1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/aio.h> 22 23 int reiserfs_commit_write(struct file *f, struct page *page, 24 unsigned from, unsigned to); 25 26 void reiserfs_evict_inode(struct inode *inode) 27 { 28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 29 int jbegin_count = 30 JOURNAL_PER_BALANCE_CNT * 2 + 31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 32 struct reiserfs_transaction_handle th; 33 int err; 34 35 if (!inode->i_nlink && !is_bad_inode(inode)) 36 dquot_initialize(inode); 37 38 truncate_inode_pages_final(&inode->i_data); 39 if (inode->i_nlink) 40 goto no_delete; 41 42 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 43 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 44 45 reiserfs_delete_xattrs(inode); 46 47 reiserfs_write_lock(inode->i_sb); 48 49 if (journal_begin(&th, inode->i_sb, jbegin_count)) 50 goto out; 51 reiserfs_update_inode_transaction(inode); 52 53 reiserfs_discard_prealloc(&th, inode); 54 55 err = reiserfs_delete_object(&th, inode); 56 57 /* Do quota update inside a transaction for journaled quotas. We must do that 58 * after delete_object so that quota updates go into the same transaction as 59 * stat data deletion */ 60 if (!err) { 61 int depth = reiserfs_write_unlock_nested(inode->i_sb); 62 dquot_free_inode(inode); 63 reiserfs_write_lock_nested(inode->i_sb, depth); 64 } 65 66 if (journal_end(&th, inode->i_sb, jbegin_count)) 67 goto out; 68 69 /* check return value from reiserfs_delete_object after 70 * ending the transaction 71 */ 72 if (err) 73 goto out; 74 75 /* all items of file are deleted, so we can remove "save" link */ 76 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 77 * about an error here */ 78 out: 79 reiserfs_write_unlock(inode->i_sb); 80 } else { 81 /* no object items are in the tree */ 82 ; 83 } 84 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 85 dquot_drop(inode); 86 inode->i_blocks = 0; 87 return; 88 89 no_delete: 90 clear_inode(inode); 91 dquot_drop(inode); 92 } 93 94 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 95 __u32 objectid, loff_t offset, int type, int length) 96 { 97 key->version = version; 98 99 key->on_disk_key.k_dir_id = dirid; 100 key->on_disk_key.k_objectid = objectid; 101 set_cpu_key_k_offset(key, offset); 102 set_cpu_key_k_type(key, type); 103 key->key_length = length; 104 } 105 106 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 107 offset and type of key */ 108 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 109 int type, int length) 110 { 111 _make_cpu_key(key, get_inode_item_key_version(inode), 112 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 113 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 114 length); 115 } 116 117 // 118 // when key is 0, do not set version and short key 119 // 120 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 121 int version, 122 loff_t offset, int type, int length, 123 int entry_count /*or ih_free_space */ ) 124 { 125 if (key) { 126 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 127 ih->ih_key.k_objectid = 128 cpu_to_le32(key->on_disk_key.k_objectid); 129 } 130 put_ih_version(ih, version); 131 set_le_ih_k_offset(ih, offset); 132 set_le_ih_k_type(ih, type); 133 put_ih_item_len(ih, length); 134 /* set_ih_free_space (ih, 0); */ 135 // for directory items it is entry count, for directs and stat 136 // datas - 0xffff, for indirects - 0 137 put_ih_entry_count(ih, entry_count); 138 } 139 140 // 141 // FIXME: we might cache recently accessed indirect item 142 143 // Ugh. Not too eager for that.... 144 // I cut the code until such time as I see a convincing argument (benchmark). 145 // I don't want a bloated inode struct..., and I don't like code complexity.... 146 147 /* cutting the code is fine, since it really isn't in use yet and is easy 148 ** to add back in. But, Vladimir has a really good idea here. Think 149 ** about what happens for reading a file. For each page, 150 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 151 ** an indirect item. This indirect item has X number of pointers, where 152 ** X is a big number if we've done the block allocation right. But, 153 ** we only use one or two of these pointers during each call to readpage, 154 ** needlessly researching again later on. 155 ** 156 ** The size of the cache could be dynamic based on the size of the file. 157 ** 158 ** I'd also like to see us cache the location the stat data item, since 159 ** we are needlessly researching for that frequently. 160 ** 161 ** --chris 162 */ 163 164 /* If this page has a file tail in it, and 165 ** it was read in by get_block_create_0, the page data is valid, 166 ** but tail is still sitting in a direct item, and we can't write to 167 ** it. So, look through this page, and check all the mapped buffers 168 ** to make sure they have valid block numbers. Any that don't need 169 ** to be unmapped, so that __block_write_begin will correctly call 170 ** reiserfs_get_block to convert the tail into an unformatted node 171 */ 172 static inline void fix_tail_page_for_writing(struct page *page) 173 { 174 struct buffer_head *head, *next, *bh; 175 176 if (page && page_has_buffers(page)) { 177 head = page_buffers(page); 178 bh = head; 179 do { 180 next = bh->b_this_page; 181 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 182 reiserfs_unmap_buffer(bh); 183 } 184 bh = next; 185 } while (bh != head); 186 } 187 } 188 189 /* reiserfs_get_block does not need to allocate a block only if it has been 190 done already or non-hole position has been found in the indirect item */ 191 static inline int allocation_needed(int retval, b_blocknr_t allocated, 192 struct item_head *ih, 193 __le32 * item, int pos_in_item) 194 { 195 if (allocated) 196 return 0; 197 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 198 get_block_num(item, pos_in_item)) 199 return 0; 200 return 1; 201 } 202 203 static inline int indirect_item_found(int retval, struct item_head *ih) 204 { 205 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 206 } 207 208 static inline void set_block_dev_mapped(struct buffer_head *bh, 209 b_blocknr_t block, struct inode *inode) 210 { 211 map_bh(bh, inode->i_sb, block); 212 } 213 214 // 215 // files which were created in the earlier version can not be longer, 216 // than 2 gb 217 // 218 static int file_capable(struct inode *inode, sector_t block) 219 { 220 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 221 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 222 return 1; 223 224 return 0; 225 } 226 227 static int restart_transaction(struct reiserfs_transaction_handle *th, 228 struct inode *inode, struct treepath *path) 229 { 230 struct super_block *s = th->t_super; 231 int len = th->t_blocks_allocated; 232 int err; 233 234 BUG_ON(!th->t_trans_id); 235 BUG_ON(!th->t_refcount); 236 237 pathrelse(path); 238 239 /* we cannot restart while nested */ 240 if (th->t_refcount > 1) { 241 return 0; 242 } 243 reiserfs_update_sd(th, inode); 244 err = journal_end(th, s, len); 245 if (!err) { 246 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 247 if (!err) 248 reiserfs_update_inode_transaction(inode); 249 } 250 return err; 251 } 252 253 // it is called by get_block when create == 0. Returns block number 254 // for 'block'-th logical block of file. When it hits direct item it 255 // returns 0 (being called from bmap) or read direct item into piece 256 // of page (bh_result) 257 258 // Please improve the english/clarity in the comment above, as it is 259 // hard to understand. 260 261 static int _get_block_create_0(struct inode *inode, sector_t block, 262 struct buffer_head *bh_result, int args) 263 { 264 INITIALIZE_PATH(path); 265 struct cpu_key key; 266 struct buffer_head *bh; 267 struct item_head *ih, tmp_ih; 268 b_blocknr_t blocknr; 269 char *p = NULL; 270 int chars; 271 int ret; 272 int result; 273 int done = 0; 274 unsigned long offset; 275 276 // prepare the key to look for the 'block'-th block of file 277 make_cpu_key(&key, inode, 278 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 279 3); 280 281 result = search_for_position_by_key(inode->i_sb, &key, &path); 282 if (result != POSITION_FOUND) { 283 pathrelse(&path); 284 if (p) 285 kunmap(bh_result->b_page); 286 if (result == IO_ERROR) 287 return -EIO; 288 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 289 // That there is some MMAPED data associated with it that is yet to be written to disk. 290 if ((args & GET_BLOCK_NO_HOLE) 291 && !PageUptodate(bh_result->b_page)) { 292 return -ENOENT; 293 } 294 return 0; 295 } 296 // 297 bh = get_last_bh(&path); 298 ih = get_ih(&path); 299 if (is_indirect_le_ih(ih)) { 300 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 301 302 /* FIXME: here we could cache indirect item or part of it in 303 the inode to avoid search_by_key in case of subsequent 304 access to file */ 305 blocknr = get_block_num(ind_item, path.pos_in_item); 306 ret = 0; 307 if (blocknr) { 308 map_bh(bh_result, inode->i_sb, blocknr); 309 if (path.pos_in_item == 310 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 311 set_buffer_boundary(bh_result); 312 } 313 } else 314 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 315 // That there is some MMAPED data associated with it that is yet to be written to disk. 316 if ((args & GET_BLOCK_NO_HOLE) 317 && !PageUptodate(bh_result->b_page)) { 318 ret = -ENOENT; 319 } 320 321 pathrelse(&path); 322 if (p) 323 kunmap(bh_result->b_page); 324 return ret; 325 } 326 // requested data are in direct item(s) 327 if (!(args & GET_BLOCK_READ_DIRECT)) { 328 // we are called by bmap. FIXME: we can not map block of file 329 // when it is stored in direct item(s) 330 pathrelse(&path); 331 if (p) 332 kunmap(bh_result->b_page); 333 return -ENOENT; 334 } 335 336 /* if we've got a direct item, and the buffer or page was uptodate, 337 ** we don't want to pull data off disk again. skip to the 338 ** end, where we map the buffer and return 339 */ 340 if (buffer_uptodate(bh_result)) { 341 goto finished; 342 } else 343 /* 344 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 345 ** pages without any buffers. If the page is up to date, we don't want 346 ** read old data off disk. Set the up to date bit on the buffer instead 347 ** and jump to the end 348 */ 349 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 350 set_buffer_uptodate(bh_result); 351 goto finished; 352 } 353 // read file tail into part of page 354 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 355 copy_item_head(&tmp_ih, ih); 356 357 /* we only want to kmap if we are reading the tail into the page. 358 ** this is not the common case, so we don't kmap until we are 359 ** sure we need to. But, this means the item might move if 360 ** kmap schedules 361 */ 362 if (!p) 363 p = (char *)kmap(bh_result->b_page); 364 365 p += offset; 366 memset(p, 0, inode->i_sb->s_blocksize); 367 do { 368 if (!is_direct_le_ih(ih)) { 369 BUG(); 370 } 371 /* make sure we don't read more bytes than actually exist in 372 ** the file. This can happen in odd cases where i_size isn't 373 ** correct, and when direct item padding results in a few 374 ** extra bytes at the end of the direct item 375 */ 376 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 377 break; 378 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 379 chars = 380 inode->i_size - (le_ih_k_offset(ih) - 1) - 381 path.pos_in_item; 382 done = 1; 383 } else { 384 chars = ih_item_len(ih) - path.pos_in_item; 385 } 386 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 387 388 if (done) 389 break; 390 391 p += chars; 392 393 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 394 // we done, if read direct item is not the last item of 395 // node FIXME: we could try to check right delimiting key 396 // to see whether direct item continues in the right 397 // neighbor or rely on i_size 398 break; 399 400 // update key to look for the next piece 401 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 402 result = search_for_position_by_key(inode->i_sb, &key, &path); 403 if (result != POSITION_FOUND) 404 // i/o error most likely 405 break; 406 bh = get_last_bh(&path); 407 ih = get_ih(&path); 408 } while (1); 409 410 flush_dcache_page(bh_result->b_page); 411 kunmap(bh_result->b_page); 412 413 finished: 414 pathrelse(&path); 415 416 if (result == IO_ERROR) 417 return -EIO; 418 419 /* this buffer has valid data, but isn't valid for io. mapping it to 420 * block #0 tells the rest of reiserfs it just has a tail in it 421 */ 422 map_bh(bh_result, inode->i_sb, 0); 423 set_buffer_uptodate(bh_result); 424 return 0; 425 } 426 427 // this is called to create file map. So, _get_block_create_0 will not 428 // read direct item 429 static int reiserfs_bmap(struct inode *inode, sector_t block, 430 struct buffer_head *bh_result, int create) 431 { 432 if (!file_capable(inode, block)) 433 return -EFBIG; 434 435 reiserfs_write_lock(inode->i_sb); 436 /* do not read the direct item */ 437 _get_block_create_0(inode, block, bh_result, 0); 438 reiserfs_write_unlock(inode->i_sb); 439 return 0; 440 } 441 442 /* special version of get_block that is only used by grab_tail_page right 443 ** now. It is sent to __block_write_begin, and when you try to get a 444 ** block past the end of the file (or a block from a hole) it returns 445 ** -ENOENT instead of a valid buffer. __block_write_begin expects to 446 ** be able to do i/o on the buffers returned, unless an error value 447 ** is also returned. 448 ** 449 ** So, this allows __block_write_begin to be used for reading a single block 450 ** in a page. Where it does not produce a valid page for holes, or past the 451 ** end of the file. This turns out to be exactly what we need for reading 452 ** tails for conversion. 453 ** 454 ** The point of the wrapper is forcing a certain value for create, even 455 ** though the VFS layer is calling this function with create==1. If you 456 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 457 ** don't use this function. 458 */ 459 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 460 struct buffer_head *bh_result, 461 int create) 462 { 463 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 464 } 465 466 /* This is special helper for reiserfs_get_block in case we are executing 467 direct_IO request. */ 468 static int reiserfs_get_blocks_direct_io(struct inode *inode, 469 sector_t iblock, 470 struct buffer_head *bh_result, 471 int create) 472 { 473 int ret; 474 475 bh_result->b_page = NULL; 476 477 /* We set the b_size before reiserfs_get_block call since it is 478 referenced in convert_tail_for_hole() that may be called from 479 reiserfs_get_block() */ 480 bh_result->b_size = (1 << inode->i_blkbits); 481 482 ret = reiserfs_get_block(inode, iblock, bh_result, 483 create | GET_BLOCK_NO_DANGLE); 484 if (ret) 485 goto out; 486 487 /* don't allow direct io onto tail pages */ 488 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 489 /* make sure future calls to the direct io funcs for this offset 490 ** in the file fail by unmapping the buffer 491 */ 492 clear_buffer_mapped(bh_result); 493 ret = -EINVAL; 494 } 495 /* Possible unpacked tail. Flush the data before pages have 496 disappeared */ 497 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 498 int err; 499 500 reiserfs_write_lock(inode->i_sb); 501 502 err = reiserfs_commit_for_inode(inode); 503 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 504 505 reiserfs_write_unlock(inode->i_sb); 506 507 if (err < 0) 508 ret = err; 509 } 510 out: 511 return ret; 512 } 513 514 /* 515 ** helper function for when reiserfs_get_block is called for a hole 516 ** but the file tail is still in a direct item 517 ** bh_result is the buffer head for the hole 518 ** tail_offset is the offset of the start of the tail in the file 519 ** 520 ** This calls prepare_write, which will start a new transaction 521 ** you should not be in a transaction, or have any paths held when you 522 ** call this. 523 */ 524 static int convert_tail_for_hole(struct inode *inode, 525 struct buffer_head *bh_result, 526 loff_t tail_offset) 527 { 528 unsigned long index; 529 unsigned long tail_end; 530 unsigned long tail_start; 531 struct page *tail_page; 532 struct page *hole_page = bh_result->b_page; 533 int retval = 0; 534 535 if ((tail_offset & (bh_result->b_size - 1)) != 1) 536 return -EIO; 537 538 /* always try to read until the end of the block */ 539 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 540 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 541 542 index = tail_offset >> PAGE_CACHE_SHIFT; 543 /* hole_page can be zero in case of direct_io, we are sure 544 that we cannot get here if we write with O_DIRECT into 545 tail page */ 546 if (!hole_page || index != hole_page->index) { 547 tail_page = grab_cache_page(inode->i_mapping, index); 548 retval = -ENOMEM; 549 if (!tail_page) { 550 goto out; 551 } 552 } else { 553 tail_page = hole_page; 554 } 555 556 /* we don't have to make sure the conversion did not happen while 557 ** we were locking the page because anyone that could convert 558 ** must first take i_mutex. 559 ** 560 ** We must fix the tail page for writing because it might have buffers 561 ** that are mapped, but have a block number of 0. This indicates tail 562 ** data that has been read directly into the page, and 563 ** __block_write_begin won't trigger a get_block in this case. 564 */ 565 fix_tail_page_for_writing(tail_page); 566 retval = __reiserfs_write_begin(tail_page, tail_start, 567 tail_end - tail_start); 568 if (retval) 569 goto unlock; 570 571 /* tail conversion might change the data in the page */ 572 flush_dcache_page(tail_page); 573 574 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 575 576 unlock: 577 if (tail_page != hole_page) { 578 unlock_page(tail_page); 579 page_cache_release(tail_page); 580 } 581 out: 582 return retval; 583 } 584 585 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 586 sector_t block, 587 struct inode *inode, 588 b_blocknr_t * allocated_block_nr, 589 struct treepath *path, int flags) 590 { 591 BUG_ON(!th->t_trans_id); 592 593 #ifdef REISERFS_PREALLOCATE 594 if (!(flags & GET_BLOCK_NO_IMUX)) { 595 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 596 path, block); 597 } 598 #endif 599 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 600 block); 601 } 602 603 int reiserfs_get_block(struct inode *inode, sector_t block, 604 struct buffer_head *bh_result, int create) 605 { 606 int repeat, retval = 0; 607 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 608 INITIALIZE_PATH(path); 609 int pos_in_item; 610 struct cpu_key key; 611 struct buffer_head *bh, *unbh = NULL; 612 struct item_head *ih, tmp_ih; 613 __le32 *item; 614 int done; 615 int fs_gen; 616 struct reiserfs_transaction_handle *th = NULL; 617 /* space reserved in transaction batch: 618 . 3 balancings in direct->indirect conversion 619 . 1 block involved into reiserfs_update_sd() 620 XXX in practically impossible worst case direct2indirect() 621 can incur (much) more than 3 balancings. 622 quota update for user, group */ 623 int jbegin_count = 624 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 625 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 626 int version; 627 int dangle = 1; 628 loff_t new_offset = 629 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 630 631 reiserfs_write_lock(inode->i_sb); 632 version = get_inode_item_key_version(inode); 633 634 if (!file_capable(inode, block)) { 635 reiserfs_write_unlock(inode->i_sb); 636 return -EFBIG; 637 } 638 639 /* if !create, we aren't changing the FS, so we don't need to 640 ** log anything, so we don't need to start a transaction 641 */ 642 if (!(create & GET_BLOCK_CREATE)) { 643 int ret; 644 /* find number of block-th logical block of the file */ 645 ret = _get_block_create_0(inode, block, bh_result, 646 create | GET_BLOCK_READ_DIRECT); 647 reiserfs_write_unlock(inode->i_sb); 648 return ret; 649 } 650 /* 651 * if we're already in a transaction, make sure to close 652 * any new transactions we start in this func 653 */ 654 if ((create & GET_BLOCK_NO_DANGLE) || 655 reiserfs_transaction_running(inode->i_sb)) 656 dangle = 0; 657 658 /* If file is of such a size, that it might have a tail and tails are enabled 659 ** we should mark it as possibly needing tail packing on close 660 */ 661 if ((have_large_tails(inode->i_sb) 662 && inode->i_size < i_block_size(inode) * 4) 663 || (have_small_tails(inode->i_sb) 664 && inode->i_size < i_block_size(inode))) 665 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 666 667 /* set the key of the first byte in the 'block'-th block of file */ 668 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 669 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 670 start_trans: 671 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 672 if (!th) { 673 retval = -ENOMEM; 674 goto failure; 675 } 676 reiserfs_update_inode_transaction(inode); 677 } 678 research: 679 680 retval = search_for_position_by_key(inode->i_sb, &key, &path); 681 if (retval == IO_ERROR) { 682 retval = -EIO; 683 goto failure; 684 } 685 686 bh = get_last_bh(&path); 687 ih = get_ih(&path); 688 item = get_item(&path); 689 pos_in_item = path.pos_in_item; 690 691 fs_gen = get_generation(inode->i_sb); 692 copy_item_head(&tmp_ih, ih); 693 694 if (allocation_needed 695 (retval, allocated_block_nr, ih, item, pos_in_item)) { 696 /* we have to allocate block for the unformatted node */ 697 if (!th) { 698 pathrelse(&path); 699 goto start_trans; 700 } 701 702 repeat = 703 _allocate_block(th, block, inode, &allocated_block_nr, 704 &path, create); 705 706 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 707 /* restart the transaction to give the journal a chance to free 708 ** some blocks. releases the path, so we have to go back to 709 ** research if we succeed on the second try 710 */ 711 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 712 retval = restart_transaction(th, inode, &path); 713 if (retval) 714 goto failure; 715 repeat = 716 _allocate_block(th, block, inode, 717 &allocated_block_nr, NULL, create); 718 719 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 720 goto research; 721 } 722 if (repeat == QUOTA_EXCEEDED) 723 retval = -EDQUOT; 724 else 725 retval = -ENOSPC; 726 goto failure; 727 } 728 729 if (fs_changed(fs_gen, inode->i_sb) 730 && item_moved(&tmp_ih, &path)) { 731 goto research; 732 } 733 } 734 735 if (indirect_item_found(retval, ih)) { 736 b_blocknr_t unfm_ptr; 737 /* 'block'-th block is in the file already (there is 738 corresponding cell in some indirect item). But it may be 739 zero unformatted node pointer (hole) */ 740 unfm_ptr = get_block_num(item, pos_in_item); 741 if (unfm_ptr == 0) { 742 /* use allocated block to plug the hole */ 743 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 744 if (fs_changed(fs_gen, inode->i_sb) 745 && item_moved(&tmp_ih, &path)) { 746 reiserfs_restore_prepared_buffer(inode->i_sb, 747 bh); 748 goto research; 749 } 750 set_buffer_new(bh_result); 751 if (buffer_dirty(bh_result) 752 && reiserfs_data_ordered(inode->i_sb)) 753 reiserfs_add_ordered_list(inode, bh_result); 754 put_block_num(item, pos_in_item, allocated_block_nr); 755 unfm_ptr = allocated_block_nr; 756 journal_mark_dirty(th, inode->i_sb, bh); 757 reiserfs_update_sd(th, inode); 758 } 759 set_block_dev_mapped(bh_result, unfm_ptr, inode); 760 pathrelse(&path); 761 retval = 0; 762 if (!dangle && th) 763 retval = reiserfs_end_persistent_transaction(th); 764 765 reiserfs_write_unlock(inode->i_sb); 766 767 /* the item was found, so new blocks were not added to the file 768 ** there is no need to make sure the inode is updated with this 769 ** transaction 770 */ 771 return retval; 772 } 773 774 if (!th) { 775 pathrelse(&path); 776 goto start_trans; 777 } 778 779 /* desired position is not found or is in the direct item. We have 780 to append file with holes up to 'block'-th block converting 781 direct items to indirect one if necessary */ 782 done = 0; 783 do { 784 if (is_statdata_le_ih(ih)) { 785 __le32 unp = 0; 786 struct cpu_key tmp_key; 787 788 /* indirect item has to be inserted */ 789 make_le_item_head(&tmp_ih, &key, version, 1, 790 TYPE_INDIRECT, UNFM_P_SIZE, 791 0 /* free_space */ ); 792 793 if (cpu_key_k_offset(&key) == 1) { 794 /* we are going to add 'block'-th block to the file. Use 795 allocated block for that */ 796 unp = cpu_to_le32(allocated_block_nr); 797 set_block_dev_mapped(bh_result, 798 allocated_block_nr, inode); 799 set_buffer_new(bh_result); 800 done = 1; 801 } 802 tmp_key = key; // ;) 803 set_cpu_key_k_offset(&tmp_key, 1); 804 PATH_LAST_POSITION(&path)++; 805 806 retval = 807 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 808 inode, (char *)&unp); 809 if (retval) { 810 reiserfs_free_block(th, inode, 811 allocated_block_nr, 1); 812 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 813 } 814 //mark_tail_converted (inode); 815 } else if (is_direct_le_ih(ih)) { 816 /* direct item has to be converted */ 817 loff_t tail_offset; 818 819 tail_offset = 820 ((le_ih_k_offset(ih) - 821 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 822 if (tail_offset == cpu_key_k_offset(&key)) { 823 /* direct item we just found fits into block we have 824 to map. Convert it into unformatted node: use 825 bh_result for the conversion */ 826 set_block_dev_mapped(bh_result, 827 allocated_block_nr, inode); 828 unbh = bh_result; 829 done = 1; 830 } else { 831 /* we have to padd file tail stored in direct item(s) 832 up to block size and convert it to unformatted 833 node. FIXME: this should also get into page cache */ 834 835 pathrelse(&path); 836 /* 837 * ugly, but we can only end the transaction if 838 * we aren't nested 839 */ 840 BUG_ON(!th->t_refcount); 841 if (th->t_refcount == 1) { 842 retval = 843 reiserfs_end_persistent_transaction 844 (th); 845 th = NULL; 846 if (retval) 847 goto failure; 848 } 849 850 retval = 851 convert_tail_for_hole(inode, bh_result, 852 tail_offset); 853 if (retval) { 854 if (retval != -ENOSPC) 855 reiserfs_error(inode->i_sb, 856 "clm-6004", 857 "convert tail failed " 858 "inode %lu, error %d", 859 inode->i_ino, 860 retval); 861 if (allocated_block_nr) { 862 /* the bitmap, the super, and the stat data == 3 */ 863 if (!th) 864 th = reiserfs_persistent_transaction(inode->i_sb, 3); 865 if (th) 866 reiserfs_free_block(th, 867 inode, 868 allocated_block_nr, 869 1); 870 } 871 goto failure; 872 } 873 goto research; 874 } 875 retval = 876 direct2indirect(th, inode, &path, unbh, 877 tail_offset); 878 if (retval) { 879 reiserfs_unmap_buffer(unbh); 880 reiserfs_free_block(th, inode, 881 allocated_block_nr, 1); 882 goto failure; 883 } 884 /* it is important the set_buffer_uptodate is done after 885 ** the direct2indirect. The buffer might contain valid 886 ** data newer than the data on disk (read by readpage, changed, 887 ** and then sent here by writepage). direct2indirect needs 888 ** to know if unbh was already up to date, so it can decide 889 ** if the data in unbh needs to be replaced with data from 890 ** the disk 891 */ 892 set_buffer_uptodate(unbh); 893 894 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 895 buffer will disappear shortly, so it should not be added to 896 */ 897 if (unbh->b_page) { 898 /* we've converted the tail, so we must 899 ** flush unbh before the transaction commits 900 */ 901 reiserfs_add_tail_list(inode, unbh); 902 903 /* mark it dirty now to prevent commit_write from adding 904 ** this buffer to the inode's dirty buffer list 905 */ 906 /* 907 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 908 * It's still atomic, but it sets the page dirty too, 909 * which makes it eligible for writeback at any time by the 910 * VM (which was also the case with __mark_buffer_dirty()) 911 */ 912 mark_buffer_dirty(unbh); 913 } 914 } else { 915 /* append indirect item with holes if needed, when appending 916 pointer to 'block'-th block use block, which is already 917 allocated */ 918 struct cpu_key tmp_key; 919 unp_t unf_single = 0; // We use this in case we need to allocate only 920 // one block which is a fastpath 921 unp_t *un; 922 __u64 max_to_insert = 923 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 924 UNFM_P_SIZE; 925 __u64 blocks_needed; 926 927 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 928 "vs-804: invalid position for append"); 929 /* indirect item has to be appended, set up key of that position */ 930 make_cpu_key(&tmp_key, inode, 931 le_key_k_offset(version, 932 &(ih->ih_key)) + 933 op_bytes_number(ih, 934 inode->i_sb->s_blocksize), 935 //pos_in_item * inode->i_sb->s_blocksize, 936 TYPE_INDIRECT, 3); // key type is unimportant 937 938 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 939 "green-805: invalid offset"); 940 blocks_needed = 941 1 + 942 ((cpu_key_k_offset(&key) - 943 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 944 s_blocksize_bits); 945 946 if (blocks_needed == 1) { 947 un = &unf_single; 948 } else { 949 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 950 if (!un) { 951 un = &unf_single; 952 blocks_needed = 1; 953 max_to_insert = 0; 954 } 955 } 956 if (blocks_needed <= max_to_insert) { 957 /* we are going to add target block to the file. Use allocated 958 block for that */ 959 un[blocks_needed - 1] = 960 cpu_to_le32(allocated_block_nr); 961 set_block_dev_mapped(bh_result, 962 allocated_block_nr, inode); 963 set_buffer_new(bh_result); 964 done = 1; 965 } else { 966 /* paste hole to the indirect item */ 967 /* If kmalloc failed, max_to_insert becomes zero and it means we 968 only have space for one block */ 969 blocks_needed = 970 max_to_insert ? max_to_insert : 1; 971 } 972 retval = 973 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 974 (char *)un, 975 UNFM_P_SIZE * 976 blocks_needed); 977 978 if (blocks_needed != 1) 979 kfree(un); 980 981 if (retval) { 982 reiserfs_free_block(th, inode, 983 allocated_block_nr, 1); 984 goto failure; 985 } 986 if (!done) { 987 /* We need to mark new file size in case this function will be 988 interrupted/aborted later on. And we may do this only for 989 holes. */ 990 inode->i_size += 991 inode->i_sb->s_blocksize * blocks_needed; 992 } 993 } 994 995 if (done == 1) 996 break; 997 998 /* this loop could log more blocks than we had originally asked 999 ** for. So, we have to allow the transaction to end if it is 1000 ** too big or too full. Update the inode so things are 1001 ** consistent if we crash before the function returns 1002 ** 1003 ** release the path so that anybody waiting on the path before 1004 ** ending their transaction will be able to continue. 1005 */ 1006 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1007 retval = restart_transaction(th, inode, &path); 1008 if (retval) 1009 goto failure; 1010 } 1011 /* 1012 * inserting indirect pointers for a hole can take a 1013 * long time. reschedule if needed and also release the write 1014 * lock for others. 1015 */ 1016 reiserfs_cond_resched(inode->i_sb); 1017 1018 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1019 if (retval == IO_ERROR) { 1020 retval = -EIO; 1021 goto failure; 1022 } 1023 if (retval == POSITION_FOUND) { 1024 reiserfs_warning(inode->i_sb, "vs-825", 1025 "%K should not be found", &key); 1026 retval = -EEXIST; 1027 if (allocated_block_nr) 1028 reiserfs_free_block(th, inode, 1029 allocated_block_nr, 1); 1030 pathrelse(&path); 1031 goto failure; 1032 } 1033 bh = get_last_bh(&path); 1034 ih = get_ih(&path); 1035 item = get_item(&path); 1036 pos_in_item = path.pos_in_item; 1037 } while (1); 1038 1039 retval = 0; 1040 1041 failure: 1042 if (th && (!dangle || (retval && !th->t_trans_id))) { 1043 int err; 1044 if (th->t_trans_id) 1045 reiserfs_update_sd(th, inode); 1046 err = reiserfs_end_persistent_transaction(th); 1047 if (err) 1048 retval = err; 1049 } 1050 1051 reiserfs_write_unlock(inode->i_sb); 1052 reiserfs_check_path(&path); 1053 return retval; 1054 } 1055 1056 static int 1057 reiserfs_readpages(struct file *file, struct address_space *mapping, 1058 struct list_head *pages, unsigned nr_pages) 1059 { 1060 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1061 } 1062 1063 /* Compute real number of used bytes by file 1064 * Following three functions can go away when we'll have enough space in stat item 1065 */ 1066 static int real_space_diff(struct inode *inode, int sd_size) 1067 { 1068 int bytes; 1069 loff_t blocksize = inode->i_sb->s_blocksize; 1070 1071 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1072 return sd_size; 1073 1074 /* End of file is also in full block with indirect reference, so round 1075 ** up to the next block. 1076 ** 1077 ** there is just no way to know if the tail is actually packed 1078 ** on the file, so we have to assume it isn't. When we pack the 1079 ** tail, we add 4 bytes to pretend there really is an unformatted 1080 ** node pointer 1081 */ 1082 bytes = 1083 ((inode->i_size + 1084 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1085 sd_size; 1086 return bytes; 1087 } 1088 1089 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1090 int sd_size) 1091 { 1092 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1093 return inode->i_size + 1094 (loff_t) (real_space_diff(inode, sd_size)); 1095 } 1096 return ((loff_t) real_space_diff(inode, sd_size)) + 1097 (((loff_t) blocks) << 9); 1098 } 1099 1100 /* Compute number of blocks used by file in ReiserFS counting */ 1101 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1102 { 1103 loff_t bytes = inode_get_bytes(inode); 1104 loff_t real_space = real_space_diff(inode, sd_size); 1105 1106 /* keeps fsck and non-quota versions of reiserfs happy */ 1107 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1108 bytes += (loff_t) 511; 1109 } 1110 1111 /* files from before the quota patch might i_blocks such that 1112 ** bytes < real_space. Deal with that here to prevent it from 1113 ** going negative. 1114 */ 1115 if (bytes < real_space) 1116 return 0; 1117 return (bytes - real_space) >> 9; 1118 } 1119 1120 // 1121 // BAD: new directories have stat data of new type and all other items 1122 // of old type. Version stored in the inode says about body items, so 1123 // in update_stat_data we can not rely on inode, but have to check 1124 // item version directly 1125 // 1126 1127 // called by read_locked_inode 1128 static void init_inode(struct inode *inode, struct treepath *path) 1129 { 1130 struct buffer_head *bh; 1131 struct item_head *ih; 1132 __u32 rdev; 1133 //int version = ITEM_VERSION_1; 1134 1135 bh = PATH_PLAST_BUFFER(path); 1136 ih = PATH_PITEM_HEAD(path); 1137 1138 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1139 1140 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1141 REISERFS_I(inode)->i_flags = 0; 1142 REISERFS_I(inode)->i_prealloc_block = 0; 1143 REISERFS_I(inode)->i_prealloc_count = 0; 1144 REISERFS_I(inode)->i_trans_id = 0; 1145 REISERFS_I(inode)->i_jl = NULL; 1146 reiserfs_init_xattr_rwsem(inode); 1147 1148 if (stat_data_v1(ih)) { 1149 struct stat_data_v1 *sd = 1150 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1151 unsigned long blocks; 1152 1153 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1154 set_inode_sd_version(inode, STAT_DATA_V1); 1155 inode->i_mode = sd_v1_mode(sd); 1156 set_nlink(inode, sd_v1_nlink(sd)); 1157 i_uid_write(inode, sd_v1_uid(sd)); 1158 i_gid_write(inode, sd_v1_gid(sd)); 1159 inode->i_size = sd_v1_size(sd); 1160 inode->i_atime.tv_sec = sd_v1_atime(sd); 1161 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1162 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1163 inode->i_atime.tv_nsec = 0; 1164 inode->i_ctime.tv_nsec = 0; 1165 inode->i_mtime.tv_nsec = 0; 1166 1167 inode->i_blocks = sd_v1_blocks(sd); 1168 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1169 blocks = (inode->i_size + 511) >> 9; 1170 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1171 if (inode->i_blocks > blocks) { 1172 // there was a bug in <=3.5.23 when i_blocks could take negative 1173 // values. Starting from 3.5.17 this value could even be stored in 1174 // stat data. For such files we set i_blocks based on file 1175 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1176 // only updated if file's inode will ever change 1177 inode->i_blocks = blocks; 1178 } 1179 1180 rdev = sd_v1_rdev(sd); 1181 REISERFS_I(inode)->i_first_direct_byte = 1182 sd_v1_first_direct_byte(sd); 1183 /* an early bug in the quota code can give us an odd number for the 1184 ** block count. This is incorrect, fix it here. 1185 */ 1186 if (inode->i_blocks & 1) { 1187 inode->i_blocks++; 1188 } 1189 inode_set_bytes(inode, 1190 to_real_used_space(inode, inode->i_blocks, 1191 SD_V1_SIZE)); 1192 /* nopack is initially zero for v1 objects. For v2 objects, 1193 nopack is initialised from sd_attrs */ 1194 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1195 } else { 1196 // new stat data found, but object may have old items 1197 // (directories and symlinks) 1198 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1199 1200 inode->i_mode = sd_v2_mode(sd); 1201 set_nlink(inode, sd_v2_nlink(sd)); 1202 i_uid_write(inode, sd_v2_uid(sd)); 1203 inode->i_size = sd_v2_size(sd); 1204 i_gid_write(inode, sd_v2_gid(sd)); 1205 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1206 inode->i_atime.tv_sec = sd_v2_atime(sd); 1207 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1208 inode->i_ctime.tv_nsec = 0; 1209 inode->i_mtime.tv_nsec = 0; 1210 inode->i_atime.tv_nsec = 0; 1211 inode->i_blocks = sd_v2_blocks(sd); 1212 rdev = sd_v2_rdev(sd); 1213 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1214 inode->i_generation = 1215 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1216 else 1217 inode->i_generation = sd_v2_generation(sd); 1218 1219 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1220 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1221 else 1222 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1223 REISERFS_I(inode)->i_first_direct_byte = 0; 1224 set_inode_sd_version(inode, STAT_DATA_V2); 1225 inode_set_bytes(inode, 1226 to_real_used_space(inode, inode->i_blocks, 1227 SD_V2_SIZE)); 1228 /* read persistent inode attributes from sd and initialise 1229 generic inode flags from them */ 1230 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1231 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1232 } 1233 1234 pathrelse(path); 1235 if (S_ISREG(inode->i_mode)) { 1236 inode->i_op = &reiserfs_file_inode_operations; 1237 inode->i_fop = &reiserfs_file_operations; 1238 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1239 } else if (S_ISDIR(inode->i_mode)) { 1240 inode->i_op = &reiserfs_dir_inode_operations; 1241 inode->i_fop = &reiserfs_dir_operations; 1242 } else if (S_ISLNK(inode->i_mode)) { 1243 inode->i_op = &reiserfs_symlink_inode_operations; 1244 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1245 } else { 1246 inode->i_blocks = 0; 1247 inode->i_op = &reiserfs_special_inode_operations; 1248 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1249 } 1250 } 1251 1252 // update new stat data with inode fields 1253 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1254 { 1255 struct stat_data *sd_v2 = (struct stat_data *)sd; 1256 __u16 flags; 1257 1258 set_sd_v2_mode(sd_v2, inode->i_mode); 1259 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1260 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1261 set_sd_v2_size(sd_v2, size); 1262 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1263 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1264 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1265 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1266 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1267 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1268 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1269 else 1270 set_sd_v2_generation(sd_v2, inode->i_generation); 1271 flags = REISERFS_I(inode)->i_attrs; 1272 i_attrs_to_sd_attrs(inode, &flags); 1273 set_sd_v2_attrs(sd_v2, flags); 1274 } 1275 1276 // used to copy inode's fields to old stat data 1277 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1278 { 1279 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1280 1281 set_sd_v1_mode(sd_v1, inode->i_mode); 1282 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1283 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1284 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1285 set_sd_v1_size(sd_v1, size); 1286 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1287 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1288 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1289 1290 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1291 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1292 else 1293 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1294 1295 // Sigh. i_first_direct_byte is back 1296 set_sd_v1_first_direct_byte(sd_v1, 1297 REISERFS_I(inode)->i_first_direct_byte); 1298 } 1299 1300 /* NOTE, you must prepare the buffer head before sending it here, 1301 ** and then log it after the call 1302 */ 1303 static void update_stat_data(struct treepath *path, struct inode *inode, 1304 loff_t size) 1305 { 1306 struct buffer_head *bh; 1307 struct item_head *ih; 1308 1309 bh = PATH_PLAST_BUFFER(path); 1310 ih = PATH_PITEM_HEAD(path); 1311 1312 if (!is_statdata_le_ih(ih)) 1313 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1314 INODE_PKEY(inode), ih); 1315 1316 if (stat_data_v1(ih)) { 1317 // path points to old stat data 1318 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1319 } else { 1320 inode2sd(B_I_PITEM(bh, ih), inode, size); 1321 } 1322 1323 return; 1324 } 1325 1326 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1327 struct inode *inode, loff_t size) 1328 { 1329 struct cpu_key key; 1330 INITIALIZE_PATH(path); 1331 struct buffer_head *bh; 1332 int fs_gen; 1333 struct item_head *ih, tmp_ih; 1334 int retval; 1335 1336 BUG_ON(!th->t_trans_id); 1337 1338 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1339 1340 for (;;) { 1341 int pos; 1342 /* look for the object's stat data */ 1343 retval = search_item(inode->i_sb, &key, &path); 1344 if (retval == IO_ERROR) { 1345 reiserfs_error(inode->i_sb, "vs-13050", 1346 "i/o failure occurred trying to " 1347 "update %K stat data", &key); 1348 return; 1349 } 1350 if (retval == ITEM_NOT_FOUND) { 1351 pos = PATH_LAST_POSITION(&path); 1352 pathrelse(&path); 1353 if (inode->i_nlink == 0) { 1354 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1355 return; 1356 } 1357 reiserfs_warning(inode->i_sb, "vs-13060", 1358 "stat data of object %k (nlink == %d) " 1359 "not found (pos %d)", 1360 INODE_PKEY(inode), inode->i_nlink, 1361 pos); 1362 reiserfs_check_path(&path); 1363 return; 1364 } 1365 1366 /* sigh, prepare_for_journal might schedule. When it schedules the 1367 ** FS might change. We have to detect that, and loop back to the 1368 ** search if the stat data item has moved 1369 */ 1370 bh = get_last_bh(&path); 1371 ih = get_ih(&path); 1372 copy_item_head(&tmp_ih, ih); 1373 fs_gen = get_generation(inode->i_sb); 1374 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1375 if (fs_changed(fs_gen, inode->i_sb) 1376 && item_moved(&tmp_ih, &path)) { 1377 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1378 continue; /* Stat_data item has been moved after scheduling. */ 1379 } 1380 break; 1381 } 1382 update_stat_data(&path, inode, size); 1383 journal_mark_dirty(th, th->t_super, bh); 1384 pathrelse(&path); 1385 return; 1386 } 1387 1388 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1389 ** does a make_bad_inode when things go wrong. But, we need to make sure 1390 ** and clear the key in the private portion of the inode, otherwise a 1391 ** corresponding iput might try to delete whatever object the inode last 1392 ** represented. 1393 */ 1394 static void reiserfs_make_bad_inode(struct inode *inode) 1395 { 1396 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1397 make_bad_inode(inode); 1398 } 1399 1400 // 1401 // initially this function was derived from minix or ext2's analog and 1402 // evolved as the prototype did 1403 // 1404 1405 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1406 { 1407 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1408 inode->i_ino = args->objectid; 1409 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1410 return 0; 1411 } 1412 1413 /* looks for stat data in the tree, and fills up the fields of in-core 1414 inode stat data fields */ 1415 void reiserfs_read_locked_inode(struct inode *inode, 1416 struct reiserfs_iget_args *args) 1417 { 1418 INITIALIZE_PATH(path_to_sd); 1419 struct cpu_key key; 1420 unsigned long dirino; 1421 int retval; 1422 1423 dirino = args->dirid; 1424 1425 /* set version 1, version 2 could be used too, because stat data 1426 key is the same in both versions */ 1427 key.version = KEY_FORMAT_3_5; 1428 key.on_disk_key.k_dir_id = dirino; 1429 key.on_disk_key.k_objectid = inode->i_ino; 1430 key.on_disk_key.k_offset = 0; 1431 key.on_disk_key.k_type = 0; 1432 1433 /* look for the object's stat data */ 1434 retval = search_item(inode->i_sb, &key, &path_to_sd); 1435 if (retval == IO_ERROR) { 1436 reiserfs_error(inode->i_sb, "vs-13070", 1437 "i/o failure occurred trying to find " 1438 "stat data of %K", &key); 1439 reiserfs_make_bad_inode(inode); 1440 return; 1441 } 1442 if (retval != ITEM_FOUND) { 1443 /* a stale NFS handle can trigger this without it being an error */ 1444 pathrelse(&path_to_sd); 1445 reiserfs_make_bad_inode(inode); 1446 clear_nlink(inode); 1447 return; 1448 } 1449 1450 init_inode(inode, &path_to_sd); 1451 1452 /* It is possible that knfsd is trying to access inode of a file 1453 that is being removed from the disk by some other thread. As we 1454 update sd on unlink all that is required is to check for nlink 1455 here. This bug was first found by Sizif when debugging 1456 SquidNG/Butterfly, forgotten, and found again after Philippe 1457 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1458 1459 More logical fix would require changes in fs/inode.c:iput() to 1460 remove inode from hash-table _after_ fs cleaned disk stuff up and 1461 in iget() to return NULL if I_FREEING inode is found in 1462 hash-table. */ 1463 /* Currently there is one place where it's ok to meet inode with 1464 nlink==0: processing of open-unlinked and half-truncated files 1465 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1466 if ((inode->i_nlink == 0) && 1467 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1468 reiserfs_warning(inode->i_sb, "vs-13075", 1469 "dead inode read from disk %K. " 1470 "This is likely to be race with knfsd. Ignore", 1471 &key); 1472 reiserfs_make_bad_inode(inode); 1473 } 1474 1475 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1476 1477 /* 1478 * Stat data v1 doesn't support ACLs. 1479 */ 1480 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1481 cache_no_acl(inode); 1482 } 1483 1484 /** 1485 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1486 * 1487 * @inode: inode from hash table to check 1488 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1489 * 1490 * This function is called by iget5_locked() to distinguish reiserfs inodes 1491 * having the same inode numbers. Such inodes can only exist due to some 1492 * error condition. One of them should be bad. Inodes with identical 1493 * inode numbers (objectids) are distinguished by parent directory ids. 1494 * 1495 */ 1496 int reiserfs_find_actor(struct inode *inode, void *opaque) 1497 { 1498 struct reiserfs_iget_args *args; 1499 1500 args = opaque; 1501 /* args is already in CPU order */ 1502 return (inode->i_ino == args->objectid) && 1503 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1504 } 1505 1506 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1507 { 1508 struct inode *inode; 1509 struct reiserfs_iget_args args; 1510 int depth; 1511 1512 args.objectid = key->on_disk_key.k_objectid; 1513 args.dirid = key->on_disk_key.k_dir_id; 1514 depth = reiserfs_write_unlock_nested(s); 1515 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1516 reiserfs_find_actor, reiserfs_init_locked_inode, 1517 (void *)(&args)); 1518 reiserfs_write_lock_nested(s, depth); 1519 if (!inode) 1520 return ERR_PTR(-ENOMEM); 1521 1522 if (inode->i_state & I_NEW) { 1523 reiserfs_read_locked_inode(inode, &args); 1524 unlock_new_inode(inode); 1525 } 1526 1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1528 /* either due to i/o error or a stale NFS handle */ 1529 iput(inode); 1530 inode = NULL; 1531 } 1532 return inode; 1533 } 1534 1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1536 u32 objectid, u32 dir_id, u32 generation) 1537 1538 { 1539 struct cpu_key key; 1540 struct inode *inode; 1541 1542 key.on_disk_key.k_objectid = objectid; 1543 key.on_disk_key.k_dir_id = dir_id; 1544 reiserfs_write_lock(sb); 1545 inode = reiserfs_iget(sb, &key); 1546 if (inode && !IS_ERR(inode) && generation != 0 && 1547 generation != inode->i_generation) { 1548 iput(inode); 1549 inode = NULL; 1550 } 1551 reiserfs_write_unlock(sb); 1552 1553 return d_obtain_alias(inode); 1554 } 1555 1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1557 int fh_len, int fh_type) 1558 { 1559 /* fhtype happens to reflect the number of u32s encoded. 1560 * due to a bug in earlier code, fhtype might indicate there 1561 * are more u32s then actually fitted. 1562 * so if fhtype seems to be more than len, reduce fhtype. 1563 * Valid types are: 1564 * 2 - objectid + dir_id - legacy support 1565 * 3 - objectid + dir_id + generation 1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1568 * 6 - as above plus generation of directory 1569 * 6 does not fit in NFSv2 handles 1570 */ 1571 if (fh_type > fh_len) { 1572 if (fh_type != 6 || fh_len != 5) 1573 reiserfs_warning(sb, "reiserfs-13077", 1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1575 fh_type, fh_len); 1576 fh_type = fh_len; 1577 } 1578 if (fh_len < 2) 1579 return NULL; 1580 1581 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1582 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1583 } 1584 1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1586 int fh_len, int fh_type) 1587 { 1588 if (fh_type > fh_len) 1589 fh_type = fh_len; 1590 if (fh_type < 4) 1591 return NULL; 1592 1593 return reiserfs_get_dentry(sb, 1594 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1595 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1596 (fh_type == 6) ? fid->raw[5] : 0); 1597 } 1598 1599 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1600 struct inode *parent) 1601 { 1602 int maxlen = *lenp; 1603 1604 if (parent && (maxlen < 5)) { 1605 *lenp = 5; 1606 return FILEID_INVALID; 1607 } else if (maxlen < 3) { 1608 *lenp = 3; 1609 return FILEID_INVALID; 1610 } 1611 1612 data[0] = inode->i_ino; 1613 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1614 data[2] = inode->i_generation; 1615 *lenp = 3; 1616 if (parent) { 1617 data[3] = parent->i_ino; 1618 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1619 *lenp = 5; 1620 if (maxlen >= 6) { 1621 data[5] = parent->i_generation; 1622 *lenp = 6; 1623 } 1624 } 1625 return *lenp; 1626 } 1627 1628 /* looks for stat data, then copies fields to it, marks the buffer 1629 containing stat data as dirty */ 1630 /* reiserfs inodes are never really dirty, since the dirty inode call 1631 ** always logs them. This call allows the VFS inode marking routines 1632 ** to properly mark inodes for datasync and such, but only actually 1633 ** does something when called for a synchronous update. 1634 */ 1635 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1636 { 1637 struct reiserfs_transaction_handle th; 1638 int jbegin_count = 1; 1639 1640 if (inode->i_sb->s_flags & MS_RDONLY) 1641 return -EROFS; 1642 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1643 ** these cases are just when the system needs ram, not when the 1644 ** inode needs to reach disk for safety, and they can safely be 1645 ** ignored because the altered inode has already been logged. 1646 */ 1647 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1648 reiserfs_write_lock(inode->i_sb); 1649 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1650 reiserfs_update_sd(&th, inode); 1651 journal_end_sync(&th, inode->i_sb, jbegin_count); 1652 } 1653 reiserfs_write_unlock(inode->i_sb); 1654 } 1655 return 0; 1656 } 1657 1658 /* stat data of new object is inserted already, this inserts the item 1659 containing "." and ".." entries */ 1660 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1661 struct inode *inode, 1662 struct item_head *ih, struct treepath *path, 1663 struct inode *dir) 1664 { 1665 struct super_block *sb = th->t_super; 1666 char empty_dir[EMPTY_DIR_SIZE]; 1667 char *body = empty_dir; 1668 struct cpu_key key; 1669 int retval; 1670 1671 BUG_ON(!th->t_trans_id); 1672 1673 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1674 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1675 TYPE_DIRENTRY, 3 /*key length */ ); 1676 1677 /* compose item head for new item. Directories consist of items of 1678 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1679 is done by reiserfs_new_inode */ 1680 if (old_format_only(sb)) { 1681 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1682 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1683 1684 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1685 ih->ih_key.k_objectid, 1686 INODE_PKEY(dir)->k_dir_id, 1687 INODE_PKEY(dir)->k_objectid); 1688 } else { 1689 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1690 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1691 1692 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1693 ih->ih_key.k_objectid, 1694 INODE_PKEY(dir)->k_dir_id, 1695 INODE_PKEY(dir)->k_objectid); 1696 } 1697 1698 /* look for place in the tree for new item */ 1699 retval = search_item(sb, &key, path); 1700 if (retval == IO_ERROR) { 1701 reiserfs_error(sb, "vs-13080", 1702 "i/o failure occurred creating new directory"); 1703 return -EIO; 1704 } 1705 if (retval == ITEM_FOUND) { 1706 pathrelse(path); 1707 reiserfs_warning(sb, "vs-13070", 1708 "object with this key exists (%k)", 1709 &(ih->ih_key)); 1710 return -EEXIST; 1711 } 1712 1713 /* insert item, that is empty directory item */ 1714 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1715 } 1716 1717 /* stat data of object has been inserted, this inserts the item 1718 containing the body of symlink */ 1719 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1720 struct item_head *ih, 1721 struct treepath *path, const char *symname, 1722 int item_len) 1723 { 1724 struct super_block *sb = th->t_super; 1725 struct cpu_key key; 1726 int retval; 1727 1728 BUG_ON(!th->t_trans_id); 1729 1730 _make_cpu_key(&key, KEY_FORMAT_3_5, 1731 le32_to_cpu(ih->ih_key.k_dir_id), 1732 le32_to_cpu(ih->ih_key.k_objectid), 1733 1, TYPE_DIRECT, 3 /*key length */ ); 1734 1735 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1736 0 /*free_space */ ); 1737 1738 /* look for place in the tree for new item */ 1739 retval = search_item(sb, &key, path); 1740 if (retval == IO_ERROR) { 1741 reiserfs_error(sb, "vs-13080", 1742 "i/o failure occurred creating new symlink"); 1743 return -EIO; 1744 } 1745 if (retval == ITEM_FOUND) { 1746 pathrelse(path); 1747 reiserfs_warning(sb, "vs-13080", 1748 "object with this key exists (%k)", 1749 &(ih->ih_key)); 1750 return -EEXIST; 1751 } 1752 1753 /* insert item, that is body of symlink */ 1754 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1755 } 1756 1757 /* inserts the stat data into the tree, and then calls 1758 reiserfs_new_directory (to insert ".", ".." item if new object is 1759 directory) or reiserfs_new_symlink (to insert symlink body if new 1760 object is symlink) or nothing (if new object is regular file) 1761 1762 NOTE! uid and gid must already be set in the inode. If we return 1763 non-zero due to an error, we have to drop the quota previously allocated 1764 for the fresh inode. This can only be done outside a transaction, so 1765 if we return non-zero, we also end the transaction. */ 1766 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1767 struct inode *dir, umode_t mode, const char *symname, 1768 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1769 strlen (symname) for symlinks) */ 1770 loff_t i_size, struct dentry *dentry, 1771 struct inode *inode, 1772 struct reiserfs_security_handle *security) 1773 { 1774 struct super_block *sb = dir->i_sb; 1775 struct reiserfs_iget_args args; 1776 INITIALIZE_PATH(path_to_key); 1777 struct cpu_key key; 1778 struct item_head ih; 1779 struct stat_data sd; 1780 int retval; 1781 int err; 1782 int depth; 1783 1784 BUG_ON(!th->t_trans_id); 1785 1786 depth = reiserfs_write_unlock_nested(sb); 1787 err = dquot_alloc_inode(inode); 1788 reiserfs_write_lock_nested(sb, depth); 1789 if (err) 1790 goto out_end_trans; 1791 if (!dir->i_nlink) { 1792 err = -EPERM; 1793 goto out_bad_inode; 1794 } 1795 1796 /* item head of new item */ 1797 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1798 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1799 if (!ih.ih_key.k_objectid) { 1800 err = -ENOMEM; 1801 goto out_bad_inode; 1802 } 1803 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1804 if (old_format_only(sb)) 1805 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1806 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1807 else 1808 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1809 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1810 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1811 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1812 1813 depth = reiserfs_write_unlock_nested(inode->i_sb); 1814 err = insert_inode_locked4(inode, args.objectid, 1815 reiserfs_find_actor, &args); 1816 reiserfs_write_lock_nested(inode->i_sb, depth); 1817 if (err) { 1818 err = -EINVAL; 1819 goto out_bad_inode; 1820 } 1821 1822 if (old_format_only(sb)) 1823 /* not a perfect generation count, as object ids can be reused, but 1824 ** this is as good as reiserfs can do right now. 1825 ** note that the private part of inode isn't filled in yet, we have 1826 ** to use the directory. 1827 */ 1828 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1829 else 1830 #if defined( USE_INODE_GENERATION_COUNTER ) 1831 inode->i_generation = 1832 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1833 #else 1834 inode->i_generation = ++event; 1835 #endif 1836 1837 /* fill stat data */ 1838 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1839 1840 /* uid and gid must already be set by the caller for quota init */ 1841 1842 /* symlink cannot be immutable or append only, right? */ 1843 if (S_ISLNK(inode->i_mode)) 1844 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1845 1846 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1847 inode->i_size = i_size; 1848 inode->i_blocks = 0; 1849 inode->i_bytes = 0; 1850 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1851 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1852 1853 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1854 REISERFS_I(inode)->i_flags = 0; 1855 REISERFS_I(inode)->i_prealloc_block = 0; 1856 REISERFS_I(inode)->i_prealloc_count = 0; 1857 REISERFS_I(inode)->i_trans_id = 0; 1858 REISERFS_I(inode)->i_jl = NULL; 1859 REISERFS_I(inode)->i_attrs = 1860 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1861 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1862 reiserfs_init_xattr_rwsem(inode); 1863 1864 /* key to search for correct place for new stat data */ 1865 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1866 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1867 TYPE_STAT_DATA, 3 /*key length */ ); 1868 1869 /* find proper place for inserting of stat data */ 1870 retval = search_item(sb, &key, &path_to_key); 1871 if (retval == IO_ERROR) { 1872 err = -EIO; 1873 goto out_bad_inode; 1874 } 1875 if (retval == ITEM_FOUND) { 1876 pathrelse(&path_to_key); 1877 err = -EEXIST; 1878 goto out_bad_inode; 1879 } 1880 if (old_format_only(sb)) { 1881 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 1882 pathrelse(&path_to_key); 1883 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1884 err = -EINVAL; 1885 goto out_bad_inode; 1886 } 1887 inode2sd_v1(&sd, inode, inode->i_size); 1888 } else { 1889 inode2sd(&sd, inode, inode->i_size); 1890 } 1891 // store in in-core inode the key of stat data and version all 1892 // object items will have (directory items will have old offset 1893 // format, other new objects will consist of new items) 1894 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1895 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1896 else 1897 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1898 if (old_format_only(sb)) 1899 set_inode_sd_version(inode, STAT_DATA_V1); 1900 else 1901 set_inode_sd_version(inode, STAT_DATA_V2); 1902 1903 /* insert the stat data into the tree */ 1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1905 if (REISERFS_I(dir)->new_packing_locality) 1906 th->displace_new_blocks = 1; 1907 #endif 1908 retval = 1909 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1910 (char *)(&sd)); 1911 if (retval) { 1912 err = retval; 1913 reiserfs_check_path(&path_to_key); 1914 goto out_bad_inode; 1915 } 1916 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1917 if (!th->displace_new_blocks) 1918 REISERFS_I(dir)->new_packing_locality = 0; 1919 #endif 1920 if (S_ISDIR(mode)) { 1921 /* insert item with "." and ".." */ 1922 retval = 1923 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1924 } 1925 1926 if (S_ISLNK(mode)) { 1927 /* insert body of symlink */ 1928 if (!old_format_only(sb)) 1929 i_size = ROUND_UP(i_size); 1930 retval = 1931 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1932 i_size); 1933 } 1934 if (retval) { 1935 err = retval; 1936 reiserfs_check_path(&path_to_key); 1937 journal_end(th, th->t_super, th->t_blocks_allocated); 1938 goto out_inserted_sd; 1939 } 1940 1941 if (reiserfs_posixacl(inode->i_sb)) { 1942 reiserfs_write_unlock(inode->i_sb); 1943 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1944 reiserfs_write_lock(inode->i_sb); 1945 if (retval) { 1946 err = retval; 1947 reiserfs_check_path(&path_to_key); 1948 journal_end(th, th->t_super, th->t_blocks_allocated); 1949 goto out_inserted_sd; 1950 } 1951 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1952 reiserfs_warning(inode->i_sb, "jdm-13090", 1953 "ACLs aren't enabled in the fs, " 1954 "but vfs thinks they are!"); 1955 } else if (IS_PRIVATE(dir)) 1956 inode->i_flags |= S_PRIVATE; 1957 1958 if (security->name) { 1959 reiserfs_write_unlock(inode->i_sb); 1960 retval = reiserfs_security_write(th, inode, security); 1961 reiserfs_write_lock(inode->i_sb); 1962 if (retval) { 1963 err = retval; 1964 reiserfs_check_path(&path_to_key); 1965 retval = journal_end(th, th->t_super, 1966 th->t_blocks_allocated); 1967 if (retval) 1968 err = retval; 1969 goto out_inserted_sd; 1970 } 1971 } 1972 1973 reiserfs_update_sd(th, inode); 1974 reiserfs_check_path(&path_to_key); 1975 1976 return 0; 1977 1978 /* it looks like you can easily compress these two goto targets into 1979 * one. Keeping it like this doesn't actually hurt anything, and they 1980 * are place holders for what the quota code actually needs. 1981 */ 1982 out_bad_inode: 1983 /* Invalidate the object, nothing was inserted yet */ 1984 INODE_PKEY(inode)->k_objectid = 0; 1985 1986 /* Quota change must be inside a transaction for journaling */ 1987 depth = reiserfs_write_unlock_nested(inode->i_sb); 1988 dquot_free_inode(inode); 1989 reiserfs_write_lock_nested(inode->i_sb, depth); 1990 1991 out_end_trans: 1992 journal_end(th, th->t_super, th->t_blocks_allocated); 1993 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1994 depth = reiserfs_write_unlock_nested(inode->i_sb); 1995 dquot_drop(inode); 1996 reiserfs_write_lock_nested(inode->i_sb, depth); 1997 inode->i_flags |= S_NOQUOTA; 1998 make_bad_inode(inode); 1999 2000 out_inserted_sd: 2001 clear_nlink(inode); 2002 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2003 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2004 iput(inode); 2005 return err; 2006 } 2007 2008 /* 2009 ** finds the tail page in the page cache, 2010 ** reads the last block in. 2011 ** 2012 ** On success, page_result is set to a locked, pinned page, and bh_result 2013 ** is set to an up to date buffer for the last block in the file. returns 0. 2014 ** 2015 ** tail conversion is not done, so bh_result might not be valid for writing 2016 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2017 ** trying to write the block. 2018 ** 2019 ** on failure, nonzero is returned, page_result and bh_result are untouched. 2020 */ 2021 static int grab_tail_page(struct inode *inode, 2022 struct page **page_result, 2023 struct buffer_head **bh_result) 2024 { 2025 2026 /* we want the page with the last byte in the file, 2027 ** not the page that will hold the next byte for appending 2028 */ 2029 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2030 unsigned long pos = 0; 2031 unsigned long start = 0; 2032 unsigned long blocksize = inode->i_sb->s_blocksize; 2033 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2034 struct buffer_head *bh; 2035 struct buffer_head *head; 2036 struct page *page; 2037 int error; 2038 2039 /* we know that we are only called with inode->i_size > 0. 2040 ** we also know that a file tail can never be as big as a block 2041 ** If i_size % blocksize == 0, our file is currently block aligned 2042 ** and it won't need converting or zeroing after a truncate. 2043 */ 2044 if ((offset & (blocksize - 1)) == 0) { 2045 return -ENOENT; 2046 } 2047 page = grab_cache_page(inode->i_mapping, index); 2048 error = -ENOMEM; 2049 if (!page) { 2050 goto out; 2051 } 2052 /* start within the page of the last block in the file */ 2053 start = (offset / blocksize) * blocksize; 2054 2055 error = __block_write_begin(page, start, offset - start, 2056 reiserfs_get_block_create_0); 2057 if (error) 2058 goto unlock; 2059 2060 head = page_buffers(page); 2061 bh = head; 2062 do { 2063 if (pos >= start) { 2064 break; 2065 } 2066 bh = bh->b_this_page; 2067 pos += blocksize; 2068 } while (bh != head); 2069 2070 if (!buffer_uptodate(bh)) { 2071 /* note, this should never happen, prepare_write should 2072 ** be taking care of this for us. If the buffer isn't up to date, 2073 ** I've screwed up the code to find the buffer, or the code to 2074 ** call prepare_write 2075 */ 2076 reiserfs_error(inode->i_sb, "clm-6000", 2077 "error reading block %lu", bh->b_blocknr); 2078 error = -EIO; 2079 goto unlock; 2080 } 2081 *bh_result = bh; 2082 *page_result = page; 2083 2084 out: 2085 return error; 2086 2087 unlock: 2088 unlock_page(page); 2089 page_cache_release(page); 2090 return error; 2091 } 2092 2093 /* 2094 ** vfs version of truncate file. Must NOT be called with 2095 ** a transaction already started. 2096 ** 2097 ** some code taken from block_truncate_page 2098 */ 2099 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2100 { 2101 struct reiserfs_transaction_handle th; 2102 /* we want the offset for the first byte after the end of the file */ 2103 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2104 unsigned blocksize = inode->i_sb->s_blocksize; 2105 unsigned length; 2106 struct page *page = NULL; 2107 int error; 2108 struct buffer_head *bh = NULL; 2109 int err2; 2110 2111 reiserfs_write_lock(inode->i_sb); 2112 2113 if (inode->i_size > 0) { 2114 error = grab_tail_page(inode, &page, &bh); 2115 if (error) { 2116 // -ENOENT means we truncated past the end of the file, 2117 // and get_block_create_0 could not find a block to read in, 2118 // which is ok. 2119 if (error != -ENOENT) 2120 reiserfs_error(inode->i_sb, "clm-6001", 2121 "grab_tail_page failed %d", 2122 error); 2123 page = NULL; 2124 bh = NULL; 2125 } 2126 } 2127 2128 /* so, if page != NULL, we have a buffer head for the offset at 2129 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2130 ** then we have an unformatted node. Otherwise, we have a direct item, 2131 ** and no zeroing is required on disk. We zero after the truncate, 2132 ** because the truncate might pack the item anyway 2133 ** (it will unmap bh if it packs). 2134 */ 2135 /* it is enough to reserve space in transaction for 2 balancings: 2136 one for "save" link adding and another for the first 2137 cut_from_item. 1 is for update_sd */ 2138 error = journal_begin(&th, inode->i_sb, 2139 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2140 if (error) 2141 goto out; 2142 reiserfs_update_inode_transaction(inode); 2143 if (update_timestamps) 2144 /* we are doing real truncate: if the system crashes before the last 2145 transaction of truncating gets committed - on reboot the file 2146 either appears truncated properly or not truncated at all */ 2147 add_save_link(&th, inode, 1); 2148 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2149 error = 2150 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2151 if (error) 2152 goto out; 2153 2154 /* check reiserfs_do_truncate after ending the transaction */ 2155 if (err2) { 2156 error = err2; 2157 goto out; 2158 } 2159 2160 if (update_timestamps) { 2161 error = remove_save_link(inode, 1 /* truncate */); 2162 if (error) 2163 goto out; 2164 } 2165 2166 if (page) { 2167 length = offset & (blocksize - 1); 2168 /* if we are not on a block boundary */ 2169 if (length) { 2170 length = blocksize - length; 2171 zero_user(page, offset, length); 2172 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2173 mark_buffer_dirty(bh); 2174 } 2175 } 2176 unlock_page(page); 2177 page_cache_release(page); 2178 } 2179 2180 reiserfs_write_unlock(inode->i_sb); 2181 2182 return 0; 2183 out: 2184 if (page) { 2185 unlock_page(page); 2186 page_cache_release(page); 2187 } 2188 2189 reiserfs_write_unlock(inode->i_sb); 2190 2191 return error; 2192 } 2193 2194 static int map_block_for_writepage(struct inode *inode, 2195 struct buffer_head *bh_result, 2196 unsigned long block) 2197 { 2198 struct reiserfs_transaction_handle th; 2199 int fs_gen; 2200 struct item_head tmp_ih; 2201 struct item_head *ih; 2202 struct buffer_head *bh; 2203 __le32 *item; 2204 struct cpu_key key; 2205 INITIALIZE_PATH(path); 2206 int pos_in_item; 2207 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2208 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2209 int retval; 2210 int use_get_block = 0; 2211 int bytes_copied = 0; 2212 int copy_size; 2213 int trans_running = 0; 2214 2215 /* catch places below that try to log something without starting a trans */ 2216 th.t_trans_id = 0; 2217 2218 if (!buffer_uptodate(bh_result)) { 2219 return -EIO; 2220 } 2221 2222 kmap(bh_result->b_page); 2223 start_over: 2224 reiserfs_write_lock(inode->i_sb); 2225 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2226 2227 research: 2228 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2229 if (retval != POSITION_FOUND) { 2230 use_get_block = 1; 2231 goto out; 2232 } 2233 2234 bh = get_last_bh(&path); 2235 ih = get_ih(&path); 2236 item = get_item(&path); 2237 pos_in_item = path.pos_in_item; 2238 2239 /* we've found an unformatted node */ 2240 if (indirect_item_found(retval, ih)) { 2241 if (bytes_copied > 0) { 2242 reiserfs_warning(inode->i_sb, "clm-6002", 2243 "bytes_copied %d", bytes_copied); 2244 } 2245 if (!get_block_num(item, pos_in_item)) { 2246 /* crap, we are writing to a hole */ 2247 use_get_block = 1; 2248 goto out; 2249 } 2250 set_block_dev_mapped(bh_result, 2251 get_block_num(item, pos_in_item), inode); 2252 } else if (is_direct_le_ih(ih)) { 2253 char *p; 2254 p = page_address(bh_result->b_page); 2255 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2256 copy_size = ih_item_len(ih) - pos_in_item; 2257 2258 fs_gen = get_generation(inode->i_sb); 2259 copy_item_head(&tmp_ih, ih); 2260 2261 if (!trans_running) { 2262 /* vs-3050 is gone, no need to drop the path */ 2263 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2264 if (retval) 2265 goto out; 2266 reiserfs_update_inode_transaction(inode); 2267 trans_running = 1; 2268 if (fs_changed(fs_gen, inode->i_sb) 2269 && item_moved(&tmp_ih, &path)) { 2270 reiserfs_restore_prepared_buffer(inode->i_sb, 2271 bh); 2272 goto research; 2273 } 2274 } 2275 2276 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2277 2278 if (fs_changed(fs_gen, inode->i_sb) 2279 && item_moved(&tmp_ih, &path)) { 2280 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2281 goto research; 2282 } 2283 2284 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2285 copy_size); 2286 2287 journal_mark_dirty(&th, inode->i_sb, bh); 2288 bytes_copied += copy_size; 2289 set_block_dev_mapped(bh_result, 0, inode); 2290 2291 /* are there still bytes left? */ 2292 if (bytes_copied < bh_result->b_size && 2293 (byte_offset + bytes_copied) < inode->i_size) { 2294 set_cpu_key_k_offset(&key, 2295 cpu_key_k_offset(&key) + 2296 copy_size); 2297 goto research; 2298 } 2299 } else { 2300 reiserfs_warning(inode->i_sb, "clm-6003", 2301 "bad item inode %lu", inode->i_ino); 2302 retval = -EIO; 2303 goto out; 2304 } 2305 retval = 0; 2306 2307 out: 2308 pathrelse(&path); 2309 if (trans_running) { 2310 int err = journal_end(&th, inode->i_sb, jbegin_count); 2311 if (err) 2312 retval = err; 2313 trans_running = 0; 2314 } 2315 reiserfs_write_unlock(inode->i_sb); 2316 2317 /* this is where we fill in holes in the file. */ 2318 if (use_get_block) { 2319 retval = reiserfs_get_block(inode, block, bh_result, 2320 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2321 | GET_BLOCK_NO_DANGLE); 2322 if (!retval) { 2323 if (!buffer_mapped(bh_result) 2324 || bh_result->b_blocknr == 0) { 2325 /* get_block failed to find a mapped unformatted node. */ 2326 use_get_block = 0; 2327 goto start_over; 2328 } 2329 } 2330 } 2331 kunmap(bh_result->b_page); 2332 2333 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2334 /* we've copied data from the page into the direct item, so the 2335 * buffer in the page is now clean, mark it to reflect that. 2336 */ 2337 lock_buffer(bh_result); 2338 clear_buffer_dirty(bh_result); 2339 unlock_buffer(bh_result); 2340 } 2341 return retval; 2342 } 2343 2344 /* 2345 * mason@suse.com: updated in 2.5.54 to follow the same general io 2346 * start/recovery path as __block_write_full_page, along with special 2347 * code to handle reiserfs tails. 2348 */ 2349 static int reiserfs_write_full_page(struct page *page, 2350 struct writeback_control *wbc) 2351 { 2352 struct inode *inode = page->mapping->host; 2353 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2354 int error = 0; 2355 unsigned long block; 2356 sector_t last_block; 2357 struct buffer_head *head, *bh; 2358 int partial = 0; 2359 int nr = 0; 2360 int checked = PageChecked(page); 2361 struct reiserfs_transaction_handle th; 2362 struct super_block *s = inode->i_sb; 2363 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2364 th.t_trans_id = 0; 2365 2366 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2367 if (checked && (current->flags & PF_MEMALLOC)) { 2368 redirty_page_for_writepage(wbc, page); 2369 unlock_page(page); 2370 return 0; 2371 } 2372 2373 /* The page dirty bit is cleared before writepage is called, which 2374 * means we have to tell create_empty_buffers to make dirty buffers 2375 * The page really should be up to date at this point, so tossing 2376 * in the BH_Uptodate is just a sanity check. 2377 */ 2378 if (!page_has_buffers(page)) { 2379 create_empty_buffers(page, s->s_blocksize, 2380 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2381 } 2382 head = page_buffers(page); 2383 2384 /* last page in the file, zero out any contents past the 2385 ** last byte in the file 2386 */ 2387 if (page->index >= end_index) { 2388 unsigned last_offset; 2389 2390 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2391 /* no file contents in this page */ 2392 if (page->index >= end_index + 1 || !last_offset) { 2393 unlock_page(page); 2394 return 0; 2395 } 2396 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2397 } 2398 bh = head; 2399 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2400 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2401 /* first map all the buffers, logging any direct items we find */ 2402 do { 2403 if (block > last_block) { 2404 /* 2405 * This can happen when the block size is less than 2406 * the page size. The corresponding bytes in the page 2407 * were zero filled above 2408 */ 2409 clear_buffer_dirty(bh); 2410 set_buffer_uptodate(bh); 2411 } else if ((checked || buffer_dirty(bh)) && 2412 (!buffer_mapped(bh) || (buffer_mapped(bh) 2413 && bh->b_blocknr == 2414 0))) { 2415 /* not mapped yet, or it points to a direct item, search 2416 * the btree for the mapping info, and log any direct 2417 * items found 2418 */ 2419 if ((error = map_block_for_writepage(inode, bh, block))) { 2420 goto fail; 2421 } 2422 } 2423 bh = bh->b_this_page; 2424 block++; 2425 } while (bh != head); 2426 2427 /* 2428 * we start the transaction after map_block_for_writepage, 2429 * because it can create holes in the file (an unbounded operation). 2430 * starting it here, we can make a reliable estimate for how many 2431 * blocks we're going to log 2432 */ 2433 if (checked) { 2434 ClearPageChecked(page); 2435 reiserfs_write_lock(s); 2436 error = journal_begin(&th, s, bh_per_page + 1); 2437 if (error) { 2438 reiserfs_write_unlock(s); 2439 goto fail; 2440 } 2441 reiserfs_update_inode_transaction(inode); 2442 } 2443 /* now go through and lock any dirty buffers on the page */ 2444 do { 2445 get_bh(bh); 2446 if (!buffer_mapped(bh)) 2447 continue; 2448 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2449 continue; 2450 2451 if (checked) { 2452 reiserfs_prepare_for_journal(s, bh, 1); 2453 journal_mark_dirty(&th, s, bh); 2454 continue; 2455 } 2456 /* from this point on, we know the buffer is mapped to a 2457 * real block and not a direct item 2458 */ 2459 if (wbc->sync_mode != WB_SYNC_NONE) { 2460 lock_buffer(bh); 2461 } else { 2462 if (!trylock_buffer(bh)) { 2463 redirty_page_for_writepage(wbc, page); 2464 continue; 2465 } 2466 } 2467 if (test_clear_buffer_dirty(bh)) { 2468 mark_buffer_async_write(bh); 2469 } else { 2470 unlock_buffer(bh); 2471 } 2472 } while ((bh = bh->b_this_page) != head); 2473 2474 if (checked) { 2475 error = journal_end(&th, s, bh_per_page + 1); 2476 reiserfs_write_unlock(s); 2477 if (error) 2478 goto fail; 2479 } 2480 BUG_ON(PageWriteback(page)); 2481 set_page_writeback(page); 2482 unlock_page(page); 2483 2484 /* 2485 * since any buffer might be the only dirty buffer on the page, 2486 * the first submit_bh can bring the page out of writeback. 2487 * be careful with the buffers. 2488 */ 2489 do { 2490 struct buffer_head *next = bh->b_this_page; 2491 if (buffer_async_write(bh)) { 2492 submit_bh(WRITE, bh); 2493 nr++; 2494 } 2495 put_bh(bh); 2496 bh = next; 2497 } while (bh != head); 2498 2499 error = 0; 2500 done: 2501 if (nr == 0) { 2502 /* 2503 * if this page only had a direct item, it is very possible for 2504 * no io to be required without there being an error. Or, 2505 * someone else could have locked them and sent them down the 2506 * pipe without locking the page 2507 */ 2508 bh = head; 2509 do { 2510 if (!buffer_uptodate(bh)) { 2511 partial = 1; 2512 break; 2513 } 2514 bh = bh->b_this_page; 2515 } while (bh != head); 2516 if (!partial) 2517 SetPageUptodate(page); 2518 end_page_writeback(page); 2519 } 2520 return error; 2521 2522 fail: 2523 /* catches various errors, we need to make sure any valid dirty blocks 2524 * get to the media. The page is currently locked and not marked for 2525 * writeback 2526 */ 2527 ClearPageUptodate(page); 2528 bh = head; 2529 do { 2530 get_bh(bh); 2531 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2532 lock_buffer(bh); 2533 mark_buffer_async_write(bh); 2534 } else { 2535 /* 2536 * clear any dirty bits that might have come from getting 2537 * attached to a dirty page 2538 */ 2539 clear_buffer_dirty(bh); 2540 } 2541 bh = bh->b_this_page; 2542 } while (bh != head); 2543 SetPageError(page); 2544 BUG_ON(PageWriteback(page)); 2545 set_page_writeback(page); 2546 unlock_page(page); 2547 do { 2548 struct buffer_head *next = bh->b_this_page; 2549 if (buffer_async_write(bh)) { 2550 clear_buffer_dirty(bh); 2551 submit_bh(WRITE, bh); 2552 nr++; 2553 } 2554 put_bh(bh); 2555 bh = next; 2556 } while (bh != head); 2557 goto done; 2558 } 2559 2560 static int reiserfs_readpage(struct file *f, struct page *page) 2561 { 2562 return block_read_full_page(page, reiserfs_get_block); 2563 } 2564 2565 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2566 { 2567 struct inode *inode = page->mapping->host; 2568 reiserfs_wait_on_write_block(inode->i_sb); 2569 return reiserfs_write_full_page(page, wbc); 2570 } 2571 2572 static void reiserfs_truncate_failed_write(struct inode *inode) 2573 { 2574 truncate_inode_pages(inode->i_mapping, inode->i_size); 2575 reiserfs_truncate_file(inode, 0); 2576 } 2577 2578 static int reiserfs_write_begin(struct file *file, 2579 struct address_space *mapping, 2580 loff_t pos, unsigned len, unsigned flags, 2581 struct page **pagep, void **fsdata) 2582 { 2583 struct inode *inode; 2584 struct page *page; 2585 pgoff_t index; 2586 int ret; 2587 int old_ref = 0; 2588 2589 inode = mapping->host; 2590 *fsdata = 0; 2591 if (flags & AOP_FLAG_CONT_EXPAND && 2592 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2593 pos ++; 2594 *fsdata = (void *)(unsigned long)flags; 2595 } 2596 2597 index = pos >> PAGE_CACHE_SHIFT; 2598 page = grab_cache_page_write_begin(mapping, index, flags); 2599 if (!page) 2600 return -ENOMEM; 2601 *pagep = page; 2602 2603 reiserfs_wait_on_write_block(inode->i_sb); 2604 fix_tail_page_for_writing(page); 2605 if (reiserfs_transaction_running(inode->i_sb)) { 2606 struct reiserfs_transaction_handle *th; 2607 th = (struct reiserfs_transaction_handle *)current-> 2608 journal_info; 2609 BUG_ON(!th->t_refcount); 2610 BUG_ON(!th->t_trans_id); 2611 old_ref = th->t_refcount; 2612 th->t_refcount++; 2613 } 2614 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2615 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2616 struct reiserfs_transaction_handle *th = current->journal_info; 2617 /* this gets a little ugly. If reiserfs_get_block returned an 2618 * error and left a transacstion running, we've got to close it, 2619 * and we've got to free handle if it was a persistent transaction. 2620 * 2621 * But, if we had nested into an existing transaction, we need 2622 * to just drop the ref count on the handle. 2623 * 2624 * If old_ref == 0, the transaction is from reiserfs_get_block, 2625 * and it was a persistent trans. Otherwise, it was nested above. 2626 */ 2627 if (th->t_refcount > old_ref) { 2628 if (old_ref) 2629 th->t_refcount--; 2630 else { 2631 int err; 2632 reiserfs_write_lock(inode->i_sb); 2633 err = reiserfs_end_persistent_transaction(th); 2634 reiserfs_write_unlock(inode->i_sb); 2635 if (err) 2636 ret = err; 2637 } 2638 } 2639 } 2640 if (ret) { 2641 unlock_page(page); 2642 page_cache_release(page); 2643 /* Truncate allocated blocks */ 2644 reiserfs_truncate_failed_write(inode); 2645 } 2646 return ret; 2647 } 2648 2649 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2650 { 2651 struct inode *inode = page->mapping->host; 2652 int ret; 2653 int old_ref = 0; 2654 int depth; 2655 2656 depth = reiserfs_write_unlock_nested(inode->i_sb); 2657 reiserfs_wait_on_write_block(inode->i_sb); 2658 reiserfs_write_lock_nested(inode->i_sb, depth); 2659 2660 fix_tail_page_for_writing(page); 2661 if (reiserfs_transaction_running(inode->i_sb)) { 2662 struct reiserfs_transaction_handle *th; 2663 th = (struct reiserfs_transaction_handle *)current-> 2664 journal_info; 2665 BUG_ON(!th->t_refcount); 2666 BUG_ON(!th->t_trans_id); 2667 old_ref = th->t_refcount; 2668 th->t_refcount++; 2669 } 2670 2671 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2672 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2673 struct reiserfs_transaction_handle *th = current->journal_info; 2674 /* this gets a little ugly. If reiserfs_get_block returned an 2675 * error and left a transacstion running, we've got to close it, 2676 * and we've got to free handle if it was a persistent transaction. 2677 * 2678 * But, if we had nested into an existing transaction, we need 2679 * to just drop the ref count on the handle. 2680 * 2681 * If old_ref == 0, the transaction is from reiserfs_get_block, 2682 * and it was a persistent trans. Otherwise, it was nested above. 2683 */ 2684 if (th->t_refcount > old_ref) { 2685 if (old_ref) 2686 th->t_refcount--; 2687 else { 2688 int err; 2689 reiserfs_write_lock(inode->i_sb); 2690 err = reiserfs_end_persistent_transaction(th); 2691 reiserfs_write_unlock(inode->i_sb); 2692 if (err) 2693 ret = err; 2694 } 2695 } 2696 } 2697 return ret; 2698 2699 } 2700 2701 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2702 { 2703 return generic_block_bmap(as, block, reiserfs_bmap); 2704 } 2705 2706 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2707 loff_t pos, unsigned len, unsigned copied, 2708 struct page *page, void *fsdata) 2709 { 2710 struct inode *inode = page->mapping->host; 2711 int ret = 0; 2712 int update_sd = 0; 2713 struct reiserfs_transaction_handle *th; 2714 unsigned start; 2715 bool locked = false; 2716 2717 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2718 pos ++; 2719 2720 reiserfs_wait_on_write_block(inode->i_sb); 2721 if (reiserfs_transaction_running(inode->i_sb)) 2722 th = current->journal_info; 2723 else 2724 th = NULL; 2725 2726 start = pos & (PAGE_CACHE_SIZE - 1); 2727 if (unlikely(copied < len)) { 2728 if (!PageUptodate(page)) 2729 copied = 0; 2730 2731 page_zero_new_buffers(page, start + copied, start + len); 2732 } 2733 flush_dcache_page(page); 2734 2735 reiserfs_commit_page(inode, page, start, start + copied); 2736 2737 /* generic_commit_write does this for us, but does not update the 2738 ** transaction tracking stuff when the size changes. So, we have 2739 ** to do the i_size updates here. 2740 */ 2741 if (pos + copied > inode->i_size) { 2742 struct reiserfs_transaction_handle myth; 2743 reiserfs_write_lock(inode->i_sb); 2744 locked = true; 2745 /* If the file have grown beyond the border where it 2746 can have a tail, unmark it as needing a tail 2747 packing */ 2748 if ((have_large_tails(inode->i_sb) 2749 && inode->i_size > i_block_size(inode) * 4) 2750 || (have_small_tails(inode->i_sb) 2751 && inode->i_size > i_block_size(inode))) 2752 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2753 2754 ret = journal_begin(&myth, inode->i_sb, 1); 2755 if (ret) 2756 goto journal_error; 2757 2758 reiserfs_update_inode_transaction(inode); 2759 inode->i_size = pos + copied; 2760 /* 2761 * this will just nest into our transaction. It's important 2762 * to use mark_inode_dirty so the inode gets pushed around on the 2763 * dirty lists, and so that O_SYNC works as expected 2764 */ 2765 mark_inode_dirty(inode); 2766 reiserfs_update_sd(&myth, inode); 2767 update_sd = 1; 2768 ret = journal_end(&myth, inode->i_sb, 1); 2769 if (ret) 2770 goto journal_error; 2771 } 2772 if (th) { 2773 if (!locked) { 2774 reiserfs_write_lock(inode->i_sb); 2775 locked = true; 2776 } 2777 if (!update_sd) 2778 mark_inode_dirty(inode); 2779 ret = reiserfs_end_persistent_transaction(th); 2780 if (ret) 2781 goto out; 2782 } 2783 2784 out: 2785 if (locked) 2786 reiserfs_write_unlock(inode->i_sb); 2787 unlock_page(page); 2788 page_cache_release(page); 2789 2790 if (pos + len > inode->i_size) 2791 reiserfs_truncate_failed_write(inode); 2792 2793 return ret == 0 ? copied : ret; 2794 2795 journal_error: 2796 reiserfs_write_unlock(inode->i_sb); 2797 locked = false; 2798 if (th) { 2799 if (!update_sd) 2800 reiserfs_update_sd(th, inode); 2801 ret = reiserfs_end_persistent_transaction(th); 2802 } 2803 goto out; 2804 } 2805 2806 int reiserfs_commit_write(struct file *f, struct page *page, 2807 unsigned from, unsigned to) 2808 { 2809 struct inode *inode = page->mapping->host; 2810 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2811 int ret = 0; 2812 int update_sd = 0; 2813 struct reiserfs_transaction_handle *th = NULL; 2814 int depth; 2815 2816 depth = reiserfs_write_unlock_nested(inode->i_sb); 2817 reiserfs_wait_on_write_block(inode->i_sb); 2818 reiserfs_write_lock_nested(inode->i_sb, depth); 2819 2820 if (reiserfs_transaction_running(inode->i_sb)) { 2821 th = current->journal_info; 2822 } 2823 reiserfs_commit_page(inode, page, from, to); 2824 2825 /* generic_commit_write does this for us, but does not update the 2826 ** transaction tracking stuff when the size changes. So, we have 2827 ** to do the i_size updates here. 2828 */ 2829 if (pos > inode->i_size) { 2830 struct reiserfs_transaction_handle myth; 2831 /* If the file have grown beyond the border where it 2832 can have a tail, unmark it as needing a tail 2833 packing */ 2834 if ((have_large_tails(inode->i_sb) 2835 && inode->i_size > i_block_size(inode) * 4) 2836 || (have_small_tails(inode->i_sb) 2837 && inode->i_size > i_block_size(inode))) 2838 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2839 2840 ret = journal_begin(&myth, inode->i_sb, 1); 2841 if (ret) 2842 goto journal_error; 2843 2844 reiserfs_update_inode_transaction(inode); 2845 inode->i_size = pos; 2846 /* 2847 * this will just nest into our transaction. It's important 2848 * to use mark_inode_dirty so the inode gets pushed around on the 2849 * dirty lists, and so that O_SYNC works as expected 2850 */ 2851 mark_inode_dirty(inode); 2852 reiserfs_update_sd(&myth, inode); 2853 update_sd = 1; 2854 ret = journal_end(&myth, inode->i_sb, 1); 2855 if (ret) 2856 goto journal_error; 2857 } 2858 if (th) { 2859 if (!update_sd) 2860 mark_inode_dirty(inode); 2861 ret = reiserfs_end_persistent_transaction(th); 2862 if (ret) 2863 goto out; 2864 } 2865 2866 out: 2867 return ret; 2868 2869 journal_error: 2870 if (th) { 2871 if (!update_sd) 2872 reiserfs_update_sd(th, inode); 2873 ret = reiserfs_end_persistent_transaction(th); 2874 } 2875 2876 return ret; 2877 } 2878 2879 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2880 { 2881 if (reiserfs_attrs(inode->i_sb)) { 2882 if (sd_attrs & REISERFS_SYNC_FL) 2883 inode->i_flags |= S_SYNC; 2884 else 2885 inode->i_flags &= ~S_SYNC; 2886 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2887 inode->i_flags |= S_IMMUTABLE; 2888 else 2889 inode->i_flags &= ~S_IMMUTABLE; 2890 if (sd_attrs & REISERFS_APPEND_FL) 2891 inode->i_flags |= S_APPEND; 2892 else 2893 inode->i_flags &= ~S_APPEND; 2894 if (sd_attrs & REISERFS_NOATIME_FL) 2895 inode->i_flags |= S_NOATIME; 2896 else 2897 inode->i_flags &= ~S_NOATIME; 2898 if (sd_attrs & REISERFS_NOTAIL_FL) 2899 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2900 else 2901 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2902 } 2903 } 2904 2905 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2906 { 2907 if (reiserfs_attrs(inode->i_sb)) { 2908 if (inode->i_flags & S_IMMUTABLE) 2909 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2910 else 2911 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2912 if (inode->i_flags & S_SYNC) 2913 *sd_attrs |= REISERFS_SYNC_FL; 2914 else 2915 *sd_attrs &= ~REISERFS_SYNC_FL; 2916 if (inode->i_flags & S_NOATIME) 2917 *sd_attrs |= REISERFS_NOATIME_FL; 2918 else 2919 *sd_attrs &= ~REISERFS_NOATIME_FL; 2920 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2921 *sd_attrs |= REISERFS_NOTAIL_FL; 2922 else 2923 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2924 } 2925 } 2926 2927 /* decide if this buffer needs to stay around for data logging or ordered 2928 ** write purposes 2929 */ 2930 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2931 { 2932 int ret = 1; 2933 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2934 2935 lock_buffer(bh); 2936 spin_lock(&j->j_dirty_buffers_lock); 2937 if (!buffer_mapped(bh)) { 2938 goto free_jh; 2939 } 2940 /* the page is locked, and the only places that log a data buffer 2941 * also lock the page. 2942 */ 2943 if (reiserfs_file_data_log(inode)) { 2944 /* 2945 * very conservative, leave the buffer pinned if 2946 * anyone might need it. 2947 */ 2948 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2949 ret = 0; 2950 } 2951 } else if (buffer_dirty(bh)) { 2952 struct reiserfs_journal_list *jl; 2953 struct reiserfs_jh *jh = bh->b_private; 2954 2955 /* why is this safe? 2956 * reiserfs_setattr updates i_size in the on disk 2957 * stat data before allowing vmtruncate to be called. 2958 * 2959 * If buffer was put onto the ordered list for this 2960 * transaction, we know for sure either this transaction 2961 * or an older one already has updated i_size on disk, 2962 * and this ordered data won't be referenced in the file 2963 * if we crash. 2964 * 2965 * if the buffer was put onto the ordered list for an older 2966 * transaction, we need to leave it around 2967 */ 2968 if (jh && (jl = jh->jl) 2969 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2970 ret = 0; 2971 } 2972 free_jh: 2973 if (ret && bh->b_private) { 2974 reiserfs_free_jh(bh); 2975 } 2976 spin_unlock(&j->j_dirty_buffers_lock); 2977 unlock_buffer(bh); 2978 return ret; 2979 } 2980 2981 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2982 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 2983 unsigned int length) 2984 { 2985 struct buffer_head *head, *bh, *next; 2986 struct inode *inode = page->mapping->host; 2987 unsigned int curr_off = 0; 2988 unsigned int stop = offset + length; 2989 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2990 int ret = 1; 2991 2992 BUG_ON(!PageLocked(page)); 2993 2994 if (!partial_page) 2995 ClearPageChecked(page); 2996 2997 if (!page_has_buffers(page)) 2998 goto out; 2999 3000 head = page_buffers(page); 3001 bh = head; 3002 do { 3003 unsigned int next_off = curr_off + bh->b_size; 3004 next = bh->b_this_page; 3005 3006 if (next_off > stop) 3007 goto out; 3008 3009 /* 3010 * is this block fully invalidated? 3011 */ 3012 if (offset <= curr_off) { 3013 if (invalidatepage_can_drop(inode, bh)) 3014 reiserfs_unmap_buffer(bh); 3015 else 3016 ret = 0; 3017 } 3018 curr_off = next_off; 3019 bh = next; 3020 } while (bh != head); 3021 3022 /* 3023 * We release buffers only if the entire page is being invalidated. 3024 * The get_block cached value has been unconditionally invalidated, 3025 * so real IO is not possible anymore. 3026 */ 3027 if (!partial_page && ret) { 3028 ret = try_to_release_page(page, 0); 3029 /* maybe should BUG_ON(!ret); - neilb */ 3030 } 3031 out: 3032 return; 3033 } 3034 3035 static int reiserfs_set_page_dirty(struct page *page) 3036 { 3037 struct inode *inode = page->mapping->host; 3038 if (reiserfs_file_data_log(inode)) { 3039 SetPageChecked(page); 3040 return __set_page_dirty_nobuffers(page); 3041 } 3042 return __set_page_dirty_buffers(page); 3043 } 3044 3045 /* 3046 * Returns 1 if the page's buffers were dropped. The page is locked. 3047 * 3048 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3049 * in the buffers at page_buffers(page). 3050 * 3051 * even in -o notail mode, we can't be sure an old mount without -o notail 3052 * didn't create files with tails. 3053 */ 3054 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3055 { 3056 struct inode *inode = page->mapping->host; 3057 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3058 struct buffer_head *head; 3059 struct buffer_head *bh; 3060 int ret = 1; 3061 3062 WARN_ON(PageChecked(page)); 3063 spin_lock(&j->j_dirty_buffers_lock); 3064 head = page_buffers(page); 3065 bh = head; 3066 do { 3067 if (bh->b_private) { 3068 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3069 reiserfs_free_jh(bh); 3070 } else { 3071 ret = 0; 3072 break; 3073 } 3074 } 3075 bh = bh->b_this_page; 3076 } while (bh != head); 3077 if (ret) 3078 ret = try_to_free_buffers(page); 3079 spin_unlock(&j->j_dirty_buffers_lock); 3080 return ret; 3081 } 3082 3083 /* We thank Mingming Cao for helping us understand in great detail what 3084 to do in this section of the code. */ 3085 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3086 const struct iovec *iov, loff_t offset, 3087 unsigned long nr_segs) 3088 { 3089 struct file *file = iocb->ki_filp; 3090 struct inode *inode = file->f_mapping->host; 3091 ssize_t ret; 3092 3093 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 3094 reiserfs_get_blocks_direct_io); 3095 3096 /* 3097 * In case of error extending write may have instantiated a few 3098 * blocks outside i_size. Trim these off again. 3099 */ 3100 if (unlikely((rw & WRITE) && ret < 0)) { 3101 loff_t isize = i_size_read(inode); 3102 loff_t end = offset + iov_length(iov, nr_segs); 3103 3104 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3105 truncate_setsize(inode, isize); 3106 reiserfs_vfs_truncate_file(inode); 3107 } 3108 } 3109 3110 return ret; 3111 } 3112 3113 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3114 { 3115 struct inode *inode = dentry->d_inode; 3116 unsigned int ia_valid; 3117 int error; 3118 3119 error = inode_change_ok(inode, attr); 3120 if (error) 3121 return error; 3122 3123 /* must be turned off for recursive notify_change calls */ 3124 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3125 3126 if (is_quota_modification(inode, attr)) 3127 dquot_initialize(inode); 3128 reiserfs_write_lock(inode->i_sb); 3129 if (attr->ia_valid & ATTR_SIZE) { 3130 /* version 2 items will be caught by the s_maxbytes check 3131 ** done for us in vmtruncate 3132 */ 3133 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3134 attr->ia_size > MAX_NON_LFS) { 3135 reiserfs_write_unlock(inode->i_sb); 3136 error = -EFBIG; 3137 goto out; 3138 } 3139 3140 inode_dio_wait(inode); 3141 3142 /* fill in hole pointers in the expanding truncate case. */ 3143 if (attr->ia_size > inode->i_size) { 3144 error = generic_cont_expand_simple(inode, attr->ia_size); 3145 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3146 int err; 3147 struct reiserfs_transaction_handle th; 3148 /* we're changing at most 2 bitmaps, inode + super */ 3149 err = journal_begin(&th, inode->i_sb, 4); 3150 if (!err) { 3151 reiserfs_discard_prealloc(&th, inode); 3152 err = journal_end(&th, inode->i_sb, 4); 3153 } 3154 if (err) 3155 error = err; 3156 } 3157 if (error) { 3158 reiserfs_write_unlock(inode->i_sb); 3159 goto out; 3160 } 3161 /* 3162 * file size is changed, ctime and mtime are 3163 * to be updated 3164 */ 3165 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3166 } 3167 } 3168 reiserfs_write_unlock(inode->i_sb); 3169 3170 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3171 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3172 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3173 /* stat data of format v3.5 has 16 bit uid and gid */ 3174 error = -EINVAL; 3175 goto out; 3176 } 3177 3178 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3179 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3180 struct reiserfs_transaction_handle th; 3181 int jbegin_count = 3182 2 * 3183 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3184 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3185 2; 3186 3187 error = reiserfs_chown_xattrs(inode, attr); 3188 3189 if (error) 3190 return error; 3191 3192 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3193 reiserfs_write_lock(inode->i_sb); 3194 error = journal_begin(&th, inode->i_sb, jbegin_count); 3195 reiserfs_write_unlock(inode->i_sb); 3196 if (error) 3197 goto out; 3198 error = dquot_transfer(inode, attr); 3199 reiserfs_write_lock(inode->i_sb); 3200 if (error) { 3201 journal_end(&th, inode->i_sb, jbegin_count); 3202 reiserfs_write_unlock(inode->i_sb); 3203 goto out; 3204 } 3205 3206 /* Update corresponding info in inode so that everything is in 3207 * one transaction */ 3208 if (attr->ia_valid & ATTR_UID) 3209 inode->i_uid = attr->ia_uid; 3210 if (attr->ia_valid & ATTR_GID) 3211 inode->i_gid = attr->ia_gid; 3212 mark_inode_dirty(inode); 3213 error = journal_end(&th, inode->i_sb, jbegin_count); 3214 reiserfs_write_unlock(inode->i_sb); 3215 if (error) 3216 goto out; 3217 } 3218 3219 if ((attr->ia_valid & ATTR_SIZE) && 3220 attr->ia_size != i_size_read(inode)) { 3221 error = inode_newsize_ok(inode, attr->ia_size); 3222 if (!error) { 3223 truncate_setsize(inode, attr->ia_size); 3224 reiserfs_vfs_truncate_file(inode); 3225 } 3226 } 3227 3228 if (!error) { 3229 setattr_copy(inode, attr); 3230 mark_inode_dirty(inode); 3231 } 3232 3233 if (!error && reiserfs_posixacl(inode->i_sb)) { 3234 if (attr->ia_valid & ATTR_MODE) 3235 error = reiserfs_acl_chmod(inode); 3236 } 3237 3238 out: 3239 return error; 3240 } 3241 3242 const struct address_space_operations reiserfs_address_space_operations = { 3243 .writepage = reiserfs_writepage, 3244 .readpage = reiserfs_readpage, 3245 .readpages = reiserfs_readpages, 3246 .releasepage = reiserfs_releasepage, 3247 .invalidatepage = reiserfs_invalidatepage, 3248 .write_begin = reiserfs_write_begin, 3249 .write_end = reiserfs_write_end, 3250 .bmap = reiserfs_aop_bmap, 3251 .direct_IO = reiserfs_direct_IO, 3252 .set_page_dirty = reiserfs_set_page_dirty, 3253 }; 3254