1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ 127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ 137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to readpage, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ 193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ 214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ 241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ 285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p = NULL; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 if (result == IO_ERROR) 311 return -EIO; 312 /* 313 * We do not return -ENOENT if there is a hole but page is 314 * uptodate, because it means that there is some MMAPED data 315 * associated with it that is yet to be written to disk. 316 */ 317 if ((args & GET_BLOCK_NO_HOLE) 318 && !PageUptodate(bh_result->b_page)) { 319 return -ENOENT; 320 } 321 return 0; 322 } 323 324 bh = get_last_bh(&path); 325 ih = tp_item_head(&path); 326 if (is_indirect_le_ih(ih)) { 327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 328 329 /* 330 * FIXME: here we could cache indirect item or part of it in 331 * the inode to avoid search_by_key in case of subsequent 332 * access to file 333 */ 334 blocknr = get_block_num(ind_item, path.pos_in_item); 335 ret = 0; 336 if (blocknr) { 337 map_bh(bh_result, inode->i_sb, blocknr); 338 if (path.pos_in_item == 339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 340 set_buffer_boundary(bh_result); 341 } 342 } else 343 /* 344 * We do not return -ENOENT if there is a hole but 345 * page is uptodate, because it means that there is 346 * some MMAPED data associated with it that is 347 * yet to be written to disk. 348 */ 349 if ((args & GET_BLOCK_NO_HOLE) 350 && !PageUptodate(bh_result->b_page)) { 351 ret = -ENOENT; 352 } 353 354 pathrelse(&path); 355 if (p) 356 kunmap(bh_result->b_page); 357 return ret; 358 } 359 /* requested data are in direct item(s) */ 360 if (!(args & GET_BLOCK_READ_DIRECT)) { 361 /* 362 * we are called by bmap. FIXME: we can not map block of file 363 * when it is stored in direct item(s) 364 */ 365 pathrelse(&path); 366 if (p) 367 kunmap(bh_result->b_page); 368 return -ENOENT; 369 } 370 371 /* 372 * if we've got a direct item, and the buffer or page was uptodate, 373 * we don't want to pull data off disk again. skip to the 374 * end, where we map the buffer and return 375 */ 376 if (buffer_uptodate(bh_result)) { 377 goto finished; 378 } else 379 /* 380 * grab_tail_page can trigger calls to reiserfs_get_block on 381 * up to date pages without any buffers. If the page is up 382 * to date, we don't want read old data off disk. Set the up 383 * to date bit on the buffer instead and jump to the end 384 */ 385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 386 set_buffer_uptodate(bh_result); 387 goto finished; 388 } 389 /* read file tail into part of page */ 390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 391 copy_item_head(&tmp_ih, ih); 392 393 /* 394 * we only want to kmap if we are reading the tail into the page. 395 * this is not the common case, so we don't kmap until we are 396 * sure we need to. But, this means the item might move if 397 * kmap schedules 398 */ 399 if (!p) 400 p = (char *)kmap(bh_result->b_page); 401 402 p += offset; 403 memset(p, 0, inode->i_sb->s_blocksize); 404 do { 405 if (!is_direct_le_ih(ih)) { 406 BUG(); 407 } 408 /* 409 * make sure we don't read more bytes than actually exist in 410 * the file. This can happen in odd cases where i_size isn't 411 * correct, and when direct item padding results in a few 412 * extra bytes at the end of the direct item 413 */ 414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 415 break; 416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 417 chars = 418 inode->i_size - (le_ih_k_offset(ih) - 1) - 419 path.pos_in_item; 420 done = 1; 421 } else { 422 chars = ih_item_len(ih) - path.pos_in_item; 423 } 424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 425 426 if (done) 427 break; 428 429 p += chars; 430 431 /* 432 * we done, if read direct item is not the last item of 433 * node FIXME: we could try to check right delimiting key 434 * to see whether direct item continues in the right 435 * neighbor or rely on i_size 436 */ 437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 438 break; 439 440 /* update key to look for the next piece */ 441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 442 result = search_for_position_by_key(inode->i_sb, &key, &path); 443 if (result != POSITION_FOUND) 444 /* i/o error most likely */ 445 break; 446 bh = get_last_bh(&path); 447 ih = tp_item_head(&path); 448 } while (1); 449 450 flush_dcache_page(bh_result->b_page); 451 kunmap(bh_result->b_page); 452 453 finished: 454 pathrelse(&path); 455 456 if (result == IO_ERROR) 457 return -EIO; 458 459 /* 460 * this buffer has valid data, but isn't valid for io. mapping it to 461 * block #0 tells the rest of reiserfs it just has a tail in it 462 */ 463 map_bh(bh_result, inode->i_sb, 0); 464 set_buffer_uptodate(bh_result); 465 return 0; 466 } 467 468 /* 469 * this is called to create file map. So, _get_block_create_0 will not 470 * read direct item 471 */ 472 static int reiserfs_bmap(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 if (!file_capable(inode, block)) 476 return -EFBIG; 477 478 reiserfs_write_lock(inode->i_sb); 479 /* do not read the direct item */ 480 _get_block_create_0(inode, block, bh_result, 0); 481 reiserfs_write_unlock(inode->i_sb); 482 return 0; 483 } 484 485 /* 486 * special version of get_block that is only used by grab_tail_page right 487 * now. It is sent to __block_write_begin, and when you try to get a 488 * block past the end of the file (or a block from a hole) it returns 489 * -ENOENT instead of a valid buffer. __block_write_begin expects to 490 * be able to do i/o on the buffers returned, unless an error value 491 * is also returned. 492 * 493 * So, this allows __block_write_begin to be used for reading a single block 494 * in a page. Where it does not produce a valid page for holes, or past the 495 * end of the file. This turns out to be exactly what we need for reading 496 * tails for conversion. 497 * 498 * The point of the wrapper is forcing a certain value for create, even 499 * though the VFS layer is calling this function with create==1. If you 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 501 * don't use this function. 502 */ 503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 504 struct buffer_head *bh_result, 505 int create) 506 { 507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 508 } 509 510 /* 511 * This is special helper for reiserfs_get_block in case we are executing 512 * direct_IO request. 513 */ 514 static int reiserfs_get_blocks_direct_io(struct inode *inode, 515 sector_t iblock, 516 struct buffer_head *bh_result, 517 int create) 518 { 519 int ret; 520 521 bh_result->b_page = NULL; 522 523 /* 524 * We set the b_size before reiserfs_get_block call since it is 525 * referenced in convert_tail_for_hole() that may be called from 526 * reiserfs_get_block() 527 */ 528 bh_result->b_size = i_blocksize(inode); 529 530 ret = reiserfs_get_block(inode, iblock, bh_result, 531 create | GET_BLOCK_NO_DANGLE); 532 if (ret) 533 goto out; 534 535 /* don't allow direct io onto tail pages */ 536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 537 /* 538 * make sure future calls to the direct io funcs for this 539 * offset in the file fail by unmapping the buffer 540 */ 541 clear_buffer_mapped(bh_result); 542 ret = -EINVAL; 543 } 544 545 /* 546 * Possible unpacked tail. Flush the data before pages have 547 * disappeared 548 */ 549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 550 int err; 551 552 reiserfs_write_lock(inode->i_sb); 553 554 err = reiserfs_commit_for_inode(inode); 555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 556 557 reiserfs_write_unlock(inode->i_sb); 558 559 if (err < 0) 560 ret = err; 561 } 562 out: 563 return ret; 564 } 565 566 /* 567 * helper function for when reiserfs_get_block is called for a hole 568 * but the file tail is still in a direct item 569 * bh_result is the buffer head for the hole 570 * tail_offset is the offset of the start of the tail in the file 571 * 572 * This calls prepare_write, which will start a new transaction 573 * you should not be in a transaction, or have any paths held when you 574 * call this. 575 */ 576 static int convert_tail_for_hole(struct inode *inode, 577 struct buffer_head *bh_result, 578 loff_t tail_offset) 579 { 580 unsigned long index; 581 unsigned long tail_end; 582 unsigned long tail_start; 583 struct page *tail_page; 584 struct page *hole_page = bh_result->b_page; 585 int retval = 0; 586 587 if ((tail_offset & (bh_result->b_size - 1)) != 1) 588 return -EIO; 589 590 /* always try to read until the end of the block */ 591 tail_start = tail_offset & (PAGE_SIZE - 1); 592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 593 594 index = tail_offset >> PAGE_SHIFT; 595 /* 596 * hole_page can be zero in case of direct_io, we are sure 597 * that we cannot get here if we write with O_DIRECT into tail page 598 */ 599 if (!hole_page || index != hole_page->index) { 600 tail_page = grab_cache_page(inode->i_mapping, index); 601 retval = -ENOMEM; 602 if (!tail_page) { 603 goto out; 604 } 605 } else { 606 tail_page = hole_page; 607 } 608 609 /* 610 * we don't have to make sure the conversion did not happen while 611 * we were locking the page because anyone that could convert 612 * must first take i_mutex. 613 * 614 * We must fix the tail page for writing because it might have buffers 615 * that are mapped, but have a block number of 0. This indicates tail 616 * data that has been read directly into the page, and 617 * __block_write_begin won't trigger a get_block in this case. 618 */ 619 fix_tail_page_for_writing(tail_page); 620 retval = __reiserfs_write_begin(tail_page, tail_start, 621 tail_end - tail_start); 622 if (retval) 623 goto unlock; 624 625 /* tail conversion might change the data in the page */ 626 flush_dcache_page(tail_page); 627 628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 629 630 unlock: 631 if (tail_page != hole_page) { 632 unlock_page(tail_page); 633 put_page(tail_page); 634 } 635 out: 636 return retval; 637 } 638 639 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 640 sector_t block, 641 struct inode *inode, 642 b_blocknr_t * allocated_block_nr, 643 struct treepath *path, int flags) 644 { 645 BUG_ON(!th->t_trans_id); 646 647 #ifdef REISERFS_PREALLOCATE 648 if (!(flags & GET_BLOCK_NO_IMUX)) { 649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 650 path, block); 651 } 652 #endif 653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 654 block); 655 } 656 657 int reiserfs_get_block(struct inode *inode, sector_t block, 658 struct buffer_head *bh_result, int create) 659 { 660 int repeat, retval = 0; 661 /* b_blocknr_t is (unsigned) 32 bit int*/ 662 b_blocknr_t allocated_block_nr = 0; 663 INITIALIZE_PATH(path); 664 int pos_in_item; 665 struct cpu_key key; 666 struct buffer_head *bh, *unbh = NULL; 667 struct item_head *ih, tmp_ih; 668 __le32 *item; 669 int done; 670 int fs_gen; 671 struct reiserfs_transaction_handle *th = NULL; 672 /* 673 * space reserved in transaction batch: 674 * . 3 balancings in direct->indirect conversion 675 * . 1 block involved into reiserfs_update_sd() 676 * XXX in practically impossible worst case direct2indirect() 677 * can incur (much) more than 3 balancings. 678 * quota update for user, group 679 */ 680 int jbegin_count = 681 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 683 int version; 684 int dangle = 1; 685 loff_t new_offset = 686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 687 688 reiserfs_write_lock(inode->i_sb); 689 version = get_inode_item_key_version(inode); 690 691 if (!file_capable(inode, block)) { 692 reiserfs_write_unlock(inode->i_sb); 693 return -EFBIG; 694 } 695 696 /* 697 * if !create, we aren't changing the FS, so we don't need to 698 * log anything, so we don't need to start a transaction 699 */ 700 if (!(create & GET_BLOCK_CREATE)) { 701 int ret; 702 /* find number of block-th logical block of the file */ 703 ret = _get_block_create_0(inode, block, bh_result, 704 create | GET_BLOCK_READ_DIRECT); 705 reiserfs_write_unlock(inode->i_sb); 706 return ret; 707 } 708 709 /* 710 * if we're already in a transaction, make sure to close 711 * any new transactions we start in this func 712 */ 713 if ((create & GET_BLOCK_NO_DANGLE) || 714 reiserfs_transaction_running(inode->i_sb)) 715 dangle = 0; 716 717 /* 718 * If file is of such a size, that it might have a tail and 719 * tails are enabled we should mark it as possibly needing 720 * tail packing on close 721 */ 722 if ((have_large_tails(inode->i_sb) 723 && inode->i_size < i_block_size(inode) * 4) 724 || (have_small_tails(inode->i_sb) 725 && inode->i_size < i_block_size(inode))) 726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 727 728 /* set the key of the first byte in the 'block'-th block of file */ 729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 731 start_trans: 732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 733 if (!th) { 734 retval = -ENOMEM; 735 goto failure; 736 } 737 reiserfs_update_inode_transaction(inode); 738 } 739 research: 740 741 retval = search_for_position_by_key(inode->i_sb, &key, &path); 742 if (retval == IO_ERROR) { 743 retval = -EIO; 744 goto failure; 745 } 746 747 bh = get_last_bh(&path); 748 ih = tp_item_head(&path); 749 item = tp_item_body(&path); 750 pos_in_item = path.pos_in_item; 751 752 fs_gen = get_generation(inode->i_sb); 753 copy_item_head(&tmp_ih, ih); 754 755 if (allocation_needed 756 (retval, allocated_block_nr, ih, item, pos_in_item)) { 757 /* we have to allocate block for the unformatted node */ 758 if (!th) { 759 pathrelse(&path); 760 goto start_trans; 761 } 762 763 repeat = 764 _allocate_block(th, block, inode, &allocated_block_nr, 765 &path, create); 766 767 /* 768 * restart the transaction to give the journal a chance to free 769 * some blocks. releases the path, so we have to go back to 770 * research if we succeed on the second try 771 */ 772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 774 retval = restart_transaction(th, inode, &path); 775 if (retval) 776 goto failure; 777 repeat = 778 _allocate_block(th, block, inode, 779 &allocated_block_nr, NULL, create); 780 781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 782 goto research; 783 } 784 if (repeat == QUOTA_EXCEEDED) 785 retval = -EDQUOT; 786 else 787 retval = -ENOSPC; 788 goto failure; 789 } 790 791 if (fs_changed(fs_gen, inode->i_sb) 792 && item_moved(&tmp_ih, &path)) { 793 goto research; 794 } 795 } 796 797 if (indirect_item_found(retval, ih)) { 798 b_blocknr_t unfm_ptr; 799 /* 800 * 'block'-th block is in the file already (there is 801 * corresponding cell in some indirect item). But it may be 802 * zero unformatted node pointer (hole) 803 */ 804 unfm_ptr = get_block_num(item, pos_in_item); 805 if (unfm_ptr == 0) { 806 /* use allocated block to plug the hole */ 807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 808 if (fs_changed(fs_gen, inode->i_sb) 809 && item_moved(&tmp_ih, &path)) { 810 reiserfs_restore_prepared_buffer(inode->i_sb, 811 bh); 812 goto research; 813 } 814 set_buffer_new(bh_result); 815 if (buffer_dirty(bh_result) 816 && reiserfs_data_ordered(inode->i_sb)) 817 reiserfs_add_ordered_list(inode, bh_result); 818 put_block_num(item, pos_in_item, allocated_block_nr); 819 unfm_ptr = allocated_block_nr; 820 journal_mark_dirty(th, bh); 821 reiserfs_update_sd(th, inode); 822 } 823 set_block_dev_mapped(bh_result, unfm_ptr, inode); 824 pathrelse(&path); 825 retval = 0; 826 if (!dangle && th) 827 retval = reiserfs_end_persistent_transaction(th); 828 829 reiserfs_write_unlock(inode->i_sb); 830 831 /* 832 * the item was found, so new blocks were not added to the file 833 * there is no need to make sure the inode is updated with this 834 * transaction 835 */ 836 return retval; 837 } 838 839 if (!th) { 840 pathrelse(&path); 841 goto start_trans; 842 } 843 844 /* 845 * desired position is not found or is in the direct item. We have 846 * to append file with holes up to 'block'-th block converting 847 * direct items to indirect one if necessary 848 */ 849 done = 0; 850 do { 851 if (is_statdata_le_ih(ih)) { 852 __le32 unp = 0; 853 struct cpu_key tmp_key; 854 855 /* indirect item has to be inserted */ 856 make_le_item_head(&tmp_ih, &key, version, 1, 857 TYPE_INDIRECT, UNFM_P_SIZE, 858 0 /* free_space */ ); 859 860 /* 861 * we are going to add 'block'-th block to the file. 862 * Use allocated block for that 863 */ 864 if (cpu_key_k_offset(&key) == 1) { 865 unp = cpu_to_le32(allocated_block_nr); 866 set_block_dev_mapped(bh_result, 867 allocated_block_nr, inode); 868 set_buffer_new(bh_result); 869 done = 1; 870 } 871 tmp_key = key; /* ;) */ 872 set_cpu_key_k_offset(&tmp_key, 1); 873 PATH_LAST_POSITION(&path)++; 874 875 retval = 876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 877 inode, (char *)&unp); 878 if (retval) { 879 reiserfs_free_block(th, inode, 880 allocated_block_nr, 1); 881 /* 882 * retval == -ENOSPC, -EDQUOT or -EIO 883 * or -EEXIST 884 */ 885 goto failure; 886 } 887 } else if (is_direct_le_ih(ih)) { 888 /* direct item has to be converted */ 889 loff_t tail_offset; 890 891 tail_offset = 892 ((le_ih_k_offset(ih) - 893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 894 895 /* 896 * direct item we just found fits into block we have 897 * to map. Convert it into unformatted node: use 898 * bh_result for the conversion 899 */ 900 if (tail_offset == cpu_key_k_offset(&key)) { 901 set_block_dev_mapped(bh_result, 902 allocated_block_nr, inode); 903 unbh = bh_result; 904 done = 1; 905 } else { 906 /* 907 * we have to pad file tail stored in direct 908 * item(s) up to block size and convert it 909 * to unformatted node. FIXME: this should 910 * also get into page cache 911 */ 912 913 pathrelse(&path); 914 /* 915 * ugly, but we can only end the transaction if 916 * we aren't nested 917 */ 918 BUG_ON(!th->t_refcount); 919 if (th->t_refcount == 1) { 920 retval = 921 reiserfs_end_persistent_transaction 922 (th); 923 th = NULL; 924 if (retval) 925 goto failure; 926 } 927 928 retval = 929 convert_tail_for_hole(inode, bh_result, 930 tail_offset); 931 if (retval) { 932 if (retval != -ENOSPC) 933 reiserfs_error(inode->i_sb, 934 "clm-6004", 935 "convert tail failed " 936 "inode %lu, error %d", 937 inode->i_ino, 938 retval); 939 if (allocated_block_nr) { 940 /* 941 * the bitmap, the super, 942 * and the stat data == 3 943 */ 944 if (!th) 945 th = reiserfs_persistent_transaction(inode->i_sb, 3); 946 if (th) 947 reiserfs_free_block(th, 948 inode, 949 allocated_block_nr, 950 1); 951 } 952 goto failure; 953 } 954 goto research; 955 } 956 retval = 957 direct2indirect(th, inode, &path, unbh, 958 tail_offset); 959 if (retval) { 960 reiserfs_unmap_buffer(unbh); 961 reiserfs_free_block(th, inode, 962 allocated_block_nr, 1); 963 goto failure; 964 } 965 /* 966 * it is important the set_buffer_uptodate is done 967 * after the direct2indirect. The buffer might 968 * contain valid data newer than the data on disk 969 * (read by readpage, changed, and then sent here by 970 * writepage). direct2indirect needs to know if unbh 971 * was already up to date, so it can decide if the 972 * data in unbh needs to be replaced with data from 973 * the disk 974 */ 975 set_buffer_uptodate(unbh); 976 977 /* 978 * unbh->b_page == NULL in case of DIRECT_IO request, 979 * this means buffer will disappear shortly, so it 980 * should not be added to 981 */ 982 if (unbh->b_page) { 983 /* 984 * we've converted the tail, so we must 985 * flush unbh before the transaction commits 986 */ 987 reiserfs_add_tail_list(inode, unbh); 988 989 /* 990 * mark it dirty now to prevent commit_write 991 * from adding this buffer to the inode's 992 * dirty buffer list 993 */ 994 /* 995 * AKPM: changed __mark_buffer_dirty to 996 * mark_buffer_dirty(). It's still atomic, 997 * but it sets the page dirty too, which makes 998 * it eligible for writeback at any time by the 999 * VM (which was also the case with 1000 * __mark_buffer_dirty()) 1001 */ 1002 mark_buffer_dirty(unbh); 1003 } 1004 } else { 1005 /* 1006 * append indirect item with holes if needed, when 1007 * appending pointer to 'block'-th block use block, 1008 * which is already allocated 1009 */ 1010 struct cpu_key tmp_key; 1011 /* 1012 * We use this in case we need to allocate 1013 * only one block which is a fastpath 1014 */ 1015 unp_t unf_single = 0; 1016 unp_t *un; 1017 __u64 max_to_insert = 1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1019 UNFM_P_SIZE; 1020 __u64 blocks_needed; 1021 1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1023 "vs-804: invalid position for append"); 1024 /* 1025 * indirect item has to be appended, 1026 * set up key of that position 1027 * (key type is unimportant) 1028 */ 1029 make_cpu_key(&tmp_key, inode, 1030 le_key_k_offset(version, 1031 &ih->ih_key) + 1032 op_bytes_number(ih, 1033 inode->i_sb->s_blocksize), 1034 TYPE_INDIRECT, 3); 1035 1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1037 "green-805: invalid offset"); 1038 blocks_needed = 1039 1 + 1040 ((cpu_key_k_offset(&key) - 1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1042 s_blocksize_bits); 1043 1044 if (blocks_needed == 1) { 1045 un = &unf_single; 1046 } else { 1047 un = kcalloc(min(blocks_needed, max_to_insert), 1048 UNFM_P_SIZE, GFP_NOFS); 1049 if (!un) { 1050 un = &unf_single; 1051 blocks_needed = 1; 1052 max_to_insert = 0; 1053 } 1054 } 1055 if (blocks_needed <= max_to_insert) { 1056 /* 1057 * we are going to add target block to 1058 * the file. Use allocated block for that 1059 */ 1060 un[blocks_needed - 1] = 1061 cpu_to_le32(allocated_block_nr); 1062 set_block_dev_mapped(bh_result, 1063 allocated_block_nr, inode); 1064 set_buffer_new(bh_result); 1065 done = 1; 1066 } else { 1067 /* paste hole to the indirect item */ 1068 /* 1069 * If kcalloc failed, max_to_insert becomes 1070 * zero and it means we only have space for 1071 * one block 1072 */ 1073 blocks_needed = 1074 max_to_insert ? max_to_insert : 1; 1075 } 1076 retval = 1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1078 (char *)un, 1079 UNFM_P_SIZE * 1080 blocks_needed); 1081 1082 if (blocks_needed != 1) 1083 kfree(un); 1084 1085 if (retval) { 1086 reiserfs_free_block(th, inode, 1087 allocated_block_nr, 1); 1088 goto failure; 1089 } 1090 if (!done) { 1091 /* 1092 * We need to mark new file size in case 1093 * this function will be interrupted/aborted 1094 * later on. And we may do this only for 1095 * holes. 1096 */ 1097 inode->i_size += 1098 inode->i_sb->s_blocksize * blocks_needed; 1099 } 1100 } 1101 1102 if (done == 1) 1103 break; 1104 1105 /* 1106 * this loop could log more blocks than we had originally 1107 * asked for. So, we have to allow the transaction to end 1108 * if it is too big or too full. Update the inode so things 1109 * are consistent if we crash before the function returns 1110 * release the path so that anybody waiting on the path before 1111 * ending their transaction will be able to continue. 1112 */ 1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1114 retval = restart_transaction(th, inode, &path); 1115 if (retval) 1116 goto failure; 1117 } 1118 /* 1119 * inserting indirect pointers for a hole can take a 1120 * long time. reschedule if needed and also release the write 1121 * lock for others. 1122 */ 1123 reiserfs_cond_resched(inode->i_sb); 1124 1125 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1126 if (retval == IO_ERROR) { 1127 retval = -EIO; 1128 goto failure; 1129 } 1130 if (retval == POSITION_FOUND) { 1131 reiserfs_warning(inode->i_sb, "vs-825", 1132 "%K should not be found", &key); 1133 retval = -EEXIST; 1134 if (allocated_block_nr) 1135 reiserfs_free_block(th, inode, 1136 allocated_block_nr, 1); 1137 pathrelse(&path); 1138 goto failure; 1139 } 1140 bh = get_last_bh(&path); 1141 ih = tp_item_head(&path); 1142 item = tp_item_body(&path); 1143 pos_in_item = path.pos_in_item; 1144 } while (1); 1145 1146 retval = 0; 1147 1148 failure: 1149 if (th && (!dangle || (retval && !th->t_trans_id))) { 1150 int err; 1151 if (th->t_trans_id) 1152 reiserfs_update_sd(th, inode); 1153 err = reiserfs_end_persistent_transaction(th); 1154 if (err) 1155 retval = err; 1156 } 1157 1158 reiserfs_write_unlock(inode->i_sb); 1159 reiserfs_check_path(&path); 1160 return retval; 1161 } 1162 1163 static void reiserfs_readahead(struct readahead_control *rac) 1164 { 1165 mpage_readahead(rac, reiserfs_get_block); 1166 } 1167 1168 /* 1169 * Compute real number of used bytes by file 1170 * Following three functions can go away when we'll have enough space in 1171 * stat item 1172 */ 1173 static int real_space_diff(struct inode *inode, int sd_size) 1174 { 1175 int bytes; 1176 loff_t blocksize = inode->i_sb->s_blocksize; 1177 1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1179 return sd_size; 1180 1181 /* 1182 * End of file is also in full block with indirect reference, so round 1183 * up to the next block. 1184 * 1185 * there is just no way to know if the tail is actually packed 1186 * on the file, so we have to assume it isn't. When we pack the 1187 * tail, we add 4 bytes to pretend there really is an unformatted 1188 * node pointer 1189 */ 1190 bytes = 1191 ((inode->i_size + 1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1193 sd_size; 1194 return bytes; 1195 } 1196 1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1198 int sd_size) 1199 { 1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1201 return inode->i_size + 1202 (loff_t) (real_space_diff(inode, sd_size)); 1203 } 1204 return ((loff_t) real_space_diff(inode, sd_size)) + 1205 (((loff_t) blocks) << 9); 1206 } 1207 1208 /* Compute number of blocks used by file in ReiserFS counting */ 1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1210 { 1211 loff_t bytes = inode_get_bytes(inode); 1212 loff_t real_space = real_space_diff(inode, sd_size); 1213 1214 /* keeps fsck and non-quota versions of reiserfs happy */ 1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1216 bytes += (loff_t) 511; 1217 } 1218 1219 /* 1220 * files from before the quota patch might i_blocks such that 1221 * bytes < real_space. Deal with that here to prevent it from 1222 * going negative. 1223 */ 1224 if (bytes < real_space) 1225 return 0; 1226 return (bytes - real_space) >> 9; 1227 } 1228 1229 /* 1230 * BAD: new directories have stat data of new type and all other items 1231 * of old type. Version stored in the inode says about body items, so 1232 * in update_stat_data we can not rely on inode, but have to check 1233 * item version directly 1234 */ 1235 1236 /* called by read_locked_inode */ 1237 static void init_inode(struct inode *inode, struct treepath *path) 1238 { 1239 struct buffer_head *bh; 1240 struct item_head *ih; 1241 __u32 rdev; 1242 1243 bh = PATH_PLAST_BUFFER(path); 1244 ih = tp_item_head(path); 1245 1246 copy_key(INODE_PKEY(inode), &ih->ih_key); 1247 1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1249 REISERFS_I(inode)->i_flags = 0; 1250 REISERFS_I(inode)->i_prealloc_block = 0; 1251 REISERFS_I(inode)->i_prealloc_count = 0; 1252 REISERFS_I(inode)->i_trans_id = 0; 1253 REISERFS_I(inode)->i_jl = NULL; 1254 reiserfs_init_xattr_rwsem(inode); 1255 1256 if (stat_data_v1(ih)) { 1257 struct stat_data_v1 *sd = 1258 (struct stat_data_v1 *)ih_item_body(bh, ih); 1259 unsigned long blocks; 1260 1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1262 set_inode_sd_version(inode, STAT_DATA_V1); 1263 inode->i_mode = sd_v1_mode(sd); 1264 set_nlink(inode, sd_v1_nlink(sd)); 1265 i_uid_write(inode, sd_v1_uid(sd)); 1266 i_gid_write(inode, sd_v1_gid(sd)); 1267 inode->i_size = sd_v1_size(sd); 1268 inode->i_atime.tv_sec = sd_v1_atime(sd); 1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1271 inode->i_atime.tv_nsec = 0; 1272 inode->i_ctime.tv_nsec = 0; 1273 inode->i_mtime.tv_nsec = 0; 1274 1275 inode->i_blocks = sd_v1_blocks(sd); 1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1277 blocks = (inode->i_size + 511) >> 9; 1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1279 1280 /* 1281 * there was a bug in <=3.5.23 when i_blocks could take 1282 * negative values. Starting from 3.5.17 this value could 1283 * even be stored in stat data. For such files we set 1284 * i_blocks based on file size. Just 2 notes: this can be 1285 * wrong for sparse files. On-disk value will be only 1286 * updated if file's inode will ever change 1287 */ 1288 if (inode->i_blocks > blocks) { 1289 inode->i_blocks = blocks; 1290 } 1291 1292 rdev = sd_v1_rdev(sd); 1293 REISERFS_I(inode)->i_first_direct_byte = 1294 sd_v1_first_direct_byte(sd); 1295 1296 /* 1297 * an early bug in the quota code can give us an odd 1298 * number for the block count. This is incorrect, fix it here. 1299 */ 1300 if (inode->i_blocks & 1) { 1301 inode->i_blocks++; 1302 } 1303 inode_set_bytes(inode, 1304 to_real_used_space(inode, inode->i_blocks, 1305 SD_V1_SIZE)); 1306 /* 1307 * nopack is initially zero for v1 objects. For v2 objects, 1308 * nopack is initialised from sd_attrs 1309 */ 1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1311 } else { 1312 /* 1313 * new stat data found, but object may have old items 1314 * (directories and symlinks) 1315 */ 1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1317 1318 inode->i_mode = sd_v2_mode(sd); 1319 set_nlink(inode, sd_v2_nlink(sd)); 1320 i_uid_write(inode, sd_v2_uid(sd)); 1321 inode->i_size = sd_v2_size(sd); 1322 i_gid_write(inode, sd_v2_gid(sd)); 1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1324 inode->i_atime.tv_sec = sd_v2_atime(sd); 1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1326 inode->i_ctime.tv_nsec = 0; 1327 inode->i_mtime.tv_nsec = 0; 1328 inode->i_atime.tv_nsec = 0; 1329 inode->i_blocks = sd_v2_blocks(sd); 1330 rdev = sd_v2_rdev(sd); 1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1332 inode->i_generation = 1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1334 else 1335 inode->i_generation = sd_v2_generation(sd); 1336 1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1339 else 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1341 REISERFS_I(inode)->i_first_direct_byte = 0; 1342 set_inode_sd_version(inode, STAT_DATA_V2); 1343 inode_set_bytes(inode, 1344 to_real_used_space(inode, inode->i_blocks, 1345 SD_V2_SIZE)); 1346 /* 1347 * read persistent inode attributes from sd and initialise 1348 * generic inode flags from them 1349 */ 1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1352 } 1353 1354 pathrelse(path); 1355 if (S_ISREG(inode->i_mode)) { 1356 inode->i_op = &reiserfs_file_inode_operations; 1357 inode->i_fop = &reiserfs_file_operations; 1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1359 } else if (S_ISDIR(inode->i_mode)) { 1360 inode->i_op = &reiserfs_dir_inode_operations; 1361 inode->i_fop = &reiserfs_dir_operations; 1362 } else if (S_ISLNK(inode->i_mode)) { 1363 inode->i_op = &reiserfs_symlink_inode_operations; 1364 inode_nohighmem(inode); 1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1366 } else { 1367 inode->i_blocks = 0; 1368 inode->i_op = &reiserfs_special_inode_operations; 1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1370 } 1371 } 1372 1373 /* update new stat data with inode fields */ 1374 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1375 { 1376 struct stat_data *sd_v2 = (struct stat_data *)sd; 1377 1378 set_sd_v2_mode(sd_v2, inode->i_mode); 1379 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1380 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1381 set_sd_v2_size(sd_v2, size); 1382 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1383 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1384 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1385 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1386 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1387 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1388 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1389 else 1390 set_sd_v2_generation(sd_v2, inode->i_generation); 1391 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1392 } 1393 1394 /* used to copy inode's fields to old stat data */ 1395 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1396 { 1397 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1398 1399 set_sd_v1_mode(sd_v1, inode->i_mode); 1400 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1401 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1402 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1403 set_sd_v1_size(sd_v1, size); 1404 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1405 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1406 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1407 1408 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1409 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1410 else 1411 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1412 1413 /* Sigh. i_first_direct_byte is back */ 1414 set_sd_v1_first_direct_byte(sd_v1, 1415 REISERFS_I(inode)->i_first_direct_byte); 1416 } 1417 1418 /* 1419 * NOTE, you must prepare the buffer head before sending it here, 1420 * and then log it after the call 1421 */ 1422 static void update_stat_data(struct treepath *path, struct inode *inode, 1423 loff_t size) 1424 { 1425 struct buffer_head *bh; 1426 struct item_head *ih; 1427 1428 bh = PATH_PLAST_BUFFER(path); 1429 ih = tp_item_head(path); 1430 1431 if (!is_statdata_le_ih(ih)) 1432 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1433 INODE_PKEY(inode), ih); 1434 1435 /* path points to old stat data */ 1436 if (stat_data_v1(ih)) { 1437 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1438 } else { 1439 inode2sd(ih_item_body(bh, ih), inode, size); 1440 } 1441 1442 return; 1443 } 1444 1445 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1446 struct inode *inode, loff_t size) 1447 { 1448 struct cpu_key key; 1449 INITIALIZE_PATH(path); 1450 struct buffer_head *bh; 1451 int fs_gen; 1452 struct item_head *ih, tmp_ih; 1453 int retval; 1454 1455 BUG_ON(!th->t_trans_id); 1456 1457 /* key type is unimportant */ 1458 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1459 1460 for (;;) { 1461 int pos; 1462 /* look for the object's stat data */ 1463 retval = search_item(inode->i_sb, &key, &path); 1464 if (retval == IO_ERROR) { 1465 reiserfs_error(inode->i_sb, "vs-13050", 1466 "i/o failure occurred trying to " 1467 "update %K stat data", &key); 1468 return; 1469 } 1470 if (retval == ITEM_NOT_FOUND) { 1471 pos = PATH_LAST_POSITION(&path); 1472 pathrelse(&path); 1473 if (inode->i_nlink == 0) { 1474 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1475 return; 1476 } 1477 reiserfs_warning(inode->i_sb, "vs-13060", 1478 "stat data of object %k (nlink == %d) " 1479 "not found (pos %d)", 1480 INODE_PKEY(inode), inode->i_nlink, 1481 pos); 1482 reiserfs_check_path(&path); 1483 return; 1484 } 1485 1486 /* 1487 * sigh, prepare_for_journal might schedule. When it 1488 * schedules the FS might change. We have to detect that, 1489 * and loop back to the search if the stat data item has moved 1490 */ 1491 bh = get_last_bh(&path); 1492 ih = tp_item_head(&path); 1493 copy_item_head(&tmp_ih, ih); 1494 fs_gen = get_generation(inode->i_sb); 1495 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1496 1497 /* Stat_data item has been moved after scheduling. */ 1498 if (fs_changed(fs_gen, inode->i_sb) 1499 && item_moved(&tmp_ih, &path)) { 1500 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1501 continue; 1502 } 1503 break; 1504 } 1505 update_stat_data(&path, inode, size); 1506 journal_mark_dirty(th, bh); 1507 pathrelse(&path); 1508 return; 1509 } 1510 1511 /* 1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1513 * does a make_bad_inode when things go wrong. But, we need to make sure 1514 * and clear the key in the private portion of the inode, otherwise a 1515 * corresponding iput might try to delete whatever object the inode last 1516 * represented. 1517 */ 1518 static void reiserfs_make_bad_inode(struct inode *inode) 1519 { 1520 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1521 make_bad_inode(inode); 1522 } 1523 1524 /* 1525 * initially this function was derived from minix or ext2's analog and 1526 * evolved as the prototype did 1527 */ 1528 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1529 { 1530 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1531 inode->i_ino = args->objectid; 1532 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1533 return 0; 1534 } 1535 1536 /* 1537 * looks for stat data in the tree, and fills up the fields of in-core 1538 * inode stat data fields 1539 */ 1540 void reiserfs_read_locked_inode(struct inode *inode, 1541 struct reiserfs_iget_args *args) 1542 { 1543 INITIALIZE_PATH(path_to_sd); 1544 struct cpu_key key; 1545 unsigned long dirino; 1546 int retval; 1547 1548 dirino = args->dirid; 1549 1550 /* 1551 * set version 1, version 2 could be used too, because stat data 1552 * key is the same in both versions 1553 */ 1554 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3); 1555 1556 /* look for the object's stat data */ 1557 retval = search_item(inode->i_sb, &key, &path_to_sd); 1558 if (retval == IO_ERROR) { 1559 reiserfs_error(inode->i_sb, "vs-13070", 1560 "i/o failure occurred trying to find " 1561 "stat data of %K", &key); 1562 reiserfs_make_bad_inode(inode); 1563 return; 1564 } 1565 1566 /* a stale NFS handle can trigger this without it being an error */ 1567 if (retval != ITEM_FOUND) { 1568 pathrelse(&path_to_sd); 1569 reiserfs_make_bad_inode(inode); 1570 clear_nlink(inode); 1571 return; 1572 } 1573 1574 init_inode(inode, &path_to_sd); 1575 1576 /* 1577 * It is possible that knfsd is trying to access inode of a file 1578 * that is being removed from the disk by some other thread. As we 1579 * update sd on unlink all that is required is to check for nlink 1580 * here. This bug was first found by Sizif when debugging 1581 * SquidNG/Butterfly, forgotten, and found again after Philippe 1582 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1583 1584 * More logical fix would require changes in fs/inode.c:iput() to 1585 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1586 * in iget() to return NULL if I_FREEING inode is found in 1587 * hash-table. 1588 */ 1589 1590 /* 1591 * Currently there is one place where it's ok to meet inode with 1592 * nlink==0: processing of open-unlinked and half-truncated files 1593 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1594 */ 1595 if ((inode->i_nlink == 0) && 1596 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1597 reiserfs_warning(inode->i_sb, "vs-13075", 1598 "dead inode read from disk %K. " 1599 "This is likely to be race with knfsd. Ignore", 1600 &key); 1601 reiserfs_make_bad_inode(inode); 1602 } 1603 1604 /* init inode should be relsing */ 1605 reiserfs_check_path(&path_to_sd); 1606 1607 /* 1608 * Stat data v1 doesn't support ACLs. 1609 */ 1610 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1611 cache_no_acl(inode); 1612 } 1613 1614 /* 1615 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1616 * 1617 * @inode: inode from hash table to check 1618 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1619 * 1620 * This function is called by iget5_locked() to distinguish reiserfs inodes 1621 * having the same inode numbers. Such inodes can only exist due to some 1622 * error condition. One of them should be bad. Inodes with identical 1623 * inode numbers (objectids) are distinguished by parent directory ids. 1624 * 1625 */ 1626 int reiserfs_find_actor(struct inode *inode, void *opaque) 1627 { 1628 struct reiserfs_iget_args *args; 1629 1630 args = opaque; 1631 /* args is already in CPU order */ 1632 return (inode->i_ino == args->objectid) && 1633 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1634 } 1635 1636 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1637 { 1638 struct inode *inode; 1639 struct reiserfs_iget_args args; 1640 int depth; 1641 1642 args.objectid = key->on_disk_key.k_objectid; 1643 args.dirid = key->on_disk_key.k_dir_id; 1644 depth = reiserfs_write_unlock_nested(s); 1645 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1646 reiserfs_find_actor, reiserfs_init_locked_inode, 1647 (void *)(&args)); 1648 reiserfs_write_lock_nested(s, depth); 1649 if (!inode) 1650 return ERR_PTR(-ENOMEM); 1651 1652 if (inode->i_state & I_NEW) { 1653 reiserfs_read_locked_inode(inode, &args); 1654 unlock_new_inode(inode); 1655 } 1656 1657 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1658 /* either due to i/o error or a stale NFS handle */ 1659 iput(inode); 1660 inode = NULL; 1661 } 1662 return inode; 1663 } 1664 1665 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1666 u32 objectid, u32 dir_id, u32 generation) 1667 1668 { 1669 struct cpu_key key; 1670 struct inode *inode; 1671 1672 key.on_disk_key.k_objectid = objectid; 1673 key.on_disk_key.k_dir_id = dir_id; 1674 reiserfs_write_lock(sb); 1675 inode = reiserfs_iget(sb, &key); 1676 if (inode && !IS_ERR(inode) && generation != 0 && 1677 generation != inode->i_generation) { 1678 iput(inode); 1679 inode = NULL; 1680 } 1681 reiserfs_write_unlock(sb); 1682 1683 return d_obtain_alias(inode); 1684 } 1685 1686 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1687 int fh_len, int fh_type) 1688 { 1689 /* 1690 * fhtype happens to reflect the number of u32s encoded. 1691 * due to a bug in earlier code, fhtype might indicate there 1692 * are more u32s then actually fitted. 1693 * so if fhtype seems to be more than len, reduce fhtype. 1694 * Valid types are: 1695 * 2 - objectid + dir_id - legacy support 1696 * 3 - objectid + dir_id + generation 1697 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1698 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1699 * 6 - as above plus generation of directory 1700 * 6 does not fit in NFSv2 handles 1701 */ 1702 if (fh_type > fh_len) { 1703 if (fh_type != 6 || fh_len != 5) 1704 reiserfs_warning(sb, "reiserfs-13077", 1705 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1706 fh_type, fh_len); 1707 fh_type = fh_len; 1708 } 1709 if (fh_len < 2) 1710 return NULL; 1711 1712 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1713 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1714 } 1715 1716 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1717 int fh_len, int fh_type) 1718 { 1719 if (fh_type > fh_len) 1720 fh_type = fh_len; 1721 if (fh_type < 4) 1722 return NULL; 1723 1724 return reiserfs_get_dentry(sb, 1725 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1726 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1727 (fh_type == 6) ? fid->raw[5] : 0); 1728 } 1729 1730 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1731 struct inode *parent) 1732 { 1733 int maxlen = *lenp; 1734 1735 if (parent && (maxlen < 5)) { 1736 *lenp = 5; 1737 return FILEID_INVALID; 1738 } else if (maxlen < 3) { 1739 *lenp = 3; 1740 return FILEID_INVALID; 1741 } 1742 1743 data[0] = inode->i_ino; 1744 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1745 data[2] = inode->i_generation; 1746 *lenp = 3; 1747 if (parent) { 1748 data[3] = parent->i_ino; 1749 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1750 *lenp = 5; 1751 if (maxlen >= 6) { 1752 data[5] = parent->i_generation; 1753 *lenp = 6; 1754 } 1755 } 1756 return *lenp; 1757 } 1758 1759 /* 1760 * looks for stat data, then copies fields to it, marks the buffer 1761 * containing stat data as dirty 1762 */ 1763 /* 1764 * reiserfs inodes are never really dirty, since the dirty inode call 1765 * always logs them. This call allows the VFS inode marking routines 1766 * to properly mark inodes for datasync and such, but only actually 1767 * does something when called for a synchronous update. 1768 */ 1769 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1770 { 1771 struct reiserfs_transaction_handle th; 1772 int jbegin_count = 1; 1773 1774 if (sb_rdonly(inode->i_sb)) 1775 return -EROFS; 1776 /* 1777 * memory pressure can sometimes initiate write_inode calls with 1778 * sync == 1, 1779 * these cases are just when the system needs ram, not when the 1780 * inode needs to reach disk for safety, and they can safely be 1781 * ignored because the altered inode has already been logged. 1782 */ 1783 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1784 reiserfs_write_lock(inode->i_sb); 1785 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1786 reiserfs_update_sd(&th, inode); 1787 journal_end_sync(&th); 1788 } 1789 reiserfs_write_unlock(inode->i_sb); 1790 } 1791 return 0; 1792 } 1793 1794 /* 1795 * stat data of new object is inserted already, this inserts the item 1796 * containing "." and ".." entries 1797 */ 1798 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1799 struct inode *inode, 1800 struct item_head *ih, struct treepath *path, 1801 struct inode *dir) 1802 { 1803 struct super_block *sb = th->t_super; 1804 char empty_dir[EMPTY_DIR_SIZE]; 1805 char *body = empty_dir; 1806 struct cpu_key key; 1807 int retval; 1808 1809 BUG_ON(!th->t_trans_id); 1810 1811 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1812 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1813 TYPE_DIRENTRY, 3 /*key length */ ); 1814 1815 /* 1816 * compose item head for new item. Directories consist of items of 1817 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1818 * is done by reiserfs_new_inode 1819 */ 1820 if (old_format_only(sb)) { 1821 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1822 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1823 1824 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1825 ih->ih_key.k_objectid, 1826 INODE_PKEY(dir)->k_dir_id, 1827 INODE_PKEY(dir)->k_objectid); 1828 } else { 1829 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1830 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1831 1832 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1833 ih->ih_key.k_objectid, 1834 INODE_PKEY(dir)->k_dir_id, 1835 INODE_PKEY(dir)->k_objectid); 1836 } 1837 1838 /* look for place in the tree for new item */ 1839 retval = search_item(sb, &key, path); 1840 if (retval == IO_ERROR) { 1841 reiserfs_error(sb, "vs-13080", 1842 "i/o failure occurred creating new directory"); 1843 return -EIO; 1844 } 1845 if (retval == ITEM_FOUND) { 1846 pathrelse(path); 1847 reiserfs_warning(sb, "vs-13070", 1848 "object with this key exists (%k)", 1849 &(ih->ih_key)); 1850 return -EEXIST; 1851 } 1852 1853 /* insert item, that is empty directory item */ 1854 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1855 } 1856 1857 /* 1858 * stat data of object has been inserted, this inserts the item 1859 * containing the body of symlink 1860 */ 1861 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1862 struct inode *inode, 1863 struct item_head *ih, 1864 struct treepath *path, const char *symname, 1865 int item_len) 1866 { 1867 struct super_block *sb = th->t_super; 1868 struct cpu_key key; 1869 int retval; 1870 1871 BUG_ON(!th->t_trans_id); 1872 1873 _make_cpu_key(&key, KEY_FORMAT_3_5, 1874 le32_to_cpu(ih->ih_key.k_dir_id), 1875 le32_to_cpu(ih->ih_key.k_objectid), 1876 1, TYPE_DIRECT, 3 /*key length */ ); 1877 1878 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1879 0 /*free_space */ ); 1880 1881 /* look for place in the tree for new item */ 1882 retval = search_item(sb, &key, path); 1883 if (retval == IO_ERROR) { 1884 reiserfs_error(sb, "vs-13080", 1885 "i/o failure occurred creating new symlink"); 1886 return -EIO; 1887 } 1888 if (retval == ITEM_FOUND) { 1889 pathrelse(path); 1890 reiserfs_warning(sb, "vs-13080", 1891 "object with this key exists (%k)", 1892 &(ih->ih_key)); 1893 return -EEXIST; 1894 } 1895 1896 /* insert item, that is body of symlink */ 1897 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1898 } 1899 1900 /* 1901 * inserts the stat data into the tree, and then calls 1902 * reiserfs_new_directory (to insert ".", ".." item if new object is 1903 * directory) or reiserfs_new_symlink (to insert symlink body if new 1904 * object is symlink) or nothing (if new object is regular file) 1905 1906 * NOTE! uid and gid must already be set in the inode. If we return 1907 * non-zero due to an error, we have to drop the quota previously allocated 1908 * for the fresh inode. This can only be done outside a transaction, so 1909 * if we return non-zero, we also end the transaction. 1910 * 1911 * @th: active transaction handle 1912 * @dir: parent directory for new inode 1913 * @mode: mode of new inode 1914 * @symname: symlink contents if inode is symlink 1915 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1916 * symlinks 1917 * @inode: inode to be filled 1918 * @security: optional security context to associate with this inode 1919 */ 1920 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1921 struct inode *dir, umode_t mode, const char *symname, 1922 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1923 strlen (symname) for symlinks) */ 1924 loff_t i_size, struct dentry *dentry, 1925 struct inode *inode, 1926 struct reiserfs_security_handle *security) 1927 { 1928 struct super_block *sb = dir->i_sb; 1929 struct reiserfs_iget_args args; 1930 INITIALIZE_PATH(path_to_key); 1931 struct cpu_key key; 1932 struct item_head ih; 1933 struct stat_data sd; 1934 int retval; 1935 int err; 1936 int depth; 1937 1938 BUG_ON(!th->t_trans_id); 1939 1940 depth = reiserfs_write_unlock_nested(sb); 1941 err = dquot_alloc_inode(inode); 1942 reiserfs_write_lock_nested(sb, depth); 1943 if (err) 1944 goto out_end_trans; 1945 if (!dir->i_nlink) { 1946 err = -EPERM; 1947 goto out_bad_inode; 1948 } 1949 1950 /* item head of new item */ 1951 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1952 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1953 if (!ih.ih_key.k_objectid) { 1954 err = -ENOMEM; 1955 goto out_bad_inode; 1956 } 1957 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1958 if (old_format_only(sb)) 1959 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1960 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1961 else 1962 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1963 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1964 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1965 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1966 1967 depth = reiserfs_write_unlock_nested(inode->i_sb); 1968 err = insert_inode_locked4(inode, args.objectid, 1969 reiserfs_find_actor, &args); 1970 reiserfs_write_lock_nested(inode->i_sb, depth); 1971 if (err) { 1972 err = -EINVAL; 1973 goto out_bad_inode; 1974 } 1975 1976 if (old_format_only(sb)) 1977 /* 1978 * not a perfect generation count, as object ids can be reused, 1979 * but this is as good as reiserfs can do right now. 1980 * note that the private part of inode isn't filled in yet, 1981 * we have to use the directory. 1982 */ 1983 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1984 else 1985 #if defined( USE_INODE_GENERATION_COUNTER ) 1986 inode->i_generation = 1987 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1988 #else 1989 inode->i_generation = ++event; 1990 #endif 1991 1992 /* fill stat data */ 1993 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1994 1995 /* uid and gid must already be set by the caller for quota init */ 1996 1997 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1998 inode->i_size = i_size; 1999 inode->i_blocks = 0; 2000 inode->i_bytes = 0; 2001 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2002 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2003 2004 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2005 REISERFS_I(inode)->i_flags = 0; 2006 REISERFS_I(inode)->i_prealloc_block = 0; 2007 REISERFS_I(inode)->i_prealloc_count = 0; 2008 REISERFS_I(inode)->i_trans_id = 0; 2009 REISERFS_I(inode)->i_jl = NULL; 2010 REISERFS_I(inode)->i_attrs = 2011 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2012 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2013 reiserfs_init_xattr_rwsem(inode); 2014 2015 /* key to search for correct place for new stat data */ 2016 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2017 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2018 TYPE_STAT_DATA, 3 /*key length */ ); 2019 2020 /* find proper place for inserting of stat data */ 2021 retval = search_item(sb, &key, &path_to_key); 2022 if (retval == IO_ERROR) { 2023 err = -EIO; 2024 goto out_bad_inode; 2025 } 2026 if (retval == ITEM_FOUND) { 2027 pathrelse(&path_to_key); 2028 err = -EEXIST; 2029 goto out_bad_inode; 2030 } 2031 if (old_format_only(sb)) { 2032 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2033 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2034 pathrelse(&path_to_key); 2035 err = -EINVAL; 2036 goto out_bad_inode; 2037 } 2038 inode2sd_v1(&sd, inode, inode->i_size); 2039 } else { 2040 inode2sd(&sd, inode, inode->i_size); 2041 } 2042 /* 2043 * store in in-core inode the key of stat data and version all 2044 * object items will have (directory items will have old offset 2045 * format, other new objects will consist of new items) 2046 */ 2047 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2048 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2049 else 2050 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2051 if (old_format_only(sb)) 2052 set_inode_sd_version(inode, STAT_DATA_V1); 2053 else 2054 set_inode_sd_version(inode, STAT_DATA_V2); 2055 2056 /* insert the stat data into the tree */ 2057 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2058 if (REISERFS_I(dir)->new_packing_locality) 2059 th->displace_new_blocks = 1; 2060 #endif 2061 retval = 2062 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2063 (char *)(&sd)); 2064 if (retval) { 2065 err = retval; 2066 reiserfs_check_path(&path_to_key); 2067 goto out_bad_inode; 2068 } 2069 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2070 if (!th->displace_new_blocks) 2071 REISERFS_I(dir)->new_packing_locality = 0; 2072 #endif 2073 if (S_ISDIR(mode)) { 2074 /* insert item with "." and ".." */ 2075 retval = 2076 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2077 } 2078 2079 if (S_ISLNK(mode)) { 2080 /* insert body of symlink */ 2081 if (!old_format_only(sb)) 2082 i_size = ROUND_UP(i_size); 2083 retval = 2084 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2085 i_size); 2086 } 2087 if (retval) { 2088 err = retval; 2089 reiserfs_check_path(&path_to_key); 2090 journal_end(th); 2091 goto out_inserted_sd; 2092 } 2093 2094 /* 2095 * Mark it private if we're creating the privroot 2096 * or something under it. 2097 */ 2098 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) { 2099 inode->i_flags |= S_PRIVATE; 2100 inode->i_opflags &= ~IOP_XATTR; 2101 } 2102 2103 if (reiserfs_posixacl(inode->i_sb)) { 2104 reiserfs_write_unlock(inode->i_sb); 2105 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2106 reiserfs_write_lock(inode->i_sb); 2107 if (retval) { 2108 err = retval; 2109 reiserfs_check_path(&path_to_key); 2110 journal_end(th); 2111 goto out_inserted_sd; 2112 } 2113 } else if (inode->i_sb->s_flags & SB_POSIXACL) { 2114 reiserfs_warning(inode->i_sb, "jdm-13090", 2115 "ACLs aren't enabled in the fs, " 2116 "but vfs thinks they are!"); 2117 } 2118 2119 if (security->name) { 2120 reiserfs_write_unlock(inode->i_sb); 2121 retval = reiserfs_security_write(th, inode, security); 2122 reiserfs_write_lock(inode->i_sb); 2123 if (retval) { 2124 err = retval; 2125 reiserfs_check_path(&path_to_key); 2126 retval = journal_end(th); 2127 if (retval) 2128 err = retval; 2129 goto out_inserted_sd; 2130 } 2131 } 2132 2133 reiserfs_update_sd(th, inode); 2134 reiserfs_check_path(&path_to_key); 2135 2136 return 0; 2137 2138 out_bad_inode: 2139 /* Invalidate the object, nothing was inserted yet */ 2140 INODE_PKEY(inode)->k_objectid = 0; 2141 2142 /* Quota change must be inside a transaction for journaling */ 2143 depth = reiserfs_write_unlock_nested(inode->i_sb); 2144 dquot_free_inode(inode); 2145 reiserfs_write_lock_nested(inode->i_sb, depth); 2146 2147 out_end_trans: 2148 journal_end(th); 2149 /* 2150 * Drop can be outside and it needs more credits so it's better 2151 * to have it outside 2152 */ 2153 depth = reiserfs_write_unlock_nested(inode->i_sb); 2154 dquot_drop(inode); 2155 reiserfs_write_lock_nested(inode->i_sb, depth); 2156 inode->i_flags |= S_NOQUOTA; 2157 make_bad_inode(inode); 2158 2159 out_inserted_sd: 2160 clear_nlink(inode); 2161 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2162 if (inode->i_state & I_NEW) 2163 unlock_new_inode(inode); 2164 iput(inode); 2165 return err; 2166 } 2167 2168 /* 2169 * finds the tail page in the page cache, 2170 * reads the last block in. 2171 * 2172 * On success, page_result is set to a locked, pinned page, and bh_result 2173 * is set to an up to date buffer for the last block in the file. returns 0. 2174 * 2175 * tail conversion is not done, so bh_result might not be valid for writing 2176 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2177 * trying to write the block. 2178 * 2179 * on failure, nonzero is returned, page_result and bh_result are untouched. 2180 */ 2181 static int grab_tail_page(struct inode *inode, 2182 struct page **page_result, 2183 struct buffer_head **bh_result) 2184 { 2185 2186 /* 2187 * we want the page with the last byte in the file, 2188 * not the page that will hold the next byte for appending 2189 */ 2190 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2191 unsigned long pos = 0; 2192 unsigned long start = 0; 2193 unsigned long blocksize = inode->i_sb->s_blocksize; 2194 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2195 struct buffer_head *bh; 2196 struct buffer_head *head; 2197 struct page *page; 2198 int error; 2199 2200 /* 2201 * we know that we are only called with inode->i_size > 0. 2202 * we also know that a file tail can never be as big as a block 2203 * If i_size % blocksize == 0, our file is currently block aligned 2204 * and it won't need converting or zeroing after a truncate. 2205 */ 2206 if ((offset & (blocksize - 1)) == 0) { 2207 return -ENOENT; 2208 } 2209 page = grab_cache_page(inode->i_mapping, index); 2210 error = -ENOMEM; 2211 if (!page) { 2212 goto out; 2213 } 2214 /* start within the page of the last block in the file */ 2215 start = (offset / blocksize) * blocksize; 2216 2217 error = __block_write_begin(page, start, offset - start, 2218 reiserfs_get_block_create_0); 2219 if (error) 2220 goto unlock; 2221 2222 head = page_buffers(page); 2223 bh = head; 2224 do { 2225 if (pos >= start) { 2226 break; 2227 } 2228 bh = bh->b_this_page; 2229 pos += blocksize; 2230 } while (bh != head); 2231 2232 if (!buffer_uptodate(bh)) { 2233 /* 2234 * note, this should never happen, prepare_write should be 2235 * taking care of this for us. If the buffer isn't up to 2236 * date, I've screwed up the code to find the buffer, or the 2237 * code to call prepare_write 2238 */ 2239 reiserfs_error(inode->i_sb, "clm-6000", 2240 "error reading block %lu", bh->b_blocknr); 2241 error = -EIO; 2242 goto unlock; 2243 } 2244 *bh_result = bh; 2245 *page_result = page; 2246 2247 out: 2248 return error; 2249 2250 unlock: 2251 unlock_page(page); 2252 put_page(page); 2253 return error; 2254 } 2255 2256 /* 2257 * vfs version of truncate file. Must NOT be called with 2258 * a transaction already started. 2259 * 2260 * some code taken from block_truncate_page 2261 */ 2262 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2263 { 2264 struct reiserfs_transaction_handle th; 2265 /* we want the offset for the first byte after the end of the file */ 2266 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2267 unsigned blocksize = inode->i_sb->s_blocksize; 2268 unsigned length; 2269 struct page *page = NULL; 2270 int error; 2271 struct buffer_head *bh = NULL; 2272 int err2; 2273 2274 reiserfs_write_lock(inode->i_sb); 2275 2276 if (inode->i_size > 0) { 2277 error = grab_tail_page(inode, &page, &bh); 2278 if (error) { 2279 /* 2280 * -ENOENT means we truncated past the end of the 2281 * file, and get_block_create_0 could not find a 2282 * block to read in, which is ok. 2283 */ 2284 if (error != -ENOENT) 2285 reiserfs_error(inode->i_sb, "clm-6001", 2286 "grab_tail_page failed %d", 2287 error); 2288 page = NULL; 2289 bh = NULL; 2290 } 2291 } 2292 2293 /* 2294 * so, if page != NULL, we have a buffer head for the offset at 2295 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2296 * then we have an unformatted node. Otherwise, we have a direct item, 2297 * and no zeroing is required on disk. We zero after the truncate, 2298 * because the truncate might pack the item anyway 2299 * (it will unmap bh if it packs). 2300 * 2301 * it is enough to reserve space in transaction for 2 balancings: 2302 * one for "save" link adding and another for the first 2303 * cut_from_item. 1 is for update_sd 2304 */ 2305 error = journal_begin(&th, inode->i_sb, 2306 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2307 if (error) 2308 goto out; 2309 reiserfs_update_inode_transaction(inode); 2310 if (update_timestamps) 2311 /* 2312 * we are doing real truncate: if the system crashes 2313 * before the last transaction of truncating gets committed 2314 * - on reboot the file either appears truncated properly 2315 * or not truncated at all 2316 */ 2317 add_save_link(&th, inode, 1); 2318 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2319 error = journal_end(&th); 2320 if (error) 2321 goto out; 2322 2323 /* check reiserfs_do_truncate after ending the transaction */ 2324 if (err2) { 2325 error = err2; 2326 goto out; 2327 } 2328 2329 if (update_timestamps) { 2330 error = remove_save_link(inode, 1 /* truncate */); 2331 if (error) 2332 goto out; 2333 } 2334 2335 if (page) { 2336 length = offset & (blocksize - 1); 2337 /* if we are not on a block boundary */ 2338 if (length) { 2339 length = blocksize - length; 2340 zero_user(page, offset, length); 2341 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2342 mark_buffer_dirty(bh); 2343 } 2344 } 2345 unlock_page(page); 2346 put_page(page); 2347 } 2348 2349 reiserfs_write_unlock(inode->i_sb); 2350 2351 return 0; 2352 out: 2353 if (page) { 2354 unlock_page(page); 2355 put_page(page); 2356 } 2357 2358 reiserfs_write_unlock(inode->i_sb); 2359 2360 return error; 2361 } 2362 2363 static int map_block_for_writepage(struct inode *inode, 2364 struct buffer_head *bh_result, 2365 unsigned long block) 2366 { 2367 struct reiserfs_transaction_handle th; 2368 int fs_gen; 2369 struct item_head tmp_ih; 2370 struct item_head *ih; 2371 struct buffer_head *bh; 2372 __le32 *item; 2373 struct cpu_key key; 2374 INITIALIZE_PATH(path); 2375 int pos_in_item; 2376 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2377 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2378 int retval; 2379 int use_get_block = 0; 2380 int bytes_copied = 0; 2381 int copy_size; 2382 int trans_running = 0; 2383 2384 /* 2385 * catch places below that try to log something without 2386 * starting a trans 2387 */ 2388 th.t_trans_id = 0; 2389 2390 if (!buffer_uptodate(bh_result)) { 2391 return -EIO; 2392 } 2393 2394 kmap(bh_result->b_page); 2395 start_over: 2396 reiserfs_write_lock(inode->i_sb); 2397 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2398 2399 research: 2400 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2401 if (retval != POSITION_FOUND) { 2402 use_get_block = 1; 2403 goto out; 2404 } 2405 2406 bh = get_last_bh(&path); 2407 ih = tp_item_head(&path); 2408 item = tp_item_body(&path); 2409 pos_in_item = path.pos_in_item; 2410 2411 /* we've found an unformatted node */ 2412 if (indirect_item_found(retval, ih)) { 2413 if (bytes_copied > 0) { 2414 reiserfs_warning(inode->i_sb, "clm-6002", 2415 "bytes_copied %d", bytes_copied); 2416 } 2417 if (!get_block_num(item, pos_in_item)) { 2418 /* crap, we are writing to a hole */ 2419 use_get_block = 1; 2420 goto out; 2421 } 2422 set_block_dev_mapped(bh_result, 2423 get_block_num(item, pos_in_item), inode); 2424 } else if (is_direct_le_ih(ih)) { 2425 char *p; 2426 p = page_address(bh_result->b_page); 2427 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2428 copy_size = ih_item_len(ih) - pos_in_item; 2429 2430 fs_gen = get_generation(inode->i_sb); 2431 copy_item_head(&tmp_ih, ih); 2432 2433 if (!trans_running) { 2434 /* vs-3050 is gone, no need to drop the path */ 2435 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2436 if (retval) 2437 goto out; 2438 reiserfs_update_inode_transaction(inode); 2439 trans_running = 1; 2440 if (fs_changed(fs_gen, inode->i_sb) 2441 && item_moved(&tmp_ih, &path)) { 2442 reiserfs_restore_prepared_buffer(inode->i_sb, 2443 bh); 2444 goto research; 2445 } 2446 } 2447 2448 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2449 2450 if (fs_changed(fs_gen, inode->i_sb) 2451 && item_moved(&tmp_ih, &path)) { 2452 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2453 goto research; 2454 } 2455 2456 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2457 copy_size); 2458 2459 journal_mark_dirty(&th, bh); 2460 bytes_copied += copy_size; 2461 set_block_dev_mapped(bh_result, 0, inode); 2462 2463 /* are there still bytes left? */ 2464 if (bytes_copied < bh_result->b_size && 2465 (byte_offset + bytes_copied) < inode->i_size) { 2466 set_cpu_key_k_offset(&key, 2467 cpu_key_k_offset(&key) + 2468 copy_size); 2469 goto research; 2470 } 2471 } else { 2472 reiserfs_warning(inode->i_sb, "clm-6003", 2473 "bad item inode %lu", inode->i_ino); 2474 retval = -EIO; 2475 goto out; 2476 } 2477 retval = 0; 2478 2479 out: 2480 pathrelse(&path); 2481 if (trans_running) { 2482 int err = journal_end(&th); 2483 if (err) 2484 retval = err; 2485 trans_running = 0; 2486 } 2487 reiserfs_write_unlock(inode->i_sb); 2488 2489 /* this is where we fill in holes in the file. */ 2490 if (use_get_block) { 2491 retval = reiserfs_get_block(inode, block, bh_result, 2492 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2493 | GET_BLOCK_NO_DANGLE); 2494 if (!retval) { 2495 if (!buffer_mapped(bh_result) 2496 || bh_result->b_blocknr == 0) { 2497 /* get_block failed to find a mapped unformatted node. */ 2498 use_get_block = 0; 2499 goto start_over; 2500 } 2501 } 2502 } 2503 kunmap(bh_result->b_page); 2504 2505 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2506 /* 2507 * we've copied data from the page into the direct item, so the 2508 * buffer in the page is now clean, mark it to reflect that. 2509 */ 2510 lock_buffer(bh_result); 2511 clear_buffer_dirty(bh_result); 2512 unlock_buffer(bh_result); 2513 } 2514 return retval; 2515 } 2516 2517 /* 2518 * mason@suse.com: updated in 2.5.54 to follow the same general io 2519 * start/recovery path as __block_write_full_page, along with special 2520 * code to handle reiserfs tails. 2521 */ 2522 static int reiserfs_write_full_page(struct page *page, 2523 struct writeback_control *wbc) 2524 { 2525 struct inode *inode = page->mapping->host; 2526 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2527 int error = 0; 2528 unsigned long block; 2529 sector_t last_block; 2530 struct buffer_head *head, *bh; 2531 int partial = 0; 2532 int nr = 0; 2533 int checked = PageChecked(page); 2534 struct reiserfs_transaction_handle th; 2535 struct super_block *s = inode->i_sb; 2536 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2537 th.t_trans_id = 0; 2538 2539 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2540 if (checked && (current->flags & PF_MEMALLOC)) { 2541 redirty_page_for_writepage(wbc, page); 2542 unlock_page(page); 2543 return 0; 2544 } 2545 2546 /* 2547 * The page dirty bit is cleared before writepage is called, which 2548 * means we have to tell create_empty_buffers to make dirty buffers 2549 * The page really should be up to date at this point, so tossing 2550 * in the BH_Uptodate is just a sanity check. 2551 */ 2552 if (!page_has_buffers(page)) { 2553 create_empty_buffers(page, s->s_blocksize, 2554 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2555 } 2556 head = page_buffers(page); 2557 2558 /* 2559 * last page in the file, zero out any contents past the 2560 * last byte in the file 2561 */ 2562 if (page->index >= end_index) { 2563 unsigned last_offset; 2564 2565 last_offset = inode->i_size & (PAGE_SIZE - 1); 2566 /* no file contents in this page */ 2567 if (page->index >= end_index + 1 || !last_offset) { 2568 unlock_page(page); 2569 return 0; 2570 } 2571 zero_user_segment(page, last_offset, PAGE_SIZE); 2572 } 2573 bh = head; 2574 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2575 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2576 /* first map all the buffers, logging any direct items we find */ 2577 do { 2578 if (block > last_block) { 2579 /* 2580 * This can happen when the block size is less than 2581 * the page size. The corresponding bytes in the page 2582 * were zero filled above 2583 */ 2584 clear_buffer_dirty(bh); 2585 set_buffer_uptodate(bh); 2586 } else if ((checked || buffer_dirty(bh)) && 2587 (!buffer_mapped(bh) || (buffer_mapped(bh) 2588 && bh->b_blocknr == 2589 0))) { 2590 /* 2591 * not mapped yet, or it points to a direct item, search 2592 * the btree for the mapping info, and log any direct 2593 * items found 2594 */ 2595 if ((error = map_block_for_writepage(inode, bh, block))) { 2596 goto fail; 2597 } 2598 } 2599 bh = bh->b_this_page; 2600 block++; 2601 } while (bh != head); 2602 2603 /* 2604 * we start the transaction after map_block_for_writepage, 2605 * because it can create holes in the file (an unbounded operation). 2606 * starting it here, we can make a reliable estimate for how many 2607 * blocks we're going to log 2608 */ 2609 if (checked) { 2610 ClearPageChecked(page); 2611 reiserfs_write_lock(s); 2612 error = journal_begin(&th, s, bh_per_page + 1); 2613 if (error) { 2614 reiserfs_write_unlock(s); 2615 goto fail; 2616 } 2617 reiserfs_update_inode_transaction(inode); 2618 } 2619 /* now go through and lock any dirty buffers on the page */ 2620 do { 2621 get_bh(bh); 2622 if (!buffer_mapped(bh)) 2623 continue; 2624 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2625 continue; 2626 2627 if (checked) { 2628 reiserfs_prepare_for_journal(s, bh, 1); 2629 journal_mark_dirty(&th, bh); 2630 continue; 2631 } 2632 /* 2633 * from this point on, we know the buffer is mapped to a 2634 * real block and not a direct item 2635 */ 2636 if (wbc->sync_mode != WB_SYNC_NONE) { 2637 lock_buffer(bh); 2638 } else { 2639 if (!trylock_buffer(bh)) { 2640 redirty_page_for_writepage(wbc, page); 2641 continue; 2642 } 2643 } 2644 if (test_clear_buffer_dirty(bh)) { 2645 mark_buffer_async_write(bh); 2646 } else { 2647 unlock_buffer(bh); 2648 } 2649 } while ((bh = bh->b_this_page) != head); 2650 2651 if (checked) { 2652 error = journal_end(&th); 2653 reiserfs_write_unlock(s); 2654 if (error) 2655 goto fail; 2656 } 2657 BUG_ON(PageWriteback(page)); 2658 set_page_writeback(page); 2659 unlock_page(page); 2660 2661 /* 2662 * since any buffer might be the only dirty buffer on the page, 2663 * the first submit_bh can bring the page out of writeback. 2664 * be careful with the buffers. 2665 */ 2666 do { 2667 struct buffer_head *next = bh->b_this_page; 2668 if (buffer_async_write(bh)) { 2669 submit_bh(REQ_OP_WRITE, 0, bh); 2670 nr++; 2671 } 2672 put_bh(bh); 2673 bh = next; 2674 } while (bh != head); 2675 2676 error = 0; 2677 done: 2678 if (nr == 0) { 2679 /* 2680 * if this page only had a direct item, it is very possible for 2681 * no io to be required without there being an error. Or, 2682 * someone else could have locked them and sent them down the 2683 * pipe without locking the page 2684 */ 2685 bh = head; 2686 do { 2687 if (!buffer_uptodate(bh)) { 2688 partial = 1; 2689 break; 2690 } 2691 bh = bh->b_this_page; 2692 } while (bh != head); 2693 if (!partial) 2694 SetPageUptodate(page); 2695 end_page_writeback(page); 2696 } 2697 return error; 2698 2699 fail: 2700 /* 2701 * catches various errors, we need to make sure any valid dirty blocks 2702 * get to the media. The page is currently locked and not marked for 2703 * writeback 2704 */ 2705 ClearPageUptodate(page); 2706 bh = head; 2707 do { 2708 get_bh(bh); 2709 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2710 lock_buffer(bh); 2711 mark_buffer_async_write(bh); 2712 } else { 2713 /* 2714 * clear any dirty bits that might have come from 2715 * getting attached to a dirty page 2716 */ 2717 clear_buffer_dirty(bh); 2718 } 2719 bh = bh->b_this_page; 2720 } while (bh != head); 2721 SetPageError(page); 2722 BUG_ON(PageWriteback(page)); 2723 set_page_writeback(page); 2724 unlock_page(page); 2725 do { 2726 struct buffer_head *next = bh->b_this_page; 2727 if (buffer_async_write(bh)) { 2728 clear_buffer_dirty(bh); 2729 submit_bh(REQ_OP_WRITE, 0, bh); 2730 nr++; 2731 } 2732 put_bh(bh); 2733 bh = next; 2734 } while (bh != head); 2735 goto done; 2736 } 2737 2738 static int reiserfs_readpage(struct file *f, struct page *page) 2739 { 2740 return block_read_full_page(page, reiserfs_get_block); 2741 } 2742 2743 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2744 { 2745 struct inode *inode = page->mapping->host; 2746 reiserfs_wait_on_write_block(inode->i_sb); 2747 return reiserfs_write_full_page(page, wbc); 2748 } 2749 2750 static void reiserfs_truncate_failed_write(struct inode *inode) 2751 { 2752 truncate_inode_pages(inode->i_mapping, inode->i_size); 2753 reiserfs_truncate_file(inode, 0); 2754 } 2755 2756 static int reiserfs_write_begin(struct file *file, 2757 struct address_space *mapping, 2758 loff_t pos, unsigned len, unsigned flags, 2759 struct page **pagep, void **fsdata) 2760 { 2761 struct inode *inode; 2762 struct page *page; 2763 pgoff_t index; 2764 int ret; 2765 int old_ref = 0; 2766 2767 inode = mapping->host; 2768 *fsdata = NULL; 2769 if (flags & AOP_FLAG_CONT_EXPAND && 2770 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2771 pos ++; 2772 *fsdata = (void *)(unsigned long)flags; 2773 } 2774 2775 index = pos >> PAGE_SHIFT; 2776 page = grab_cache_page_write_begin(mapping, index, flags); 2777 if (!page) 2778 return -ENOMEM; 2779 *pagep = page; 2780 2781 reiserfs_wait_on_write_block(inode->i_sb); 2782 fix_tail_page_for_writing(page); 2783 if (reiserfs_transaction_running(inode->i_sb)) { 2784 struct reiserfs_transaction_handle *th; 2785 th = (struct reiserfs_transaction_handle *)current-> 2786 journal_info; 2787 BUG_ON(!th->t_refcount); 2788 BUG_ON(!th->t_trans_id); 2789 old_ref = th->t_refcount; 2790 th->t_refcount++; 2791 } 2792 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2793 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2794 struct reiserfs_transaction_handle *th = current->journal_info; 2795 /* 2796 * this gets a little ugly. If reiserfs_get_block returned an 2797 * error and left a transacstion running, we've got to close 2798 * it, and we've got to free handle if it was a persistent 2799 * transaction. 2800 * 2801 * But, if we had nested into an existing transaction, we need 2802 * to just drop the ref count on the handle. 2803 * 2804 * If old_ref == 0, the transaction is from reiserfs_get_block, 2805 * and it was a persistent trans. Otherwise, it was nested 2806 * above. 2807 */ 2808 if (th->t_refcount > old_ref) { 2809 if (old_ref) 2810 th->t_refcount--; 2811 else { 2812 int err; 2813 reiserfs_write_lock(inode->i_sb); 2814 err = reiserfs_end_persistent_transaction(th); 2815 reiserfs_write_unlock(inode->i_sb); 2816 if (err) 2817 ret = err; 2818 } 2819 } 2820 } 2821 if (ret) { 2822 unlock_page(page); 2823 put_page(page); 2824 /* Truncate allocated blocks */ 2825 reiserfs_truncate_failed_write(inode); 2826 } 2827 return ret; 2828 } 2829 2830 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2831 { 2832 struct inode *inode = page->mapping->host; 2833 int ret; 2834 int old_ref = 0; 2835 int depth; 2836 2837 depth = reiserfs_write_unlock_nested(inode->i_sb); 2838 reiserfs_wait_on_write_block(inode->i_sb); 2839 reiserfs_write_lock_nested(inode->i_sb, depth); 2840 2841 fix_tail_page_for_writing(page); 2842 if (reiserfs_transaction_running(inode->i_sb)) { 2843 struct reiserfs_transaction_handle *th; 2844 th = (struct reiserfs_transaction_handle *)current-> 2845 journal_info; 2846 BUG_ON(!th->t_refcount); 2847 BUG_ON(!th->t_trans_id); 2848 old_ref = th->t_refcount; 2849 th->t_refcount++; 2850 } 2851 2852 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2853 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2854 struct reiserfs_transaction_handle *th = current->journal_info; 2855 /* 2856 * this gets a little ugly. If reiserfs_get_block returned an 2857 * error and left a transacstion running, we've got to close 2858 * it, and we've got to free handle if it was a persistent 2859 * transaction. 2860 * 2861 * But, if we had nested into an existing transaction, we need 2862 * to just drop the ref count on the handle. 2863 * 2864 * If old_ref == 0, the transaction is from reiserfs_get_block, 2865 * and it was a persistent trans. Otherwise, it was nested 2866 * above. 2867 */ 2868 if (th->t_refcount > old_ref) { 2869 if (old_ref) 2870 th->t_refcount--; 2871 else { 2872 int err; 2873 reiserfs_write_lock(inode->i_sb); 2874 err = reiserfs_end_persistent_transaction(th); 2875 reiserfs_write_unlock(inode->i_sb); 2876 if (err) 2877 ret = err; 2878 } 2879 } 2880 } 2881 return ret; 2882 2883 } 2884 2885 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2886 { 2887 return generic_block_bmap(as, block, reiserfs_bmap); 2888 } 2889 2890 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2891 loff_t pos, unsigned len, unsigned copied, 2892 struct page *page, void *fsdata) 2893 { 2894 struct inode *inode = page->mapping->host; 2895 int ret = 0; 2896 int update_sd = 0; 2897 struct reiserfs_transaction_handle *th; 2898 unsigned start; 2899 bool locked = false; 2900 2901 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2902 pos ++; 2903 2904 reiserfs_wait_on_write_block(inode->i_sb); 2905 if (reiserfs_transaction_running(inode->i_sb)) 2906 th = current->journal_info; 2907 else 2908 th = NULL; 2909 2910 start = pos & (PAGE_SIZE - 1); 2911 if (unlikely(copied < len)) { 2912 if (!PageUptodate(page)) 2913 copied = 0; 2914 2915 page_zero_new_buffers(page, start + copied, start + len); 2916 } 2917 flush_dcache_page(page); 2918 2919 reiserfs_commit_page(inode, page, start, start + copied); 2920 2921 /* 2922 * generic_commit_write does this for us, but does not update the 2923 * transaction tracking stuff when the size changes. So, we have 2924 * to do the i_size updates here. 2925 */ 2926 if (pos + copied > inode->i_size) { 2927 struct reiserfs_transaction_handle myth; 2928 reiserfs_write_lock(inode->i_sb); 2929 locked = true; 2930 /* 2931 * If the file have grown beyond the border where it 2932 * can have a tail, unmark it as needing a tail 2933 * packing 2934 */ 2935 if ((have_large_tails(inode->i_sb) 2936 && inode->i_size > i_block_size(inode) * 4) 2937 || (have_small_tails(inode->i_sb) 2938 && inode->i_size > i_block_size(inode))) 2939 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2940 2941 ret = journal_begin(&myth, inode->i_sb, 1); 2942 if (ret) 2943 goto journal_error; 2944 2945 reiserfs_update_inode_transaction(inode); 2946 inode->i_size = pos + copied; 2947 /* 2948 * this will just nest into our transaction. It's important 2949 * to use mark_inode_dirty so the inode gets pushed around on 2950 * the dirty lists, and so that O_SYNC works as expected 2951 */ 2952 mark_inode_dirty(inode); 2953 reiserfs_update_sd(&myth, inode); 2954 update_sd = 1; 2955 ret = journal_end(&myth); 2956 if (ret) 2957 goto journal_error; 2958 } 2959 if (th) { 2960 if (!locked) { 2961 reiserfs_write_lock(inode->i_sb); 2962 locked = true; 2963 } 2964 if (!update_sd) 2965 mark_inode_dirty(inode); 2966 ret = reiserfs_end_persistent_transaction(th); 2967 if (ret) 2968 goto out; 2969 } 2970 2971 out: 2972 if (locked) 2973 reiserfs_write_unlock(inode->i_sb); 2974 unlock_page(page); 2975 put_page(page); 2976 2977 if (pos + len > inode->i_size) 2978 reiserfs_truncate_failed_write(inode); 2979 2980 return ret == 0 ? copied : ret; 2981 2982 journal_error: 2983 reiserfs_write_unlock(inode->i_sb); 2984 locked = false; 2985 if (th) { 2986 if (!update_sd) 2987 reiserfs_update_sd(th, inode); 2988 ret = reiserfs_end_persistent_transaction(th); 2989 } 2990 goto out; 2991 } 2992 2993 int reiserfs_commit_write(struct file *f, struct page *page, 2994 unsigned from, unsigned to) 2995 { 2996 struct inode *inode = page->mapping->host; 2997 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 2998 int ret = 0; 2999 int update_sd = 0; 3000 struct reiserfs_transaction_handle *th = NULL; 3001 int depth; 3002 3003 depth = reiserfs_write_unlock_nested(inode->i_sb); 3004 reiserfs_wait_on_write_block(inode->i_sb); 3005 reiserfs_write_lock_nested(inode->i_sb, depth); 3006 3007 if (reiserfs_transaction_running(inode->i_sb)) { 3008 th = current->journal_info; 3009 } 3010 reiserfs_commit_page(inode, page, from, to); 3011 3012 /* 3013 * generic_commit_write does this for us, but does not update the 3014 * transaction tracking stuff when the size changes. So, we have 3015 * to do the i_size updates here. 3016 */ 3017 if (pos > inode->i_size) { 3018 struct reiserfs_transaction_handle myth; 3019 /* 3020 * If the file have grown beyond the border where it 3021 * can have a tail, unmark it as needing a tail 3022 * packing 3023 */ 3024 if ((have_large_tails(inode->i_sb) 3025 && inode->i_size > i_block_size(inode) * 4) 3026 || (have_small_tails(inode->i_sb) 3027 && inode->i_size > i_block_size(inode))) 3028 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3029 3030 ret = journal_begin(&myth, inode->i_sb, 1); 3031 if (ret) 3032 goto journal_error; 3033 3034 reiserfs_update_inode_transaction(inode); 3035 inode->i_size = pos; 3036 /* 3037 * this will just nest into our transaction. It's important 3038 * to use mark_inode_dirty so the inode gets pushed around 3039 * on the dirty lists, and so that O_SYNC works as expected 3040 */ 3041 mark_inode_dirty(inode); 3042 reiserfs_update_sd(&myth, inode); 3043 update_sd = 1; 3044 ret = journal_end(&myth); 3045 if (ret) 3046 goto journal_error; 3047 } 3048 if (th) { 3049 if (!update_sd) 3050 mark_inode_dirty(inode); 3051 ret = reiserfs_end_persistent_transaction(th); 3052 if (ret) 3053 goto out; 3054 } 3055 3056 out: 3057 return ret; 3058 3059 journal_error: 3060 if (th) { 3061 if (!update_sd) 3062 reiserfs_update_sd(th, inode); 3063 ret = reiserfs_end_persistent_transaction(th); 3064 } 3065 3066 return ret; 3067 } 3068 3069 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3070 { 3071 if (reiserfs_attrs(inode->i_sb)) { 3072 if (sd_attrs & REISERFS_SYNC_FL) 3073 inode->i_flags |= S_SYNC; 3074 else 3075 inode->i_flags &= ~S_SYNC; 3076 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3077 inode->i_flags |= S_IMMUTABLE; 3078 else 3079 inode->i_flags &= ~S_IMMUTABLE; 3080 if (sd_attrs & REISERFS_APPEND_FL) 3081 inode->i_flags |= S_APPEND; 3082 else 3083 inode->i_flags &= ~S_APPEND; 3084 if (sd_attrs & REISERFS_NOATIME_FL) 3085 inode->i_flags |= S_NOATIME; 3086 else 3087 inode->i_flags &= ~S_NOATIME; 3088 if (sd_attrs & REISERFS_NOTAIL_FL) 3089 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3090 else 3091 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3092 } 3093 } 3094 3095 /* 3096 * decide if this buffer needs to stay around for data logging or ordered 3097 * write purposes 3098 */ 3099 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3100 { 3101 int ret = 1; 3102 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3103 3104 lock_buffer(bh); 3105 spin_lock(&j->j_dirty_buffers_lock); 3106 if (!buffer_mapped(bh)) { 3107 goto free_jh; 3108 } 3109 /* 3110 * the page is locked, and the only places that log a data buffer 3111 * also lock the page. 3112 */ 3113 if (reiserfs_file_data_log(inode)) { 3114 /* 3115 * very conservative, leave the buffer pinned if 3116 * anyone might need it. 3117 */ 3118 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3119 ret = 0; 3120 } 3121 } else if (buffer_dirty(bh)) { 3122 struct reiserfs_journal_list *jl; 3123 struct reiserfs_jh *jh = bh->b_private; 3124 3125 /* 3126 * why is this safe? 3127 * reiserfs_setattr updates i_size in the on disk 3128 * stat data before allowing vmtruncate to be called. 3129 * 3130 * If buffer was put onto the ordered list for this 3131 * transaction, we know for sure either this transaction 3132 * or an older one already has updated i_size on disk, 3133 * and this ordered data won't be referenced in the file 3134 * if we crash. 3135 * 3136 * if the buffer was put onto the ordered list for an older 3137 * transaction, we need to leave it around 3138 */ 3139 if (jh && (jl = jh->jl) 3140 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3141 ret = 0; 3142 } 3143 free_jh: 3144 if (ret && bh->b_private) { 3145 reiserfs_free_jh(bh); 3146 } 3147 spin_unlock(&j->j_dirty_buffers_lock); 3148 unlock_buffer(bh); 3149 return ret; 3150 } 3151 3152 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3153 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3154 unsigned int length) 3155 { 3156 struct buffer_head *head, *bh, *next; 3157 struct inode *inode = page->mapping->host; 3158 unsigned int curr_off = 0; 3159 unsigned int stop = offset + length; 3160 int partial_page = (offset || length < PAGE_SIZE); 3161 int ret = 1; 3162 3163 BUG_ON(!PageLocked(page)); 3164 3165 if (!partial_page) 3166 ClearPageChecked(page); 3167 3168 if (!page_has_buffers(page)) 3169 goto out; 3170 3171 head = page_buffers(page); 3172 bh = head; 3173 do { 3174 unsigned int next_off = curr_off + bh->b_size; 3175 next = bh->b_this_page; 3176 3177 if (next_off > stop) 3178 goto out; 3179 3180 /* 3181 * is this block fully invalidated? 3182 */ 3183 if (offset <= curr_off) { 3184 if (invalidatepage_can_drop(inode, bh)) 3185 reiserfs_unmap_buffer(bh); 3186 else 3187 ret = 0; 3188 } 3189 curr_off = next_off; 3190 bh = next; 3191 } while (bh != head); 3192 3193 /* 3194 * We release buffers only if the entire page is being invalidated. 3195 * The get_block cached value has been unconditionally invalidated, 3196 * so real IO is not possible anymore. 3197 */ 3198 if (!partial_page && ret) { 3199 ret = try_to_release_page(page, 0); 3200 /* maybe should BUG_ON(!ret); - neilb */ 3201 } 3202 out: 3203 return; 3204 } 3205 3206 static int reiserfs_set_page_dirty(struct page *page) 3207 { 3208 struct inode *inode = page->mapping->host; 3209 if (reiserfs_file_data_log(inode)) { 3210 SetPageChecked(page); 3211 return __set_page_dirty_nobuffers(page); 3212 } 3213 return __set_page_dirty_buffers(page); 3214 } 3215 3216 /* 3217 * Returns 1 if the page's buffers were dropped. The page is locked. 3218 * 3219 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3220 * in the buffers at page_buffers(page). 3221 * 3222 * even in -o notail mode, we can't be sure an old mount without -o notail 3223 * didn't create files with tails. 3224 */ 3225 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3226 { 3227 struct inode *inode = page->mapping->host; 3228 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3229 struct buffer_head *head; 3230 struct buffer_head *bh; 3231 int ret = 1; 3232 3233 WARN_ON(PageChecked(page)); 3234 spin_lock(&j->j_dirty_buffers_lock); 3235 head = page_buffers(page); 3236 bh = head; 3237 do { 3238 if (bh->b_private) { 3239 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3240 reiserfs_free_jh(bh); 3241 } else { 3242 ret = 0; 3243 break; 3244 } 3245 } 3246 bh = bh->b_this_page; 3247 } while (bh != head); 3248 if (ret) 3249 ret = try_to_free_buffers(page); 3250 spin_unlock(&j->j_dirty_buffers_lock); 3251 return ret; 3252 } 3253 3254 /* 3255 * We thank Mingming Cao for helping us understand in great detail what 3256 * to do in this section of the code. 3257 */ 3258 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3259 { 3260 struct file *file = iocb->ki_filp; 3261 struct inode *inode = file->f_mapping->host; 3262 size_t count = iov_iter_count(iter); 3263 ssize_t ret; 3264 3265 ret = blockdev_direct_IO(iocb, inode, iter, 3266 reiserfs_get_blocks_direct_io); 3267 3268 /* 3269 * In case of error extending write may have instantiated a few 3270 * blocks outside i_size. Trim these off again. 3271 */ 3272 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3273 loff_t isize = i_size_read(inode); 3274 loff_t end = iocb->ki_pos + count; 3275 3276 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3277 truncate_setsize(inode, isize); 3278 reiserfs_vfs_truncate_file(inode); 3279 } 3280 } 3281 3282 return ret; 3283 } 3284 3285 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3286 { 3287 struct inode *inode = d_inode(dentry); 3288 unsigned int ia_valid; 3289 int error; 3290 3291 error = setattr_prepare(dentry, attr); 3292 if (error) 3293 return error; 3294 3295 /* must be turned off for recursive notify_change calls */ 3296 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3297 3298 if (is_quota_modification(inode, attr)) { 3299 error = dquot_initialize(inode); 3300 if (error) 3301 return error; 3302 } 3303 reiserfs_write_lock(inode->i_sb); 3304 if (attr->ia_valid & ATTR_SIZE) { 3305 /* 3306 * version 2 items will be caught by the s_maxbytes check 3307 * done for us in vmtruncate 3308 */ 3309 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3310 attr->ia_size > MAX_NON_LFS) { 3311 reiserfs_write_unlock(inode->i_sb); 3312 error = -EFBIG; 3313 goto out; 3314 } 3315 3316 inode_dio_wait(inode); 3317 3318 /* fill in hole pointers in the expanding truncate case. */ 3319 if (attr->ia_size > inode->i_size) { 3320 error = generic_cont_expand_simple(inode, attr->ia_size); 3321 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3322 int err; 3323 struct reiserfs_transaction_handle th; 3324 /* we're changing at most 2 bitmaps, inode + super */ 3325 err = journal_begin(&th, inode->i_sb, 4); 3326 if (!err) { 3327 reiserfs_discard_prealloc(&th, inode); 3328 err = journal_end(&th); 3329 } 3330 if (err) 3331 error = err; 3332 } 3333 if (error) { 3334 reiserfs_write_unlock(inode->i_sb); 3335 goto out; 3336 } 3337 /* 3338 * file size is changed, ctime and mtime are 3339 * to be updated 3340 */ 3341 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3342 } 3343 } 3344 reiserfs_write_unlock(inode->i_sb); 3345 3346 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3347 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3348 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3349 /* stat data of format v3.5 has 16 bit uid and gid */ 3350 error = -EINVAL; 3351 goto out; 3352 } 3353 3354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3356 struct reiserfs_transaction_handle th; 3357 int jbegin_count = 3358 2 * 3359 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3360 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3361 2; 3362 3363 error = reiserfs_chown_xattrs(inode, attr); 3364 3365 if (error) 3366 return error; 3367 3368 /* 3369 * (user+group)*(old+new) structure - we count quota 3370 * info and , inode write (sb, inode) 3371 */ 3372 reiserfs_write_lock(inode->i_sb); 3373 error = journal_begin(&th, inode->i_sb, jbegin_count); 3374 reiserfs_write_unlock(inode->i_sb); 3375 if (error) 3376 goto out; 3377 error = dquot_transfer(inode, attr); 3378 reiserfs_write_lock(inode->i_sb); 3379 if (error) { 3380 journal_end(&th); 3381 reiserfs_write_unlock(inode->i_sb); 3382 goto out; 3383 } 3384 3385 /* 3386 * Update corresponding info in inode so that everything 3387 * is in one transaction 3388 */ 3389 if (attr->ia_valid & ATTR_UID) 3390 inode->i_uid = attr->ia_uid; 3391 if (attr->ia_valid & ATTR_GID) 3392 inode->i_gid = attr->ia_gid; 3393 mark_inode_dirty(inode); 3394 error = journal_end(&th); 3395 reiserfs_write_unlock(inode->i_sb); 3396 if (error) 3397 goto out; 3398 } 3399 3400 if ((attr->ia_valid & ATTR_SIZE) && 3401 attr->ia_size != i_size_read(inode)) { 3402 error = inode_newsize_ok(inode, attr->ia_size); 3403 if (!error) { 3404 /* 3405 * Could race against reiserfs_file_release 3406 * if called from NFS, so take tailpack mutex. 3407 */ 3408 mutex_lock(&REISERFS_I(inode)->tailpack); 3409 truncate_setsize(inode, attr->ia_size); 3410 reiserfs_truncate_file(inode, 1); 3411 mutex_unlock(&REISERFS_I(inode)->tailpack); 3412 } 3413 } 3414 3415 if (!error) { 3416 setattr_copy(inode, attr); 3417 mark_inode_dirty(inode); 3418 } 3419 3420 if (!error && reiserfs_posixacl(inode->i_sb)) { 3421 if (attr->ia_valid & ATTR_MODE) 3422 error = reiserfs_acl_chmod(inode); 3423 } 3424 3425 out: 3426 return error; 3427 } 3428 3429 const struct address_space_operations reiserfs_address_space_operations = { 3430 .writepage = reiserfs_writepage, 3431 .readpage = reiserfs_readpage, 3432 .readahead = reiserfs_readahead, 3433 .releasepage = reiserfs_releasepage, 3434 .invalidatepage = reiserfs_invalidatepage, 3435 .write_begin = reiserfs_write_begin, 3436 .write_end = reiserfs_write_end, 3437 .bmap = reiserfs_aop_bmap, 3438 .direct_IO = reiserfs_direct_IO, 3439 .set_page_dirty = reiserfs_set_page_dirty, 3440 }; 3441