1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ 127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ 137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to readpage, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ 193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ 214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ 241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ 285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p = NULL; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 if (result == IO_ERROR) 311 return -EIO; 312 /* 313 * We do not return -ENOENT if there is a hole but page is 314 * uptodate, because it means that there is some MMAPED data 315 * associated with it that is yet to be written to disk. 316 */ 317 if ((args & GET_BLOCK_NO_HOLE) 318 && !PageUptodate(bh_result->b_page)) { 319 return -ENOENT; 320 } 321 return 0; 322 } 323 324 bh = get_last_bh(&path); 325 ih = tp_item_head(&path); 326 if (is_indirect_le_ih(ih)) { 327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 328 329 /* 330 * FIXME: here we could cache indirect item or part of it in 331 * the inode to avoid search_by_key in case of subsequent 332 * access to file 333 */ 334 blocknr = get_block_num(ind_item, path.pos_in_item); 335 ret = 0; 336 if (blocknr) { 337 map_bh(bh_result, inode->i_sb, blocknr); 338 if (path.pos_in_item == 339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 340 set_buffer_boundary(bh_result); 341 } 342 } else 343 /* 344 * We do not return -ENOENT if there is a hole but 345 * page is uptodate, because it means that there is 346 * some MMAPED data associated with it that is 347 * yet to be written to disk. 348 */ 349 if ((args & GET_BLOCK_NO_HOLE) 350 && !PageUptodate(bh_result->b_page)) { 351 ret = -ENOENT; 352 } 353 354 pathrelse(&path); 355 if (p) 356 kunmap(bh_result->b_page); 357 return ret; 358 } 359 /* requested data are in direct item(s) */ 360 if (!(args & GET_BLOCK_READ_DIRECT)) { 361 /* 362 * we are called by bmap. FIXME: we can not map block of file 363 * when it is stored in direct item(s) 364 */ 365 pathrelse(&path); 366 if (p) 367 kunmap(bh_result->b_page); 368 return -ENOENT; 369 } 370 371 /* 372 * if we've got a direct item, and the buffer or page was uptodate, 373 * we don't want to pull data off disk again. skip to the 374 * end, where we map the buffer and return 375 */ 376 if (buffer_uptodate(bh_result)) { 377 goto finished; 378 } else 379 /* 380 * grab_tail_page can trigger calls to reiserfs_get_block on 381 * up to date pages without any buffers. If the page is up 382 * to date, we don't want read old data off disk. Set the up 383 * to date bit on the buffer instead and jump to the end 384 */ 385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 386 set_buffer_uptodate(bh_result); 387 goto finished; 388 } 389 /* read file tail into part of page */ 390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 391 copy_item_head(&tmp_ih, ih); 392 393 /* 394 * we only want to kmap if we are reading the tail into the page. 395 * this is not the common case, so we don't kmap until we are 396 * sure we need to. But, this means the item might move if 397 * kmap schedules 398 */ 399 if (!p) 400 p = (char *)kmap(bh_result->b_page); 401 402 p += offset; 403 memset(p, 0, inode->i_sb->s_blocksize); 404 do { 405 if (!is_direct_le_ih(ih)) { 406 BUG(); 407 } 408 /* 409 * make sure we don't read more bytes than actually exist in 410 * the file. This can happen in odd cases where i_size isn't 411 * correct, and when direct item padding results in a few 412 * extra bytes at the end of the direct item 413 */ 414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 415 break; 416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 417 chars = 418 inode->i_size - (le_ih_k_offset(ih) - 1) - 419 path.pos_in_item; 420 done = 1; 421 } else { 422 chars = ih_item_len(ih) - path.pos_in_item; 423 } 424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 425 426 if (done) 427 break; 428 429 p += chars; 430 431 /* 432 * we done, if read direct item is not the last item of 433 * node FIXME: we could try to check right delimiting key 434 * to see whether direct item continues in the right 435 * neighbor or rely on i_size 436 */ 437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 438 break; 439 440 /* update key to look for the next piece */ 441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 442 result = search_for_position_by_key(inode->i_sb, &key, &path); 443 if (result != POSITION_FOUND) 444 /* i/o error most likely */ 445 break; 446 bh = get_last_bh(&path); 447 ih = tp_item_head(&path); 448 } while (1); 449 450 flush_dcache_page(bh_result->b_page); 451 kunmap(bh_result->b_page); 452 453 finished: 454 pathrelse(&path); 455 456 if (result == IO_ERROR) 457 return -EIO; 458 459 /* 460 * this buffer has valid data, but isn't valid for io. mapping it to 461 * block #0 tells the rest of reiserfs it just has a tail in it 462 */ 463 map_bh(bh_result, inode->i_sb, 0); 464 set_buffer_uptodate(bh_result); 465 return 0; 466 } 467 468 /* 469 * this is called to create file map. So, _get_block_create_0 will not 470 * read direct item 471 */ 472 static int reiserfs_bmap(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 if (!file_capable(inode, block)) 476 return -EFBIG; 477 478 reiserfs_write_lock(inode->i_sb); 479 /* do not read the direct item */ 480 _get_block_create_0(inode, block, bh_result, 0); 481 reiserfs_write_unlock(inode->i_sb); 482 return 0; 483 } 484 485 /* 486 * special version of get_block that is only used by grab_tail_page right 487 * now. It is sent to __block_write_begin, and when you try to get a 488 * block past the end of the file (or a block from a hole) it returns 489 * -ENOENT instead of a valid buffer. __block_write_begin expects to 490 * be able to do i/o on the buffers returned, unless an error value 491 * is also returned. 492 * 493 * So, this allows __block_write_begin to be used for reading a single block 494 * in a page. Where it does not produce a valid page for holes, or past the 495 * end of the file. This turns out to be exactly what we need for reading 496 * tails for conversion. 497 * 498 * The point of the wrapper is forcing a certain value for create, even 499 * though the VFS layer is calling this function with create==1. If you 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 501 * don't use this function. 502 */ 503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 504 struct buffer_head *bh_result, 505 int create) 506 { 507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 508 } 509 510 /* 511 * This is special helper for reiserfs_get_block in case we are executing 512 * direct_IO request. 513 */ 514 static int reiserfs_get_blocks_direct_io(struct inode *inode, 515 sector_t iblock, 516 struct buffer_head *bh_result, 517 int create) 518 { 519 int ret; 520 521 bh_result->b_page = NULL; 522 523 /* 524 * We set the b_size before reiserfs_get_block call since it is 525 * referenced in convert_tail_for_hole() that may be called from 526 * reiserfs_get_block() 527 */ 528 bh_result->b_size = i_blocksize(inode); 529 530 ret = reiserfs_get_block(inode, iblock, bh_result, 531 create | GET_BLOCK_NO_DANGLE); 532 if (ret) 533 goto out; 534 535 /* don't allow direct io onto tail pages */ 536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 537 /* 538 * make sure future calls to the direct io funcs for this 539 * offset in the file fail by unmapping the buffer 540 */ 541 clear_buffer_mapped(bh_result); 542 ret = -EINVAL; 543 } 544 545 /* 546 * Possible unpacked tail. Flush the data before pages have 547 * disappeared 548 */ 549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 550 int err; 551 552 reiserfs_write_lock(inode->i_sb); 553 554 err = reiserfs_commit_for_inode(inode); 555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 556 557 reiserfs_write_unlock(inode->i_sb); 558 559 if (err < 0) 560 ret = err; 561 } 562 out: 563 return ret; 564 } 565 566 /* 567 * helper function for when reiserfs_get_block is called for a hole 568 * but the file tail is still in a direct item 569 * bh_result is the buffer head for the hole 570 * tail_offset is the offset of the start of the tail in the file 571 * 572 * This calls prepare_write, which will start a new transaction 573 * you should not be in a transaction, or have any paths held when you 574 * call this. 575 */ 576 static int convert_tail_for_hole(struct inode *inode, 577 struct buffer_head *bh_result, 578 loff_t tail_offset) 579 { 580 unsigned long index; 581 unsigned long tail_end; 582 unsigned long tail_start; 583 struct page *tail_page; 584 struct page *hole_page = bh_result->b_page; 585 int retval = 0; 586 587 if ((tail_offset & (bh_result->b_size - 1)) != 1) 588 return -EIO; 589 590 /* always try to read until the end of the block */ 591 tail_start = tail_offset & (PAGE_SIZE - 1); 592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 593 594 index = tail_offset >> PAGE_SHIFT; 595 /* 596 * hole_page can be zero in case of direct_io, we are sure 597 * that we cannot get here if we write with O_DIRECT into tail page 598 */ 599 if (!hole_page || index != hole_page->index) { 600 tail_page = grab_cache_page(inode->i_mapping, index); 601 retval = -ENOMEM; 602 if (!tail_page) { 603 goto out; 604 } 605 } else { 606 tail_page = hole_page; 607 } 608 609 /* 610 * we don't have to make sure the conversion did not happen while 611 * we were locking the page because anyone that could convert 612 * must first take i_mutex. 613 * 614 * We must fix the tail page for writing because it might have buffers 615 * that are mapped, but have a block number of 0. This indicates tail 616 * data that has been read directly into the page, and 617 * __block_write_begin won't trigger a get_block in this case. 618 */ 619 fix_tail_page_for_writing(tail_page); 620 retval = __reiserfs_write_begin(tail_page, tail_start, 621 tail_end - tail_start); 622 if (retval) 623 goto unlock; 624 625 /* tail conversion might change the data in the page */ 626 flush_dcache_page(tail_page); 627 628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 629 630 unlock: 631 if (tail_page != hole_page) { 632 unlock_page(tail_page); 633 put_page(tail_page); 634 } 635 out: 636 return retval; 637 } 638 639 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 640 sector_t block, 641 struct inode *inode, 642 b_blocknr_t * allocated_block_nr, 643 struct treepath *path, int flags) 644 { 645 BUG_ON(!th->t_trans_id); 646 647 #ifdef REISERFS_PREALLOCATE 648 if (!(flags & GET_BLOCK_NO_IMUX)) { 649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 650 path, block); 651 } 652 #endif 653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 654 block); 655 } 656 657 int reiserfs_get_block(struct inode *inode, sector_t block, 658 struct buffer_head *bh_result, int create) 659 { 660 int repeat, retval = 0; 661 /* b_blocknr_t is (unsigned) 32 bit int*/ 662 b_blocknr_t allocated_block_nr = 0; 663 INITIALIZE_PATH(path); 664 int pos_in_item; 665 struct cpu_key key; 666 struct buffer_head *bh, *unbh = NULL; 667 struct item_head *ih, tmp_ih; 668 __le32 *item; 669 int done; 670 int fs_gen; 671 struct reiserfs_transaction_handle *th = NULL; 672 /* 673 * space reserved in transaction batch: 674 * . 3 balancings in direct->indirect conversion 675 * . 1 block involved into reiserfs_update_sd() 676 * XXX in practically impossible worst case direct2indirect() 677 * can incur (much) more than 3 balancings. 678 * quota update for user, group 679 */ 680 int jbegin_count = 681 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 683 int version; 684 int dangle = 1; 685 loff_t new_offset = 686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 687 688 reiserfs_write_lock(inode->i_sb); 689 version = get_inode_item_key_version(inode); 690 691 if (!file_capable(inode, block)) { 692 reiserfs_write_unlock(inode->i_sb); 693 return -EFBIG; 694 } 695 696 /* 697 * if !create, we aren't changing the FS, so we don't need to 698 * log anything, so we don't need to start a transaction 699 */ 700 if (!(create & GET_BLOCK_CREATE)) { 701 int ret; 702 /* find number of block-th logical block of the file */ 703 ret = _get_block_create_0(inode, block, bh_result, 704 create | GET_BLOCK_READ_DIRECT); 705 reiserfs_write_unlock(inode->i_sb); 706 return ret; 707 } 708 709 /* 710 * if we're already in a transaction, make sure to close 711 * any new transactions we start in this func 712 */ 713 if ((create & GET_BLOCK_NO_DANGLE) || 714 reiserfs_transaction_running(inode->i_sb)) 715 dangle = 0; 716 717 /* 718 * If file is of such a size, that it might have a tail and 719 * tails are enabled we should mark it as possibly needing 720 * tail packing on close 721 */ 722 if ((have_large_tails(inode->i_sb) 723 && inode->i_size < i_block_size(inode) * 4) 724 || (have_small_tails(inode->i_sb) 725 && inode->i_size < i_block_size(inode))) 726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 727 728 /* set the key of the first byte in the 'block'-th block of file */ 729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 731 start_trans: 732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 733 if (!th) { 734 retval = -ENOMEM; 735 goto failure; 736 } 737 reiserfs_update_inode_transaction(inode); 738 } 739 research: 740 741 retval = search_for_position_by_key(inode->i_sb, &key, &path); 742 if (retval == IO_ERROR) { 743 retval = -EIO; 744 goto failure; 745 } 746 747 bh = get_last_bh(&path); 748 ih = tp_item_head(&path); 749 item = tp_item_body(&path); 750 pos_in_item = path.pos_in_item; 751 752 fs_gen = get_generation(inode->i_sb); 753 copy_item_head(&tmp_ih, ih); 754 755 if (allocation_needed 756 (retval, allocated_block_nr, ih, item, pos_in_item)) { 757 /* we have to allocate block for the unformatted node */ 758 if (!th) { 759 pathrelse(&path); 760 goto start_trans; 761 } 762 763 repeat = 764 _allocate_block(th, block, inode, &allocated_block_nr, 765 &path, create); 766 767 /* 768 * restart the transaction to give the journal a chance to free 769 * some blocks. releases the path, so we have to go back to 770 * research if we succeed on the second try 771 */ 772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 774 retval = restart_transaction(th, inode, &path); 775 if (retval) 776 goto failure; 777 repeat = 778 _allocate_block(th, block, inode, 779 &allocated_block_nr, NULL, create); 780 781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 782 goto research; 783 } 784 if (repeat == QUOTA_EXCEEDED) 785 retval = -EDQUOT; 786 else 787 retval = -ENOSPC; 788 goto failure; 789 } 790 791 if (fs_changed(fs_gen, inode->i_sb) 792 && item_moved(&tmp_ih, &path)) { 793 goto research; 794 } 795 } 796 797 if (indirect_item_found(retval, ih)) { 798 b_blocknr_t unfm_ptr; 799 /* 800 * 'block'-th block is in the file already (there is 801 * corresponding cell in some indirect item). But it may be 802 * zero unformatted node pointer (hole) 803 */ 804 unfm_ptr = get_block_num(item, pos_in_item); 805 if (unfm_ptr == 0) { 806 /* use allocated block to plug the hole */ 807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 808 if (fs_changed(fs_gen, inode->i_sb) 809 && item_moved(&tmp_ih, &path)) { 810 reiserfs_restore_prepared_buffer(inode->i_sb, 811 bh); 812 goto research; 813 } 814 set_buffer_new(bh_result); 815 if (buffer_dirty(bh_result) 816 && reiserfs_data_ordered(inode->i_sb)) 817 reiserfs_add_ordered_list(inode, bh_result); 818 put_block_num(item, pos_in_item, allocated_block_nr); 819 unfm_ptr = allocated_block_nr; 820 journal_mark_dirty(th, bh); 821 reiserfs_update_sd(th, inode); 822 } 823 set_block_dev_mapped(bh_result, unfm_ptr, inode); 824 pathrelse(&path); 825 retval = 0; 826 if (!dangle && th) 827 retval = reiserfs_end_persistent_transaction(th); 828 829 reiserfs_write_unlock(inode->i_sb); 830 831 /* 832 * the item was found, so new blocks were not added to the file 833 * there is no need to make sure the inode is updated with this 834 * transaction 835 */ 836 return retval; 837 } 838 839 if (!th) { 840 pathrelse(&path); 841 goto start_trans; 842 } 843 844 /* 845 * desired position is not found or is in the direct item. We have 846 * to append file with holes up to 'block'-th block converting 847 * direct items to indirect one if necessary 848 */ 849 done = 0; 850 do { 851 if (is_statdata_le_ih(ih)) { 852 __le32 unp = 0; 853 struct cpu_key tmp_key; 854 855 /* indirect item has to be inserted */ 856 make_le_item_head(&tmp_ih, &key, version, 1, 857 TYPE_INDIRECT, UNFM_P_SIZE, 858 0 /* free_space */ ); 859 860 /* 861 * we are going to add 'block'-th block to the file. 862 * Use allocated block for that 863 */ 864 if (cpu_key_k_offset(&key) == 1) { 865 unp = cpu_to_le32(allocated_block_nr); 866 set_block_dev_mapped(bh_result, 867 allocated_block_nr, inode); 868 set_buffer_new(bh_result); 869 done = 1; 870 } 871 tmp_key = key; /* ;) */ 872 set_cpu_key_k_offset(&tmp_key, 1); 873 PATH_LAST_POSITION(&path)++; 874 875 retval = 876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 877 inode, (char *)&unp); 878 if (retval) { 879 reiserfs_free_block(th, inode, 880 allocated_block_nr, 1); 881 /* 882 * retval == -ENOSPC, -EDQUOT or -EIO 883 * or -EEXIST 884 */ 885 goto failure; 886 } 887 } else if (is_direct_le_ih(ih)) { 888 /* direct item has to be converted */ 889 loff_t tail_offset; 890 891 tail_offset = 892 ((le_ih_k_offset(ih) - 893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 894 895 /* 896 * direct item we just found fits into block we have 897 * to map. Convert it into unformatted node: use 898 * bh_result for the conversion 899 */ 900 if (tail_offset == cpu_key_k_offset(&key)) { 901 set_block_dev_mapped(bh_result, 902 allocated_block_nr, inode); 903 unbh = bh_result; 904 done = 1; 905 } else { 906 /* 907 * we have to pad file tail stored in direct 908 * item(s) up to block size and convert it 909 * to unformatted node. FIXME: this should 910 * also get into page cache 911 */ 912 913 pathrelse(&path); 914 /* 915 * ugly, but we can only end the transaction if 916 * we aren't nested 917 */ 918 BUG_ON(!th->t_refcount); 919 if (th->t_refcount == 1) { 920 retval = 921 reiserfs_end_persistent_transaction 922 (th); 923 th = NULL; 924 if (retval) 925 goto failure; 926 } 927 928 retval = 929 convert_tail_for_hole(inode, bh_result, 930 tail_offset); 931 if (retval) { 932 if (retval != -ENOSPC) 933 reiserfs_error(inode->i_sb, 934 "clm-6004", 935 "convert tail failed " 936 "inode %lu, error %d", 937 inode->i_ino, 938 retval); 939 if (allocated_block_nr) { 940 /* 941 * the bitmap, the super, 942 * and the stat data == 3 943 */ 944 if (!th) 945 th = reiserfs_persistent_transaction(inode->i_sb, 3); 946 if (th) 947 reiserfs_free_block(th, 948 inode, 949 allocated_block_nr, 950 1); 951 } 952 goto failure; 953 } 954 goto research; 955 } 956 retval = 957 direct2indirect(th, inode, &path, unbh, 958 tail_offset); 959 if (retval) { 960 reiserfs_unmap_buffer(unbh); 961 reiserfs_free_block(th, inode, 962 allocated_block_nr, 1); 963 goto failure; 964 } 965 /* 966 * it is important the set_buffer_uptodate is done 967 * after the direct2indirect. The buffer might 968 * contain valid data newer than the data on disk 969 * (read by readpage, changed, and then sent here by 970 * writepage). direct2indirect needs to know if unbh 971 * was already up to date, so it can decide if the 972 * data in unbh needs to be replaced with data from 973 * the disk 974 */ 975 set_buffer_uptodate(unbh); 976 977 /* 978 * unbh->b_page == NULL in case of DIRECT_IO request, 979 * this means buffer will disappear shortly, so it 980 * should not be added to 981 */ 982 if (unbh->b_page) { 983 /* 984 * we've converted the tail, so we must 985 * flush unbh before the transaction commits 986 */ 987 reiserfs_add_tail_list(inode, unbh); 988 989 /* 990 * mark it dirty now to prevent commit_write 991 * from adding this buffer to the inode's 992 * dirty buffer list 993 */ 994 /* 995 * AKPM: changed __mark_buffer_dirty to 996 * mark_buffer_dirty(). It's still atomic, 997 * but it sets the page dirty too, which makes 998 * it eligible for writeback at any time by the 999 * VM (which was also the case with 1000 * __mark_buffer_dirty()) 1001 */ 1002 mark_buffer_dirty(unbh); 1003 } 1004 } else { 1005 /* 1006 * append indirect item with holes if needed, when 1007 * appending pointer to 'block'-th block use block, 1008 * which is already allocated 1009 */ 1010 struct cpu_key tmp_key; 1011 /* 1012 * We use this in case we need to allocate 1013 * only one block which is a fastpath 1014 */ 1015 unp_t unf_single = 0; 1016 unp_t *un; 1017 __u64 max_to_insert = 1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1019 UNFM_P_SIZE; 1020 __u64 blocks_needed; 1021 1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1023 "vs-804: invalid position for append"); 1024 /* 1025 * indirect item has to be appended, 1026 * set up key of that position 1027 * (key type is unimportant) 1028 */ 1029 make_cpu_key(&tmp_key, inode, 1030 le_key_k_offset(version, 1031 &ih->ih_key) + 1032 op_bytes_number(ih, 1033 inode->i_sb->s_blocksize), 1034 TYPE_INDIRECT, 3); 1035 1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1037 "green-805: invalid offset"); 1038 blocks_needed = 1039 1 + 1040 ((cpu_key_k_offset(&key) - 1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1042 s_blocksize_bits); 1043 1044 if (blocks_needed == 1) { 1045 un = &unf_single; 1046 } else { 1047 un = kcalloc(min(blocks_needed, max_to_insert), 1048 UNFM_P_SIZE, GFP_NOFS); 1049 if (!un) { 1050 un = &unf_single; 1051 blocks_needed = 1; 1052 max_to_insert = 0; 1053 } 1054 } 1055 if (blocks_needed <= max_to_insert) { 1056 /* 1057 * we are going to add target block to 1058 * the file. Use allocated block for that 1059 */ 1060 un[blocks_needed - 1] = 1061 cpu_to_le32(allocated_block_nr); 1062 set_block_dev_mapped(bh_result, 1063 allocated_block_nr, inode); 1064 set_buffer_new(bh_result); 1065 done = 1; 1066 } else { 1067 /* paste hole to the indirect item */ 1068 /* 1069 * If kmalloc failed, max_to_insert becomes 1070 * zero and it means we only have space for 1071 * one block 1072 */ 1073 blocks_needed = 1074 max_to_insert ? max_to_insert : 1; 1075 } 1076 retval = 1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1078 (char *)un, 1079 UNFM_P_SIZE * 1080 blocks_needed); 1081 1082 if (blocks_needed != 1) 1083 kfree(un); 1084 1085 if (retval) { 1086 reiserfs_free_block(th, inode, 1087 allocated_block_nr, 1); 1088 goto failure; 1089 } 1090 if (!done) { 1091 /* 1092 * We need to mark new file size in case 1093 * this function will be interrupted/aborted 1094 * later on. And we may do this only for 1095 * holes. 1096 */ 1097 inode->i_size += 1098 inode->i_sb->s_blocksize * blocks_needed; 1099 } 1100 } 1101 1102 if (done == 1) 1103 break; 1104 1105 /* 1106 * this loop could log more blocks than we had originally 1107 * asked for. So, we have to allow the transaction to end 1108 * if it is too big or too full. Update the inode so things 1109 * are consistent if we crash before the function returns 1110 * release the path so that anybody waiting on the path before 1111 * ending their transaction will be able to continue. 1112 */ 1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1114 retval = restart_transaction(th, inode, &path); 1115 if (retval) 1116 goto failure; 1117 } 1118 /* 1119 * inserting indirect pointers for a hole can take a 1120 * long time. reschedule if needed and also release the write 1121 * lock for others. 1122 */ 1123 reiserfs_cond_resched(inode->i_sb); 1124 1125 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1126 if (retval == IO_ERROR) { 1127 retval = -EIO; 1128 goto failure; 1129 } 1130 if (retval == POSITION_FOUND) { 1131 reiserfs_warning(inode->i_sb, "vs-825", 1132 "%K should not be found", &key); 1133 retval = -EEXIST; 1134 if (allocated_block_nr) 1135 reiserfs_free_block(th, inode, 1136 allocated_block_nr, 1); 1137 pathrelse(&path); 1138 goto failure; 1139 } 1140 bh = get_last_bh(&path); 1141 ih = tp_item_head(&path); 1142 item = tp_item_body(&path); 1143 pos_in_item = path.pos_in_item; 1144 } while (1); 1145 1146 retval = 0; 1147 1148 failure: 1149 if (th && (!dangle || (retval && !th->t_trans_id))) { 1150 int err; 1151 if (th->t_trans_id) 1152 reiserfs_update_sd(th, inode); 1153 err = reiserfs_end_persistent_transaction(th); 1154 if (err) 1155 retval = err; 1156 } 1157 1158 reiserfs_write_unlock(inode->i_sb); 1159 reiserfs_check_path(&path); 1160 return retval; 1161 } 1162 1163 static int 1164 reiserfs_readpages(struct file *file, struct address_space *mapping, 1165 struct list_head *pages, unsigned nr_pages) 1166 { 1167 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1168 } 1169 1170 /* 1171 * Compute real number of used bytes by file 1172 * Following three functions can go away when we'll have enough space in 1173 * stat item 1174 */ 1175 static int real_space_diff(struct inode *inode, int sd_size) 1176 { 1177 int bytes; 1178 loff_t blocksize = inode->i_sb->s_blocksize; 1179 1180 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1181 return sd_size; 1182 1183 /* 1184 * End of file is also in full block with indirect reference, so round 1185 * up to the next block. 1186 * 1187 * there is just no way to know if the tail is actually packed 1188 * on the file, so we have to assume it isn't. When we pack the 1189 * tail, we add 4 bytes to pretend there really is an unformatted 1190 * node pointer 1191 */ 1192 bytes = 1193 ((inode->i_size + 1194 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1195 sd_size; 1196 return bytes; 1197 } 1198 1199 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1200 int sd_size) 1201 { 1202 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1203 return inode->i_size + 1204 (loff_t) (real_space_diff(inode, sd_size)); 1205 } 1206 return ((loff_t) real_space_diff(inode, sd_size)) + 1207 (((loff_t) blocks) << 9); 1208 } 1209 1210 /* Compute number of blocks used by file in ReiserFS counting */ 1211 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1212 { 1213 loff_t bytes = inode_get_bytes(inode); 1214 loff_t real_space = real_space_diff(inode, sd_size); 1215 1216 /* keeps fsck and non-quota versions of reiserfs happy */ 1217 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1218 bytes += (loff_t) 511; 1219 } 1220 1221 /* 1222 * files from before the quota patch might i_blocks such that 1223 * bytes < real_space. Deal with that here to prevent it from 1224 * going negative. 1225 */ 1226 if (bytes < real_space) 1227 return 0; 1228 return (bytes - real_space) >> 9; 1229 } 1230 1231 /* 1232 * BAD: new directories have stat data of new type and all other items 1233 * of old type. Version stored in the inode says about body items, so 1234 * in update_stat_data we can not rely on inode, but have to check 1235 * item version directly 1236 */ 1237 1238 /* called by read_locked_inode */ 1239 static void init_inode(struct inode *inode, struct treepath *path) 1240 { 1241 struct buffer_head *bh; 1242 struct item_head *ih; 1243 __u32 rdev; 1244 1245 bh = PATH_PLAST_BUFFER(path); 1246 ih = tp_item_head(path); 1247 1248 copy_key(INODE_PKEY(inode), &ih->ih_key); 1249 1250 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1251 REISERFS_I(inode)->i_flags = 0; 1252 REISERFS_I(inode)->i_prealloc_block = 0; 1253 REISERFS_I(inode)->i_prealloc_count = 0; 1254 REISERFS_I(inode)->i_trans_id = 0; 1255 REISERFS_I(inode)->i_jl = NULL; 1256 reiserfs_init_xattr_rwsem(inode); 1257 1258 if (stat_data_v1(ih)) { 1259 struct stat_data_v1 *sd = 1260 (struct stat_data_v1 *)ih_item_body(bh, ih); 1261 unsigned long blocks; 1262 1263 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1264 set_inode_sd_version(inode, STAT_DATA_V1); 1265 inode->i_mode = sd_v1_mode(sd); 1266 set_nlink(inode, sd_v1_nlink(sd)); 1267 i_uid_write(inode, sd_v1_uid(sd)); 1268 i_gid_write(inode, sd_v1_gid(sd)); 1269 inode->i_size = sd_v1_size(sd); 1270 inode->i_atime.tv_sec = sd_v1_atime(sd); 1271 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1272 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1273 inode->i_atime.tv_nsec = 0; 1274 inode->i_ctime.tv_nsec = 0; 1275 inode->i_mtime.tv_nsec = 0; 1276 1277 inode->i_blocks = sd_v1_blocks(sd); 1278 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1279 blocks = (inode->i_size + 511) >> 9; 1280 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1281 1282 /* 1283 * there was a bug in <=3.5.23 when i_blocks could take 1284 * negative values. Starting from 3.5.17 this value could 1285 * even be stored in stat data. For such files we set 1286 * i_blocks based on file size. Just 2 notes: this can be 1287 * wrong for sparse files. On-disk value will be only 1288 * updated if file's inode will ever change 1289 */ 1290 if (inode->i_blocks > blocks) { 1291 inode->i_blocks = blocks; 1292 } 1293 1294 rdev = sd_v1_rdev(sd); 1295 REISERFS_I(inode)->i_first_direct_byte = 1296 sd_v1_first_direct_byte(sd); 1297 1298 /* 1299 * an early bug in the quota code can give us an odd 1300 * number for the block count. This is incorrect, fix it here. 1301 */ 1302 if (inode->i_blocks & 1) { 1303 inode->i_blocks++; 1304 } 1305 inode_set_bytes(inode, 1306 to_real_used_space(inode, inode->i_blocks, 1307 SD_V1_SIZE)); 1308 /* 1309 * nopack is initially zero for v1 objects. For v2 objects, 1310 * nopack is initialised from sd_attrs 1311 */ 1312 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1313 } else { 1314 /* 1315 * new stat data found, but object may have old items 1316 * (directories and symlinks) 1317 */ 1318 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1319 1320 inode->i_mode = sd_v2_mode(sd); 1321 set_nlink(inode, sd_v2_nlink(sd)); 1322 i_uid_write(inode, sd_v2_uid(sd)); 1323 inode->i_size = sd_v2_size(sd); 1324 i_gid_write(inode, sd_v2_gid(sd)); 1325 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1326 inode->i_atime.tv_sec = sd_v2_atime(sd); 1327 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1328 inode->i_ctime.tv_nsec = 0; 1329 inode->i_mtime.tv_nsec = 0; 1330 inode->i_atime.tv_nsec = 0; 1331 inode->i_blocks = sd_v2_blocks(sd); 1332 rdev = sd_v2_rdev(sd); 1333 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1334 inode->i_generation = 1335 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1336 else 1337 inode->i_generation = sd_v2_generation(sd); 1338 1339 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1341 else 1342 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1343 REISERFS_I(inode)->i_first_direct_byte = 0; 1344 set_inode_sd_version(inode, STAT_DATA_V2); 1345 inode_set_bytes(inode, 1346 to_real_used_space(inode, inode->i_blocks, 1347 SD_V2_SIZE)); 1348 /* 1349 * read persistent inode attributes from sd and initialise 1350 * generic inode flags from them 1351 */ 1352 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1353 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1354 } 1355 1356 pathrelse(path); 1357 if (S_ISREG(inode->i_mode)) { 1358 inode->i_op = &reiserfs_file_inode_operations; 1359 inode->i_fop = &reiserfs_file_operations; 1360 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1361 } else if (S_ISDIR(inode->i_mode)) { 1362 inode->i_op = &reiserfs_dir_inode_operations; 1363 inode->i_fop = &reiserfs_dir_operations; 1364 } else if (S_ISLNK(inode->i_mode)) { 1365 inode->i_op = &reiserfs_symlink_inode_operations; 1366 inode_nohighmem(inode); 1367 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1368 } else { 1369 inode->i_blocks = 0; 1370 inode->i_op = &reiserfs_special_inode_operations; 1371 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1372 } 1373 } 1374 1375 /* update new stat data with inode fields */ 1376 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1377 { 1378 struct stat_data *sd_v2 = (struct stat_data *)sd; 1379 1380 set_sd_v2_mode(sd_v2, inode->i_mode); 1381 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1382 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1383 set_sd_v2_size(sd_v2, size); 1384 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1385 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1386 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1387 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1388 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1389 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1390 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1391 else 1392 set_sd_v2_generation(sd_v2, inode->i_generation); 1393 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1394 } 1395 1396 /* used to copy inode's fields to old stat data */ 1397 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1398 { 1399 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1400 1401 set_sd_v1_mode(sd_v1, inode->i_mode); 1402 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1403 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1404 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1405 set_sd_v1_size(sd_v1, size); 1406 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1407 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1408 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1409 1410 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1411 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1412 else 1413 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1414 1415 /* Sigh. i_first_direct_byte is back */ 1416 set_sd_v1_first_direct_byte(sd_v1, 1417 REISERFS_I(inode)->i_first_direct_byte); 1418 } 1419 1420 /* 1421 * NOTE, you must prepare the buffer head before sending it here, 1422 * and then log it after the call 1423 */ 1424 static void update_stat_data(struct treepath *path, struct inode *inode, 1425 loff_t size) 1426 { 1427 struct buffer_head *bh; 1428 struct item_head *ih; 1429 1430 bh = PATH_PLAST_BUFFER(path); 1431 ih = tp_item_head(path); 1432 1433 if (!is_statdata_le_ih(ih)) 1434 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1435 INODE_PKEY(inode), ih); 1436 1437 /* path points to old stat data */ 1438 if (stat_data_v1(ih)) { 1439 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1440 } else { 1441 inode2sd(ih_item_body(bh, ih), inode, size); 1442 } 1443 1444 return; 1445 } 1446 1447 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1448 struct inode *inode, loff_t size) 1449 { 1450 struct cpu_key key; 1451 INITIALIZE_PATH(path); 1452 struct buffer_head *bh; 1453 int fs_gen; 1454 struct item_head *ih, tmp_ih; 1455 int retval; 1456 1457 BUG_ON(!th->t_trans_id); 1458 1459 /* key type is unimportant */ 1460 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1461 1462 for (;;) { 1463 int pos; 1464 /* look for the object's stat data */ 1465 retval = search_item(inode->i_sb, &key, &path); 1466 if (retval == IO_ERROR) { 1467 reiserfs_error(inode->i_sb, "vs-13050", 1468 "i/o failure occurred trying to " 1469 "update %K stat data", &key); 1470 return; 1471 } 1472 if (retval == ITEM_NOT_FOUND) { 1473 pos = PATH_LAST_POSITION(&path); 1474 pathrelse(&path); 1475 if (inode->i_nlink == 0) { 1476 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1477 return; 1478 } 1479 reiserfs_warning(inode->i_sb, "vs-13060", 1480 "stat data of object %k (nlink == %d) " 1481 "not found (pos %d)", 1482 INODE_PKEY(inode), inode->i_nlink, 1483 pos); 1484 reiserfs_check_path(&path); 1485 return; 1486 } 1487 1488 /* 1489 * sigh, prepare_for_journal might schedule. When it 1490 * schedules the FS might change. We have to detect that, 1491 * and loop back to the search if the stat data item has moved 1492 */ 1493 bh = get_last_bh(&path); 1494 ih = tp_item_head(&path); 1495 copy_item_head(&tmp_ih, ih); 1496 fs_gen = get_generation(inode->i_sb); 1497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1498 1499 /* Stat_data item has been moved after scheduling. */ 1500 if (fs_changed(fs_gen, inode->i_sb) 1501 && item_moved(&tmp_ih, &path)) { 1502 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1503 continue; 1504 } 1505 break; 1506 } 1507 update_stat_data(&path, inode, size); 1508 journal_mark_dirty(th, bh); 1509 pathrelse(&path); 1510 return; 1511 } 1512 1513 /* 1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1515 * does a make_bad_inode when things go wrong. But, we need to make sure 1516 * and clear the key in the private portion of the inode, otherwise a 1517 * corresponding iput might try to delete whatever object the inode last 1518 * represented. 1519 */ 1520 static void reiserfs_make_bad_inode(struct inode *inode) 1521 { 1522 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1523 make_bad_inode(inode); 1524 } 1525 1526 /* 1527 * initially this function was derived from minix or ext2's analog and 1528 * evolved as the prototype did 1529 */ 1530 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1531 { 1532 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1533 inode->i_ino = args->objectid; 1534 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1535 return 0; 1536 } 1537 1538 /* 1539 * looks for stat data in the tree, and fills up the fields of in-core 1540 * inode stat data fields 1541 */ 1542 void reiserfs_read_locked_inode(struct inode *inode, 1543 struct reiserfs_iget_args *args) 1544 { 1545 INITIALIZE_PATH(path_to_sd); 1546 struct cpu_key key; 1547 unsigned long dirino; 1548 int retval; 1549 1550 dirino = args->dirid; 1551 1552 /* 1553 * set version 1, version 2 could be used too, because stat data 1554 * key is the same in both versions 1555 */ 1556 key.version = KEY_FORMAT_3_5; 1557 key.on_disk_key.k_dir_id = dirino; 1558 key.on_disk_key.k_objectid = inode->i_ino; 1559 key.on_disk_key.k_offset = 0; 1560 key.on_disk_key.k_type = 0; 1561 1562 /* look for the object's stat data */ 1563 retval = search_item(inode->i_sb, &key, &path_to_sd); 1564 if (retval == IO_ERROR) { 1565 reiserfs_error(inode->i_sb, "vs-13070", 1566 "i/o failure occurred trying to find " 1567 "stat data of %K", &key); 1568 reiserfs_make_bad_inode(inode); 1569 return; 1570 } 1571 1572 /* a stale NFS handle can trigger this without it being an error */ 1573 if (retval != ITEM_FOUND) { 1574 pathrelse(&path_to_sd); 1575 reiserfs_make_bad_inode(inode); 1576 clear_nlink(inode); 1577 return; 1578 } 1579 1580 init_inode(inode, &path_to_sd); 1581 1582 /* 1583 * It is possible that knfsd is trying to access inode of a file 1584 * that is being removed from the disk by some other thread. As we 1585 * update sd on unlink all that is required is to check for nlink 1586 * here. This bug was first found by Sizif when debugging 1587 * SquidNG/Butterfly, forgotten, and found again after Philippe 1588 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1589 1590 * More logical fix would require changes in fs/inode.c:iput() to 1591 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1592 * in iget() to return NULL if I_FREEING inode is found in 1593 * hash-table. 1594 */ 1595 1596 /* 1597 * Currently there is one place where it's ok to meet inode with 1598 * nlink==0: processing of open-unlinked and half-truncated files 1599 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1600 */ 1601 if ((inode->i_nlink == 0) && 1602 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1603 reiserfs_warning(inode->i_sb, "vs-13075", 1604 "dead inode read from disk %K. " 1605 "This is likely to be race with knfsd. Ignore", 1606 &key); 1607 reiserfs_make_bad_inode(inode); 1608 } 1609 1610 /* init inode should be relsing */ 1611 reiserfs_check_path(&path_to_sd); 1612 1613 /* 1614 * Stat data v1 doesn't support ACLs. 1615 */ 1616 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1617 cache_no_acl(inode); 1618 } 1619 1620 /* 1621 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1622 * 1623 * @inode: inode from hash table to check 1624 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1625 * 1626 * This function is called by iget5_locked() to distinguish reiserfs inodes 1627 * having the same inode numbers. Such inodes can only exist due to some 1628 * error condition. One of them should be bad. Inodes with identical 1629 * inode numbers (objectids) are distinguished by parent directory ids. 1630 * 1631 */ 1632 int reiserfs_find_actor(struct inode *inode, void *opaque) 1633 { 1634 struct reiserfs_iget_args *args; 1635 1636 args = opaque; 1637 /* args is already in CPU order */ 1638 return (inode->i_ino == args->objectid) && 1639 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1640 } 1641 1642 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1643 { 1644 struct inode *inode; 1645 struct reiserfs_iget_args args; 1646 int depth; 1647 1648 args.objectid = key->on_disk_key.k_objectid; 1649 args.dirid = key->on_disk_key.k_dir_id; 1650 depth = reiserfs_write_unlock_nested(s); 1651 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1652 reiserfs_find_actor, reiserfs_init_locked_inode, 1653 (void *)(&args)); 1654 reiserfs_write_lock_nested(s, depth); 1655 if (!inode) 1656 return ERR_PTR(-ENOMEM); 1657 1658 if (inode->i_state & I_NEW) { 1659 reiserfs_read_locked_inode(inode, &args); 1660 unlock_new_inode(inode); 1661 } 1662 1663 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1664 /* either due to i/o error or a stale NFS handle */ 1665 iput(inode); 1666 inode = NULL; 1667 } 1668 return inode; 1669 } 1670 1671 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1672 u32 objectid, u32 dir_id, u32 generation) 1673 1674 { 1675 struct cpu_key key; 1676 struct inode *inode; 1677 1678 key.on_disk_key.k_objectid = objectid; 1679 key.on_disk_key.k_dir_id = dir_id; 1680 reiserfs_write_lock(sb); 1681 inode = reiserfs_iget(sb, &key); 1682 if (inode && !IS_ERR(inode) && generation != 0 && 1683 generation != inode->i_generation) { 1684 iput(inode); 1685 inode = NULL; 1686 } 1687 reiserfs_write_unlock(sb); 1688 1689 return d_obtain_alias(inode); 1690 } 1691 1692 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1693 int fh_len, int fh_type) 1694 { 1695 /* 1696 * fhtype happens to reflect the number of u32s encoded. 1697 * due to a bug in earlier code, fhtype might indicate there 1698 * are more u32s then actually fitted. 1699 * so if fhtype seems to be more than len, reduce fhtype. 1700 * Valid types are: 1701 * 2 - objectid + dir_id - legacy support 1702 * 3 - objectid + dir_id + generation 1703 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1704 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1705 * 6 - as above plus generation of directory 1706 * 6 does not fit in NFSv2 handles 1707 */ 1708 if (fh_type > fh_len) { 1709 if (fh_type != 6 || fh_len != 5) 1710 reiserfs_warning(sb, "reiserfs-13077", 1711 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1712 fh_type, fh_len); 1713 fh_type = fh_len; 1714 } 1715 if (fh_len < 2) 1716 return NULL; 1717 1718 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1719 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1720 } 1721 1722 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1723 int fh_len, int fh_type) 1724 { 1725 if (fh_type > fh_len) 1726 fh_type = fh_len; 1727 if (fh_type < 4) 1728 return NULL; 1729 1730 return reiserfs_get_dentry(sb, 1731 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1732 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1733 (fh_type == 6) ? fid->raw[5] : 0); 1734 } 1735 1736 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1737 struct inode *parent) 1738 { 1739 int maxlen = *lenp; 1740 1741 if (parent && (maxlen < 5)) { 1742 *lenp = 5; 1743 return FILEID_INVALID; 1744 } else if (maxlen < 3) { 1745 *lenp = 3; 1746 return FILEID_INVALID; 1747 } 1748 1749 data[0] = inode->i_ino; 1750 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1751 data[2] = inode->i_generation; 1752 *lenp = 3; 1753 if (parent) { 1754 data[3] = parent->i_ino; 1755 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1756 *lenp = 5; 1757 if (maxlen >= 6) { 1758 data[5] = parent->i_generation; 1759 *lenp = 6; 1760 } 1761 } 1762 return *lenp; 1763 } 1764 1765 /* 1766 * looks for stat data, then copies fields to it, marks the buffer 1767 * containing stat data as dirty 1768 */ 1769 /* 1770 * reiserfs inodes are never really dirty, since the dirty inode call 1771 * always logs them. This call allows the VFS inode marking routines 1772 * to properly mark inodes for datasync and such, but only actually 1773 * does something when called for a synchronous update. 1774 */ 1775 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1776 { 1777 struct reiserfs_transaction_handle th; 1778 int jbegin_count = 1; 1779 1780 if (sb_rdonly(inode->i_sb)) 1781 return -EROFS; 1782 /* 1783 * memory pressure can sometimes initiate write_inode calls with 1784 * sync == 1, 1785 * these cases are just when the system needs ram, not when the 1786 * inode needs to reach disk for safety, and they can safely be 1787 * ignored because the altered inode has already been logged. 1788 */ 1789 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1790 reiserfs_write_lock(inode->i_sb); 1791 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1792 reiserfs_update_sd(&th, inode); 1793 journal_end_sync(&th); 1794 } 1795 reiserfs_write_unlock(inode->i_sb); 1796 } 1797 return 0; 1798 } 1799 1800 /* 1801 * stat data of new object is inserted already, this inserts the item 1802 * containing "." and ".." entries 1803 */ 1804 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1805 struct inode *inode, 1806 struct item_head *ih, struct treepath *path, 1807 struct inode *dir) 1808 { 1809 struct super_block *sb = th->t_super; 1810 char empty_dir[EMPTY_DIR_SIZE]; 1811 char *body = empty_dir; 1812 struct cpu_key key; 1813 int retval; 1814 1815 BUG_ON(!th->t_trans_id); 1816 1817 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1818 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1819 TYPE_DIRENTRY, 3 /*key length */ ); 1820 1821 /* 1822 * compose item head for new item. Directories consist of items of 1823 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1824 * is done by reiserfs_new_inode 1825 */ 1826 if (old_format_only(sb)) { 1827 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1828 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1829 1830 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1831 ih->ih_key.k_objectid, 1832 INODE_PKEY(dir)->k_dir_id, 1833 INODE_PKEY(dir)->k_objectid); 1834 } else { 1835 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1836 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1837 1838 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1839 ih->ih_key.k_objectid, 1840 INODE_PKEY(dir)->k_dir_id, 1841 INODE_PKEY(dir)->k_objectid); 1842 } 1843 1844 /* look for place in the tree for new item */ 1845 retval = search_item(sb, &key, path); 1846 if (retval == IO_ERROR) { 1847 reiserfs_error(sb, "vs-13080", 1848 "i/o failure occurred creating new directory"); 1849 return -EIO; 1850 } 1851 if (retval == ITEM_FOUND) { 1852 pathrelse(path); 1853 reiserfs_warning(sb, "vs-13070", 1854 "object with this key exists (%k)", 1855 &(ih->ih_key)); 1856 return -EEXIST; 1857 } 1858 1859 /* insert item, that is empty directory item */ 1860 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1861 } 1862 1863 /* 1864 * stat data of object has been inserted, this inserts the item 1865 * containing the body of symlink 1866 */ 1867 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1868 struct inode *inode, 1869 struct item_head *ih, 1870 struct treepath *path, const char *symname, 1871 int item_len) 1872 { 1873 struct super_block *sb = th->t_super; 1874 struct cpu_key key; 1875 int retval; 1876 1877 BUG_ON(!th->t_trans_id); 1878 1879 _make_cpu_key(&key, KEY_FORMAT_3_5, 1880 le32_to_cpu(ih->ih_key.k_dir_id), 1881 le32_to_cpu(ih->ih_key.k_objectid), 1882 1, TYPE_DIRECT, 3 /*key length */ ); 1883 1884 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1885 0 /*free_space */ ); 1886 1887 /* look for place in the tree for new item */ 1888 retval = search_item(sb, &key, path); 1889 if (retval == IO_ERROR) { 1890 reiserfs_error(sb, "vs-13080", 1891 "i/o failure occurred creating new symlink"); 1892 return -EIO; 1893 } 1894 if (retval == ITEM_FOUND) { 1895 pathrelse(path); 1896 reiserfs_warning(sb, "vs-13080", 1897 "object with this key exists (%k)", 1898 &(ih->ih_key)); 1899 return -EEXIST; 1900 } 1901 1902 /* insert item, that is body of symlink */ 1903 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1904 } 1905 1906 /* 1907 * inserts the stat data into the tree, and then calls 1908 * reiserfs_new_directory (to insert ".", ".." item if new object is 1909 * directory) or reiserfs_new_symlink (to insert symlink body if new 1910 * object is symlink) or nothing (if new object is regular file) 1911 1912 * NOTE! uid and gid must already be set in the inode. If we return 1913 * non-zero due to an error, we have to drop the quota previously allocated 1914 * for the fresh inode. This can only be done outside a transaction, so 1915 * if we return non-zero, we also end the transaction. 1916 * 1917 * @th: active transaction handle 1918 * @dir: parent directory for new inode 1919 * @mode: mode of new inode 1920 * @symname: symlink contents if inode is symlink 1921 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1922 * symlinks 1923 * @inode: inode to be filled 1924 * @security: optional security context to associate with this inode 1925 */ 1926 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1927 struct inode *dir, umode_t mode, const char *symname, 1928 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1929 strlen (symname) for symlinks) */ 1930 loff_t i_size, struct dentry *dentry, 1931 struct inode *inode, 1932 struct reiserfs_security_handle *security) 1933 { 1934 struct super_block *sb = dir->i_sb; 1935 struct reiserfs_iget_args args; 1936 INITIALIZE_PATH(path_to_key); 1937 struct cpu_key key; 1938 struct item_head ih; 1939 struct stat_data sd; 1940 int retval; 1941 int err; 1942 int depth; 1943 1944 BUG_ON(!th->t_trans_id); 1945 1946 depth = reiserfs_write_unlock_nested(sb); 1947 err = dquot_alloc_inode(inode); 1948 reiserfs_write_lock_nested(sb, depth); 1949 if (err) 1950 goto out_end_trans; 1951 if (!dir->i_nlink) { 1952 err = -EPERM; 1953 goto out_bad_inode; 1954 } 1955 1956 /* item head of new item */ 1957 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1958 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1959 if (!ih.ih_key.k_objectid) { 1960 err = -ENOMEM; 1961 goto out_bad_inode; 1962 } 1963 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1964 if (old_format_only(sb)) 1965 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1966 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1967 else 1968 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1969 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1970 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1971 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1972 1973 depth = reiserfs_write_unlock_nested(inode->i_sb); 1974 err = insert_inode_locked4(inode, args.objectid, 1975 reiserfs_find_actor, &args); 1976 reiserfs_write_lock_nested(inode->i_sb, depth); 1977 if (err) { 1978 err = -EINVAL; 1979 goto out_bad_inode; 1980 } 1981 1982 if (old_format_only(sb)) 1983 /* 1984 * not a perfect generation count, as object ids can be reused, 1985 * but this is as good as reiserfs can do right now. 1986 * note that the private part of inode isn't filled in yet, 1987 * we have to use the directory. 1988 */ 1989 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1990 else 1991 #if defined( USE_INODE_GENERATION_COUNTER ) 1992 inode->i_generation = 1993 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1994 #else 1995 inode->i_generation = ++event; 1996 #endif 1997 1998 /* fill stat data */ 1999 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 2000 2001 /* uid and gid must already be set by the caller for quota init */ 2002 2003 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2004 inode->i_size = i_size; 2005 inode->i_blocks = 0; 2006 inode->i_bytes = 0; 2007 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2008 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2009 2010 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2011 REISERFS_I(inode)->i_flags = 0; 2012 REISERFS_I(inode)->i_prealloc_block = 0; 2013 REISERFS_I(inode)->i_prealloc_count = 0; 2014 REISERFS_I(inode)->i_trans_id = 0; 2015 REISERFS_I(inode)->i_jl = NULL; 2016 REISERFS_I(inode)->i_attrs = 2017 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2018 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2019 reiserfs_init_xattr_rwsem(inode); 2020 2021 /* key to search for correct place for new stat data */ 2022 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2023 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2024 TYPE_STAT_DATA, 3 /*key length */ ); 2025 2026 /* find proper place for inserting of stat data */ 2027 retval = search_item(sb, &key, &path_to_key); 2028 if (retval == IO_ERROR) { 2029 err = -EIO; 2030 goto out_bad_inode; 2031 } 2032 if (retval == ITEM_FOUND) { 2033 pathrelse(&path_to_key); 2034 err = -EEXIST; 2035 goto out_bad_inode; 2036 } 2037 if (old_format_only(sb)) { 2038 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2039 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2040 pathrelse(&path_to_key); 2041 err = -EINVAL; 2042 goto out_bad_inode; 2043 } 2044 inode2sd_v1(&sd, inode, inode->i_size); 2045 } else { 2046 inode2sd(&sd, inode, inode->i_size); 2047 } 2048 /* 2049 * store in in-core inode the key of stat data and version all 2050 * object items will have (directory items will have old offset 2051 * format, other new objects will consist of new items) 2052 */ 2053 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2054 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2055 else 2056 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2057 if (old_format_only(sb)) 2058 set_inode_sd_version(inode, STAT_DATA_V1); 2059 else 2060 set_inode_sd_version(inode, STAT_DATA_V2); 2061 2062 /* insert the stat data into the tree */ 2063 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2064 if (REISERFS_I(dir)->new_packing_locality) 2065 th->displace_new_blocks = 1; 2066 #endif 2067 retval = 2068 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2069 (char *)(&sd)); 2070 if (retval) { 2071 err = retval; 2072 reiserfs_check_path(&path_to_key); 2073 goto out_bad_inode; 2074 } 2075 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2076 if (!th->displace_new_blocks) 2077 REISERFS_I(dir)->new_packing_locality = 0; 2078 #endif 2079 if (S_ISDIR(mode)) { 2080 /* insert item with "." and ".." */ 2081 retval = 2082 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2083 } 2084 2085 if (S_ISLNK(mode)) { 2086 /* insert body of symlink */ 2087 if (!old_format_only(sb)) 2088 i_size = ROUND_UP(i_size); 2089 retval = 2090 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2091 i_size); 2092 } 2093 if (retval) { 2094 err = retval; 2095 reiserfs_check_path(&path_to_key); 2096 journal_end(th); 2097 goto out_inserted_sd; 2098 } 2099 2100 if (reiserfs_posixacl(inode->i_sb)) { 2101 reiserfs_write_unlock(inode->i_sb); 2102 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2103 reiserfs_write_lock(inode->i_sb); 2104 if (retval) { 2105 err = retval; 2106 reiserfs_check_path(&path_to_key); 2107 journal_end(th); 2108 goto out_inserted_sd; 2109 } 2110 } else if (inode->i_sb->s_flags & SB_POSIXACL) { 2111 reiserfs_warning(inode->i_sb, "jdm-13090", 2112 "ACLs aren't enabled in the fs, " 2113 "but vfs thinks they are!"); 2114 } else if (IS_PRIVATE(dir)) 2115 inode->i_flags |= S_PRIVATE; 2116 2117 if (security->name) { 2118 reiserfs_write_unlock(inode->i_sb); 2119 retval = reiserfs_security_write(th, inode, security); 2120 reiserfs_write_lock(inode->i_sb); 2121 if (retval) { 2122 err = retval; 2123 reiserfs_check_path(&path_to_key); 2124 retval = journal_end(th); 2125 if (retval) 2126 err = retval; 2127 goto out_inserted_sd; 2128 } 2129 } 2130 2131 reiserfs_update_sd(th, inode); 2132 reiserfs_check_path(&path_to_key); 2133 2134 return 0; 2135 2136 out_bad_inode: 2137 /* Invalidate the object, nothing was inserted yet */ 2138 INODE_PKEY(inode)->k_objectid = 0; 2139 2140 /* Quota change must be inside a transaction for journaling */ 2141 depth = reiserfs_write_unlock_nested(inode->i_sb); 2142 dquot_free_inode(inode); 2143 reiserfs_write_lock_nested(inode->i_sb, depth); 2144 2145 out_end_trans: 2146 journal_end(th); 2147 /* 2148 * Drop can be outside and it needs more credits so it's better 2149 * to have it outside 2150 */ 2151 depth = reiserfs_write_unlock_nested(inode->i_sb); 2152 dquot_drop(inode); 2153 reiserfs_write_lock_nested(inode->i_sb, depth); 2154 inode->i_flags |= S_NOQUOTA; 2155 make_bad_inode(inode); 2156 2157 out_inserted_sd: 2158 clear_nlink(inode); 2159 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2160 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2161 iput(inode); 2162 return err; 2163 } 2164 2165 /* 2166 * finds the tail page in the page cache, 2167 * reads the last block in. 2168 * 2169 * On success, page_result is set to a locked, pinned page, and bh_result 2170 * is set to an up to date buffer for the last block in the file. returns 0. 2171 * 2172 * tail conversion is not done, so bh_result might not be valid for writing 2173 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2174 * trying to write the block. 2175 * 2176 * on failure, nonzero is returned, page_result and bh_result are untouched. 2177 */ 2178 static int grab_tail_page(struct inode *inode, 2179 struct page **page_result, 2180 struct buffer_head **bh_result) 2181 { 2182 2183 /* 2184 * we want the page with the last byte in the file, 2185 * not the page that will hold the next byte for appending 2186 */ 2187 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2188 unsigned long pos = 0; 2189 unsigned long start = 0; 2190 unsigned long blocksize = inode->i_sb->s_blocksize; 2191 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2192 struct buffer_head *bh; 2193 struct buffer_head *head; 2194 struct page *page; 2195 int error; 2196 2197 /* 2198 * we know that we are only called with inode->i_size > 0. 2199 * we also know that a file tail can never be as big as a block 2200 * If i_size % blocksize == 0, our file is currently block aligned 2201 * and it won't need converting or zeroing after a truncate. 2202 */ 2203 if ((offset & (blocksize - 1)) == 0) { 2204 return -ENOENT; 2205 } 2206 page = grab_cache_page(inode->i_mapping, index); 2207 error = -ENOMEM; 2208 if (!page) { 2209 goto out; 2210 } 2211 /* start within the page of the last block in the file */ 2212 start = (offset / blocksize) * blocksize; 2213 2214 error = __block_write_begin(page, start, offset - start, 2215 reiserfs_get_block_create_0); 2216 if (error) 2217 goto unlock; 2218 2219 head = page_buffers(page); 2220 bh = head; 2221 do { 2222 if (pos >= start) { 2223 break; 2224 } 2225 bh = bh->b_this_page; 2226 pos += blocksize; 2227 } while (bh != head); 2228 2229 if (!buffer_uptodate(bh)) { 2230 /* 2231 * note, this should never happen, prepare_write should be 2232 * taking care of this for us. If the buffer isn't up to 2233 * date, I've screwed up the code to find the buffer, or the 2234 * code to call prepare_write 2235 */ 2236 reiserfs_error(inode->i_sb, "clm-6000", 2237 "error reading block %lu", bh->b_blocknr); 2238 error = -EIO; 2239 goto unlock; 2240 } 2241 *bh_result = bh; 2242 *page_result = page; 2243 2244 out: 2245 return error; 2246 2247 unlock: 2248 unlock_page(page); 2249 put_page(page); 2250 return error; 2251 } 2252 2253 /* 2254 * vfs version of truncate file. Must NOT be called with 2255 * a transaction already started. 2256 * 2257 * some code taken from block_truncate_page 2258 */ 2259 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2260 { 2261 struct reiserfs_transaction_handle th; 2262 /* we want the offset for the first byte after the end of the file */ 2263 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2264 unsigned blocksize = inode->i_sb->s_blocksize; 2265 unsigned length; 2266 struct page *page = NULL; 2267 int error; 2268 struct buffer_head *bh = NULL; 2269 int err2; 2270 2271 reiserfs_write_lock(inode->i_sb); 2272 2273 if (inode->i_size > 0) { 2274 error = grab_tail_page(inode, &page, &bh); 2275 if (error) { 2276 /* 2277 * -ENOENT means we truncated past the end of the 2278 * file, and get_block_create_0 could not find a 2279 * block to read in, which is ok. 2280 */ 2281 if (error != -ENOENT) 2282 reiserfs_error(inode->i_sb, "clm-6001", 2283 "grab_tail_page failed %d", 2284 error); 2285 page = NULL; 2286 bh = NULL; 2287 } 2288 } 2289 2290 /* 2291 * so, if page != NULL, we have a buffer head for the offset at 2292 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2293 * then we have an unformatted node. Otherwise, we have a direct item, 2294 * and no zeroing is required on disk. We zero after the truncate, 2295 * because the truncate might pack the item anyway 2296 * (it will unmap bh if it packs). 2297 * 2298 * it is enough to reserve space in transaction for 2 balancings: 2299 * one for "save" link adding and another for the first 2300 * cut_from_item. 1 is for update_sd 2301 */ 2302 error = journal_begin(&th, inode->i_sb, 2303 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2304 if (error) 2305 goto out; 2306 reiserfs_update_inode_transaction(inode); 2307 if (update_timestamps) 2308 /* 2309 * we are doing real truncate: if the system crashes 2310 * before the last transaction of truncating gets committed 2311 * - on reboot the file either appears truncated properly 2312 * or not truncated at all 2313 */ 2314 add_save_link(&th, inode, 1); 2315 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2316 error = journal_end(&th); 2317 if (error) 2318 goto out; 2319 2320 /* check reiserfs_do_truncate after ending the transaction */ 2321 if (err2) { 2322 error = err2; 2323 goto out; 2324 } 2325 2326 if (update_timestamps) { 2327 error = remove_save_link(inode, 1 /* truncate */); 2328 if (error) 2329 goto out; 2330 } 2331 2332 if (page) { 2333 length = offset & (blocksize - 1); 2334 /* if we are not on a block boundary */ 2335 if (length) { 2336 length = blocksize - length; 2337 zero_user(page, offset, length); 2338 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2339 mark_buffer_dirty(bh); 2340 } 2341 } 2342 unlock_page(page); 2343 put_page(page); 2344 } 2345 2346 reiserfs_write_unlock(inode->i_sb); 2347 2348 return 0; 2349 out: 2350 if (page) { 2351 unlock_page(page); 2352 put_page(page); 2353 } 2354 2355 reiserfs_write_unlock(inode->i_sb); 2356 2357 return error; 2358 } 2359 2360 static int map_block_for_writepage(struct inode *inode, 2361 struct buffer_head *bh_result, 2362 unsigned long block) 2363 { 2364 struct reiserfs_transaction_handle th; 2365 int fs_gen; 2366 struct item_head tmp_ih; 2367 struct item_head *ih; 2368 struct buffer_head *bh; 2369 __le32 *item; 2370 struct cpu_key key; 2371 INITIALIZE_PATH(path); 2372 int pos_in_item; 2373 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2374 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2375 int retval; 2376 int use_get_block = 0; 2377 int bytes_copied = 0; 2378 int copy_size; 2379 int trans_running = 0; 2380 2381 /* 2382 * catch places below that try to log something without 2383 * starting a trans 2384 */ 2385 th.t_trans_id = 0; 2386 2387 if (!buffer_uptodate(bh_result)) { 2388 return -EIO; 2389 } 2390 2391 kmap(bh_result->b_page); 2392 start_over: 2393 reiserfs_write_lock(inode->i_sb); 2394 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2395 2396 research: 2397 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2398 if (retval != POSITION_FOUND) { 2399 use_get_block = 1; 2400 goto out; 2401 } 2402 2403 bh = get_last_bh(&path); 2404 ih = tp_item_head(&path); 2405 item = tp_item_body(&path); 2406 pos_in_item = path.pos_in_item; 2407 2408 /* we've found an unformatted node */ 2409 if (indirect_item_found(retval, ih)) { 2410 if (bytes_copied > 0) { 2411 reiserfs_warning(inode->i_sb, "clm-6002", 2412 "bytes_copied %d", bytes_copied); 2413 } 2414 if (!get_block_num(item, pos_in_item)) { 2415 /* crap, we are writing to a hole */ 2416 use_get_block = 1; 2417 goto out; 2418 } 2419 set_block_dev_mapped(bh_result, 2420 get_block_num(item, pos_in_item), inode); 2421 } else if (is_direct_le_ih(ih)) { 2422 char *p; 2423 p = page_address(bh_result->b_page); 2424 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2425 copy_size = ih_item_len(ih) - pos_in_item; 2426 2427 fs_gen = get_generation(inode->i_sb); 2428 copy_item_head(&tmp_ih, ih); 2429 2430 if (!trans_running) { 2431 /* vs-3050 is gone, no need to drop the path */ 2432 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2433 if (retval) 2434 goto out; 2435 reiserfs_update_inode_transaction(inode); 2436 trans_running = 1; 2437 if (fs_changed(fs_gen, inode->i_sb) 2438 && item_moved(&tmp_ih, &path)) { 2439 reiserfs_restore_prepared_buffer(inode->i_sb, 2440 bh); 2441 goto research; 2442 } 2443 } 2444 2445 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2446 2447 if (fs_changed(fs_gen, inode->i_sb) 2448 && item_moved(&tmp_ih, &path)) { 2449 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2450 goto research; 2451 } 2452 2453 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2454 copy_size); 2455 2456 journal_mark_dirty(&th, bh); 2457 bytes_copied += copy_size; 2458 set_block_dev_mapped(bh_result, 0, inode); 2459 2460 /* are there still bytes left? */ 2461 if (bytes_copied < bh_result->b_size && 2462 (byte_offset + bytes_copied) < inode->i_size) { 2463 set_cpu_key_k_offset(&key, 2464 cpu_key_k_offset(&key) + 2465 copy_size); 2466 goto research; 2467 } 2468 } else { 2469 reiserfs_warning(inode->i_sb, "clm-6003", 2470 "bad item inode %lu", inode->i_ino); 2471 retval = -EIO; 2472 goto out; 2473 } 2474 retval = 0; 2475 2476 out: 2477 pathrelse(&path); 2478 if (trans_running) { 2479 int err = journal_end(&th); 2480 if (err) 2481 retval = err; 2482 trans_running = 0; 2483 } 2484 reiserfs_write_unlock(inode->i_sb); 2485 2486 /* this is where we fill in holes in the file. */ 2487 if (use_get_block) { 2488 retval = reiserfs_get_block(inode, block, bh_result, 2489 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2490 | GET_BLOCK_NO_DANGLE); 2491 if (!retval) { 2492 if (!buffer_mapped(bh_result) 2493 || bh_result->b_blocknr == 0) { 2494 /* get_block failed to find a mapped unformatted node. */ 2495 use_get_block = 0; 2496 goto start_over; 2497 } 2498 } 2499 } 2500 kunmap(bh_result->b_page); 2501 2502 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2503 /* 2504 * we've copied data from the page into the direct item, so the 2505 * buffer in the page is now clean, mark it to reflect that. 2506 */ 2507 lock_buffer(bh_result); 2508 clear_buffer_dirty(bh_result); 2509 unlock_buffer(bh_result); 2510 } 2511 return retval; 2512 } 2513 2514 /* 2515 * mason@suse.com: updated in 2.5.54 to follow the same general io 2516 * start/recovery path as __block_write_full_page, along with special 2517 * code to handle reiserfs tails. 2518 */ 2519 static int reiserfs_write_full_page(struct page *page, 2520 struct writeback_control *wbc) 2521 { 2522 struct inode *inode = page->mapping->host; 2523 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2524 int error = 0; 2525 unsigned long block; 2526 sector_t last_block; 2527 struct buffer_head *head, *bh; 2528 int partial = 0; 2529 int nr = 0; 2530 int checked = PageChecked(page); 2531 struct reiserfs_transaction_handle th; 2532 struct super_block *s = inode->i_sb; 2533 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2534 th.t_trans_id = 0; 2535 2536 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2537 if (checked && (current->flags & PF_MEMALLOC)) { 2538 redirty_page_for_writepage(wbc, page); 2539 unlock_page(page); 2540 return 0; 2541 } 2542 2543 /* 2544 * The page dirty bit is cleared before writepage is called, which 2545 * means we have to tell create_empty_buffers to make dirty buffers 2546 * The page really should be up to date at this point, so tossing 2547 * in the BH_Uptodate is just a sanity check. 2548 */ 2549 if (!page_has_buffers(page)) { 2550 create_empty_buffers(page, s->s_blocksize, 2551 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2552 } 2553 head = page_buffers(page); 2554 2555 /* 2556 * last page in the file, zero out any contents past the 2557 * last byte in the file 2558 */ 2559 if (page->index >= end_index) { 2560 unsigned last_offset; 2561 2562 last_offset = inode->i_size & (PAGE_SIZE - 1); 2563 /* no file contents in this page */ 2564 if (page->index >= end_index + 1 || !last_offset) { 2565 unlock_page(page); 2566 return 0; 2567 } 2568 zero_user_segment(page, last_offset, PAGE_SIZE); 2569 } 2570 bh = head; 2571 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2572 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2573 /* first map all the buffers, logging any direct items we find */ 2574 do { 2575 if (block > last_block) { 2576 /* 2577 * This can happen when the block size is less than 2578 * the page size. The corresponding bytes in the page 2579 * were zero filled above 2580 */ 2581 clear_buffer_dirty(bh); 2582 set_buffer_uptodate(bh); 2583 } else if ((checked || buffer_dirty(bh)) && 2584 (!buffer_mapped(bh) || (buffer_mapped(bh) 2585 && bh->b_blocknr == 2586 0))) { 2587 /* 2588 * not mapped yet, or it points to a direct item, search 2589 * the btree for the mapping info, and log any direct 2590 * items found 2591 */ 2592 if ((error = map_block_for_writepage(inode, bh, block))) { 2593 goto fail; 2594 } 2595 } 2596 bh = bh->b_this_page; 2597 block++; 2598 } while (bh != head); 2599 2600 /* 2601 * we start the transaction after map_block_for_writepage, 2602 * because it can create holes in the file (an unbounded operation). 2603 * starting it here, we can make a reliable estimate for how many 2604 * blocks we're going to log 2605 */ 2606 if (checked) { 2607 ClearPageChecked(page); 2608 reiserfs_write_lock(s); 2609 error = journal_begin(&th, s, bh_per_page + 1); 2610 if (error) { 2611 reiserfs_write_unlock(s); 2612 goto fail; 2613 } 2614 reiserfs_update_inode_transaction(inode); 2615 } 2616 /* now go through and lock any dirty buffers on the page */ 2617 do { 2618 get_bh(bh); 2619 if (!buffer_mapped(bh)) 2620 continue; 2621 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2622 continue; 2623 2624 if (checked) { 2625 reiserfs_prepare_for_journal(s, bh, 1); 2626 journal_mark_dirty(&th, bh); 2627 continue; 2628 } 2629 /* 2630 * from this point on, we know the buffer is mapped to a 2631 * real block and not a direct item 2632 */ 2633 if (wbc->sync_mode != WB_SYNC_NONE) { 2634 lock_buffer(bh); 2635 } else { 2636 if (!trylock_buffer(bh)) { 2637 redirty_page_for_writepage(wbc, page); 2638 continue; 2639 } 2640 } 2641 if (test_clear_buffer_dirty(bh)) { 2642 mark_buffer_async_write(bh); 2643 } else { 2644 unlock_buffer(bh); 2645 } 2646 } while ((bh = bh->b_this_page) != head); 2647 2648 if (checked) { 2649 error = journal_end(&th); 2650 reiserfs_write_unlock(s); 2651 if (error) 2652 goto fail; 2653 } 2654 BUG_ON(PageWriteback(page)); 2655 set_page_writeback(page); 2656 unlock_page(page); 2657 2658 /* 2659 * since any buffer might be the only dirty buffer on the page, 2660 * the first submit_bh can bring the page out of writeback. 2661 * be careful with the buffers. 2662 */ 2663 do { 2664 struct buffer_head *next = bh->b_this_page; 2665 if (buffer_async_write(bh)) { 2666 submit_bh(REQ_OP_WRITE, 0, bh); 2667 nr++; 2668 } 2669 put_bh(bh); 2670 bh = next; 2671 } while (bh != head); 2672 2673 error = 0; 2674 done: 2675 if (nr == 0) { 2676 /* 2677 * if this page only had a direct item, it is very possible for 2678 * no io to be required without there being an error. Or, 2679 * someone else could have locked them and sent them down the 2680 * pipe without locking the page 2681 */ 2682 bh = head; 2683 do { 2684 if (!buffer_uptodate(bh)) { 2685 partial = 1; 2686 break; 2687 } 2688 bh = bh->b_this_page; 2689 } while (bh != head); 2690 if (!partial) 2691 SetPageUptodate(page); 2692 end_page_writeback(page); 2693 } 2694 return error; 2695 2696 fail: 2697 /* 2698 * catches various errors, we need to make sure any valid dirty blocks 2699 * get to the media. The page is currently locked and not marked for 2700 * writeback 2701 */ 2702 ClearPageUptodate(page); 2703 bh = head; 2704 do { 2705 get_bh(bh); 2706 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2707 lock_buffer(bh); 2708 mark_buffer_async_write(bh); 2709 } else { 2710 /* 2711 * clear any dirty bits that might have come from 2712 * getting attached to a dirty page 2713 */ 2714 clear_buffer_dirty(bh); 2715 } 2716 bh = bh->b_this_page; 2717 } while (bh != head); 2718 SetPageError(page); 2719 BUG_ON(PageWriteback(page)); 2720 set_page_writeback(page); 2721 unlock_page(page); 2722 do { 2723 struct buffer_head *next = bh->b_this_page; 2724 if (buffer_async_write(bh)) { 2725 clear_buffer_dirty(bh); 2726 submit_bh(REQ_OP_WRITE, 0, bh); 2727 nr++; 2728 } 2729 put_bh(bh); 2730 bh = next; 2731 } while (bh != head); 2732 goto done; 2733 } 2734 2735 static int reiserfs_readpage(struct file *f, struct page *page) 2736 { 2737 return block_read_full_page(page, reiserfs_get_block); 2738 } 2739 2740 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2741 { 2742 struct inode *inode = page->mapping->host; 2743 reiserfs_wait_on_write_block(inode->i_sb); 2744 return reiserfs_write_full_page(page, wbc); 2745 } 2746 2747 static void reiserfs_truncate_failed_write(struct inode *inode) 2748 { 2749 truncate_inode_pages(inode->i_mapping, inode->i_size); 2750 reiserfs_truncate_file(inode, 0); 2751 } 2752 2753 static int reiserfs_write_begin(struct file *file, 2754 struct address_space *mapping, 2755 loff_t pos, unsigned len, unsigned flags, 2756 struct page **pagep, void **fsdata) 2757 { 2758 struct inode *inode; 2759 struct page *page; 2760 pgoff_t index; 2761 int ret; 2762 int old_ref = 0; 2763 2764 inode = mapping->host; 2765 *fsdata = NULL; 2766 if (flags & AOP_FLAG_CONT_EXPAND && 2767 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2768 pos ++; 2769 *fsdata = (void *)(unsigned long)flags; 2770 } 2771 2772 index = pos >> PAGE_SHIFT; 2773 page = grab_cache_page_write_begin(mapping, index, flags); 2774 if (!page) 2775 return -ENOMEM; 2776 *pagep = page; 2777 2778 reiserfs_wait_on_write_block(inode->i_sb); 2779 fix_tail_page_for_writing(page); 2780 if (reiserfs_transaction_running(inode->i_sb)) { 2781 struct reiserfs_transaction_handle *th; 2782 th = (struct reiserfs_transaction_handle *)current-> 2783 journal_info; 2784 BUG_ON(!th->t_refcount); 2785 BUG_ON(!th->t_trans_id); 2786 old_ref = th->t_refcount; 2787 th->t_refcount++; 2788 } 2789 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2790 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2791 struct reiserfs_transaction_handle *th = current->journal_info; 2792 /* 2793 * this gets a little ugly. If reiserfs_get_block returned an 2794 * error and left a transacstion running, we've got to close 2795 * it, and we've got to free handle if it was a persistent 2796 * transaction. 2797 * 2798 * But, if we had nested into an existing transaction, we need 2799 * to just drop the ref count on the handle. 2800 * 2801 * If old_ref == 0, the transaction is from reiserfs_get_block, 2802 * and it was a persistent trans. Otherwise, it was nested 2803 * above. 2804 */ 2805 if (th->t_refcount > old_ref) { 2806 if (old_ref) 2807 th->t_refcount--; 2808 else { 2809 int err; 2810 reiserfs_write_lock(inode->i_sb); 2811 err = reiserfs_end_persistent_transaction(th); 2812 reiserfs_write_unlock(inode->i_sb); 2813 if (err) 2814 ret = err; 2815 } 2816 } 2817 } 2818 if (ret) { 2819 unlock_page(page); 2820 put_page(page); 2821 /* Truncate allocated blocks */ 2822 reiserfs_truncate_failed_write(inode); 2823 } 2824 return ret; 2825 } 2826 2827 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2828 { 2829 struct inode *inode = page->mapping->host; 2830 int ret; 2831 int old_ref = 0; 2832 int depth; 2833 2834 depth = reiserfs_write_unlock_nested(inode->i_sb); 2835 reiserfs_wait_on_write_block(inode->i_sb); 2836 reiserfs_write_lock_nested(inode->i_sb, depth); 2837 2838 fix_tail_page_for_writing(page); 2839 if (reiserfs_transaction_running(inode->i_sb)) { 2840 struct reiserfs_transaction_handle *th; 2841 th = (struct reiserfs_transaction_handle *)current-> 2842 journal_info; 2843 BUG_ON(!th->t_refcount); 2844 BUG_ON(!th->t_trans_id); 2845 old_ref = th->t_refcount; 2846 th->t_refcount++; 2847 } 2848 2849 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2850 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2851 struct reiserfs_transaction_handle *th = current->journal_info; 2852 /* 2853 * this gets a little ugly. If reiserfs_get_block returned an 2854 * error and left a transacstion running, we've got to close 2855 * it, and we've got to free handle if it was a persistent 2856 * transaction. 2857 * 2858 * But, if we had nested into an existing transaction, we need 2859 * to just drop the ref count on the handle. 2860 * 2861 * If old_ref == 0, the transaction is from reiserfs_get_block, 2862 * and it was a persistent trans. Otherwise, it was nested 2863 * above. 2864 */ 2865 if (th->t_refcount > old_ref) { 2866 if (old_ref) 2867 th->t_refcount--; 2868 else { 2869 int err; 2870 reiserfs_write_lock(inode->i_sb); 2871 err = reiserfs_end_persistent_transaction(th); 2872 reiserfs_write_unlock(inode->i_sb); 2873 if (err) 2874 ret = err; 2875 } 2876 } 2877 } 2878 return ret; 2879 2880 } 2881 2882 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2883 { 2884 return generic_block_bmap(as, block, reiserfs_bmap); 2885 } 2886 2887 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2888 loff_t pos, unsigned len, unsigned copied, 2889 struct page *page, void *fsdata) 2890 { 2891 struct inode *inode = page->mapping->host; 2892 int ret = 0; 2893 int update_sd = 0; 2894 struct reiserfs_transaction_handle *th; 2895 unsigned start; 2896 bool locked = false; 2897 2898 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2899 pos ++; 2900 2901 reiserfs_wait_on_write_block(inode->i_sb); 2902 if (reiserfs_transaction_running(inode->i_sb)) 2903 th = current->journal_info; 2904 else 2905 th = NULL; 2906 2907 start = pos & (PAGE_SIZE - 1); 2908 if (unlikely(copied < len)) { 2909 if (!PageUptodate(page)) 2910 copied = 0; 2911 2912 page_zero_new_buffers(page, start + copied, start + len); 2913 } 2914 flush_dcache_page(page); 2915 2916 reiserfs_commit_page(inode, page, start, start + copied); 2917 2918 /* 2919 * generic_commit_write does this for us, but does not update the 2920 * transaction tracking stuff when the size changes. So, we have 2921 * to do the i_size updates here. 2922 */ 2923 if (pos + copied > inode->i_size) { 2924 struct reiserfs_transaction_handle myth; 2925 reiserfs_write_lock(inode->i_sb); 2926 locked = true; 2927 /* 2928 * If the file have grown beyond the border where it 2929 * can have a tail, unmark it as needing a tail 2930 * packing 2931 */ 2932 if ((have_large_tails(inode->i_sb) 2933 && inode->i_size > i_block_size(inode) * 4) 2934 || (have_small_tails(inode->i_sb) 2935 && inode->i_size > i_block_size(inode))) 2936 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2937 2938 ret = journal_begin(&myth, inode->i_sb, 1); 2939 if (ret) 2940 goto journal_error; 2941 2942 reiserfs_update_inode_transaction(inode); 2943 inode->i_size = pos + copied; 2944 /* 2945 * this will just nest into our transaction. It's important 2946 * to use mark_inode_dirty so the inode gets pushed around on 2947 * the dirty lists, and so that O_SYNC works as expected 2948 */ 2949 mark_inode_dirty(inode); 2950 reiserfs_update_sd(&myth, inode); 2951 update_sd = 1; 2952 ret = journal_end(&myth); 2953 if (ret) 2954 goto journal_error; 2955 } 2956 if (th) { 2957 if (!locked) { 2958 reiserfs_write_lock(inode->i_sb); 2959 locked = true; 2960 } 2961 if (!update_sd) 2962 mark_inode_dirty(inode); 2963 ret = reiserfs_end_persistent_transaction(th); 2964 if (ret) 2965 goto out; 2966 } 2967 2968 out: 2969 if (locked) 2970 reiserfs_write_unlock(inode->i_sb); 2971 unlock_page(page); 2972 put_page(page); 2973 2974 if (pos + len > inode->i_size) 2975 reiserfs_truncate_failed_write(inode); 2976 2977 return ret == 0 ? copied : ret; 2978 2979 journal_error: 2980 reiserfs_write_unlock(inode->i_sb); 2981 locked = false; 2982 if (th) { 2983 if (!update_sd) 2984 reiserfs_update_sd(th, inode); 2985 ret = reiserfs_end_persistent_transaction(th); 2986 } 2987 goto out; 2988 } 2989 2990 int reiserfs_commit_write(struct file *f, struct page *page, 2991 unsigned from, unsigned to) 2992 { 2993 struct inode *inode = page->mapping->host; 2994 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 2995 int ret = 0; 2996 int update_sd = 0; 2997 struct reiserfs_transaction_handle *th = NULL; 2998 int depth; 2999 3000 depth = reiserfs_write_unlock_nested(inode->i_sb); 3001 reiserfs_wait_on_write_block(inode->i_sb); 3002 reiserfs_write_lock_nested(inode->i_sb, depth); 3003 3004 if (reiserfs_transaction_running(inode->i_sb)) { 3005 th = current->journal_info; 3006 } 3007 reiserfs_commit_page(inode, page, from, to); 3008 3009 /* 3010 * generic_commit_write does this for us, but does not update the 3011 * transaction tracking stuff when the size changes. So, we have 3012 * to do the i_size updates here. 3013 */ 3014 if (pos > inode->i_size) { 3015 struct reiserfs_transaction_handle myth; 3016 /* 3017 * If the file have grown beyond the border where it 3018 * can have a tail, unmark it as needing a tail 3019 * packing 3020 */ 3021 if ((have_large_tails(inode->i_sb) 3022 && inode->i_size > i_block_size(inode) * 4) 3023 || (have_small_tails(inode->i_sb) 3024 && inode->i_size > i_block_size(inode))) 3025 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3026 3027 ret = journal_begin(&myth, inode->i_sb, 1); 3028 if (ret) 3029 goto journal_error; 3030 3031 reiserfs_update_inode_transaction(inode); 3032 inode->i_size = pos; 3033 /* 3034 * this will just nest into our transaction. It's important 3035 * to use mark_inode_dirty so the inode gets pushed around 3036 * on the dirty lists, and so that O_SYNC works as expected 3037 */ 3038 mark_inode_dirty(inode); 3039 reiserfs_update_sd(&myth, inode); 3040 update_sd = 1; 3041 ret = journal_end(&myth); 3042 if (ret) 3043 goto journal_error; 3044 } 3045 if (th) { 3046 if (!update_sd) 3047 mark_inode_dirty(inode); 3048 ret = reiserfs_end_persistent_transaction(th); 3049 if (ret) 3050 goto out; 3051 } 3052 3053 out: 3054 return ret; 3055 3056 journal_error: 3057 if (th) { 3058 if (!update_sd) 3059 reiserfs_update_sd(th, inode); 3060 ret = reiserfs_end_persistent_transaction(th); 3061 } 3062 3063 return ret; 3064 } 3065 3066 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3067 { 3068 if (reiserfs_attrs(inode->i_sb)) { 3069 if (sd_attrs & REISERFS_SYNC_FL) 3070 inode->i_flags |= S_SYNC; 3071 else 3072 inode->i_flags &= ~S_SYNC; 3073 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3074 inode->i_flags |= S_IMMUTABLE; 3075 else 3076 inode->i_flags &= ~S_IMMUTABLE; 3077 if (sd_attrs & REISERFS_APPEND_FL) 3078 inode->i_flags |= S_APPEND; 3079 else 3080 inode->i_flags &= ~S_APPEND; 3081 if (sd_attrs & REISERFS_NOATIME_FL) 3082 inode->i_flags |= S_NOATIME; 3083 else 3084 inode->i_flags &= ~S_NOATIME; 3085 if (sd_attrs & REISERFS_NOTAIL_FL) 3086 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3087 else 3088 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3089 } 3090 } 3091 3092 /* 3093 * decide if this buffer needs to stay around for data logging or ordered 3094 * write purposes 3095 */ 3096 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3097 { 3098 int ret = 1; 3099 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3100 3101 lock_buffer(bh); 3102 spin_lock(&j->j_dirty_buffers_lock); 3103 if (!buffer_mapped(bh)) { 3104 goto free_jh; 3105 } 3106 /* 3107 * the page is locked, and the only places that log a data buffer 3108 * also lock the page. 3109 */ 3110 if (reiserfs_file_data_log(inode)) { 3111 /* 3112 * very conservative, leave the buffer pinned if 3113 * anyone might need it. 3114 */ 3115 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3116 ret = 0; 3117 } 3118 } else if (buffer_dirty(bh)) { 3119 struct reiserfs_journal_list *jl; 3120 struct reiserfs_jh *jh = bh->b_private; 3121 3122 /* 3123 * why is this safe? 3124 * reiserfs_setattr updates i_size in the on disk 3125 * stat data before allowing vmtruncate to be called. 3126 * 3127 * If buffer was put onto the ordered list for this 3128 * transaction, we know for sure either this transaction 3129 * or an older one already has updated i_size on disk, 3130 * and this ordered data won't be referenced in the file 3131 * if we crash. 3132 * 3133 * if the buffer was put onto the ordered list for an older 3134 * transaction, we need to leave it around 3135 */ 3136 if (jh && (jl = jh->jl) 3137 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3138 ret = 0; 3139 } 3140 free_jh: 3141 if (ret && bh->b_private) { 3142 reiserfs_free_jh(bh); 3143 } 3144 spin_unlock(&j->j_dirty_buffers_lock); 3145 unlock_buffer(bh); 3146 return ret; 3147 } 3148 3149 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3150 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3151 unsigned int length) 3152 { 3153 struct buffer_head *head, *bh, *next; 3154 struct inode *inode = page->mapping->host; 3155 unsigned int curr_off = 0; 3156 unsigned int stop = offset + length; 3157 int partial_page = (offset || length < PAGE_SIZE); 3158 int ret = 1; 3159 3160 BUG_ON(!PageLocked(page)); 3161 3162 if (!partial_page) 3163 ClearPageChecked(page); 3164 3165 if (!page_has_buffers(page)) 3166 goto out; 3167 3168 head = page_buffers(page); 3169 bh = head; 3170 do { 3171 unsigned int next_off = curr_off + bh->b_size; 3172 next = bh->b_this_page; 3173 3174 if (next_off > stop) 3175 goto out; 3176 3177 /* 3178 * is this block fully invalidated? 3179 */ 3180 if (offset <= curr_off) { 3181 if (invalidatepage_can_drop(inode, bh)) 3182 reiserfs_unmap_buffer(bh); 3183 else 3184 ret = 0; 3185 } 3186 curr_off = next_off; 3187 bh = next; 3188 } while (bh != head); 3189 3190 /* 3191 * We release buffers only if the entire page is being invalidated. 3192 * The get_block cached value has been unconditionally invalidated, 3193 * so real IO is not possible anymore. 3194 */ 3195 if (!partial_page && ret) { 3196 ret = try_to_release_page(page, 0); 3197 /* maybe should BUG_ON(!ret); - neilb */ 3198 } 3199 out: 3200 return; 3201 } 3202 3203 static int reiserfs_set_page_dirty(struct page *page) 3204 { 3205 struct inode *inode = page->mapping->host; 3206 if (reiserfs_file_data_log(inode)) { 3207 SetPageChecked(page); 3208 return __set_page_dirty_nobuffers(page); 3209 } 3210 return __set_page_dirty_buffers(page); 3211 } 3212 3213 /* 3214 * Returns 1 if the page's buffers were dropped. The page is locked. 3215 * 3216 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3217 * in the buffers at page_buffers(page). 3218 * 3219 * even in -o notail mode, we can't be sure an old mount without -o notail 3220 * didn't create files with tails. 3221 */ 3222 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3223 { 3224 struct inode *inode = page->mapping->host; 3225 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3226 struct buffer_head *head; 3227 struct buffer_head *bh; 3228 int ret = 1; 3229 3230 WARN_ON(PageChecked(page)); 3231 spin_lock(&j->j_dirty_buffers_lock); 3232 head = page_buffers(page); 3233 bh = head; 3234 do { 3235 if (bh->b_private) { 3236 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3237 reiserfs_free_jh(bh); 3238 } else { 3239 ret = 0; 3240 break; 3241 } 3242 } 3243 bh = bh->b_this_page; 3244 } while (bh != head); 3245 if (ret) 3246 ret = try_to_free_buffers(page); 3247 spin_unlock(&j->j_dirty_buffers_lock); 3248 return ret; 3249 } 3250 3251 /* 3252 * We thank Mingming Cao for helping us understand in great detail what 3253 * to do in this section of the code. 3254 */ 3255 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3256 { 3257 struct file *file = iocb->ki_filp; 3258 struct inode *inode = file->f_mapping->host; 3259 size_t count = iov_iter_count(iter); 3260 ssize_t ret; 3261 3262 ret = blockdev_direct_IO(iocb, inode, iter, 3263 reiserfs_get_blocks_direct_io); 3264 3265 /* 3266 * In case of error extending write may have instantiated a few 3267 * blocks outside i_size. Trim these off again. 3268 */ 3269 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3270 loff_t isize = i_size_read(inode); 3271 loff_t end = iocb->ki_pos + count; 3272 3273 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3274 truncate_setsize(inode, isize); 3275 reiserfs_vfs_truncate_file(inode); 3276 } 3277 } 3278 3279 return ret; 3280 } 3281 3282 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3283 { 3284 struct inode *inode = d_inode(dentry); 3285 unsigned int ia_valid; 3286 int error; 3287 3288 error = setattr_prepare(dentry, attr); 3289 if (error) 3290 return error; 3291 3292 /* must be turned off for recursive notify_change calls */ 3293 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3294 3295 if (is_quota_modification(inode, attr)) { 3296 error = dquot_initialize(inode); 3297 if (error) 3298 return error; 3299 } 3300 reiserfs_write_lock(inode->i_sb); 3301 if (attr->ia_valid & ATTR_SIZE) { 3302 /* 3303 * version 2 items will be caught by the s_maxbytes check 3304 * done for us in vmtruncate 3305 */ 3306 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3307 attr->ia_size > MAX_NON_LFS) { 3308 reiserfs_write_unlock(inode->i_sb); 3309 error = -EFBIG; 3310 goto out; 3311 } 3312 3313 inode_dio_wait(inode); 3314 3315 /* fill in hole pointers in the expanding truncate case. */ 3316 if (attr->ia_size > inode->i_size) { 3317 error = generic_cont_expand_simple(inode, attr->ia_size); 3318 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3319 int err; 3320 struct reiserfs_transaction_handle th; 3321 /* we're changing at most 2 bitmaps, inode + super */ 3322 err = journal_begin(&th, inode->i_sb, 4); 3323 if (!err) { 3324 reiserfs_discard_prealloc(&th, inode); 3325 err = journal_end(&th); 3326 } 3327 if (err) 3328 error = err; 3329 } 3330 if (error) { 3331 reiserfs_write_unlock(inode->i_sb); 3332 goto out; 3333 } 3334 /* 3335 * file size is changed, ctime and mtime are 3336 * to be updated 3337 */ 3338 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3339 } 3340 } 3341 reiserfs_write_unlock(inode->i_sb); 3342 3343 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3344 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3345 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3346 /* stat data of format v3.5 has 16 bit uid and gid */ 3347 error = -EINVAL; 3348 goto out; 3349 } 3350 3351 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3352 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3353 struct reiserfs_transaction_handle th; 3354 int jbegin_count = 3355 2 * 3356 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3357 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3358 2; 3359 3360 error = reiserfs_chown_xattrs(inode, attr); 3361 3362 if (error) 3363 return error; 3364 3365 /* 3366 * (user+group)*(old+new) structure - we count quota 3367 * info and , inode write (sb, inode) 3368 */ 3369 reiserfs_write_lock(inode->i_sb); 3370 error = journal_begin(&th, inode->i_sb, jbegin_count); 3371 reiserfs_write_unlock(inode->i_sb); 3372 if (error) 3373 goto out; 3374 error = dquot_transfer(inode, attr); 3375 reiserfs_write_lock(inode->i_sb); 3376 if (error) { 3377 journal_end(&th); 3378 reiserfs_write_unlock(inode->i_sb); 3379 goto out; 3380 } 3381 3382 /* 3383 * Update corresponding info in inode so that everything 3384 * is in one transaction 3385 */ 3386 if (attr->ia_valid & ATTR_UID) 3387 inode->i_uid = attr->ia_uid; 3388 if (attr->ia_valid & ATTR_GID) 3389 inode->i_gid = attr->ia_gid; 3390 mark_inode_dirty(inode); 3391 error = journal_end(&th); 3392 reiserfs_write_unlock(inode->i_sb); 3393 if (error) 3394 goto out; 3395 } 3396 3397 if ((attr->ia_valid & ATTR_SIZE) && 3398 attr->ia_size != i_size_read(inode)) { 3399 error = inode_newsize_ok(inode, attr->ia_size); 3400 if (!error) { 3401 /* 3402 * Could race against reiserfs_file_release 3403 * if called from NFS, so take tailpack mutex. 3404 */ 3405 mutex_lock(&REISERFS_I(inode)->tailpack); 3406 truncate_setsize(inode, attr->ia_size); 3407 reiserfs_truncate_file(inode, 1); 3408 mutex_unlock(&REISERFS_I(inode)->tailpack); 3409 } 3410 } 3411 3412 if (!error) { 3413 setattr_copy(inode, attr); 3414 mark_inode_dirty(inode); 3415 } 3416 3417 if (!error && reiserfs_posixacl(inode->i_sb)) { 3418 if (attr->ia_valid & ATTR_MODE) 3419 error = reiserfs_acl_chmod(inode); 3420 } 3421 3422 out: 3423 return error; 3424 } 3425 3426 const struct address_space_operations reiserfs_address_space_operations = { 3427 .writepage = reiserfs_writepage, 3428 .readpage = reiserfs_readpage, 3429 .readpages = reiserfs_readpages, 3430 .releasepage = reiserfs_releasepage, 3431 .invalidatepage = reiserfs_invalidatepage, 3432 .write_begin = reiserfs_write_begin, 3433 .write_end = reiserfs_write_end, 3434 .bmap = reiserfs_aop_bmap, 3435 .direct_IO = reiserfs_direct_IO, 3436 .set_page_dirty = reiserfs_set_page_dirty, 3437 }; 3438