free handle if it was a persistent transaction.
2578 		 *
2579 		 * But, if we had nested into an existing transaction, we need
2580 		 * to just drop the ref count on the handle.
2581 		 *
2582 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2583 		 * and it was a persistent trans.  Otherwise, it was nested above.
2584 		 */
2585 		if (th->t_refcount > old_ref) {
2586 			if (old_ref)
2587 				th->t_refcount--;
2588 			else {
2589 				int err;
2590 				reiserfs_write_lock(inode->i_sb);
2591 				err = reiserfs_end_persistent_transaction(th);
2592 				reiserfs_write_unlock(inode->i_sb);
2593 				if (err)
2594 					ret = err;
2595 			}
2596 		}
2597 	}
2598 	return ret;
2599 
2600 }
2601 
2602 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2603 {
2604 	return generic_block_bmap(as, block, reiserfs_bmap);
2605 }
2606 
2607 static int reiserfs_commit_write(struct file *f, struct page *page,
2608 				 unsigned from, unsigned to)
2609 {
2610 	struct inode *inode = page->mapping->host;
2611 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2612 	int ret = 0;
2613 	int update_sd = 0;
2614 	struct reiserfs_transaction_handle *th = NULL;
2615 
2616 	reiserfs_wait_on_write_block(inode->i_sb);
2617 	if (reiserfs_transaction_running(inode->i_sb)) {
2618 		th = current->journal_info;
2619 	}
2620 	reiserfs_commit_page(inode, page, from, to);
2621 
2622 	/* generic_commit_write does this for us, but does not update the
2623 	 ** transaction tracking stuff when the size changes.  So, we have
2624 	 ** to do the i_size updates here.
2625 	 */
2626 	if (pos > inode->i_size) {
2627 		struct reiserfs_transaction_handle myth;
2628 		reiserfs_write_lock(inode->i_sb);
2629 		/* If the file have grown beyond the border where it
2630 		   can have a tail, unmark it as needing a tail
2631 		   packing */
2632 		if ((have_large_tails(inode->i_sb)
2633 		     && inode->i_size > i_block_size(inode) * 4)
2634 		    || (have_small_tails(inode->i_sb)
2635 			&& inode->i_size > i_block_size(inode)))
2636 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2637 
2638 		ret = journal_begin(&myth, inode->i_sb, 1);
2639 		if (ret) {
2640 			reiserfs_write_unlock(inode->i_sb);
2641 			goto journal_error;
2642 		}
2643 		reiserfs_update_inode_transaction(inode);
2644 		inode->i_size = pos;
2645 		/*
2646 		 * this will just nest into our transaction.  It's important
2647 		 * to use mark_inode_dirty so the inode gets pushed around on the
2648 		 * dirty lists, and so that O_SYNC works as expected
2649 		 */
2650 		mark_inode_dirty(inode);
2651 		reiserfs_update_sd(&myth, inode);
2652 		update_sd = 1;
2653 		ret = journal_end(&myth, inode->i_sb, 1);
2654 		reiserfs_write_unlock(inode->i_sb);
2655 		if (ret)
2656 			goto journal_error;
2657 	}
2658 	if (th) {
2659 		reiserfs_write_lock(inode->i_sb);
2660 		if (!update_sd)
2661 			mark_inode_dirty(inode);
2662 		ret = reiserfs_end_persistent_transaction(th);
2663 		reiserfs_write_unlock(inode->i_sb);
2664 		if (ret)
2665 			goto out;
2666 	}
2667 
2668       out:
2669 	return ret;
2670 
2671       journal_error:
2672 	if (th) {
2673 		reiserfs_write_lock(inode->i_sb);
2674 		if (!update_sd)
2675 			reiserfs_update_sd(th, inode);
2676 		ret = reiserfs_end_persistent_transaction(th);
2677 		reiserfs_write_unlock(inode->i_sb);
2678 	}
2679 
2680 	return ret;
2681 }
2682 
2683 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2684 {
2685 	if (reiserfs_attrs(inode->i_sb)) {
2686 		if (sd_attrs & REISERFS_SYNC_FL)
2687 			inode->i_flags |= S_SYNC;
2688 		else
2689 			inode->i_flags &= ~S_SYNC;
2690 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2691 			inode->i_flags |= S_IMMUTABLE;
2692 		else
2693 			inode->i_flags &= ~S_IMMUTABLE;
2694 		if (sd_attrs & REISERFS_APPEND_FL)
2695 			inode->i_flags |= S_APPEND;
2696 		else
2697 			inode->i_flags &= ~S_APPEND;
2698 		if (sd_attrs & REISERFS_NOATIME_FL)
2699 			inode->i_flags |= S_NOATIME;
2700 		else
2701 			inode->i_flags &= ~S_NOATIME;
2702 		if (sd_attrs & REISERFS_NOTAIL_FL)
2703 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2704 		else
2705 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2706 	}
2707 }
2708 
2709 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2710 {
2711 	if (reiserfs_attrs(inode->i_sb)) {
2712 		if (inode->i_flags & S_IMMUTABLE)
2713 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2714 		else
2715 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2716 		if (inode->i_flags & S_SYNC)
2717 			*sd_attrs |= REISERFS_SYNC_FL;
2718 		else
2719 			*sd_attrs &= ~REISERFS_SYNC_FL;
2720 		if (inode->i_flags & S_NOATIME)
2721 			*sd_attrs |= REISERFS_NOATIME_FL;
2722 		else
2723 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2724 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2725 			*sd_attrs |= REISERFS_NOTAIL_FL;
2726 		else
2727 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2728 	}
2729 }
2730 
2731 /* decide if this buffer needs to stay around for data logging or ordered
2732 ** write purposes
2733 */
2734 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2735 {
2736 	int ret = 1;
2737 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2738 
2739 	lock_buffer(bh);
2740 	spin_lock(&j->j_dirty_buffers_lock);
2741 	if (!buffer_mapped(bh)) {
2742 		goto free_jh;
2743 	}
2744 	/* the page is locked, and the only places that log a data buffer
2745 	 * also lock the page.
2746 	 */
2747 	if (reiserfs_file_data_log(inode)) {
2748 		/*
2749 		 * very conservative, leave the buffer pinned if
2750 		 * anyone might need it.
2751 		 */
2752 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2753 			ret = 0;
2754 		}
2755 	} else  if (buffer_dirty(bh)) {
2756 		struct reiserfs_journal_list *jl;
2757 		struct reiserfs_jh *jh = bh->b_private;
2758 
2759 		/* why is this safe?
2760 		 * reiserfs_setattr updates i_size in the on disk
2761 		 * stat data before allowing vmtruncate to be called.
2762 		 *
2763 		 * If buffer was put onto the ordered list for this
2764 		 * transaction, we know for sure either this transaction
2765 		 * or an older one already has updated i_size on disk,
2766 		 * and this ordered data won't be referenced in the file
2767 		 * if we crash.
2768 		 *
2769 		 * if the buffer was put onto the ordered list for an older
2770 		 * transaction, we need to leave it around
2771 		 */
2772 		if (jh && (jl = jh->jl)
2773 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2774 			ret = 0;
2775 	}
2776       free_jh:
2777 	if (ret && bh->b_private) {
2778 		reiserfs_free_jh(bh);
2779 	}
2780 	spin_unlock(&j->j_dirty_buffers_lock);
2781 	unlock_buffer(bh);
2782 	return ret;
2783 }
2784 
2785 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2786 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2787 {
2788 	struct buffer_head *head, *bh, *next;
2789 	struct inode *inode = page->mapping->host;
2790 	unsigned int curr_off = 0;
2791 	int ret = 1;
2792 
2793 	BUG_ON(!PageLocked(page));
2794 
2795 	if (offset == 0)
2796 		ClearPageChecked(page);
2797 
2798 	if (!page_has_buffers(page))
2799 		goto out;
2800 
2801 	head = page_buffers(page);
2802 	bh = head;
2803 	do {
2804 		unsigned int next_off = curr_off + bh->b_size;
2805 		next = bh->b_this_page;
2806 
2807 		/*
2808 		 * is this block fully invalidated?
2809 		 */
2810 		if (offset <= curr_off) {
2811 			if (invalidatepage_can_drop(inode, bh))
2812 				reiserfs_unmap_buffer(bh);
2813 			else
2814 				ret = 0;
2815 		}
2816 		curr_off = next_off;
2817 		bh = next;
2818 	} while (bh != head);
2819 
2820 	/*
2821 	 * We release buffers only if the entire page is being invalidated.
2822 	 * The get_block cached value has been unconditionally invalidated,
2823 	 * so real IO is not possible anymore.
2824 	 */
2825 	if (!offset && ret) {
2826 		ret = try_to_release_page(page, 0);
2827 		/* maybe should BUG_ON(!ret); - neilb */
2828 	}
2829       out:
2830 	return;
2831 }
2832 
2833 static int reiserfs_set_page_dirty(struct page *page)
2834 {
2835 	struct inode *inode = page->mapping->host;
2836 	if (reiserfs_file_data_log(inode)) {
2837 		SetPageChecked(page);
2838 		return __set_page_dirty_nobuffers(page);
2839 	}
2840 	return __set_page_dirty_buffers(page);
2841 }
2842 
2843 /*
2844  * Returns 1 if the page's buffers were dropped.  The page is locked.
2845  *
2846  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2847  * in the buffers at page_buffers(page).
2848  *
2849  * even in -o notail mode, we can't be sure an old mount without -o notail
2850  * didn't create files with tails.
2851  */
2852 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2853 {
2854 	struct inode *inode = page->mapping->host;
2855 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2856 	struct buffer_head *head;
2857 	struct buffer_head *bh;
2858 	int ret = 1;
2859 
2860 	WARN_ON(PageChecked(page));
2861 	spin_lock(&j->j_dirty_buffers_lock);
2862 	head = page_buffers(page);
2863 	bh = head;
2864 	do {
2865 		if (bh->b_private) {
2866 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2867 				reiserfs_free_jh(bh);
2868 			} else {
2869 				ret = 0;
2870 				break;
2871 			}
2872 		}
2873 		bh = bh->b_this_page;
2874 	} while (bh != head);
2875 	if (ret)
2876 		ret = try_to_free_buffers(page);
2877 	spin_unlock(&j->j_dirty_buffers_lock);
2878 	return ret;
2879 }
2880 
2881 /* We thank Mingming Cao for helping us understand in great detail what
2882    to do in this section of the code. */
2883 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2884 				  const struct iovec *iov, loff_t offset,
2885 				  unsigned long nr_segs)
2886 {
2887 	struct file *file = iocb->ki_filp;
2888 	struct inode *inode = file->f_mapping->host;
2889 
2890 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2891 				  offset, nr_segs,
2892 				  reiserfs_get_blocks_direct_io, NULL);
2893 }
2894 
2895 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2896 {
2897 	struct inode *inode = dentry->d_inode;
2898 	int error;
2899 	unsigned int ia_valid = attr->ia_valid;
2900 	reiserfs_write_lock(inode->i_sb);
2901 	if (attr->ia_valid & ATTR_SIZE) {
2902 		/* version 2 items will be caught by the s_maxbytes check
2903 		 ** done for us in vmtruncate
2904 		 */
2905 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2906 		    attr->ia_size > MAX_NON_LFS) {
2907 			error = -EFBIG;
2908 			goto out;
2909 		}
2910 		/* fill in hole pointers in the expanding truncate case. */
2911 		if (attr->ia_size > inode->i_size) {
2912 			error = generic_cont_expand(inode, attr->ia_size);
2913 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
2914 				int err;
2915 				struct reiserfs_transaction_handle th;
2916 				/* we're changing at most 2 bitmaps, inode + super */
2917 				err = journal_begin(&th, inode->i_sb, 4);
2918 				if (!err) {
2919 					reiserfs_discard_prealloc(&th, inode);
2920 					err = journal_end(&th, inode->i_sb, 4);
2921 				}
2922 				if (err)
2923 					error = err;
2924 			}
2925 			if (error)
2926 				goto out;
2927 			/*
2928 			 * file size is changed, ctime and mtime are
2929 			 * to be updated
2930 			 */
2931 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2932 		}
2933 	}
2934 
2935 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2936 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2937 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2938 		/* stat data of format v3.5 has 16 bit uid and gid */
2939 		error = -EINVAL;
2940 		goto out;
2941 	}
2942 
2943 	error = inode_change_ok(inode, attr);
2944 	if (!error) {
2945 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2946 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2947 			error = reiserfs_chown_xattrs(inode, attr);
2948 
2949 			if (!error) {
2950 				struct reiserfs_transaction_handle th;
2951 				int jbegin_count =
2952 				    2 *
2953 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2954 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2955 				    2;
2956 
2957 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2958 				error =
2959 				    journal_begin(&th, inode->i_sb,
2960 						  jbegin_count);
2961 				if (error)
2962 					goto out;
2963 				error =
2964 				    DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2965 				if (error) {
2966 					journal_end(&th, inode->i_sb,
2967 						    jbegin_count);
2968 					goto out;
2969 				}
2970 				/* Update corresponding info in inode so that everything is in
2971 				 * one transaction */
2972 				if (attr->ia_valid & ATTR_UID)
2973 					inode->i_uid = attr->ia_uid;
2974 				if (attr->ia_valid & ATTR_GID)
2975 					inode->i_gid = attr->ia_gid;
2976 				mark_inode_dirty(inode);
2977 				error =
2978 				    journal_end(&th, inode->i_sb, jbegin_count);
2979 			}
2980 		}
2981 		if (!error)
2982 			error = inode_setattr(inode, attr);
2983 	}
2984 
2985 	if (!error && reiserfs_posixacl(inode->i_sb)) {
2986 		if (attr->ia_valid & ATTR_MODE)
2987 			error = reiserfs_acl_chmod(inode);
2988 	}
2989 
2990       out:
2991 	reiserfs_write_unlock(inode->i_sb);
2992 	return error;
2993 }
2994 
2995 const struct address_space_operations reiserfs_address_space_operations = {
2996 	.writepage = reiserfs_writepage,
2997 	.readpage = reiserfs_readpage,
2998 	.readpages = reiserfs_readpages,
2999 	.releasepage = reiserfs_releasepage,
3000 	.invalidatepage = reiserfs_invalidatepage,
3001 	.sync_page = block_sync_page,
3002 	.prepare_write = reiserfs_prepare_write,
3003 	.commit_write = reiserfs_commit_write,
3004 	.bmap = reiserfs_aop_bmap,
3005 	.direct_IO = reiserfs_direct_IO,
3006 	.set_page_dirty = reiserfs_set_page_dirty,
3007 };
3008