1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_xattr.h> 10 #include <linux/exportfs.h> 11 #include <linux/smp_lock.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 22 int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 int reiserfs_prepare_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_delete_inode(struct inode *inode) 28 { 29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 int jbegin_count = 31 JOURNAL_PER_BALANCE_CNT * 2 + 32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 struct reiserfs_transaction_handle th; 34 int depth; 35 int err; 36 37 truncate_inode_pages(&inode->i_data, 0); 38 39 depth = reiserfs_write_lock_once(inode->i_sb); 40 41 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 42 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 43 reiserfs_delete_xattrs(inode); 44 45 if (journal_begin(&th, inode->i_sb, jbegin_count)) 46 goto out; 47 reiserfs_update_inode_transaction(inode); 48 49 reiserfs_discard_prealloc(&th, inode); 50 51 err = reiserfs_delete_object(&th, inode); 52 53 /* Do quota update inside a transaction for journaled quotas. We must do that 54 * after delete_object so that quota updates go into the same transaction as 55 * stat data deletion */ 56 if (!err) 57 vfs_dq_free_inode(inode); 58 59 if (journal_end(&th, inode->i_sb, jbegin_count)) 60 goto out; 61 62 /* check return value from reiserfs_delete_object after 63 * ending the transaction 64 */ 65 if (err) 66 goto out; 67 68 /* all items of file are deleted, so we can remove "save" link */ 69 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 70 * about an error here */ 71 } else { 72 /* no object items are in the tree */ 73 ; 74 } 75 out: 76 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 77 inode->i_blocks = 0; 78 reiserfs_write_unlock_once(inode->i_sb, depth); 79 } 80 81 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 82 __u32 objectid, loff_t offset, int type, int length) 83 { 84 key->version = version; 85 86 key->on_disk_key.k_dir_id = dirid; 87 key->on_disk_key.k_objectid = objectid; 88 set_cpu_key_k_offset(key, offset); 89 set_cpu_key_k_type(key, type); 90 key->key_length = length; 91 } 92 93 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 94 offset and type of key */ 95 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 96 int type, int length) 97 { 98 _make_cpu_key(key, get_inode_item_key_version(inode), 99 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 100 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 101 length); 102 } 103 104 // 105 // when key is 0, do not set version and short key 106 // 107 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 108 int version, 109 loff_t offset, int type, int length, 110 int entry_count /*or ih_free_space */ ) 111 { 112 if (key) { 113 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 114 ih->ih_key.k_objectid = 115 cpu_to_le32(key->on_disk_key.k_objectid); 116 } 117 put_ih_version(ih, version); 118 set_le_ih_k_offset(ih, offset); 119 set_le_ih_k_type(ih, type); 120 put_ih_item_len(ih, length); 121 /* set_ih_free_space (ih, 0); */ 122 // for directory items it is entry count, for directs and stat 123 // datas - 0xffff, for indirects - 0 124 put_ih_entry_count(ih, entry_count); 125 } 126 127 // 128 // FIXME: we might cache recently accessed indirect item 129 130 // Ugh. Not too eager for that.... 131 // I cut the code until such time as I see a convincing argument (benchmark). 132 // I don't want a bloated inode struct..., and I don't like code complexity.... 133 134 /* cutting the code is fine, since it really isn't in use yet and is easy 135 ** to add back in. But, Vladimir has a really good idea here. Think 136 ** about what happens for reading a file. For each page, 137 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 138 ** an indirect item. This indirect item has X number of pointers, where 139 ** X is a big number if we've done the block allocation right. But, 140 ** we only use one or two of these pointers during each call to readpage, 141 ** needlessly researching again later on. 142 ** 143 ** The size of the cache could be dynamic based on the size of the file. 144 ** 145 ** I'd also like to see us cache the location the stat data item, since 146 ** we are needlessly researching for that frequently. 147 ** 148 ** --chris 149 */ 150 151 /* If this page has a file tail in it, and 152 ** it was read in by get_block_create_0, the page data is valid, 153 ** but tail is still sitting in a direct item, and we can't write to 154 ** it. So, look through this page, and check all the mapped buffers 155 ** to make sure they have valid block numbers. Any that don't need 156 ** to be unmapped, so that block_prepare_write will correctly call 157 ** reiserfs_get_block to convert the tail into an unformatted node 158 */ 159 static inline void fix_tail_page_for_writing(struct page *page) 160 { 161 struct buffer_head *head, *next, *bh; 162 163 if (page && page_has_buffers(page)) { 164 head = page_buffers(page); 165 bh = head; 166 do { 167 next = bh->b_this_page; 168 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 169 reiserfs_unmap_buffer(bh); 170 } 171 bh = next; 172 } while (bh != head); 173 } 174 } 175 176 /* reiserfs_get_block does not need to allocate a block only if it has been 177 done already or non-hole position has been found in the indirect item */ 178 static inline int allocation_needed(int retval, b_blocknr_t allocated, 179 struct item_head *ih, 180 __le32 * item, int pos_in_item) 181 { 182 if (allocated) 183 return 0; 184 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 185 get_block_num(item, pos_in_item)) 186 return 0; 187 return 1; 188 } 189 190 static inline int indirect_item_found(int retval, struct item_head *ih) 191 { 192 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 193 } 194 195 static inline void set_block_dev_mapped(struct buffer_head *bh, 196 b_blocknr_t block, struct inode *inode) 197 { 198 map_bh(bh, inode->i_sb, block); 199 } 200 201 // 202 // files which were created in the earlier version can not be longer, 203 // than 2 gb 204 // 205 static int file_capable(struct inode *inode, sector_t block) 206 { 207 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 208 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 209 return 1; 210 211 return 0; 212 } 213 214 static int restart_transaction(struct reiserfs_transaction_handle *th, 215 struct inode *inode, struct treepath *path) 216 { 217 struct super_block *s = th->t_super; 218 int len = th->t_blocks_allocated; 219 int err; 220 221 BUG_ON(!th->t_trans_id); 222 BUG_ON(!th->t_refcount); 223 224 pathrelse(path); 225 226 /* we cannot restart while nested */ 227 if (th->t_refcount > 1) { 228 return 0; 229 } 230 reiserfs_update_sd(th, inode); 231 err = journal_end(th, s, len); 232 if (!err) { 233 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 234 if (!err) 235 reiserfs_update_inode_transaction(inode); 236 } 237 return err; 238 } 239 240 // it is called by get_block when create == 0. Returns block number 241 // for 'block'-th logical block of file. When it hits direct item it 242 // returns 0 (being called from bmap) or read direct item into piece 243 // of page (bh_result) 244 245 // Please improve the english/clarity in the comment above, as it is 246 // hard to understand. 247 248 static int _get_block_create_0(struct inode *inode, sector_t block, 249 struct buffer_head *bh_result, int args) 250 { 251 INITIALIZE_PATH(path); 252 struct cpu_key key; 253 struct buffer_head *bh; 254 struct item_head *ih, tmp_ih; 255 b_blocknr_t blocknr; 256 char *p = NULL; 257 int chars; 258 int ret; 259 int result; 260 int done = 0; 261 unsigned long offset; 262 263 // prepare the key to look for the 'block'-th block of file 264 make_cpu_key(&key, inode, 265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 266 3); 267 268 result = search_for_position_by_key(inode->i_sb, &key, &path); 269 if (result != POSITION_FOUND) { 270 pathrelse(&path); 271 if (p) 272 kunmap(bh_result->b_page); 273 if (result == IO_ERROR) 274 return -EIO; 275 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 276 // That there is some MMAPED data associated with it that is yet to be written to disk. 277 if ((args & GET_BLOCK_NO_HOLE) 278 && !PageUptodate(bh_result->b_page)) { 279 return -ENOENT; 280 } 281 return 0; 282 } 283 // 284 bh = get_last_bh(&path); 285 ih = get_ih(&path); 286 if (is_indirect_le_ih(ih)) { 287 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 288 289 /* FIXME: here we could cache indirect item or part of it in 290 the inode to avoid search_by_key in case of subsequent 291 access to file */ 292 blocknr = get_block_num(ind_item, path.pos_in_item); 293 ret = 0; 294 if (blocknr) { 295 map_bh(bh_result, inode->i_sb, blocknr); 296 if (path.pos_in_item == 297 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 298 set_buffer_boundary(bh_result); 299 } 300 } else 301 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 302 // That there is some MMAPED data associated with it that is yet to be written to disk. 303 if ((args & GET_BLOCK_NO_HOLE) 304 && !PageUptodate(bh_result->b_page)) { 305 ret = -ENOENT; 306 } 307 308 pathrelse(&path); 309 if (p) 310 kunmap(bh_result->b_page); 311 return ret; 312 } 313 // requested data are in direct item(s) 314 if (!(args & GET_BLOCK_READ_DIRECT)) { 315 // we are called by bmap. FIXME: we can not map block of file 316 // when it is stored in direct item(s) 317 pathrelse(&path); 318 if (p) 319 kunmap(bh_result->b_page); 320 return -ENOENT; 321 } 322 323 /* if we've got a direct item, and the buffer or page was uptodate, 324 ** we don't want to pull data off disk again. skip to the 325 ** end, where we map the buffer and return 326 */ 327 if (buffer_uptodate(bh_result)) { 328 goto finished; 329 } else 330 /* 331 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 332 ** pages without any buffers. If the page is up to date, we don't want 333 ** read old data off disk. Set the up to date bit on the buffer instead 334 ** and jump to the end 335 */ 336 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 337 set_buffer_uptodate(bh_result); 338 goto finished; 339 } 340 // read file tail into part of page 341 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 342 copy_item_head(&tmp_ih, ih); 343 344 /* we only want to kmap if we are reading the tail into the page. 345 ** this is not the common case, so we don't kmap until we are 346 ** sure we need to. But, this means the item might move if 347 ** kmap schedules 348 */ 349 if (!p) 350 p = (char *)kmap(bh_result->b_page); 351 352 p += offset; 353 memset(p, 0, inode->i_sb->s_blocksize); 354 do { 355 if (!is_direct_le_ih(ih)) { 356 BUG(); 357 } 358 /* make sure we don't read more bytes than actually exist in 359 ** the file. This can happen in odd cases where i_size isn't 360 ** correct, and when direct item padding results in a few 361 ** extra bytes at the end of the direct item 362 */ 363 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 364 break; 365 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 366 chars = 367 inode->i_size - (le_ih_k_offset(ih) - 1) - 368 path.pos_in_item; 369 done = 1; 370 } else { 371 chars = ih_item_len(ih) - path.pos_in_item; 372 } 373 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 374 375 if (done) 376 break; 377 378 p += chars; 379 380 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 381 // we done, if read direct item is not the last item of 382 // node FIXME: we could try to check right delimiting key 383 // to see whether direct item continues in the right 384 // neighbor or rely on i_size 385 break; 386 387 // update key to look for the next piece 388 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 389 result = search_for_position_by_key(inode->i_sb, &key, &path); 390 if (result != POSITION_FOUND) 391 // i/o error most likely 392 break; 393 bh = get_last_bh(&path); 394 ih = get_ih(&path); 395 } while (1); 396 397 flush_dcache_page(bh_result->b_page); 398 kunmap(bh_result->b_page); 399 400 finished: 401 pathrelse(&path); 402 403 if (result == IO_ERROR) 404 return -EIO; 405 406 /* this buffer has valid data, but isn't valid for io. mapping it to 407 * block #0 tells the rest of reiserfs it just has a tail in it 408 */ 409 map_bh(bh_result, inode->i_sb, 0); 410 set_buffer_uptodate(bh_result); 411 return 0; 412 } 413 414 // this is called to create file map. So, _get_block_create_0 will not 415 // read direct item 416 static int reiserfs_bmap(struct inode *inode, sector_t block, 417 struct buffer_head *bh_result, int create) 418 { 419 if (!file_capable(inode, block)) 420 return -EFBIG; 421 422 reiserfs_write_lock(inode->i_sb); 423 /* do not read the direct item */ 424 _get_block_create_0(inode, block, bh_result, 0); 425 reiserfs_write_unlock(inode->i_sb); 426 return 0; 427 } 428 429 /* special version of get_block that is only used by grab_tail_page right 430 ** now. It is sent to block_prepare_write, and when you try to get a 431 ** block past the end of the file (or a block from a hole) it returns 432 ** -ENOENT instead of a valid buffer. block_prepare_write expects to 433 ** be able to do i/o on the buffers returned, unless an error value 434 ** is also returned. 435 ** 436 ** So, this allows block_prepare_write to be used for reading a single block 437 ** in a page. Where it does not produce a valid page for holes, or past the 438 ** end of the file. This turns out to be exactly what we need for reading 439 ** tails for conversion. 440 ** 441 ** The point of the wrapper is forcing a certain value for create, even 442 ** though the VFS layer is calling this function with create==1. If you 443 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 444 ** don't use this function. 445 */ 446 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 447 struct buffer_head *bh_result, 448 int create) 449 { 450 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 451 } 452 453 /* This is special helper for reiserfs_get_block in case we are executing 454 direct_IO request. */ 455 static int reiserfs_get_blocks_direct_io(struct inode *inode, 456 sector_t iblock, 457 struct buffer_head *bh_result, 458 int create) 459 { 460 int ret; 461 462 bh_result->b_page = NULL; 463 464 /* We set the b_size before reiserfs_get_block call since it is 465 referenced in convert_tail_for_hole() that may be called from 466 reiserfs_get_block() */ 467 bh_result->b_size = (1 << inode->i_blkbits); 468 469 ret = reiserfs_get_block(inode, iblock, bh_result, 470 create | GET_BLOCK_NO_DANGLE); 471 if (ret) 472 goto out; 473 474 /* don't allow direct io onto tail pages */ 475 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 476 /* make sure future calls to the direct io funcs for this offset 477 ** in the file fail by unmapping the buffer 478 */ 479 clear_buffer_mapped(bh_result); 480 ret = -EINVAL; 481 } 482 /* Possible unpacked tail. Flush the data before pages have 483 disappeared */ 484 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 485 int err; 486 487 reiserfs_write_lock(inode->i_sb); 488 489 err = reiserfs_commit_for_inode(inode); 490 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 491 492 reiserfs_write_unlock(inode->i_sb); 493 494 if (err < 0) 495 ret = err; 496 } 497 out: 498 return ret; 499 } 500 501 /* 502 ** helper function for when reiserfs_get_block is called for a hole 503 ** but the file tail is still in a direct item 504 ** bh_result is the buffer head for the hole 505 ** tail_offset is the offset of the start of the tail in the file 506 ** 507 ** This calls prepare_write, which will start a new transaction 508 ** you should not be in a transaction, or have any paths held when you 509 ** call this. 510 */ 511 static int convert_tail_for_hole(struct inode *inode, 512 struct buffer_head *bh_result, 513 loff_t tail_offset) 514 { 515 unsigned long index; 516 unsigned long tail_end; 517 unsigned long tail_start; 518 struct page *tail_page; 519 struct page *hole_page = bh_result->b_page; 520 int retval = 0; 521 522 if ((tail_offset & (bh_result->b_size - 1)) != 1) 523 return -EIO; 524 525 /* always try to read until the end of the block */ 526 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 527 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 528 529 index = tail_offset >> PAGE_CACHE_SHIFT; 530 /* hole_page can be zero in case of direct_io, we are sure 531 that we cannot get here if we write with O_DIRECT into 532 tail page */ 533 if (!hole_page || index != hole_page->index) { 534 tail_page = grab_cache_page(inode->i_mapping, index); 535 retval = -ENOMEM; 536 if (!tail_page) { 537 goto out; 538 } 539 } else { 540 tail_page = hole_page; 541 } 542 543 /* we don't have to make sure the conversion did not happen while 544 ** we were locking the page because anyone that could convert 545 ** must first take i_mutex. 546 ** 547 ** We must fix the tail page for writing because it might have buffers 548 ** that are mapped, but have a block number of 0. This indicates tail 549 ** data that has been read directly into the page, and block_prepare_write 550 ** won't trigger a get_block in this case. 551 */ 552 fix_tail_page_for_writing(tail_page); 553 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 554 if (retval) 555 goto unlock; 556 557 /* tail conversion might change the data in the page */ 558 flush_dcache_page(tail_page); 559 560 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 561 562 unlock: 563 if (tail_page != hole_page) { 564 unlock_page(tail_page); 565 page_cache_release(tail_page); 566 } 567 out: 568 return retval; 569 } 570 571 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 572 sector_t block, 573 struct inode *inode, 574 b_blocknr_t * allocated_block_nr, 575 struct treepath *path, int flags) 576 { 577 BUG_ON(!th->t_trans_id); 578 579 #ifdef REISERFS_PREALLOCATE 580 if (!(flags & GET_BLOCK_NO_IMUX)) { 581 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 582 path, block); 583 } 584 #endif 585 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 586 block); 587 } 588 589 int reiserfs_get_block(struct inode *inode, sector_t block, 590 struct buffer_head *bh_result, int create) 591 { 592 int repeat, retval = 0; 593 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 594 INITIALIZE_PATH(path); 595 int pos_in_item; 596 struct cpu_key key; 597 struct buffer_head *bh, *unbh = NULL; 598 struct item_head *ih, tmp_ih; 599 __le32 *item; 600 int done; 601 int fs_gen; 602 int lock_depth; 603 struct reiserfs_transaction_handle *th = NULL; 604 /* space reserved in transaction batch: 605 . 3 balancings in direct->indirect conversion 606 . 1 block involved into reiserfs_update_sd() 607 XXX in practically impossible worst case direct2indirect() 608 can incur (much) more than 3 balancings. 609 quota update for user, group */ 610 int jbegin_count = 611 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 612 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 613 int version; 614 int dangle = 1; 615 loff_t new_offset = 616 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 617 618 lock_depth = reiserfs_write_lock_once(inode->i_sb); 619 version = get_inode_item_key_version(inode); 620 621 if (!file_capable(inode, block)) { 622 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 623 return -EFBIG; 624 } 625 626 /* if !create, we aren't changing the FS, so we don't need to 627 ** log anything, so we don't need to start a transaction 628 */ 629 if (!(create & GET_BLOCK_CREATE)) { 630 int ret; 631 /* find number of block-th logical block of the file */ 632 ret = _get_block_create_0(inode, block, bh_result, 633 create | GET_BLOCK_READ_DIRECT); 634 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 635 return ret; 636 } 637 /* 638 * if we're already in a transaction, make sure to close 639 * any new transactions we start in this func 640 */ 641 if ((create & GET_BLOCK_NO_DANGLE) || 642 reiserfs_transaction_running(inode->i_sb)) 643 dangle = 0; 644 645 /* If file is of such a size, that it might have a tail and tails are enabled 646 ** we should mark it as possibly needing tail packing on close 647 */ 648 if ((have_large_tails(inode->i_sb) 649 && inode->i_size < i_block_size(inode) * 4) 650 || (have_small_tails(inode->i_sb) 651 && inode->i_size < i_block_size(inode))) 652 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 653 654 /* set the key of the first byte in the 'block'-th block of file */ 655 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 656 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 657 start_trans: 658 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 659 if (!th) { 660 retval = -ENOMEM; 661 goto failure; 662 } 663 reiserfs_update_inode_transaction(inode); 664 } 665 research: 666 667 retval = search_for_position_by_key(inode->i_sb, &key, &path); 668 if (retval == IO_ERROR) { 669 retval = -EIO; 670 goto failure; 671 } 672 673 bh = get_last_bh(&path); 674 ih = get_ih(&path); 675 item = get_item(&path); 676 pos_in_item = path.pos_in_item; 677 678 fs_gen = get_generation(inode->i_sb); 679 copy_item_head(&tmp_ih, ih); 680 681 if (allocation_needed 682 (retval, allocated_block_nr, ih, item, pos_in_item)) { 683 /* we have to allocate block for the unformatted node */ 684 if (!th) { 685 pathrelse(&path); 686 goto start_trans; 687 } 688 689 repeat = 690 _allocate_block(th, block, inode, &allocated_block_nr, 691 &path, create); 692 693 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 694 /* restart the transaction to give the journal a chance to free 695 ** some blocks. releases the path, so we have to go back to 696 ** research if we succeed on the second try 697 */ 698 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 699 retval = restart_transaction(th, inode, &path); 700 if (retval) 701 goto failure; 702 repeat = 703 _allocate_block(th, block, inode, 704 &allocated_block_nr, NULL, create); 705 706 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 707 goto research; 708 } 709 if (repeat == QUOTA_EXCEEDED) 710 retval = -EDQUOT; 711 else 712 retval = -ENOSPC; 713 goto failure; 714 } 715 716 if (fs_changed(fs_gen, inode->i_sb) 717 && item_moved(&tmp_ih, &path)) { 718 goto research; 719 } 720 } 721 722 if (indirect_item_found(retval, ih)) { 723 b_blocknr_t unfm_ptr; 724 /* 'block'-th block is in the file already (there is 725 corresponding cell in some indirect item). But it may be 726 zero unformatted node pointer (hole) */ 727 unfm_ptr = get_block_num(item, pos_in_item); 728 if (unfm_ptr == 0) { 729 /* use allocated block to plug the hole */ 730 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 731 if (fs_changed(fs_gen, inode->i_sb) 732 && item_moved(&tmp_ih, &path)) { 733 reiserfs_restore_prepared_buffer(inode->i_sb, 734 bh); 735 goto research; 736 } 737 set_buffer_new(bh_result); 738 if (buffer_dirty(bh_result) 739 && reiserfs_data_ordered(inode->i_sb)) 740 reiserfs_add_ordered_list(inode, bh_result); 741 put_block_num(item, pos_in_item, allocated_block_nr); 742 unfm_ptr = allocated_block_nr; 743 journal_mark_dirty(th, inode->i_sb, bh); 744 reiserfs_update_sd(th, inode); 745 } 746 set_block_dev_mapped(bh_result, unfm_ptr, inode); 747 pathrelse(&path); 748 retval = 0; 749 if (!dangle && th) 750 retval = reiserfs_end_persistent_transaction(th); 751 752 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 753 754 /* the item was found, so new blocks were not added to the file 755 ** there is no need to make sure the inode is updated with this 756 ** transaction 757 */ 758 return retval; 759 } 760 761 if (!th) { 762 pathrelse(&path); 763 goto start_trans; 764 } 765 766 /* desired position is not found or is in the direct item. We have 767 to append file with holes up to 'block'-th block converting 768 direct items to indirect one if necessary */ 769 done = 0; 770 do { 771 if (is_statdata_le_ih(ih)) { 772 __le32 unp = 0; 773 struct cpu_key tmp_key; 774 775 /* indirect item has to be inserted */ 776 make_le_item_head(&tmp_ih, &key, version, 1, 777 TYPE_INDIRECT, UNFM_P_SIZE, 778 0 /* free_space */ ); 779 780 if (cpu_key_k_offset(&key) == 1) { 781 /* we are going to add 'block'-th block to the file. Use 782 allocated block for that */ 783 unp = cpu_to_le32(allocated_block_nr); 784 set_block_dev_mapped(bh_result, 785 allocated_block_nr, inode); 786 set_buffer_new(bh_result); 787 done = 1; 788 } 789 tmp_key = key; // ;) 790 set_cpu_key_k_offset(&tmp_key, 1); 791 PATH_LAST_POSITION(&path)++; 792 793 retval = 794 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 795 inode, (char *)&unp); 796 if (retval) { 797 reiserfs_free_block(th, inode, 798 allocated_block_nr, 1); 799 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 800 } 801 //mark_tail_converted (inode); 802 } else if (is_direct_le_ih(ih)) { 803 /* direct item has to be converted */ 804 loff_t tail_offset; 805 806 tail_offset = 807 ((le_ih_k_offset(ih) - 808 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 809 if (tail_offset == cpu_key_k_offset(&key)) { 810 /* direct item we just found fits into block we have 811 to map. Convert it into unformatted node: use 812 bh_result for the conversion */ 813 set_block_dev_mapped(bh_result, 814 allocated_block_nr, inode); 815 unbh = bh_result; 816 done = 1; 817 } else { 818 /* we have to padd file tail stored in direct item(s) 819 up to block size and convert it to unformatted 820 node. FIXME: this should also get into page cache */ 821 822 pathrelse(&path); 823 /* 824 * ugly, but we can only end the transaction if 825 * we aren't nested 826 */ 827 BUG_ON(!th->t_refcount); 828 if (th->t_refcount == 1) { 829 retval = 830 reiserfs_end_persistent_transaction 831 (th); 832 th = NULL; 833 if (retval) 834 goto failure; 835 } 836 837 retval = 838 convert_tail_for_hole(inode, bh_result, 839 tail_offset); 840 if (retval) { 841 if (retval != -ENOSPC) 842 reiserfs_error(inode->i_sb, 843 "clm-6004", 844 "convert tail failed " 845 "inode %lu, error %d", 846 inode->i_ino, 847 retval); 848 if (allocated_block_nr) { 849 /* the bitmap, the super, and the stat data == 3 */ 850 if (!th) 851 th = reiserfs_persistent_transaction(inode->i_sb, 3); 852 if (th) 853 reiserfs_free_block(th, 854 inode, 855 allocated_block_nr, 856 1); 857 } 858 goto failure; 859 } 860 goto research; 861 } 862 retval = 863 direct2indirect(th, inode, &path, unbh, 864 tail_offset); 865 if (retval) { 866 reiserfs_unmap_buffer(unbh); 867 reiserfs_free_block(th, inode, 868 allocated_block_nr, 1); 869 goto failure; 870 } 871 /* it is important the set_buffer_uptodate is done after 872 ** the direct2indirect. The buffer might contain valid 873 ** data newer than the data on disk (read by readpage, changed, 874 ** and then sent here by writepage). direct2indirect needs 875 ** to know if unbh was already up to date, so it can decide 876 ** if the data in unbh needs to be replaced with data from 877 ** the disk 878 */ 879 set_buffer_uptodate(unbh); 880 881 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 882 buffer will disappear shortly, so it should not be added to 883 */ 884 if (unbh->b_page) { 885 /* we've converted the tail, so we must 886 ** flush unbh before the transaction commits 887 */ 888 reiserfs_add_tail_list(inode, unbh); 889 890 /* mark it dirty now to prevent commit_write from adding 891 ** this buffer to the inode's dirty buffer list 892 */ 893 /* 894 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 895 * It's still atomic, but it sets the page dirty too, 896 * which makes it eligible for writeback at any time by the 897 * VM (which was also the case with __mark_buffer_dirty()) 898 */ 899 mark_buffer_dirty(unbh); 900 } 901 } else { 902 /* append indirect item with holes if needed, when appending 903 pointer to 'block'-th block use block, which is already 904 allocated */ 905 struct cpu_key tmp_key; 906 unp_t unf_single = 0; // We use this in case we need to allocate only 907 // one block which is a fastpath 908 unp_t *un; 909 __u64 max_to_insert = 910 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 911 UNFM_P_SIZE; 912 __u64 blocks_needed; 913 914 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 915 "vs-804: invalid position for append"); 916 /* indirect item has to be appended, set up key of that position */ 917 make_cpu_key(&tmp_key, inode, 918 le_key_k_offset(version, 919 &(ih->ih_key)) + 920 op_bytes_number(ih, 921 inode->i_sb->s_blocksize), 922 //pos_in_item * inode->i_sb->s_blocksize, 923 TYPE_INDIRECT, 3); // key type is unimportant 924 925 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 926 "green-805: invalid offset"); 927 blocks_needed = 928 1 + 929 ((cpu_key_k_offset(&key) - 930 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 931 s_blocksize_bits); 932 933 if (blocks_needed == 1) { 934 un = &unf_single; 935 } else { 936 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 937 if (!un) { 938 un = &unf_single; 939 blocks_needed = 1; 940 max_to_insert = 0; 941 } 942 } 943 if (blocks_needed <= max_to_insert) { 944 /* we are going to add target block to the file. Use allocated 945 block for that */ 946 un[blocks_needed - 1] = 947 cpu_to_le32(allocated_block_nr); 948 set_block_dev_mapped(bh_result, 949 allocated_block_nr, inode); 950 set_buffer_new(bh_result); 951 done = 1; 952 } else { 953 /* paste hole to the indirect item */ 954 /* If kmalloc failed, max_to_insert becomes zero and it means we 955 only have space for one block */ 956 blocks_needed = 957 max_to_insert ? max_to_insert : 1; 958 } 959 retval = 960 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 961 (char *)un, 962 UNFM_P_SIZE * 963 blocks_needed); 964 965 if (blocks_needed != 1) 966 kfree(un); 967 968 if (retval) { 969 reiserfs_free_block(th, inode, 970 allocated_block_nr, 1); 971 goto failure; 972 } 973 if (!done) { 974 /* We need to mark new file size in case this function will be 975 interrupted/aborted later on. And we may do this only for 976 holes. */ 977 inode->i_size += 978 inode->i_sb->s_blocksize * blocks_needed; 979 } 980 } 981 982 if (done == 1) 983 break; 984 985 /* this loop could log more blocks than we had originally asked 986 ** for. So, we have to allow the transaction to end if it is 987 ** too big or too full. Update the inode so things are 988 ** consistent if we crash before the function returns 989 ** 990 ** release the path so that anybody waiting on the path before 991 ** ending their transaction will be able to continue. 992 */ 993 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 994 retval = restart_transaction(th, inode, &path); 995 if (retval) 996 goto failure; 997 } 998 /* 999 * inserting indirect pointers for a hole can take a 1000 * long time. reschedule if needed and also release the write 1001 * lock for others. 1002 */ 1003 if (need_resched()) { 1004 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1005 schedule(); 1006 lock_depth = reiserfs_write_lock_once(inode->i_sb); 1007 } 1008 1009 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1010 if (retval == IO_ERROR) { 1011 retval = -EIO; 1012 goto failure; 1013 } 1014 if (retval == POSITION_FOUND) { 1015 reiserfs_warning(inode->i_sb, "vs-825", 1016 "%K should not be found", &key); 1017 retval = -EEXIST; 1018 if (allocated_block_nr) 1019 reiserfs_free_block(th, inode, 1020 allocated_block_nr, 1); 1021 pathrelse(&path); 1022 goto failure; 1023 } 1024 bh = get_last_bh(&path); 1025 ih = get_ih(&path); 1026 item = get_item(&path); 1027 pos_in_item = path.pos_in_item; 1028 } while (1); 1029 1030 retval = 0; 1031 1032 failure: 1033 if (th && (!dangle || (retval && !th->t_trans_id))) { 1034 int err; 1035 if (th->t_trans_id) 1036 reiserfs_update_sd(th, inode); 1037 err = reiserfs_end_persistent_transaction(th); 1038 if (err) 1039 retval = err; 1040 } 1041 1042 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1043 reiserfs_check_path(&path); 1044 return retval; 1045 } 1046 1047 static int 1048 reiserfs_readpages(struct file *file, struct address_space *mapping, 1049 struct list_head *pages, unsigned nr_pages) 1050 { 1051 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1052 } 1053 1054 /* Compute real number of used bytes by file 1055 * Following three functions can go away when we'll have enough space in stat item 1056 */ 1057 static int real_space_diff(struct inode *inode, int sd_size) 1058 { 1059 int bytes; 1060 loff_t blocksize = inode->i_sb->s_blocksize; 1061 1062 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1063 return sd_size; 1064 1065 /* End of file is also in full block with indirect reference, so round 1066 ** up to the next block. 1067 ** 1068 ** there is just no way to know if the tail is actually packed 1069 ** on the file, so we have to assume it isn't. When we pack the 1070 ** tail, we add 4 bytes to pretend there really is an unformatted 1071 ** node pointer 1072 */ 1073 bytes = 1074 ((inode->i_size + 1075 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1076 sd_size; 1077 return bytes; 1078 } 1079 1080 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1081 int sd_size) 1082 { 1083 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1084 return inode->i_size + 1085 (loff_t) (real_space_diff(inode, sd_size)); 1086 } 1087 return ((loff_t) real_space_diff(inode, sd_size)) + 1088 (((loff_t) blocks) << 9); 1089 } 1090 1091 /* Compute number of blocks used by file in ReiserFS counting */ 1092 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1093 { 1094 loff_t bytes = inode_get_bytes(inode); 1095 loff_t real_space = real_space_diff(inode, sd_size); 1096 1097 /* keeps fsck and non-quota versions of reiserfs happy */ 1098 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1099 bytes += (loff_t) 511; 1100 } 1101 1102 /* files from before the quota patch might i_blocks such that 1103 ** bytes < real_space. Deal with that here to prevent it from 1104 ** going negative. 1105 */ 1106 if (bytes < real_space) 1107 return 0; 1108 return (bytes - real_space) >> 9; 1109 } 1110 1111 // 1112 // BAD: new directories have stat data of new type and all other items 1113 // of old type. Version stored in the inode says about body items, so 1114 // in update_stat_data we can not rely on inode, but have to check 1115 // item version directly 1116 // 1117 1118 // called by read_locked_inode 1119 static void init_inode(struct inode *inode, struct treepath *path) 1120 { 1121 struct buffer_head *bh; 1122 struct item_head *ih; 1123 __u32 rdev; 1124 //int version = ITEM_VERSION_1; 1125 1126 bh = PATH_PLAST_BUFFER(path); 1127 ih = PATH_PITEM_HEAD(path); 1128 1129 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1130 1131 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1132 REISERFS_I(inode)->i_flags = 0; 1133 REISERFS_I(inode)->i_prealloc_block = 0; 1134 REISERFS_I(inode)->i_prealloc_count = 0; 1135 REISERFS_I(inode)->i_trans_id = 0; 1136 REISERFS_I(inode)->i_jl = NULL; 1137 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1138 reiserfs_init_xattr_rwsem(inode); 1139 1140 if (stat_data_v1(ih)) { 1141 struct stat_data_v1 *sd = 1142 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1143 unsigned long blocks; 1144 1145 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1146 set_inode_sd_version(inode, STAT_DATA_V1); 1147 inode->i_mode = sd_v1_mode(sd); 1148 inode->i_nlink = sd_v1_nlink(sd); 1149 inode->i_uid = sd_v1_uid(sd); 1150 inode->i_gid = sd_v1_gid(sd); 1151 inode->i_size = sd_v1_size(sd); 1152 inode->i_atime.tv_sec = sd_v1_atime(sd); 1153 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1154 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1155 inode->i_atime.tv_nsec = 0; 1156 inode->i_ctime.tv_nsec = 0; 1157 inode->i_mtime.tv_nsec = 0; 1158 1159 inode->i_blocks = sd_v1_blocks(sd); 1160 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1161 blocks = (inode->i_size + 511) >> 9; 1162 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1163 if (inode->i_blocks > blocks) { 1164 // there was a bug in <=3.5.23 when i_blocks could take negative 1165 // values. Starting from 3.5.17 this value could even be stored in 1166 // stat data. For such files we set i_blocks based on file 1167 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1168 // only updated if file's inode will ever change 1169 inode->i_blocks = blocks; 1170 } 1171 1172 rdev = sd_v1_rdev(sd); 1173 REISERFS_I(inode)->i_first_direct_byte = 1174 sd_v1_first_direct_byte(sd); 1175 /* an early bug in the quota code can give us an odd number for the 1176 ** block count. This is incorrect, fix it here. 1177 */ 1178 if (inode->i_blocks & 1) { 1179 inode->i_blocks++; 1180 } 1181 inode_set_bytes(inode, 1182 to_real_used_space(inode, inode->i_blocks, 1183 SD_V1_SIZE)); 1184 /* nopack is initially zero for v1 objects. For v2 objects, 1185 nopack is initialised from sd_attrs */ 1186 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1187 } else { 1188 // new stat data found, but object may have old items 1189 // (directories and symlinks) 1190 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1191 1192 inode->i_mode = sd_v2_mode(sd); 1193 inode->i_nlink = sd_v2_nlink(sd); 1194 inode->i_uid = sd_v2_uid(sd); 1195 inode->i_size = sd_v2_size(sd); 1196 inode->i_gid = sd_v2_gid(sd); 1197 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1198 inode->i_atime.tv_sec = sd_v2_atime(sd); 1199 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1200 inode->i_ctime.tv_nsec = 0; 1201 inode->i_mtime.tv_nsec = 0; 1202 inode->i_atime.tv_nsec = 0; 1203 inode->i_blocks = sd_v2_blocks(sd); 1204 rdev = sd_v2_rdev(sd); 1205 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1206 inode->i_generation = 1207 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1208 else 1209 inode->i_generation = sd_v2_generation(sd); 1210 1211 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1212 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1213 else 1214 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1215 REISERFS_I(inode)->i_first_direct_byte = 0; 1216 set_inode_sd_version(inode, STAT_DATA_V2); 1217 inode_set_bytes(inode, 1218 to_real_used_space(inode, inode->i_blocks, 1219 SD_V2_SIZE)); 1220 /* read persistent inode attributes from sd and initalise 1221 generic inode flags from them */ 1222 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1223 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1224 } 1225 1226 pathrelse(path); 1227 if (S_ISREG(inode->i_mode)) { 1228 inode->i_op = &reiserfs_file_inode_operations; 1229 inode->i_fop = &reiserfs_file_operations; 1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1231 } else if (S_ISDIR(inode->i_mode)) { 1232 inode->i_op = &reiserfs_dir_inode_operations; 1233 inode->i_fop = &reiserfs_dir_operations; 1234 } else if (S_ISLNK(inode->i_mode)) { 1235 inode->i_op = &reiserfs_symlink_inode_operations; 1236 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1237 } else { 1238 inode->i_blocks = 0; 1239 inode->i_op = &reiserfs_special_inode_operations; 1240 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1241 } 1242 } 1243 1244 // update new stat data with inode fields 1245 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1246 { 1247 struct stat_data *sd_v2 = (struct stat_data *)sd; 1248 __u16 flags; 1249 1250 set_sd_v2_mode(sd_v2, inode->i_mode); 1251 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1252 set_sd_v2_uid(sd_v2, inode->i_uid); 1253 set_sd_v2_size(sd_v2, size); 1254 set_sd_v2_gid(sd_v2, inode->i_gid); 1255 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1256 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1257 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1258 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1259 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1260 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1261 else 1262 set_sd_v2_generation(sd_v2, inode->i_generation); 1263 flags = REISERFS_I(inode)->i_attrs; 1264 i_attrs_to_sd_attrs(inode, &flags); 1265 set_sd_v2_attrs(sd_v2, flags); 1266 } 1267 1268 // used to copy inode's fields to old stat data 1269 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1270 { 1271 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1272 1273 set_sd_v1_mode(sd_v1, inode->i_mode); 1274 set_sd_v1_uid(sd_v1, inode->i_uid); 1275 set_sd_v1_gid(sd_v1, inode->i_gid); 1276 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1277 set_sd_v1_size(sd_v1, size); 1278 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1279 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1280 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1281 1282 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1283 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1284 else 1285 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1286 1287 // Sigh. i_first_direct_byte is back 1288 set_sd_v1_first_direct_byte(sd_v1, 1289 REISERFS_I(inode)->i_first_direct_byte); 1290 } 1291 1292 /* NOTE, you must prepare the buffer head before sending it here, 1293 ** and then log it after the call 1294 */ 1295 static void update_stat_data(struct treepath *path, struct inode *inode, 1296 loff_t size) 1297 { 1298 struct buffer_head *bh; 1299 struct item_head *ih; 1300 1301 bh = PATH_PLAST_BUFFER(path); 1302 ih = PATH_PITEM_HEAD(path); 1303 1304 if (!is_statdata_le_ih(ih)) 1305 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1306 INODE_PKEY(inode), ih); 1307 1308 if (stat_data_v1(ih)) { 1309 // path points to old stat data 1310 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1311 } else { 1312 inode2sd(B_I_PITEM(bh, ih), inode, size); 1313 } 1314 1315 return; 1316 } 1317 1318 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1319 struct inode *inode, loff_t size) 1320 { 1321 struct cpu_key key; 1322 INITIALIZE_PATH(path); 1323 struct buffer_head *bh; 1324 int fs_gen; 1325 struct item_head *ih, tmp_ih; 1326 int retval; 1327 1328 BUG_ON(!th->t_trans_id); 1329 1330 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1331 1332 for (;;) { 1333 int pos; 1334 /* look for the object's stat data */ 1335 retval = search_item(inode->i_sb, &key, &path); 1336 if (retval == IO_ERROR) { 1337 reiserfs_error(inode->i_sb, "vs-13050", 1338 "i/o failure occurred trying to " 1339 "update %K stat data", &key); 1340 return; 1341 } 1342 if (retval == ITEM_NOT_FOUND) { 1343 pos = PATH_LAST_POSITION(&path); 1344 pathrelse(&path); 1345 if (inode->i_nlink == 0) { 1346 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1347 return; 1348 } 1349 reiserfs_warning(inode->i_sb, "vs-13060", 1350 "stat data of object %k (nlink == %d) " 1351 "not found (pos %d)", 1352 INODE_PKEY(inode), inode->i_nlink, 1353 pos); 1354 reiserfs_check_path(&path); 1355 return; 1356 } 1357 1358 /* sigh, prepare_for_journal might schedule. When it schedules the 1359 ** FS might change. We have to detect that, and loop back to the 1360 ** search if the stat data item has moved 1361 */ 1362 bh = get_last_bh(&path); 1363 ih = get_ih(&path); 1364 copy_item_head(&tmp_ih, ih); 1365 fs_gen = get_generation(inode->i_sb); 1366 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1367 if (fs_changed(fs_gen, inode->i_sb) 1368 && item_moved(&tmp_ih, &path)) { 1369 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1370 continue; /* Stat_data item has been moved after scheduling. */ 1371 } 1372 break; 1373 } 1374 update_stat_data(&path, inode, size); 1375 journal_mark_dirty(th, th->t_super, bh); 1376 pathrelse(&path); 1377 return; 1378 } 1379 1380 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1381 ** does a make_bad_inode when things go wrong. But, we need to make sure 1382 ** and clear the key in the private portion of the inode, otherwise a 1383 ** corresponding iput might try to delete whatever object the inode last 1384 ** represented. 1385 */ 1386 static void reiserfs_make_bad_inode(struct inode *inode) 1387 { 1388 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1389 make_bad_inode(inode); 1390 } 1391 1392 // 1393 // initially this function was derived from minix or ext2's analog and 1394 // evolved as the prototype did 1395 // 1396 1397 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1398 { 1399 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1400 inode->i_ino = args->objectid; 1401 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1402 return 0; 1403 } 1404 1405 /* looks for stat data in the tree, and fills up the fields of in-core 1406 inode stat data fields */ 1407 void reiserfs_read_locked_inode(struct inode *inode, 1408 struct reiserfs_iget_args *args) 1409 { 1410 INITIALIZE_PATH(path_to_sd); 1411 struct cpu_key key; 1412 unsigned long dirino; 1413 int retval; 1414 1415 dirino = args->dirid; 1416 1417 /* set version 1, version 2 could be used too, because stat data 1418 key is the same in both versions */ 1419 key.version = KEY_FORMAT_3_5; 1420 key.on_disk_key.k_dir_id = dirino; 1421 key.on_disk_key.k_objectid = inode->i_ino; 1422 key.on_disk_key.k_offset = 0; 1423 key.on_disk_key.k_type = 0; 1424 1425 /* look for the object's stat data */ 1426 retval = search_item(inode->i_sb, &key, &path_to_sd); 1427 if (retval == IO_ERROR) { 1428 reiserfs_error(inode->i_sb, "vs-13070", 1429 "i/o failure occurred trying to find " 1430 "stat data of %K", &key); 1431 reiserfs_make_bad_inode(inode); 1432 return; 1433 } 1434 if (retval != ITEM_FOUND) { 1435 /* a stale NFS handle can trigger this without it being an error */ 1436 pathrelse(&path_to_sd); 1437 reiserfs_make_bad_inode(inode); 1438 inode->i_nlink = 0; 1439 return; 1440 } 1441 1442 init_inode(inode, &path_to_sd); 1443 1444 /* It is possible that knfsd is trying to access inode of a file 1445 that is being removed from the disk by some other thread. As we 1446 update sd on unlink all that is required is to check for nlink 1447 here. This bug was first found by Sizif when debugging 1448 SquidNG/Butterfly, forgotten, and found again after Philippe 1449 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1450 1451 More logical fix would require changes in fs/inode.c:iput() to 1452 remove inode from hash-table _after_ fs cleaned disk stuff up and 1453 in iget() to return NULL if I_FREEING inode is found in 1454 hash-table. */ 1455 /* Currently there is one place where it's ok to meet inode with 1456 nlink==0: processing of open-unlinked and half-truncated files 1457 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1458 if ((inode->i_nlink == 0) && 1459 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1460 reiserfs_warning(inode->i_sb, "vs-13075", 1461 "dead inode read from disk %K. " 1462 "This is likely to be race with knfsd. Ignore", 1463 &key); 1464 reiserfs_make_bad_inode(inode); 1465 } 1466 1467 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1468 1469 } 1470 1471 /** 1472 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1473 * 1474 * @inode: inode from hash table to check 1475 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1476 * 1477 * This function is called by iget5_locked() to distinguish reiserfs inodes 1478 * having the same inode numbers. Such inodes can only exist due to some 1479 * error condition. One of them should be bad. Inodes with identical 1480 * inode numbers (objectids) are distinguished by parent directory ids. 1481 * 1482 */ 1483 int reiserfs_find_actor(struct inode *inode, void *opaque) 1484 { 1485 struct reiserfs_iget_args *args; 1486 1487 args = opaque; 1488 /* args is already in CPU order */ 1489 return (inode->i_ino == args->objectid) && 1490 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1491 } 1492 1493 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1494 { 1495 struct inode *inode; 1496 struct reiserfs_iget_args args; 1497 1498 args.objectid = key->on_disk_key.k_objectid; 1499 args.dirid = key->on_disk_key.k_dir_id; 1500 reiserfs_write_unlock(s); 1501 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1502 reiserfs_find_actor, reiserfs_init_locked_inode, 1503 (void *)(&args)); 1504 reiserfs_write_lock(s); 1505 if (!inode) 1506 return ERR_PTR(-ENOMEM); 1507 1508 if (inode->i_state & I_NEW) { 1509 reiserfs_read_locked_inode(inode, &args); 1510 unlock_new_inode(inode); 1511 } 1512 1513 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1514 /* either due to i/o error or a stale NFS handle */ 1515 iput(inode); 1516 inode = NULL; 1517 } 1518 return inode; 1519 } 1520 1521 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1522 u32 objectid, u32 dir_id, u32 generation) 1523 1524 { 1525 struct cpu_key key; 1526 struct inode *inode; 1527 1528 key.on_disk_key.k_objectid = objectid; 1529 key.on_disk_key.k_dir_id = dir_id; 1530 reiserfs_write_lock(sb); 1531 inode = reiserfs_iget(sb, &key); 1532 if (inode && !IS_ERR(inode) && generation != 0 && 1533 generation != inode->i_generation) { 1534 iput(inode); 1535 inode = NULL; 1536 } 1537 reiserfs_write_unlock(sb); 1538 1539 return d_obtain_alias(inode); 1540 } 1541 1542 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1543 int fh_len, int fh_type) 1544 { 1545 /* fhtype happens to reflect the number of u32s encoded. 1546 * due to a bug in earlier code, fhtype might indicate there 1547 * are more u32s then actually fitted. 1548 * so if fhtype seems to be more than len, reduce fhtype. 1549 * Valid types are: 1550 * 2 - objectid + dir_id - legacy support 1551 * 3 - objectid + dir_id + generation 1552 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1553 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1554 * 6 - as above plus generation of directory 1555 * 6 does not fit in NFSv2 handles 1556 */ 1557 if (fh_type > fh_len) { 1558 if (fh_type != 6 || fh_len != 5) 1559 reiserfs_warning(sb, "reiserfs-13077", 1560 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1561 fh_type, fh_len); 1562 fh_type = 5; 1563 } 1564 1565 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1566 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1567 } 1568 1569 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1570 int fh_len, int fh_type) 1571 { 1572 if (fh_type < 4) 1573 return NULL; 1574 1575 return reiserfs_get_dentry(sb, 1576 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1577 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1578 (fh_type == 6) ? fid->raw[5] : 0); 1579 } 1580 1581 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1582 int need_parent) 1583 { 1584 struct inode *inode = dentry->d_inode; 1585 int maxlen = *lenp; 1586 1587 if (maxlen < 3) 1588 return 255; 1589 1590 data[0] = inode->i_ino; 1591 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1592 data[2] = inode->i_generation; 1593 *lenp = 3; 1594 /* no room for directory info? return what we've stored so far */ 1595 if (maxlen < 5 || !need_parent) 1596 return 3; 1597 1598 spin_lock(&dentry->d_lock); 1599 inode = dentry->d_parent->d_inode; 1600 data[3] = inode->i_ino; 1601 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1602 *lenp = 5; 1603 if (maxlen >= 6) { 1604 data[5] = inode->i_generation; 1605 *lenp = 6; 1606 } 1607 spin_unlock(&dentry->d_lock); 1608 return *lenp; 1609 } 1610 1611 /* looks for stat data, then copies fields to it, marks the buffer 1612 containing stat data as dirty */ 1613 /* reiserfs inodes are never really dirty, since the dirty inode call 1614 ** always logs them. This call allows the VFS inode marking routines 1615 ** to properly mark inodes for datasync and such, but only actually 1616 ** does something when called for a synchronous update. 1617 */ 1618 int reiserfs_write_inode(struct inode *inode, int do_sync) 1619 { 1620 struct reiserfs_transaction_handle th; 1621 int jbegin_count = 1; 1622 1623 if (inode->i_sb->s_flags & MS_RDONLY) 1624 return -EROFS; 1625 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1626 ** these cases are just when the system needs ram, not when the 1627 ** inode needs to reach disk for safety, and they can safely be 1628 ** ignored because the altered inode has already been logged. 1629 */ 1630 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1631 reiserfs_write_lock(inode->i_sb); 1632 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1633 reiserfs_update_sd(&th, inode); 1634 journal_end_sync(&th, inode->i_sb, jbegin_count); 1635 } 1636 reiserfs_write_unlock(inode->i_sb); 1637 } 1638 return 0; 1639 } 1640 1641 /* stat data of new object is inserted already, this inserts the item 1642 containing "." and ".." entries */ 1643 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1644 struct inode *inode, 1645 struct item_head *ih, struct treepath *path, 1646 struct inode *dir) 1647 { 1648 struct super_block *sb = th->t_super; 1649 char empty_dir[EMPTY_DIR_SIZE]; 1650 char *body = empty_dir; 1651 struct cpu_key key; 1652 int retval; 1653 1654 BUG_ON(!th->t_trans_id); 1655 1656 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1657 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1658 TYPE_DIRENTRY, 3 /*key length */ ); 1659 1660 /* compose item head for new item. Directories consist of items of 1661 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1662 is done by reiserfs_new_inode */ 1663 if (old_format_only(sb)) { 1664 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1665 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1666 1667 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1668 ih->ih_key.k_objectid, 1669 INODE_PKEY(dir)->k_dir_id, 1670 INODE_PKEY(dir)->k_objectid); 1671 } else { 1672 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1673 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1674 1675 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1676 ih->ih_key.k_objectid, 1677 INODE_PKEY(dir)->k_dir_id, 1678 INODE_PKEY(dir)->k_objectid); 1679 } 1680 1681 /* look for place in the tree for new item */ 1682 retval = search_item(sb, &key, path); 1683 if (retval == IO_ERROR) { 1684 reiserfs_error(sb, "vs-13080", 1685 "i/o failure occurred creating new directory"); 1686 return -EIO; 1687 } 1688 if (retval == ITEM_FOUND) { 1689 pathrelse(path); 1690 reiserfs_warning(sb, "vs-13070", 1691 "object with this key exists (%k)", 1692 &(ih->ih_key)); 1693 return -EEXIST; 1694 } 1695 1696 /* insert item, that is empty directory item */ 1697 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1698 } 1699 1700 /* stat data of object has been inserted, this inserts the item 1701 containing the body of symlink */ 1702 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1703 struct item_head *ih, 1704 struct treepath *path, const char *symname, 1705 int item_len) 1706 { 1707 struct super_block *sb = th->t_super; 1708 struct cpu_key key; 1709 int retval; 1710 1711 BUG_ON(!th->t_trans_id); 1712 1713 _make_cpu_key(&key, KEY_FORMAT_3_5, 1714 le32_to_cpu(ih->ih_key.k_dir_id), 1715 le32_to_cpu(ih->ih_key.k_objectid), 1716 1, TYPE_DIRECT, 3 /*key length */ ); 1717 1718 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1719 0 /*free_space */ ); 1720 1721 /* look for place in the tree for new item */ 1722 retval = search_item(sb, &key, path); 1723 if (retval == IO_ERROR) { 1724 reiserfs_error(sb, "vs-13080", 1725 "i/o failure occurred creating new symlink"); 1726 return -EIO; 1727 } 1728 if (retval == ITEM_FOUND) { 1729 pathrelse(path); 1730 reiserfs_warning(sb, "vs-13080", 1731 "object with this key exists (%k)", 1732 &(ih->ih_key)); 1733 return -EEXIST; 1734 } 1735 1736 /* insert item, that is body of symlink */ 1737 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1738 } 1739 1740 /* inserts the stat data into the tree, and then calls 1741 reiserfs_new_directory (to insert ".", ".." item if new object is 1742 directory) or reiserfs_new_symlink (to insert symlink body if new 1743 object is symlink) or nothing (if new object is regular file) 1744 1745 NOTE! uid and gid must already be set in the inode. If we return 1746 non-zero due to an error, we have to drop the quota previously allocated 1747 for the fresh inode. This can only be done outside a transaction, so 1748 if we return non-zero, we also end the transaction. */ 1749 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1750 struct inode *dir, int mode, const char *symname, 1751 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1752 strlen (symname) for symlinks) */ 1753 loff_t i_size, struct dentry *dentry, 1754 struct inode *inode, 1755 struct reiserfs_security_handle *security) 1756 { 1757 struct super_block *sb; 1758 struct reiserfs_iget_args args; 1759 INITIALIZE_PATH(path_to_key); 1760 struct cpu_key key; 1761 struct item_head ih; 1762 struct stat_data sd; 1763 int retval; 1764 int err; 1765 1766 BUG_ON(!th->t_trans_id); 1767 1768 if (vfs_dq_alloc_inode(inode)) { 1769 err = -EDQUOT; 1770 goto out_end_trans; 1771 } 1772 if (!dir->i_nlink) { 1773 err = -EPERM; 1774 goto out_bad_inode; 1775 } 1776 1777 sb = dir->i_sb; 1778 1779 /* item head of new item */ 1780 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1781 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1782 if (!ih.ih_key.k_objectid) { 1783 err = -ENOMEM; 1784 goto out_bad_inode; 1785 } 1786 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1787 if (old_format_only(sb)) 1788 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1789 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1790 else 1791 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1792 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1793 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1794 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1795 if (insert_inode_locked4(inode, args.objectid, 1796 reiserfs_find_actor, &args) < 0) { 1797 err = -EINVAL; 1798 goto out_bad_inode; 1799 } 1800 if (old_format_only(sb)) 1801 /* not a perfect generation count, as object ids can be reused, but 1802 ** this is as good as reiserfs can do right now. 1803 ** note that the private part of inode isn't filled in yet, we have 1804 ** to use the directory. 1805 */ 1806 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1807 else 1808 #if defined( USE_INODE_GENERATION_COUNTER ) 1809 inode->i_generation = 1810 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1811 #else 1812 inode->i_generation = ++event; 1813 #endif 1814 1815 /* fill stat data */ 1816 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1817 1818 /* uid and gid must already be set by the caller for quota init */ 1819 1820 /* symlink cannot be immutable or append only, right? */ 1821 if (S_ISLNK(inode->i_mode)) 1822 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1823 1824 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1825 inode->i_size = i_size; 1826 inode->i_blocks = 0; 1827 inode->i_bytes = 0; 1828 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1829 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1830 1831 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1832 REISERFS_I(inode)->i_flags = 0; 1833 REISERFS_I(inode)->i_prealloc_block = 0; 1834 REISERFS_I(inode)->i_prealloc_count = 0; 1835 REISERFS_I(inode)->i_trans_id = 0; 1836 REISERFS_I(inode)->i_jl = NULL; 1837 REISERFS_I(inode)->i_attrs = 1838 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1839 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1840 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1841 reiserfs_init_xattr_rwsem(inode); 1842 1843 /* key to search for correct place for new stat data */ 1844 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1845 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1846 TYPE_STAT_DATA, 3 /*key length */ ); 1847 1848 /* find proper place for inserting of stat data */ 1849 retval = search_item(sb, &key, &path_to_key); 1850 if (retval == IO_ERROR) { 1851 err = -EIO; 1852 goto out_bad_inode; 1853 } 1854 if (retval == ITEM_FOUND) { 1855 pathrelse(&path_to_key); 1856 err = -EEXIST; 1857 goto out_bad_inode; 1858 } 1859 if (old_format_only(sb)) { 1860 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1861 pathrelse(&path_to_key); 1862 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1863 err = -EINVAL; 1864 goto out_bad_inode; 1865 } 1866 inode2sd_v1(&sd, inode, inode->i_size); 1867 } else { 1868 inode2sd(&sd, inode, inode->i_size); 1869 } 1870 // store in in-core inode the key of stat data and version all 1871 // object items will have (directory items will have old offset 1872 // format, other new objects will consist of new items) 1873 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1874 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1875 else 1876 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1877 if (old_format_only(sb)) 1878 set_inode_sd_version(inode, STAT_DATA_V1); 1879 else 1880 set_inode_sd_version(inode, STAT_DATA_V2); 1881 1882 /* insert the stat data into the tree */ 1883 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1884 if (REISERFS_I(dir)->new_packing_locality) 1885 th->displace_new_blocks = 1; 1886 #endif 1887 retval = 1888 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1889 (char *)(&sd)); 1890 if (retval) { 1891 err = retval; 1892 reiserfs_check_path(&path_to_key); 1893 goto out_bad_inode; 1894 } 1895 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1896 if (!th->displace_new_blocks) 1897 REISERFS_I(dir)->new_packing_locality = 0; 1898 #endif 1899 if (S_ISDIR(mode)) { 1900 /* insert item with "." and ".." */ 1901 retval = 1902 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1903 } 1904 1905 if (S_ISLNK(mode)) { 1906 /* insert body of symlink */ 1907 if (!old_format_only(sb)) 1908 i_size = ROUND_UP(i_size); 1909 retval = 1910 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1911 i_size); 1912 } 1913 if (retval) { 1914 err = retval; 1915 reiserfs_check_path(&path_to_key); 1916 journal_end(th, th->t_super, th->t_blocks_allocated); 1917 goto out_inserted_sd; 1918 } 1919 1920 if (reiserfs_posixacl(inode->i_sb)) { 1921 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1922 if (retval) { 1923 err = retval; 1924 reiserfs_check_path(&path_to_key); 1925 journal_end(th, th->t_super, th->t_blocks_allocated); 1926 goto out_inserted_sd; 1927 } 1928 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1929 reiserfs_warning(inode->i_sb, "jdm-13090", 1930 "ACLs aren't enabled in the fs, " 1931 "but vfs thinks they are!"); 1932 } else if (IS_PRIVATE(dir)) 1933 inode->i_flags |= S_PRIVATE; 1934 1935 if (security->name) { 1936 retval = reiserfs_security_write(th, inode, security); 1937 if (retval) { 1938 err = retval; 1939 reiserfs_check_path(&path_to_key); 1940 retval = journal_end(th, th->t_super, 1941 th->t_blocks_allocated); 1942 if (retval) 1943 err = retval; 1944 goto out_inserted_sd; 1945 } 1946 } 1947 1948 reiserfs_update_sd(th, inode); 1949 reiserfs_check_path(&path_to_key); 1950 1951 return 0; 1952 1953 /* it looks like you can easily compress these two goto targets into 1954 * one. Keeping it like this doesn't actually hurt anything, and they 1955 * are place holders for what the quota code actually needs. 1956 */ 1957 out_bad_inode: 1958 /* Invalidate the object, nothing was inserted yet */ 1959 INODE_PKEY(inode)->k_objectid = 0; 1960 1961 /* Quota change must be inside a transaction for journaling */ 1962 vfs_dq_free_inode(inode); 1963 1964 out_end_trans: 1965 journal_end(th, th->t_super, th->t_blocks_allocated); 1966 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1967 vfs_dq_drop(inode); 1968 inode->i_flags |= S_NOQUOTA; 1969 make_bad_inode(inode); 1970 1971 out_inserted_sd: 1972 inode->i_nlink = 0; 1973 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1974 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1975 iput(inode); 1976 return err; 1977 } 1978 1979 /* 1980 ** finds the tail page in the page cache, 1981 ** reads the last block in. 1982 ** 1983 ** On success, page_result is set to a locked, pinned page, and bh_result 1984 ** is set to an up to date buffer for the last block in the file. returns 0. 1985 ** 1986 ** tail conversion is not done, so bh_result might not be valid for writing 1987 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1988 ** trying to write the block. 1989 ** 1990 ** on failure, nonzero is returned, page_result and bh_result are untouched. 1991 */ 1992 static int grab_tail_page(struct inode *inode, 1993 struct page **page_result, 1994 struct buffer_head **bh_result) 1995 { 1996 1997 /* we want the page with the last byte in the file, 1998 ** not the page that will hold the next byte for appending 1999 */ 2000 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2001 unsigned long pos = 0; 2002 unsigned long start = 0; 2003 unsigned long blocksize = inode->i_sb->s_blocksize; 2004 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2005 struct buffer_head *bh; 2006 struct buffer_head *head; 2007 struct page *page; 2008 int error; 2009 2010 /* we know that we are only called with inode->i_size > 0. 2011 ** we also know that a file tail can never be as big as a block 2012 ** If i_size % blocksize == 0, our file is currently block aligned 2013 ** and it won't need converting or zeroing after a truncate. 2014 */ 2015 if ((offset & (blocksize - 1)) == 0) { 2016 return -ENOENT; 2017 } 2018 page = grab_cache_page(inode->i_mapping, index); 2019 error = -ENOMEM; 2020 if (!page) { 2021 goto out; 2022 } 2023 /* start within the page of the last block in the file */ 2024 start = (offset / blocksize) * blocksize; 2025 2026 error = block_prepare_write(page, start, offset, 2027 reiserfs_get_block_create_0); 2028 if (error) 2029 goto unlock; 2030 2031 head = page_buffers(page); 2032 bh = head; 2033 do { 2034 if (pos >= start) { 2035 break; 2036 } 2037 bh = bh->b_this_page; 2038 pos += blocksize; 2039 } while (bh != head); 2040 2041 if (!buffer_uptodate(bh)) { 2042 /* note, this should never happen, prepare_write should 2043 ** be taking care of this for us. If the buffer isn't up to date, 2044 ** I've screwed up the code to find the buffer, or the code to 2045 ** call prepare_write 2046 */ 2047 reiserfs_error(inode->i_sb, "clm-6000", 2048 "error reading block %lu", bh->b_blocknr); 2049 error = -EIO; 2050 goto unlock; 2051 } 2052 *bh_result = bh; 2053 *page_result = page; 2054 2055 out: 2056 return error; 2057 2058 unlock: 2059 unlock_page(page); 2060 page_cache_release(page); 2061 return error; 2062 } 2063 2064 /* 2065 ** vfs version of truncate file. Must NOT be called with 2066 ** a transaction already started. 2067 ** 2068 ** some code taken from block_truncate_page 2069 */ 2070 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2071 { 2072 struct reiserfs_transaction_handle th; 2073 /* we want the offset for the first byte after the end of the file */ 2074 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2075 unsigned blocksize = inode->i_sb->s_blocksize; 2076 unsigned length; 2077 struct page *page = NULL; 2078 int error; 2079 struct buffer_head *bh = NULL; 2080 int err2; 2081 int lock_depth; 2082 2083 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2084 2085 if (inode->i_size > 0) { 2086 error = grab_tail_page(inode, &page, &bh); 2087 if (error) { 2088 // -ENOENT means we truncated past the end of the file, 2089 // and get_block_create_0 could not find a block to read in, 2090 // which is ok. 2091 if (error != -ENOENT) 2092 reiserfs_error(inode->i_sb, "clm-6001", 2093 "grab_tail_page failed %d", 2094 error); 2095 page = NULL; 2096 bh = NULL; 2097 } 2098 } 2099 2100 /* so, if page != NULL, we have a buffer head for the offset at 2101 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2102 ** then we have an unformatted node. Otherwise, we have a direct item, 2103 ** and no zeroing is required on disk. We zero after the truncate, 2104 ** because the truncate might pack the item anyway 2105 ** (it will unmap bh if it packs). 2106 */ 2107 /* it is enough to reserve space in transaction for 2 balancings: 2108 one for "save" link adding and another for the first 2109 cut_from_item. 1 is for update_sd */ 2110 error = journal_begin(&th, inode->i_sb, 2111 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2112 if (error) 2113 goto out; 2114 reiserfs_update_inode_transaction(inode); 2115 if (update_timestamps) 2116 /* we are doing real truncate: if the system crashes before the last 2117 transaction of truncating gets committed - on reboot the file 2118 either appears truncated properly or not truncated at all */ 2119 add_save_link(&th, inode, 1); 2120 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2121 error = 2122 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2123 if (error) 2124 goto out; 2125 2126 /* check reiserfs_do_truncate after ending the transaction */ 2127 if (err2) { 2128 error = err2; 2129 goto out; 2130 } 2131 2132 if (update_timestamps) { 2133 error = remove_save_link(inode, 1 /* truncate */); 2134 if (error) 2135 goto out; 2136 } 2137 2138 if (page) { 2139 length = offset & (blocksize - 1); 2140 /* if we are not on a block boundary */ 2141 if (length) { 2142 length = blocksize - length; 2143 zero_user(page, offset, length); 2144 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2145 mark_buffer_dirty(bh); 2146 } 2147 } 2148 unlock_page(page); 2149 page_cache_release(page); 2150 } 2151 2152 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2153 2154 return 0; 2155 out: 2156 if (page) { 2157 unlock_page(page); 2158 page_cache_release(page); 2159 } 2160 2161 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2162 2163 return error; 2164 } 2165 2166 static int map_block_for_writepage(struct inode *inode, 2167 struct buffer_head *bh_result, 2168 unsigned long block) 2169 { 2170 struct reiserfs_transaction_handle th; 2171 int fs_gen; 2172 struct item_head tmp_ih; 2173 struct item_head *ih; 2174 struct buffer_head *bh; 2175 __le32 *item; 2176 struct cpu_key key; 2177 INITIALIZE_PATH(path); 2178 int pos_in_item; 2179 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2180 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2181 int retval; 2182 int use_get_block = 0; 2183 int bytes_copied = 0; 2184 int copy_size; 2185 int trans_running = 0; 2186 2187 /* catch places below that try to log something without starting a trans */ 2188 th.t_trans_id = 0; 2189 2190 if (!buffer_uptodate(bh_result)) { 2191 return -EIO; 2192 } 2193 2194 kmap(bh_result->b_page); 2195 start_over: 2196 reiserfs_write_lock(inode->i_sb); 2197 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2198 2199 research: 2200 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2201 if (retval != POSITION_FOUND) { 2202 use_get_block = 1; 2203 goto out; 2204 } 2205 2206 bh = get_last_bh(&path); 2207 ih = get_ih(&path); 2208 item = get_item(&path); 2209 pos_in_item = path.pos_in_item; 2210 2211 /* we've found an unformatted node */ 2212 if (indirect_item_found(retval, ih)) { 2213 if (bytes_copied > 0) { 2214 reiserfs_warning(inode->i_sb, "clm-6002", 2215 "bytes_copied %d", bytes_copied); 2216 } 2217 if (!get_block_num(item, pos_in_item)) { 2218 /* crap, we are writing to a hole */ 2219 use_get_block = 1; 2220 goto out; 2221 } 2222 set_block_dev_mapped(bh_result, 2223 get_block_num(item, pos_in_item), inode); 2224 } else if (is_direct_le_ih(ih)) { 2225 char *p; 2226 p = page_address(bh_result->b_page); 2227 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2228 copy_size = ih_item_len(ih) - pos_in_item; 2229 2230 fs_gen = get_generation(inode->i_sb); 2231 copy_item_head(&tmp_ih, ih); 2232 2233 if (!trans_running) { 2234 /* vs-3050 is gone, no need to drop the path */ 2235 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2236 if (retval) 2237 goto out; 2238 reiserfs_update_inode_transaction(inode); 2239 trans_running = 1; 2240 if (fs_changed(fs_gen, inode->i_sb) 2241 && item_moved(&tmp_ih, &path)) { 2242 reiserfs_restore_prepared_buffer(inode->i_sb, 2243 bh); 2244 goto research; 2245 } 2246 } 2247 2248 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2249 2250 if (fs_changed(fs_gen, inode->i_sb) 2251 && item_moved(&tmp_ih, &path)) { 2252 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2253 goto research; 2254 } 2255 2256 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2257 copy_size); 2258 2259 journal_mark_dirty(&th, inode->i_sb, bh); 2260 bytes_copied += copy_size; 2261 set_block_dev_mapped(bh_result, 0, inode); 2262 2263 /* are there still bytes left? */ 2264 if (bytes_copied < bh_result->b_size && 2265 (byte_offset + bytes_copied) < inode->i_size) { 2266 set_cpu_key_k_offset(&key, 2267 cpu_key_k_offset(&key) + 2268 copy_size); 2269 goto research; 2270 } 2271 } else { 2272 reiserfs_warning(inode->i_sb, "clm-6003", 2273 "bad item inode %lu", inode->i_ino); 2274 retval = -EIO; 2275 goto out; 2276 } 2277 retval = 0; 2278 2279 out: 2280 pathrelse(&path); 2281 if (trans_running) { 2282 int err = journal_end(&th, inode->i_sb, jbegin_count); 2283 if (err) 2284 retval = err; 2285 trans_running = 0; 2286 } 2287 reiserfs_write_unlock(inode->i_sb); 2288 2289 /* this is where we fill in holes in the file. */ 2290 if (use_get_block) { 2291 retval = reiserfs_get_block(inode, block, bh_result, 2292 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2293 | GET_BLOCK_NO_DANGLE); 2294 if (!retval) { 2295 if (!buffer_mapped(bh_result) 2296 || bh_result->b_blocknr == 0) { 2297 /* get_block failed to find a mapped unformatted node. */ 2298 use_get_block = 0; 2299 goto start_over; 2300 } 2301 } 2302 } 2303 kunmap(bh_result->b_page); 2304 2305 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2306 /* we've copied data from the page into the direct item, so the 2307 * buffer in the page is now clean, mark it to reflect that. 2308 */ 2309 lock_buffer(bh_result); 2310 clear_buffer_dirty(bh_result); 2311 unlock_buffer(bh_result); 2312 } 2313 return retval; 2314 } 2315 2316 /* 2317 * mason@suse.com: updated in 2.5.54 to follow the same general io 2318 * start/recovery path as __block_write_full_page, along with special 2319 * code to handle reiserfs tails. 2320 */ 2321 static int reiserfs_write_full_page(struct page *page, 2322 struct writeback_control *wbc) 2323 { 2324 struct inode *inode = page->mapping->host; 2325 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2326 int error = 0; 2327 unsigned long block; 2328 sector_t last_block; 2329 struct buffer_head *head, *bh; 2330 int partial = 0; 2331 int nr = 0; 2332 int checked = PageChecked(page); 2333 struct reiserfs_transaction_handle th; 2334 struct super_block *s = inode->i_sb; 2335 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2336 th.t_trans_id = 0; 2337 2338 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2339 if (checked && (current->flags & PF_MEMALLOC)) { 2340 redirty_page_for_writepage(wbc, page); 2341 unlock_page(page); 2342 return 0; 2343 } 2344 2345 /* The page dirty bit is cleared before writepage is called, which 2346 * means we have to tell create_empty_buffers to make dirty buffers 2347 * The page really should be up to date at this point, so tossing 2348 * in the BH_Uptodate is just a sanity check. 2349 */ 2350 if (!page_has_buffers(page)) { 2351 create_empty_buffers(page, s->s_blocksize, 2352 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2353 } 2354 head = page_buffers(page); 2355 2356 /* last page in the file, zero out any contents past the 2357 ** last byte in the file 2358 */ 2359 if (page->index >= end_index) { 2360 unsigned last_offset; 2361 2362 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2363 /* no file contents in this page */ 2364 if (page->index >= end_index + 1 || !last_offset) { 2365 unlock_page(page); 2366 return 0; 2367 } 2368 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2369 } 2370 bh = head; 2371 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2372 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2373 /* first map all the buffers, logging any direct items we find */ 2374 do { 2375 if (block > last_block) { 2376 /* 2377 * This can happen when the block size is less than 2378 * the page size. The corresponding bytes in the page 2379 * were zero filled above 2380 */ 2381 clear_buffer_dirty(bh); 2382 set_buffer_uptodate(bh); 2383 } else if ((checked || buffer_dirty(bh)) && 2384 (!buffer_mapped(bh) || (buffer_mapped(bh) 2385 && bh->b_blocknr == 2386 0))) { 2387 /* not mapped yet, or it points to a direct item, search 2388 * the btree for the mapping info, and log any direct 2389 * items found 2390 */ 2391 if ((error = map_block_for_writepage(inode, bh, block))) { 2392 goto fail; 2393 } 2394 } 2395 bh = bh->b_this_page; 2396 block++; 2397 } while (bh != head); 2398 2399 /* 2400 * we start the transaction after map_block_for_writepage, 2401 * because it can create holes in the file (an unbounded operation). 2402 * starting it here, we can make a reliable estimate for how many 2403 * blocks we're going to log 2404 */ 2405 if (checked) { 2406 ClearPageChecked(page); 2407 reiserfs_write_lock(s); 2408 error = journal_begin(&th, s, bh_per_page + 1); 2409 if (error) { 2410 reiserfs_write_unlock(s); 2411 goto fail; 2412 } 2413 reiserfs_update_inode_transaction(inode); 2414 } 2415 /* now go through and lock any dirty buffers on the page */ 2416 do { 2417 get_bh(bh); 2418 if (!buffer_mapped(bh)) 2419 continue; 2420 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2421 continue; 2422 2423 if (checked) { 2424 reiserfs_prepare_for_journal(s, bh, 1); 2425 journal_mark_dirty(&th, s, bh); 2426 continue; 2427 } 2428 /* from this point on, we know the buffer is mapped to a 2429 * real block and not a direct item 2430 */ 2431 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2432 lock_buffer(bh); 2433 } else { 2434 if (!trylock_buffer(bh)) { 2435 redirty_page_for_writepage(wbc, page); 2436 continue; 2437 } 2438 } 2439 if (test_clear_buffer_dirty(bh)) { 2440 mark_buffer_async_write(bh); 2441 } else { 2442 unlock_buffer(bh); 2443 } 2444 } while ((bh = bh->b_this_page) != head); 2445 2446 if (checked) { 2447 error = journal_end(&th, s, bh_per_page + 1); 2448 reiserfs_write_unlock(s); 2449 if (error) 2450 goto fail; 2451 } 2452 BUG_ON(PageWriteback(page)); 2453 set_page_writeback(page); 2454 unlock_page(page); 2455 2456 /* 2457 * since any buffer might be the only dirty buffer on the page, 2458 * the first submit_bh can bring the page out of writeback. 2459 * be careful with the buffers. 2460 */ 2461 do { 2462 struct buffer_head *next = bh->b_this_page; 2463 if (buffer_async_write(bh)) { 2464 submit_bh(WRITE, bh); 2465 nr++; 2466 } 2467 put_bh(bh); 2468 bh = next; 2469 } while (bh != head); 2470 2471 error = 0; 2472 done: 2473 if (nr == 0) { 2474 /* 2475 * if this page only had a direct item, it is very possible for 2476 * no io to be required without there being an error. Or, 2477 * someone else could have locked them and sent them down the 2478 * pipe without locking the page 2479 */ 2480 bh = head; 2481 do { 2482 if (!buffer_uptodate(bh)) { 2483 partial = 1; 2484 break; 2485 } 2486 bh = bh->b_this_page; 2487 } while (bh != head); 2488 if (!partial) 2489 SetPageUptodate(page); 2490 end_page_writeback(page); 2491 } 2492 return error; 2493 2494 fail: 2495 /* catches various errors, we need to make sure any valid dirty blocks 2496 * get to the media. The page is currently locked and not marked for 2497 * writeback 2498 */ 2499 ClearPageUptodate(page); 2500 bh = head; 2501 do { 2502 get_bh(bh); 2503 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2504 lock_buffer(bh); 2505 mark_buffer_async_write(bh); 2506 } else { 2507 /* 2508 * clear any dirty bits that might have come from getting 2509 * attached to a dirty page 2510 */ 2511 clear_buffer_dirty(bh); 2512 } 2513 bh = bh->b_this_page; 2514 } while (bh != head); 2515 SetPageError(page); 2516 BUG_ON(PageWriteback(page)); 2517 set_page_writeback(page); 2518 unlock_page(page); 2519 do { 2520 struct buffer_head *next = bh->b_this_page; 2521 if (buffer_async_write(bh)) { 2522 clear_buffer_dirty(bh); 2523 submit_bh(WRITE, bh); 2524 nr++; 2525 } 2526 put_bh(bh); 2527 bh = next; 2528 } while (bh != head); 2529 goto done; 2530 } 2531 2532 static int reiserfs_readpage(struct file *f, struct page *page) 2533 { 2534 return block_read_full_page(page, reiserfs_get_block); 2535 } 2536 2537 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2538 { 2539 struct inode *inode = page->mapping->host; 2540 reiserfs_wait_on_write_block(inode->i_sb); 2541 return reiserfs_write_full_page(page, wbc); 2542 } 2543 2544 static void reiserfs_truncate_failed_write(struct inode *inode) 2545 { 2546 truncate_inode_pages(inode->i_mapping, inode->i_size); 2547 reiserfs_truncate_file(inode, 0); 2548 } 2549 2550 static int reiserfs_write_begin(struct file *file, 2551 struct address_space *mapping, 2552 loff_t pos, unsigned len, unsigned flags, 2553 struct page **pagep, void **fsdata) 2554 { 2555 struct inode *inode; 2556 struct page *page; 2557 pgoff_t index; 2558 int ret; 2559 int old_ref = 0; 2560 2561 inode = mapping->host; 2562 *fsdata = 0; 2563 if (flags & AOP_FLAG_CONT_EXPAND && 2564 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2565 pos ++; 2566 *fsdata = (void *)(unsigned long)flags; 2567 } 2568 2569 index = pos >> PAGE_CACHE_SHIFT; 2570 page = grab_cache_page_write_begin(mapping, index, flags); 2571 if (!page) 2572 return -ENOMEM; 2573 *pagep = page; 2574 2575 reiserfs_wait_on_write_block(inode->i_sb); 2576 fix_tail_page_for_writing(page); 2577 if (reiserfs_transaction_running(inode->i_sb)) { 2578 struct reiserfs_transaction_handle *th; 2579 th = (struct reiserfs_transaction_handle *)current-> 2580 journal_info; 2581 BUG_ON(!th->t_refcount); 2582 BUG_ON(!th->t_trans_id); 2583 old_ref = th->t_refcount; 2584 th->t_refcount++; 2585 } 2586 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2587 reiserfs_get_block); 2588 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2589 struct reiserfs_transaction_handle *th = current->journal_info; 2590 /* this gets a little ugly. If reiserfs_get_block returned an 2591 * error and left a transacstion running, we've got to close it, 2592 * and we've got to free handle if it was a persistent transaction. 2593 * 2594 * But, if we had nested into an existing transaction, we need 2595 * to just drop the ref count on the handle. 2596 * 2597 * If old_ref == 0, the transaction is from reiserfs_get_block, 2598 * and it was a persistent trans. Otherwise, it was nested above. 2599 */ 2600 if (th->t_refcount > old_ref) { 2601 if (old_ref) 2602 th->t_refcount--; 2603 else { 2604 int err; 2605 reiserfs_write_lock(inode->i_sb); 2606 err = reiserfs_end_persistent_transaction(th); 2607 reiserfs_write_unlock(inode->i_sb); 2608 if (err) 2609 ret = err; 2610 } 2611 } 2612 } 2613 if (ret) { 2614 unlock_page(page); 2615 page_cache_release(page); 2616 /* Truncate allocated blocks */ 2617 reiserfs_truncate_failed_write(inode); 2618 } 2619 return ret; 2620 } 2621 2622 int reiserfs_prepare_write(struct file *f, struct page *page, 2623 unsigned from, unsigned to) 2624 { 2625 struct inode *inode = page->mapping->host; 2626 int ret; 2627 int old_ref = 0; 2628 2629 reiserfs_write_unlock(inode->i_sb); 2630 reiserfs_wait_on_write_block(inode->i_sb); 2631 reiserfs_write_lock(inode->i_sb); 2632 2633 fix_tail_page_for_writing(page); 2634 if (reiserfs_transaction_running(inode->i_sb)) { 2635 struct reiserfs_transaction_handle *th; 2636 th = (struct reiserfs_transaction_handle *)current-> 2637 journal_info; 2638 BUG_ON(!th->t_refcount); 2639 BUG_ON(!th->t_trans_id); 2640 old_ref = th->t_refcount; 2641 th->t_refcount++; 2642 } 2643 2644 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2645 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2646 struct reiserfs_transaction_handle *th = current->journal_info; 2647 /* this gets a little ugly. If reiserfs_get_block returned an 2648 * error and left a transacstion running, we've got to close it, 2649 * and we've got to free handle if it was a persistent transaction. 2650 * 2651 * But, if we had nested into an existing transaction, we need 2652 * to just drop the ref count on the handle. 2653 * 2654 * If old_ref == 0, the transaction is from reiserfs_get_block, 2655 * and it was a persistent trans. Otherwise, it was nested above. 2656 */ 2657 if (th->t_refcount > old_ref) { 2658 if (old_ref) 2659 th->t_refcount--; 2660 else { 2661 int err; 2662 reiserfs_write_lock(inode->i_sb); 2663 err = reiserfs_end_persistent_transaction(th); 2664 reiserfs_write_unlock(inode->i_sb); 2665 if (err) 2666 ret = err; 2667 } 2668 } 2669 } 2670 return ret; 2671 2672 } 2673 2674 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2675 { 2676 return generic_block_bmap(as, block, reiserfs_bmap); 2677 } 2678 2679 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2680 loff_t pos, unsigned len, unsigned copied, 2681 struct page *page, void *fsdata) 2682 { 2683 struct inode *inode = page->mapping->host; 2684 int ret = 0; 2685 int update_sd = 0; 2686 struct reiserfs_transaction_handle *th; 2687 unsigned start; 2688 int lock_depth = 0; 2689 bool locked = false; 2690 2691 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2692 pos ++; 2693 2694 reiserfs_wait_on_write_block(inode->i_sb); 2695 if (reiserfs_transaction_running(inode->i_sb)) 2696 th = current->journal_info; 2697 else 2698 th = NULL; 2699 2700 start = pos & (PAGE_CACHE_SIZE - 1); 2701 if (unlikely(copied < len)) { 2702 if (!PageUptodate(page)) 2703 copied = 0; 2704 2705 page_zero_new_buffers(page, start + copied, start + len); 2706 } 2707 flush_dcache_page(page); 2708 2709 reiserfs_commit_page(inode, page, start, start + copied); 2710 2711 /* generic_commit_write does this for us, but does not update the 2712 ** transaction tracking stuff when the size changes. So, we have 2713 ** to do the i_size updates here. 2714 */ 2715 if (pos + copied > inode->i_size) { 2716 struct reiserfs_transaction_handle myth; 2717 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2718 locked = true; 2719 /* If the file have grown beyond the border where it 2720 can have a tail, unmark it as needing a tail 2721 packing */ 2722 if ((have_large_tails(inode->i_sb) 2723 && inode->i_size > i_block_size(inode) * 4) 2724 || (have_small_tails(inode->i_sb) 2725 && inode->i_size > i_block_size(inode))) 2726 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2727 2728 ret = journal_begin(&myth, inode->i_sb, 1); 2729 if (ret) 2730 goto journal_error; 2731 2732 reiserfs_update_inode_transaction(inode); 2733 inode->i_size = pos + copied; 2734 /* 2735 * this will just nest into our transaction. It's important 2736 * to use mark_inode_dirty so the inode gets pushed around on the 2737 * dirty lists, and so that O_SYNC works as expected 2738 */ 2739 mark_inode_dirty(inode); 2740 reiserfs_update_sd(&myth, inode); 2741 update_sd = 1; 2742 ret = journal_end(&myth, inode->i_sb, 1); 2743 if (ret) 2744 goto journal_error; 2745 } 2746 if (th) { 2747 if (!locked) { 2748 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2749 locked = true; 2750 } 2751 if (!update_sd) 2752 mark_inode_dirty(inode); 2753 ret = reiserfs_end_persistent_transaction(th); 2754 if (ret) 2755 goto out; 2756 } 2757 2758 out: 2759 if (locked) 2760 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2761 unlock_page(page); 2762 page_cache_release(page); 2763 2764 if (pos + len > inode->i_size) 2765 reiserfs_truncate_failed_write(inode); 2766 2767 return ret == 0 ? copied : ret; 2768 2769 journal_error: 2770 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2771 locked = false; 2772 if (th) { 2773 if (!update_sd) 2774 reiserfs_update_sd(th, inode); 2775 ret = reiserfs_end_persistent_transaction(th); 2776 } 2777 goto out; 2778 } 2779 2780 int reiserfs_commit_write(struct file *f, struct page *page, 2781 unsigned from, unsigned to) 2782 { 2783 struct inode *inode = page->mapping->host; 2784 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2785 int ret = 0; 2786 int update_sd = 0; 2787 struct reiserfs_transaction_handle *th = NULL; 2788 2789 reiserfs_write_unlock(inode->i_sb); 2790 reiserfs_wait_on_write_block(inode->i_sb); 2791 reiserfs_write_lock(inode->i_sb); 2792 2793 if (reiserfs_transaction_running(inode->i_sb)) { 2794 th = current->journal_info; 2795 } 2796 reiserfs_commit_page(inode, page, from, to); 2797 2798 /* generic_commit_write does this for us, but does not update the 2799 ** transaction tracking stuff when the size changes. So, we have 2800 ** to do the i_size updates here. 2801 */ 2802 if (pos > inode->i_size) { 2803 struct reiserfs_transaction_handle myth; 2804 /* If the file have grown beyond the border where it 2805 can have a tail, unmark it as needing a tail 2806 packing */ 2807 if ((have_large_tails(inode->i_sb) 2808 && inode->i_size > i_block_size(inode) * 4) 2809 || (have_small_tails(inode->i_sb) 2810 && inode->i_size > i_block_size(inode))) 2811 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2812 2813 ret = journal_begin(&myth, inode->i_sb, 1); 2814 if (ret) 2815 goto journal_error; 2816 2817 reiserfs_update_inode_transaction(inode); 2818 inode->i_size = pos; 2819 /* 2820 * this will just nest into our transaction. It's important 2821 * to use mark_inode_dirty so the inode gets pushed around on the 2822 * dirty lists, and so that O_SYNC works as expected 2823 */ 2824 mark_inode_dirty(inode); 2825 reiserfs_update_sd(&myth, inode); 2826 update_sd = 1; 2827 ret = journal_end(&myth, inode->i_sb, 1); 2828 if (ret) 2829 goto journal_error; 2830 } 2831 if (th) { 2832 if (!update_sd) 2833 mark_inode_dirty(inode); 2834 ret = reiserfs_end_persistent_transaction(th); 2835 if (ret) 2836 goto out; 2837 } 2838 2839 out: 2840 return ret; 2841 2842 journal_error: 2843 if (th) { 2844 if (!update_sd) 2845 reiserfs_update_sd(th, inode); 2846 ret = reiserfs_end_persistent_transaction(th); 2847 } 2848 2849 return ret; 2850 } 2851 2852 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2853 { 2854 if (reiserfs_attrs(inode->i_sb)) { 2855 if (sd_attrs & REISERFS_SYNC_FL) 2856 inode->i_flags |= S_SYNC; 2857 else 2858 inode->i_flags &= ~S_SYNC; 2859 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2860 inode->i_flags |= S_IMMUTABLE; 2861 else 2862 inode->i_flags &= ~S_IMMUTABLE; 2863 if (sd_attrs & REISERFS_APPEND_FL) 2864 inode->i_flags |= S_APPEND; 2865 else 2866 inode->i_flags &= ~S_APPEND; 2867 if (sd_attrs & REISERFS_NOATIME_FL) 2868 inode->i_flags |= S_NOATIME; 2869 else 2870 inode->i_flags &= ~S_NOATIME; 2871 if (sd_attrs & REISERFS_NOTAIL_FL) 2872 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2873 else 2874 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2875 } 2876 } 2877 2878 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2879 { 2880 if (reiserfs_attrs(inode->i_sb)) { 2881 if (inode->i_flags & S_IMMUTABLE) 2882 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2883 else 2884 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2885 if (inode->i_flags & S_SYNC) 2886 *sd_attrs |= REISERFS_SYNC_FL; 2887 else 2888 *sd_attrs &= ~REISERFS_SYNC_FL; 2889 if (inode->i_flags & S_NOATIME) 2890 *sd_attrs |= REISERFS_NOATIME_FL; 2891 else 2892 *sd_attrs &= ~REISERFS_NOATIME_FL; 2893 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2894 *sd_attrs |= REISERFS_NOTAIL_FL; 2895 else 2896 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2897 } 2898 } 2899 2900 /* decide if this buffer needs to stay around for data logging or ordered 2901 ** write purposes 2902 */ 2903 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2904 { 2905 int ret = 1; 2906 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2907 2908 lock_buffer(bh); 2909 spin_lock(&j->j_dirty_buffers_lock); 2910 if (!buffer_mapped(bh)) { 2911 goto free_jh; 2912 } 2913 /* the page is locked, and the only places that log a data buffer 2914 * also lock the page. 2915 */ 2916 if (reiserfs_file_data_log(inode)) { 2917 /* 2918 * very conservative, leave the buffer pinned if 2919 * anyone might need it. 2920 */ 2921 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2922 ret = 0; 2923 } 2924 } else if (buffer_dirty(bh)) { 2925 struct reiserfs_journal_list *jl; 2926 struct reiserfs_jh *jh = bh->b_private; 2927 2928 /* why is this safe? 2929 * reiserfs_setattr updates i_size in the on disk 2930 * stat data before allowing vmtruncate to be called. 2931 * 2932 * If buffer was put onto the ordered list for this 2933 * transaction, we know for sure either this transaction 2934 * or an older one already has updated i_size on disk, 2935 * and this ordered data won't be referenced in the file 2936 * if we crash. 2937 * 2938 * if the buffer was put onto the ordered list for an older 2939 * transaction, we need to leave it around 2940 */ 2941 if (jh && (jl = jh->jl) 2942 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2943 ret = 0; 2944 } 2945 free_jh: 2946 if (ret && bh->b_private) { 2947 reiserfs_free_jh(bh); 2948 } 2949 spin_unlock(&j->j_dirty_buffers_lock); 2950 unlock_buffer(bh); 2951 return ret; 2952 } 2953 2954 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2955 static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2956 { 2957 struct buffer_head *head, *bh, *next; 2958 struct inode *inode = page->mapping->host; 2959 unsigned int curr_off = 0; 2960 int ret = 1; 2961 2962 BUG_ON(!PageLocked(page)); 2963 2964 if (offset == 0) 2965 ClearPageChecked(page); 2966 2967 if (!page_has_buffers(page)) 2968 goto out; 2969 2970 head = page_buffers(page); 2971 bh = head; 2972 do { 2973 unsigned int next_off = curr_off + bh->b_size; 2974 next = bh->b_this_page; 2975 2976 /* 2977 * is this block fully invalidated? 2978 */ 2979 if (offset <= curr_off) { 2980 if (invalidatepage_can_drop(inode, bh)) 2981 reiserfs_unmap_buffer(bh); 2982 else 2983 ret = 0; 2984 } 2985 curr_off = next_off; 2986 bh = next; 2987 } while (bh != head); 2988 2989 /* 2990 * We release buffers only if the entire page is being invalidated. 2991 * The get_block cached value has been unconditionally invalidated, 2992 * so real IO is not possible anymore. 2993 */ 2994 if (!offset && ret) { 2995 ret = try_to_release_page(page, 0); 2996 /* maybe should BUG_ON(!ret); - neilb */ 2997 } 2998 out: 2999 return; 3000 } 3001 3002 static int reiserfs_set_page_dirty(struct page *page) 3003 { 3004 struct inode *inode = page->mapping->host; 3005 if (reiserfs_file_data_log(inode)) { 3006 SetPageChecked(page); 3007 return __set_page_dirty_nobuffers(page); 3008 } 3009 return __set_page_dirty_buffers(page); 3010 } 3011 3012 /* 3013 * Returns 1 if the page's buffers were dropped. The page is locked. 3014 * 3015 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3016 * in the buffers at page_buffers(page). 3017 * 3018 * even in -o notail mode, we can't be sure an old mount without -o notail 3019 * didn't create files with tails. 3020 */ 3021 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3022 { 3023 struct inode *inode = page->mapping->host; 3024 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3025 struct buffer_head *head; 3026 struct buffer_head *bh; 3027 int ret = 1; 3028 3029 WARN_ON(PageChecked(page)); 3030 spin_lock(&j->j_dirty_buffers_lock); 3031 head = page_buffers(page); 3032 bh = head; 3033 do { 3034 if (bh->b_private) { 3035 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3036 reiserfs_free_jh(bh); 3037 } else { 3038 ret = 0; 3039 break; 3040 } 3041 } 3042 bh = bh->b_this_page; 3043 } while (bh != head); 3044 if (ret) 3045 ret = try_to_free_buffers(page); 3046 spin_unlock(&j->j_dirty_buffers_lock); 3047 return ret; 3048 } 3049 3050 /* We thank Mingming Cao for helping us understand in great detail what 3051 to do in this section of the code. */ 3052 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3053 const struct iovec *iov, loff_t offset, 3054 unsigned long nr_segs) 3055 { 3056 struct file *file = iocb->ki_filp; 3057 struct inode *inode = file->f_mapping->host; 3058 3059 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3060 offset, nr_segs, 3061 reiserfs_get_blocks_direct_io, NULL); 3062 } 3063 3064 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3065 { 3066 struct inode *inode = dentry->d_inode; 3067 unsigned int ia_valid; 3068 int depth; 3069 int error; 3070 3071 /* must be turned off for recursive notify_change calls */ 3072 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3073 3074 depth = reiserfs_write_lock_once(inode->i_sb); 3075 if (attr->ia_valid & ATTR_SIZE) { 3076 /* version 2 items will be caught by the s_maxbytes check 3077 ** done for us in vmtruncate 3078 */ 3079 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3080 attr->ia_size > MAX_NON_LFS) { 3081 error = -EFBIG; 3082 goto out; 3083 } 3084 /* fill in hole pointers in the expanding truncate case. */ 3085 if (attr->ia_size > inode->i_size) { 3086 error = generic_cont_expand_simple(inode, attr->ia_size); 3087 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3088 int err; 3089 struct reiserfs_transaction_handle th; 3090 /* we're changing at most 2 bitmaps, inode + super */ 3091 err = journal_begin(&th, inode->i_sb, 4); 3092 if (!err) { 3093 reiserfs_discard_prealloc(&th, inode); 3094 err = journal_end(&th, inode->i_sb, 4); 3095 } 3096 if (err) 3097 error = err; 3098 } 3099 if (error) 3100 goto out; 3101 /* 3102 * file size is changed, ctime and mtime are 3103 * to be updated 3104 */ 3105 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3106 } 3107 } 3108 3109 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3110 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3111 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3112 /* stat data of format v3.5 has 16 bit uid and gid */ 3113 error = -EINVAL; 3114 goto out; 3115 } 3116 3117 error = inode_change_ok(inode, attr); 3118 if (!error) { 3119 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3120 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3121 error = reiserfs_chown_xattrs(inode, attr); 3122 3123 if (!error) { 3124 struct reiserfs_transaction_handle th; 3125 int jbegin_count = 3126 2 * 3127 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3128 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3129 2; 3130 3131 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3132 error = 3133 journal_begin(&th, inode->i_sb, 3134 jbegin_count); 3135 if (error) 3136 goto out; 3137 error = 3138 vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 3139 if (error) { 3140 journal_end(&th, inode->i_sb, 3141 jbegin_count); 3142 goto out; 3143 } 3144 /* Update corresponding info in inode so that everything is in 3145 * one transaction */ 3146 if (attr->ia_valid & ATTR_UID) 3147 inode->i_uid = attr->ia_uid; 3148 if (attr->ia_valid & ATTR_GID) 3149 inode->i_gid = attr->ia_gid; 3150 mark_inode_dirty(inode); 3151 error = 3152 journal_end(&th, inode->i_sb, jbegin_count); 3153 } 3154 } 3155 if (!error) { 3156 /* 3157 * Relax the lock here, as it might truncate the 3158 * inode pages and wait for inode pages locks. 3159 * To release such page lock, the owner needs the 3160 * reiserfs lock 3161 */ 3162 reiserfs_write_unlock_once(inode->i_sb, depth); 3163 error = inode_setattr(inode, attr); 3164 depth = reiserfs_write_lock_once(inode->i_sb); 3165 } 3166 } 3167 3168 if (!error && reiserfs_posixacl(inode->i_sb)) { 3169 if (attr->ia_valid & ATTR_MODE) 3170 error = reiserfs_acl_chmod(inode); 3171 } 3172 3173 out: 3174 reiserfs_write_unlock_once(inode->i_sb, depth); 3175 3176 return error; 3177 } 3178 3179 const struct address_space_operations reiserfs_address_space_operations = { 3180 .writepage = reiserfs_writepage, 3181 .readpage = reiserfs_readpage, 3182 .readpages = reiserfs_readpages, 3183 .releasepage = reiserfs_releasepage, 3184 .invalidatepage = reiserfs_invalidatepage, 3185 .sync_page = block_sync_page, 3186 .write_begin = reiserfs_write_begin, 3187 .write_end = reiserfs_write_end, 3188 .bmap = reiserfs_aop_bmap, 3189 .direct_IO = reiserfs_direct_IO, 3190 .set_page_dirty = reiserfs_set_page_dirty, 3191 }; 3192