1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/aio.h> 22 23 int reiserfs_commit_write(struct file *f, struct page *page, 24 unsigned from, unsigned to); 25 26 void reiserfs_evict_inode(struct inode *inode) 27 { 28 /* 29 * We need blocks for transaction + (user+group) quota 30 * update (possibly delete) 31 */ 32 int jbegin_count = 33 JOURNAL_PER_BALANCE_CNT * 2 + 34 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 35 struct reiserfs_transaction_handle th; 36 int err; 37 38 if (!inode->i_nlink && !is_bad_inode(inode)) 39 dquot_initialize(inode); 40 41 truncate_inode_pages_final(&inode->i_data); 42 if (inode->i_nlink) 43 goto no_delete; 44 45 /* 46 * The = 0 happens when we abort creating a new inode 47 * for some reason like lack of space.. 48 * also handles bad_inode case 49 */ 50 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 51 52 reiserfs_delete_xattrs(inode); 53 54 reiserfs_write_lock(inode->i_sb); 55 56 if (journal_begin(&th, inode->i_sb, jbegin_count)) 57 goto out; 58 reiserfs_update_inode_transaction(inode); 59 60 reiserfs_discard_prealloc(&th, inode); 61 62 err = reiserfs_delete_object(&th, inode); 63 64 /* 65 * Do quota update inside a transaction for journaled quotas. 66 * We must do that after delete_object so that quota updates 67 * go into the same transaction as stat data deletion 68 */ 69 if (!err) { 70 int depth = reiserfs_write_unlock_nested(inode->i_sb); 71 dquot_free_inode(inode); 72 reiserfs_write_lock_nested(inode->i_sb, depth); 73 } 74 75 if (journal_end(&th)) 76 goto out; 77 78 /* 79 * check return value from reiserfs_delete_object after 80 * ending the transaction 81 */ 82 if (err) 83 goto out; 84 85 /* 86 * all items of file are deleted, so we can remove 87 * "save" link 88 * we can't do anything about an error here 89 */ 90 remove_save_link(inode, 0 /* not truncate */); 91 out: 92 reiserfs_write_unlock(inode->i_sb); 93 } else { 94 /* no object items are in the tree */ 95 ; 96 } 97 98 /* note this must go after the journal_end to prevent deadlock */ 99 clear_inode(inode); 100 101 dquot_drop(inode); 102 inode->i_blocks = 0; 103 return; 104 105 no_delete: 106 clear_inode(inode); 107 dquot_drop(inode); 108 } 109 110 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 111 __u32 objectid, loff_t offset, int type, int length) 112 { 113 key->version = version; 114 115 key->on_disk_key.k_dir_id = dirid; 116 key->on_disk_key.k_objectid = objectid; 117 set_cpu_key_k_offset(key, offset); 118 set_cpu_key_k_type(key, type); 119 key->key_length = length; 120 } 121 122 /* 123 * take base of inode_key (it comes from inode always) (dirid, objectid) 124 * and version from an inode, set offset and type of key 125 */ 126 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 127 int type, int length) 128 { 129 _make_cpu_key(key, get_inode_item_key_version(inode), 130 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 131 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 132 length); 133 } 134 135 /* when key is 0, do not set version and short key */ 136 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 137 int version, 138 loff_t offset, int type, int length, 139 int entry_count /*or ih_free_space */ ) 140 { 141 if (key) { 142 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 143 ih->ih_key.k_objectid = 144 cpu_to_le32(key->on_disk_key.k_objectid); 145 } 146 put_ih_version(ih, version); 147 set_le_ih_k_offset(ih, offset); 148 set_le_ih_k_type(ih, type); 149 put_ih_item_len(ih, length); 150 /* set_ih_free_space (ih, 0); */ 151 /* 152 * for directory items it is entry count, for directs and stat 153 * datas - 0xffff, for indirects - 0 154 */ 155 put_ih_entry_count(ih, entry_count); 156 } 157 158 /* 159 * FIXME: we might cache recently accessed indirect item 160 * Ugh. Not too eager for that.... 161 * I cut the code until such time as I see a convincing argument (benchmark). 162 * I don't want a bloated inode struct..., and I don't like code complexity.... 163 */ 164 165 /* 166 * cutting the code is fine, since it really isn't in use yet and is easy 167 * to add back in. But, Vladimir has a really good idea here. Think 168 * about what happens for reading a file. For each page, 169 * The VFS layer calls reiserfs_readpage, who searches the tree to find 170 * an indirect item. This indirect item has X number of pointers, where 171 * X is a big number if we've done the block allocation right. But, 172 * we only use one or two of these pointers during each call to readpage, 173 * needlessly researching again later on. 174 * 175 * The size of the cache could be dynamic based on the size of the file. 176 * 177 * I'd also like to see us cache the location the stat data item, since 178 * we are needlessly researching for that frequently. 179 * 180 * --chris 181 */ 182 183 /* 184 * If this page has a file tail in it, and 185 * it was read in by get_block_create_0, the page data is valid, 186 * but tail is still sitting in a direct item, and we can't write to 187 * it. So, look through this page, and check all the mapped buffers 188 * to make sure they have valid block numbers. Any that don't need 189 * to be unmapped, so that __block_write_begin will correctly call 190 * reiserfs_get_block to convert the tail into an unformatted node 191 */ 192 static inline void fix_tail_page_for_writing(struct page *page) 193 { 194 struct buffer_head *head, *next, *bh; 195 196 if (page && page_has_buffers(page)) { 197 head = page_buffers(page); 198 bh = head; 199 do { 200 next = bh->b_this_page; 201 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 202 reiserfs_unmap_buffer(bh); 203 } 204 bh = next; 205 } while (bh != head); 206 } 207 } 208 209 /* 210 * reiserfs_get_block does not need to allocate a block only if it has been 211 * done already or non-hole position has been found in the indirect item 212 */ 213 static inline int allocation_needed(int retval, b_blocknr_t allocated, 214 struct item_head *ih, 215 __le32 * item, int pos_in_item) 216 { 217 if (allocated) 218 return 0; 219 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 220 get_block_num(item, pos_in_item)) 221 return 0; 222 return 1; 223 } 224 225 static inline int indirect_item_found(int retval, struct item_head *ih) 226 { 227 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 228 } 229 230 static inline void set_block_dev_mapped(struct buffer_head *bh, 231 b_blocknr_t block, struct inode *inode) 232 { 233 map_bh(bh, inode->i_sb, block); 234 } 235 236 /* 237 * files which were created in the earlier version can not be longer, 238 * than 2 gb 239 */ 240 static int file_capable(struct inode *inode, sector_t block) 241 { 242 /* it is new file. */ 243 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 244 /* old file, but 'block' is inside of 2gb */ 245 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 246 return 1; 247 248 return 0; 249 } 250 251 static int restart_transaction(struct reiserfs_transaction_handle *th, 252 struct inode *inode, struct treepath *path) 253 { 254 struct super_block *s = th->t_super; 255 int err; 256 257 BUG_ON(!th->t_trans_id); 258 BUG_ON(!th->t_refcount); 259 260 pathrelse(path); 261 262 /* we cannot restart while nested */ 263 if (th->t_refcount > 1) { 264 return 0; 265 } 266 reiserfs_update_sd(th, inode); 267 err = journal_end(th); 268 if (!err) { 269 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 270 if (!err) 271 reiserfs_update_inode_transaction(inode); 272 } 273 return err; 274 } 275 276 /* 277 * it is called by get_block when create == 0. Returns block number 278 * for 'block'-th logical block of file. When it hits direct item it 279 * returns 0 (being called from bmap) or read direct item into piece 280 * of page (bh_result) 281 * Please improve the english/clarity in the comment above, as it is 282 * hard to understand. 283 */ 284 static int _get_block_create_0(struct inode *inode, sector_t block, 285 struct buffer_head *bh_result, int args) 286 { 287 INITIALIZE_PATH(path); 288 struct cpu_key key; 289 struct buffer_head *bh; 290 struct item_head *ih, tmp_ih; 291 b_blocknr_t blocknr; 292 char *p = NULL; 293 int chars; 294 int ret; 295 int result; 296 int done = 0; 297 unsigned long offset; 298 299 /* prepare the key to look for the 'block'-th block of file */ 300 make_cpu_key(&key, inode, 301 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 302 3); 303 304 result = search_for_position_by_key(inode->i_sb, &key, &path); 305 if (result != POSITION_FOUND) { 306 pathrelse(&path); 307 if (p) 308 kunmap(bh_result->b_page); 309 if (result == IO_ERROR) 310 return -EIO; 311 /* 312 * We do not return -ENOENT if there is a hole but page is 313 * uptodate, because it means that there is some MMAPED data 314 * associated with it that is yet to be written to disk. 315 */ 316 if ((args & GET_BLOCK_NO_HOLE) 317 && !PageUptodate(bh_result->b_page)) { 318 return -ENOENT; 319 } 320 return 0; 321 } 322 323 bh = get_last_bh(&path); 324 ih = tp_item_head(&path); 325 if (is_indirect_le_ih(ih)) { 326 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 327 328 /* 329 * FIXME: here we could cache indirect item or part of it in 330 * the inode to avoid search_by_key in case of subsequent 331 * access to file 332 */ 333 blocknr = get_block_num(ind_item, path.pos_in_item); 334 ret = 0; 335 if (blocknr) { 336 map_bh(bh_result, inode->i_sb, blocknr); 337 if (path.pos_in_item == 338 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 339 set_buffer_boundary(bh_result); 340 } 341 } else 342 /* 343 * We do not return -ENOENT if there is a hole but 344 * page is uptodate, because it means that there is 345 * some MMAPED data associated with it that is 346 * yet to be written to disk. 347 */ 348 if ((args & GET_BLOCK_NO_HOLE) 349 && !PageUptodate(bh_result->b_page)) { 350 ret = -ENOENT; 351 } 352 353 pathrelse(&path); 354 if (p) 355 kunmap(bh_result->b_page); 356 return ret; 357 } 358 /* requested data are in direct item(s) */ 359 if (!(args & GET_BLOCK_READ_DIRECT)) { 360 /* 361 * we are called by bmap. FIXME: we can not map block of file 362 * when it is stored in direct item(s) 363 */ 364 pathrelse(&path); 365 if (p) 366 kunmap(bh_result->b_page); 367 return -ENOENT; 368 } 369 370 /* 371 * if we've got a direct item, and the buffer or page was uptodate, 372 * we don't want to pull data off disk again. skip to the 373 * end, where we map the buffer and return 374 */ 375 if (buffer_uptodate(bh_result)) { 376 goto finished; 377 } else 378 /* 379 * grab_tail_page can trigger calls to reiserfs_get_block on 380 * up to date pages without any buffers. If the page is up 381 * to date, we don't want read old data off disk. Set the up 382 * to date bit on the buffer instead and jump to the end 383 */ 384 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 385 set_buffer_uptodate(bh_result); 386 goto finished; 387 } 388 /* read file tail into part of page */ 389 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 390 copy_item_head(&tmp_ih, ih); 391 392 /* 393 * we only want to kmap if we are reading the tail into the page. 394 * this is not the common case, so we don't kmap until we are 395 * sure we need to. But, this means the item might move if 396 * kmap schedules 397 */ 398 if (!p) 399 p = (char *)kmap(bh_result->b_page); 400 401 p += offset; 402 memset(p, 0, inode->i_sb->s_blocksize); 403 do { 404 if (!is_direct_le_ih(ih)) { 405 BUG(); 406 } 407 /* 408 * make sure we don't read more bytes than actually exist in 409 * the file. This can happen in odd cases where i_size isn't 410 * correct, and when direct item padding results in a few 411 * extra bytes at the end of the direct item 412 */ 413 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 414 break; 415 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 416 chars = 417 inode->i_size - (le_ih_k_offset(ih) - 1) - 418 path.pos_in_item; 419 done = 1; 420 } else { 421 chars = ih_item_len(ih) - path.pos_in_item; 422 } 423 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 424 425 if (done) 426 break; 427 428 p += chars; 429 430 /* 431 * we done, if read direct item is not the last item of 432 * node FIXME: we could try to check right delimiting key 433 * to see whether direct item continues in the right 434 * neighbor or rely on i_size 435 */ 436 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 437 break; 438 439 /* update key to look for the next piece */ 440 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 441 result = search_for_position_by_key(inode->i_sb, &key, &path); 442 if (result != POSITION_FOUND) 443 /* i/o error most likely */ 444 break; 445 bh = get_last_bh(&path); 446 ih = tp_item_head(&path); 447 } while (1); 448 449 flush_dcache_page(bh_result->b_page); 450 kunmap(bh_result->b_page); 451 452 finished: 453 pathrelse(&path); 454 455 if (result == IO_ERROR) 456 return -EIO; 457 458 /* 459 * this buffer has valid data, but isn't valid for io. mapping it to 460 * block #0 tells the rest of reiserfs it just has a tail in it 461 */ 462 map_bh(bh_result, inode->i_sb, 0); 463 set_buffer_uptodate(bh_result); 464 return 0; 465 } 466 467 /* 468 * this is called to create file map. So, _get_block_create_0 will not 469 * read direct item 470 */ 471 static int reiserfs_bmap(struct inode *inode, sector_t block, 472 struct buffer_head *bh_result, int create) 473 { 474 if (!file_capable(inode, block)) 475 return -EFBIG; 476 477 reiserfs_write_lock(inode->i_sb); 478 /* do not read the direct item */ 479 _get_block_create_0(inode, block, bh_result, 0); 480 reiserfs_write_unlock(inode->i_sb); 481 return 0; 482 } 483 484 /* 485 * special version of get_block that is only used by grab_tail_page right 486 * now. It is sent to __block_write_begin, and when you try to get a 487 * block past the end of the file (or a block from a hole) it returns 488 * -ENOENT instead of a valid buffer. __block_write_begin expects to 489 * be able to do i/o on the buffers returned, unless an error value 490 * is also returned. 491 * 492 * So, this allows __block_write_begin to be used for reading a single block 493 * in a page. Where it does not produce a valid page for holes, or past the 494 * end of the file. This turns out to be exactly what we need for reading 495 * tails for conversion. 496 * 497 * The point of the wrapper is forcing a certain value for create, even 498 * though the VFS layer is calling this function with create==1. If you 499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 500 * don't use this function. 501 */ 502 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 503 struct buffer_head *bh_result, 504 int create) 505 { 506 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 507 } 508 509 /* 510 * This is special helper for reiserfs_get_block in case we are executing 511 * direct_IO request. 512 */ 513 static int reiserfs_get_blocks_direct_io(struct inode *inode, 514 sector_t iblock, 515 struct buffer_head *bh_result, 516 int create) 517 { 518 int ret; 519 520 bh_result->b_page = NULL; 521 522 /* 523 * We set the b_size before reiserfs_get_block call since it is 524 * referenced in convert_tail_for_hole() that may be called from 525 * reiserfs_get_block() 526 */ 527 bh_result->b_size = (1 << inode->i_blkbits); 528 529 ret = reiserfs_get_block(inode, iblock, bh_result, 530 create | GET_BLOCK_NO_DANGLE); 531 if (ret) 532 goto out; 533 534 /* don't allow direct io onto tail pages */ 535 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 536 /* 537 * make sure future calls to the direct io funcs for this 538 * offset in the file fail by unmapping the buffer 539 */ 540 clear_buffer_mapped(bh_result); 541 ret = -EINVAL; 542 } 543 544 /* 545 * Possible unpacked tail. Flush the data before pages have 546 * disappeared 547 */ 548 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 549 int err; 550 551 reiserfs_write_lock(inode->i_sb); 552 553 err = reiserfs_commit_for_inode(inode); 554 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 555 556 reiserfs_write_unlock(inode->i_sb); 557 558 if (err < 0) 559 ret = err; 560 } 561 out: 562 return ret; 563 } 564 565 /* 566 * helper function for when reiserfs_get_block is called for a hole 567 * but the file tail is still in a direct item 568 * bh_result is the buffer head for the hole 569 * tail_offset is the offset of the start of the tail in the file 570 * 571 * This calls prepare_write, which will start a new transaction 572 * you should not be in a transaction, or have any paths held when you 573 * call this. 574 */ 575 static int convert_tail_for_hole(struct inode *inode, 576 struct buffer_head *bh_result, 577 loff_t tail_offset) 578 { 579 unsigned long index; 580 unsigned long tail_end; 581 unsigned long tail_start; 582 struct page *tail_page; 583 struct page *hole_page = bh_result->b_page; 584 int retval = 0; 585 586 if ((tail_offset & (bh_result->b_size - 1)) != 1) 587 return -EIO; 588 589 /* always try to read until the end of the block */ 590 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 591 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 592 593 index = tail_offset >> PAGE_CACHE_SHIFT; 594 /* 595 * hole_page can be zero in case of direct_io, we are sure 596 * that we cannot get here if we write with O_DIRECT into tail page 597 */ 598 if (!hole_page || index != hole_page->index) { 599 tail_page = grab_cache_page(inode->i_mapping, index); 600 retval = -ENOMEM; 601 if (!tail_page) { 602 goto out; 603 } 604 } else { 605 tail_page = hole_page; 606 } 607 608 /* 609 * we don't have to make sure the conversion did not happen while 610 * we were locking the page because anyone that could convert 611 * must first take i_mutex. 612 * 613 * We must fix the tail page for writing because it might have buffers 614 * that are mapped, but have a block number of 0. This indicates tail 615 * data that has been read directly into the page, and 616 * __block_write_begin won't trigger a get_block in this case. 617 */ 618 fix_tail_page_for_writing(tail_page); 619 retval = __reiserfs_write_begin(tail_page, tail_start, 620 tail_end - tail_start); 621 if (retval) 622 goto unlock; 623 624 /* tail conversion might change the data in the page */ 625 flush_dcache_page(tail_page); 626 627 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 628 629 unlock: 630 if (tail_page != hole_page) { 631 unlock_page(tail_page); 632 page_cache_release(tail_page); 633 } 634 out: 635 return retval; 636 } 637 638 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 639 sector_t block, 640 struct inode *inode, 641 b_blocknr_t * allocated_block_nr, 642 struct treepath *path, int flags) 643 { 644 BUG_ON(!th->t_trans_id); 645 646 #ifdef REISERFS_PREALLOCATE 647 if (!(flags & GET_BLOCK_NO_IMUX)) { 648 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 649 path, block); 650 } 651 #endif 652 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 653 block); 654 } 655 656 int reiserfs_get_block(struct inode *inode, sector_t block, 657 struct buffer_head *bh_result, int create) 658 { 659 int repeat, retval = 0; 660 /* b_blocknr_t is (unsigned) 32 bit int*/ 661 b_blocknr_t allocated_block_nr = 0; 662 INITIALIZE_PATH(path); 663 int pos_in_item; 664 struct cpu_key key; 665 struct buffer_head *bh, *unbh = NULL; 666 struct item_head *ih, tmp_ih; 667 __le32 *item; 668 int done; 669 int fs_gen; 670 struct reiserfs_transaction_handle *th = NULL; 671 /* 672 * space reserved in transaction batch: 673 * . 3 balancings in direct->indirect conversion 674 * . 1 block involved into reiserfs_update_sd() 675 * XXX in practically impossible worst case direct2indirect() 676 * can incur (much) more than 3 balancings. 677 * quota update for user, group 678 */ 679 int jbegin_count = 680 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 681 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 682 int version; 683 int dangle = 1; 684 loff_t new_offset = 685 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 686 687 reiserfs_write_lock(inode->i_sb); 688 version = get_inode_item_key_version(inode); 689 690 if (!file_capable(inode, block)) { 691 reiserfs_write_unlock(inode->i_sb); 692 return -EFBIG; 693 } 694 695 /* 696 * if !create, we aren't changing the FS, so we don't need to 697 * log anything, so we don't need to start a transaction 698 */ 699 if (!(create & GET_BLOCK_CREATE)) { 700 int ret; 701 /* find number of block-th logical block of the file */ 702 ret = _get_block_create_0(inode, block, bh_result, 703 create | GET_BLOCK_READ_DIRECT); 704 reiserfs_write_unlock(inode->i_sb); 705 return ret; 706 } 707 708 /* 709 * if we're already in a transaction, make sure to close 710 * any new transactions we start in this func 711 */ 712 if ((create & GET_BLOCK_NO_DANGLE) || 713 reiserfs_transaction_running(inode->i_sb)) 714 dangle = 0; 715 716 /* 717 * If file is of such a size, that it might have a tail and 718 * tails are enabled we should mark it as possibly needing 719 * tail packing on close 720 */ 721 if ((have_large_tails(inode->i_sb) 722 && inode->i_size < i_block_size(inode) * 4) 723 || (have_small_tails(inode->i_sb) 724 && inode->i_size < i_block_size(inode))) 725 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 726 727 /* set the key of the first byte in the 'block'-th block of file */ 728 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 729 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 730 start_trans: 731 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 732 if (!th) { 733 retval = -ENOMEM; 734 goto failure; 735 } 736 reiserfs_update_inode_transaction(inode); 737 } 738 research: 739 740 retval = search_for_position_by_key(inode->i_sb, &key, &path); 741 if (retval == IO_ERROR) { 742 retval = -EIO; 743 goto failure; 744 } 745 746 bh = get_last_bh(&path); 747 ih = tp_item_head(&path); 748 item = tp_item_body(&path); 749 pos_in_item = path.pos_in_item; 750 751 fs_gen = get_generation(inode->i_sb); 752 copy_item_head(&tmp_ih, ih); 753 754 if (allocation_needed 755 (retval, allocated_block_nr, ih, item, pos_in_item)) { 756 /* we have to allocate block for the unformatted node */ 757 if (!th) { 758 pathrelse(&path); 759 goto start_trans; 760 } 761 762 repeat = 763 _allocate_block(th, block, inode, &allocated_block_nr, 764 &path, create); 765 766 /* 767 * restart the transaction to give the journal a chance to free 768 * some blocks. releases the path, so we have to go back to 769 * research if we succeed on the second try 770 */ 771 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 772 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 773 retval = restart_transaction(th, inode, &path); 774 if (retval) 775 goto failure; 776 repeat = 777 _allocate_block(th, block, inode, 778 &allocated_block_nr, NULL, create); 779 780 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 781 goto research; 782 } 783 if (repeat == QUOTA_EXCEEDED) 784 retval = -EDQUOT; 785 else 786 retval = -ENOSPC; 787 goto failure; 788 } 789 790 if (fs_changed(fs_gen, inode->i_sb) 791 && item_moved(&tmp_ih, &path)) { 792 goto research; 793 } 794 } 795 796 if (indirect_item_found(retval, ih)) { 797 b_blocknr_t unfm_ptr; 798 /* 799 * 'block'-th block is in the file already (there is 800 * corresponding cell in some indirect item). But it may be 801 * zero unformatted node pointer (hole) 802 */ 803 unfm_ptr = get_block_num(item, pos_in_item); 804 if (unfm_ptr == 0) { 805 /* use allocated block to plug the hole */ 806 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 807 if (fs_changed(fs_gen, inode->i_sb) 808 && item_moved(&tmp_ih, &path)) { 809 reiserfs_restore_prepared_buffer(inode->i_sb, 810 bh); 811 goto research; 812 } 813 set_buffer_new(bh_result); 814 if (buffer_dirty(bh_result) 815 && reiserfs_data_ordered(inode->i_sb)) 816 reiserfs_add_ordered_list(inode, bh_result); 817 put_block_num(item, pos_in_item, allocated_block_nr); 818 unfm_ptr = allocated_block_nr; 819 journal_mark_dirty(th, bh); 820 reiserfs_update_sd(th, inode); 821 } 822 set_block_dev_mapped(bh_result, unfm_ptr, inode); 823 pathrelse(&path); 824 retval = 0; 825 if (!dangle && th) 826 retval = reiserfs_end_persistent_transaction(th); 827 828 reiserfs_write_unlock(inode->i_sb); 829 830 /* 831 * the item was found, so new blocks were not added to the file 832 * there is no need to make sure the inode is updated with this 833 * transaction 834 */ 835 return retval; 836 } 837 838 if (!th) { 839 pathrelse(&path); 840 goto start_trans; 841 } 842 843 /* 844 * desired position is not found or is in the direct item. We have 845 * to append file with holes up to 'block'-th block converting 846 * direct items to indirect one if necessary 847 */ 848 done = 0; 849 do { 850 if (is_statdata_le_ih(ih)) { 851 __le32 unp = 0; 852 struct cpu_key tmp_key; 853 854 /* indirect item has to be inserted */ 855 make_le_item_head(&tmp_ih, &key, version, 1, 856 TYPE_INDIRECT, UNFM_P_SIZE, 857 0 /* free_space */ ); 858 859 /* 860 * we are going to add 'block'-th block to the file. 861 * Use allocated block for that 862 */ 863 if (cpu_key_k_offset(&key) == 1) { 864 unp = cpu_to_le32(allocated_block_nr); 865 set_block_dev_mapped(bh_result, 866 allocated_block_nr, inode); 867 set_buffer_new(bh_result); 868 done = 1; 869 } 870 tmp_key = key; /* ;) */ 871 set_cpu_key_k_offset(&tmp_key, 1); 872 PATH_LAST_POSITION(&path)++; 873 874 retval = 875 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 876 inode, (char *)&unp); 877 if (retval) { 878 reiserfs_free_block(th, inode, 879 allocated_block_nr, 1); 880 /* 881 * retval == -ENOSPC, -EDQUOT or -EIO 882 * or -EEXIST 883 */ 884 goto failure; 885 } 886 } else if (is_direct_le_ih(ih)) { 887 /* direct item has to be converted */ 888 loff_t tail_offset; 889 890 tail_offset = 891 ((le_ih_k_offset(ih) - 892 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 893 894 /* 895 * direct item we just found fits into block we have 896 * to map. Convert it into unformatted node: use 897 * bh_result for the conversion 898 */ 899 if (tail_offset == cpu_key_k_offset(&key)) { 900 set_block_dev_mapped(bh_result, 901 allocated_block_nr, inode); 902 unbh = bh_result; 903 done = 1; 904 } else { 905 /* 906 * we have to pad file tail stored in direct 907 * item(s) up to block size and convert it 908 * to unformatted node. FIXME: this should 909 * also get into page cache 910 */ 911 912 pathrelse(&path); 913 /* 914 * ugly, but we can only end the transaction if 915 * we aren't nested 916 */ 917 BUG_ON(!th->t_refcount); 918 if (th->t_refcount == 1) { 919 retval = 920 reiserfs_end_persistent_transaction 921 (th); 922 th = NULL; 923 if (retval) 924 goto failure; 925 } 926 927 retval = 928 convert_tail_for_hole(inode, bh_result, 929 tail_offset); 930 if (retval) { 931 if (retval != -ENOSPC) 932 reiserfs_error(inode->i_sb, 933 "clm-6004", 934 "convert tail failed " 935 "inode %lu, error %d", 936 inode->i_ino, 937 retval); 938 if (allocated_block_nr) { 939 /* 940 * the bitmap, the super, 941 * and the stat data == 3 942 */ 943 if (!th) 944 th = reiserfs_persistent_transaction(inode->i_sb, 3); 945 if (th) 946 reiserfs_free_block(th, 947 inode, 948 allocated_block_nr, 949 1); 950 } 951 goto failure; 952 } 953 goto research; 954 } 955 retval = 956 direct2indirect(th, inode, &path, unbh, 957 tail_offset); 958 if (retval) { 959 reiserfs_unmap_buffer(unbh); 960 reiserfs_free_block(th, inode, 961 allocated_block_nr, 1); 962 goto failure; 963 } 964 /* 965 * it is important the set_buffer_uptodate is done 966 * after the direct2indirect. The buffer might 967 * contain valid data newer than the data on disk 968 * (read by readpage, changed, and then sent here by 969 * writepage). direct2indirect needs to know if unbh 970 * was already up to date, so it can decide if the 971 * data in unbh needs to be replaced with data from 972 * the disk 973 */ 974 set_buffer_uptodate(unbh); 975 976 /* 977 * unbh->b_page == NULL in case of DIRECT_IO request, 978 * this means buffer will disappear shortly, so it 979 * should not be added to 980 */ 981 if (unbh->b_page) { 982 /* 983 * we've converted the tail, so we must 984 * flush unbh before the transaction commits 985 */ 986 reiserfs_add_tail_list(inode, unbh); 987 988 /* 989 * mark it dirty now to prevent commit_write 990 * from adding this buffer to the inode's 991 * dirty buffer list 992 */ 993 /* 994 * AKPM: changed __mark_buffer_dirty to 995 * mark_buffer_dirty(). It's still atomic, 996 * but it sets the page dirty too, which makes 997 * it eligible for writeback at any time by the 998 * VM (which was also the case with 999 * __mark_buffer_dirty()) 1000 */ 1001 mark_buffer_dirty(unbh); 1002 } 1003 } else { 1004 /* 1005 * append indirect item with holes if needed, when 1006 * appending pointer to 'block'-th block use block, 1007 * which is already allocated 1008 */ 1009 struct cpu_key tmp_key; 1010 /* 1011 * We use this in case we need to allocate 1012 * only one block which is a fastpath 1013 */ 1014 unp_t unf_single = 0; 1015 unp_t *un; 1016 __u64 max_to_insert = 1017 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1018 UNFM_P_SIZE; 1019 __u64 blocks_needed; 1020 1021 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1022 "vs-804: invalid position for append"); 1023 /* 1024 * indirect item has to be appended, 1025 * set up key of that position 1026 * (key type is unimportant) 1027 */ 1028 make_cpu_key(&tmp_key, inode, 1029 le_key_k_offset(version, 1030 &ih->ih_key) + 1031 op_bytes_number(ih, 1032 inode->i_sb->s_blocksize), 1033 TYPE_INDIRECT, 3); 1034 1035 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1036 "green-805: invalid offset"); 1037 blocks_needed = 1038 1 + 1039 ((cpu_key_k_offset(&key) - 1040 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1041 s_blocksize_bits); 1042 1043 if (blocks_needed == 1) { 1044 un = &unf_single; 1045 } else { 1046 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 1047 if (!un) { 1048 un = &unf_single; 1049 blocks_needed = 1; 1050 max_to_insert = 0; 1051 } 1052 } 1053 if (blocks_needed <= max_to_insert) { 1054 /* 1055 * we are going to add target block to 1056 * the file. Use allocated block for that 1057 */ 1058 un[blocks_needed - 1] = 1059 cpu_to_le32(allocated_block_nr); 1060 set_block_dev_mapped(bh_result, 1061 allocated_block_nr, inode); 1062 set_buffer_new(bh_result); 1063 done = 1; 1064 } else { 1065 /* paste hole to the indirect item */ 1066 /* 1067 * If kmalloc failed, max_to_insert becomes 1068 * zero and it means we only have space for 1069 * one block 1070 */ 1071 blocks_needed = 1072 max_to_insert ? max_to_insert : 1; 1073 } 1074 retval = 1075 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1076 (char *)un, 1077 UNFM_P_SIZE * 1078 blocks_needed); 1079 1080 if (blocks_needed != 1) 1081 kfree(un); 1082 1083 if (retval) { 1084 reiserfs_free_block(th, inode, 1085 allocated_block_nr, 1); 1086 goto failure; 1087 } 1088 if (!done) { 1089 /* 1090 * We need to mark new file size in case 1091 * this function will be interrupted/aborted 1092 * later on. And we may do this only for 1093 * holes. 1094 */ 1095 inode->i_size += 1096 inode->i_sb->s_blocksize * blocks_needed; 1097 } 1098 } 1099 1100 if (done == 1) 1101 break; 1102 1103 /* 1104 * this loop could log more blocks than we had originally 1105 * asked for. So, we have to allow the transaction to end 1106 * if it is too big or too full. Update the inode so things 1107 * are consistent if we crash before the function returns 1108 * release the path so that anybody waiting on the path before 1109 * ending their transaction will be able to continue. 1110 */ 1111 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1112 retval = restart_transaction(th, inode, &path); 1113 if (retval) 1114 goto failure; 1115 } 1116 /* 1117 * inserting indirect pointers for a hole can take a 1118 * long time. reschedule if needed and also release the write 1119 * lock for others. 1120 */ 1121 reiserfs_cond_resched(inode->i_sb); 1122 1123 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1124 if (retval == IO_ERROR) { 1125 retval = -EIO; 1126 goto failure; 1127 } 1128 if (retval == POSITION_FOUND) { 1129 reiserfs_warning(inode->i_sb, "vs-825", 1130 "%K should not be found", &key); 1131 retval = -EEXIST; 1132 if (allocated_block_nr) 1133 reiserfs_free_block(th, inode, 1134 allocated_block_nr, 1); 1135 pathrelse(&path); 1136 goto failure; 1137 } 1138 bh = get_last_bh(&path); 1139 ih = tp_item_head(&path); 1140 item = tp_item_body(&path); 1141 pos_in_item = path.pos_in_item; 1142 } while (1); 1143 1144 retval = 0; 1145 1146 failure: 1147 if (th && (!dangle || (retval && !th->t_trans_id))) { 1148 int err; 1149 if (th->t_trans_id) 1150 reiserfs_update_sd(th, inode); 1151 err = reiserfs_end_persistent_transaction(th); 1152 if (err) 1153 retval = err; 1154 } 1155 1156 reiserfs_write_unlock(inode->i_sb); 1157 reiserfs_check_path(&path); 1158 return retval; 1159 } 1160 1161 static int 1162 reiserfs_readpages(struct file *file, struct address_space *mapping, 1163 struct list_head *pages, unsigned nr_pages) 1164 { 1165 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1166 } 1167 1168 /* 1169 * Compute real number of used bytes by file 1170 * Following three functions can go away when we'll have enough space in 1171 * stat item 1172 */ 1173 static int real_space_diff(struct inode *inode, int sd_size) 1174 { 1175 int bytes; 1176 loff_t blocksize = inode->i_sb->s_blocksize; 1177 1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1179 return sd_size; 1180 1181 /* 1182 * End of file is also in full block with indirect reference, so round 1183 * up to the next block. 1184 * 1185 * there is just no way to know if the tail is actually packed 1186 * on the file, so we have to assume it isn't. When we pack the 1187 * tail, we add 4 bytes to pretend there really is an unformatted 1188 * node pointer 1189 */ 1190 bytes = 1191 ((inode->i_size + 1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1193 sd_size; 1194 return bytes; 1195 } 1196 1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1198 int sd_size) 1199 { 1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1201 return inode->i_size + 1202 (loff_t) (real_space_diff(inode, sd_size)); 1203 } 1204 return ((loff_t) real_space_diff(inode, sd_size)) + 1205 (((loff_t) blocks) << 9); 1206 } 1207 1208 /* Compute number of blocks used by file in ReiserFS counting */ 1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1210 { 1211 loff_t bytes = inode_get_bytes(inode); 1212 loff_t real_space = real_space_diff(inode, sd_size); 1213 1214 /* keeps fsck and non-quota versions of reiserfs happy */ 1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1216 bytes += (loff_t) 511; 1217 } 1218 1219 /* 1220 * files from before the quota patch might i_blocks such that 1221 * bytes < real_space. Deal with that here to prevent it from 1222 * going negative. 1223 */ 1224 if (bytes < real_space) 1225 return 0; 1226 return (bytes - real_space) >> 9; 1227 } 1228 1229 /* 1230 * BAD: new directories have stat data of new type and all other items 1231 * of old type. Version stored in the inode says about body items, so 1232 * in update_stat_data we can not rely on inode, but have to check 1233 * item version directly 1234 */ 1235 1236 /* called by read_locked_inode */ 1237 static void init_inode(struct inode *inode, struct treepath *path) 1238 { 1239 struct buffer_head *bh; 1240 struct item_head *ih; 1241 __u32 rdev; 1242 1243 bh = PATH_PLAST_BUFFER(path); 1244 ih = tp_item_head(path); 1245 1246 copy_key(INODE_PKEY(inode), &ih->ih_key); 1247 1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1249 REISERFS_I(inode)->i_flags = 0; 1250 REISERFS_I(inode)->i_prealloc_block = 0; 1251 REISERFS_I(inode)->i_prealloc_count = 0; 1252 REISERFS_I(inode)->i_trans_id = 0; 1253 REISERFS_I(inode)->i_jl = NULL; 1254 reiserfs_init_xattr_rwsem(inode); 1255 1256 if (stat_data_v1(ih)) { 1257 struct stat_data_v1 *sd = 1258 (struct stat_data_v1 *)ih_item_body(bh, ih); 1259 unsigned long blocks; 1260 1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1262 set_inode_sd_version(inode, STAT_DATA_V1); 1263 inode->i_mode = sd_v1_mode(sd); 1264 set_nlink(inode, sd_v1_nlink(sd)); 1265 i_uid_write(inode, sd_v1_uid(sd)); 1266 i_gid_write(inode, sd_v1_gid(sd)); 1267 inode->i_size = sd_v1_size(sd); 1268 inode->i_atime.tv_sec = sd_v1_atime(sd); 1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1271 inode->i_atime.tv_nsec = 0; 1272 inode->i_ctime.tv_nsec = 0; 1273 inode->i_mtime.tv_nsec = 0; 1274 1275 inode->i_blocks = sd_v1_blocks(sd); 1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1277 blocks = (inode->i_size + 511) >> 9; 1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1279 1280 /* 1281 * there was a bug in <=3.5.23 when i_blocks could take 1282 * negative values. Starting from 3.5.17 this value could 1283 * even be stored in stat data. For such files we set 1284 * i_blocks based on file size. Just 2 notes: this can be 1285 * wrong for sparse files. On-disk value will be only 1286 * updated if file's inode will ever change 1287 */ 1288 if (inode->i_blocks > blocks) { 1289 inode->i_blocks = blocks; 1290 } 1291 1292 rdev = sd_v1_rdev(sd); 1293 REISERFS_I(inode)->i_first_direct_byte = 1294 sd_v1_first_direct_byte(sd); 1295 1296 /* 1297 * an early bug in the quota code can give us an odd 1298 * number for the block count. This is incorrect, fix it here. 1299 */ 1300 if (inode->i_blocks & 1) { 1301 inode->i_blocks++; 1302 } 1303 inode_set_bytes(inode, 1304 to_real_used_space(inode, inode->i_blocks, 1305 SD_V1_SIZE)); 1306 /* 1307 * nopack is initially zero for v1 objects. For v2 objects, 1308 * nopack is initialised from sd_attrs 1309 */ 1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1311 } else { 1312 /* 1313 * new stat data found, but object may have old items 1314 * (directories and symlinks) 1315 */ 1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1317 1318 inode->i_mode = sd_v2_mode(sd); 1319 set_nlink(inode, sd_v2_nlink(sd)); 1320 i_uid_write(inode, sd_v2_uid(sd)); 1321 inode->i_size = sd_v2_size(sd); 1322 i_gid_write(inode, sd_v2_gid(sd)); 1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1324 inode->i_atime.tv_sec = sd_v2_atime(sd); 1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1326 inode->i_ctime.tv_nsec = 0; 1327 inode->i_mtime.tv_nsec = 0; 1328 inode->i_atime.tv_nsec = 0; 1329 inode->i_blocks = sd_v2_blocks(sd); 1330 rdev = sd_v2_rdev(sd); 1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1332 inode->i_generation = 1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1334 else 1335 inode->i_generation = sd_v2_generation(sd); 1336 1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1339 else 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1341 REISERFS_I(inode)->i_first_direct_byte = 0; 1342 set_inode_sd_version(inode, STAT_DATA_V2); 1343 inode_set_bytes(inode, 1344 to_real_used_space(inode, inode->i_blocks, 1345 SD_V2_SIZE)); 1346 /* 1347 * read persistent inode attributes from sd and initialise 1348 * generic inode flags from them 1349 */ 1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1352 } 1353 1354 pathrelse(path); 1355 if (S_ISREG(inode->i_mode)) { 1356 inode->i_op = &reiserfs_file_inode_operations; 1357 inode->i_fop = &reiserfs_file_operations; 1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1359 } else if (S_ISDIR(inode->i_mode)) { 1360 inode->i_op = &reiserfs_dir_inode_operations; 1361 inode->i_fop = &reiserfs_dir_operations; 1362 } else if (S_ISLNK(inode->i_mode)) { 1363 inode->i_op = &reiserfs_symlink_inode_operations; 1364 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1365 } else { 1366 inode->i_blocks = 0; 1367 inode->i_op = &reiserfs_special_inode_operations; 1368 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1369 } 1370 } 1371 1372 /* update new stat data with inode fields */ 1373 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1374 { 1375 struct stat_data *sd_v2 = (struct stat_data *)sd; 1376 __u16 flags; 1377 1378 set_sd_v2_mode(sd_v2, inode->i_mode); 1379 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1380 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1381 set_sd_v2_size(sd_v2, size); 1382 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1383 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1384 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1385 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1386 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1387 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1388 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1389 else 1390 set_sd_v2_generation(sd_v2, inode->i_generation); 1391 flags = REISERFS_I(inode)->i_attrs; 1392 i_attrs_to_sd_attrs(inode, &flags); 1393 set_sd_v2_attrs(sd_v2, flags); 1394 } 1395 1396 /* used to copy inode's fields to old stat data */ 1397 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1398 { 1399 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1400 1401 set_sd_v1_mode(sd_v1, inode->i_mode); 1402 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1403 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1404 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1405 set_sd_v1_size(sd_v1, size); 1406 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1407 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1408 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1409 1410 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1411 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1412 else 1413 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1414 1415 /* Sigh. i_first_direct_byte is back */ 1416 set_sd_v1_first_direct_byte(sd_v1, 1417 REISERFS_I(inode)->i_first_direct_byte); 1418 } 1419 1420 /* 1421 * NOTE, you must prepare the buffer head before sending it here, 1422 * and then log it after the call 1423 */ 1424 static void update_stat_data(struct treepath *path, struct inode *inode, 1425 loff_t size) 1426 { 1427 struct buffer_head *bh; 1428 struct item_head *ih; 1429 1430 bh = PATH_PLAST_BUFFER(path); 1431 ih = tp_item_head(path); 1432 1433 if (!is_statdata_le_ih(ih)) 1434 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1435 INODE_PKEY(inode), ih); 1436 1437 /* path points to old stat data */ 1438 if (stat_data_v1(ih)) { 1439 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1440 } else { 1441 inode2sd(ih_item_body(bh, ih), inode, size); 1442 } 1443 1444 return; 1445 } 1446 1447 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1448 struct inode *inode, loff_t size) 1449 { 1450 struct cpu_key key; 1451 INITIALIZE_PATH(path); 1452 struct buffer_head *bh; 1453 int fs_gen; 1454 struct item_head *ih, tmp_ih; 1455 int retval; 1456 1457 BUG_ON(!th->t_trans_id); 1458 1459 /* key type is unimportant */ 1460 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1461 1462 for (;;) { 1463 int pos; 1464 /* look for the object's stat data */ 1465 retval = search_item(inode->i_sb, &key, &path); 1466 if (retval == IO_ERROR) { 1467 reiserfs_error(inode->i_sb, "vs-13050", 1468 "i/o failure occurred trying to " 1469 "update %K stat data", &key); 1470 return; 1471 } 1472 if (retval == ITEM_NOT_FOUND) { 1473 pos = PATH_LAST_POSITION(&path); 1474 pathrelse(&path); 1475 if (inode->i_nlink == 0) { 1476 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1477 return; 1478 } 1479 reiserfs_warning(inode->i_sb, "vs-13060", 1480 "stat data of object %k (nlink == %d) " 1481 "not found (pos %d)", 1482 INODE_PKEY(inode), inode->i_nlink, 1483 pos); 1484 reiserfs_check_path(&path); 1485 return; 1486 } 1487 1488 /* 1489 * sigh, prepare_for_journal might schedule. When it 1490 * schedules the FS might change. We have to detect that, 1491 * and loop back to the search if the stat data item has moved 1492 */ 1493 bh = get_last_bh(&path); 1494 ih = tp_item_head(&path); 1495 copy_item_head(&tmp_ih, ih); 1496 fs_gen = get_generation(inode->i_sb); 1497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1498 1499 /* Stat_data item has been moved after scheduling. */ 1500 if (fs_changed(fs_gen, inode->i_sb) 1501 && item_moved(&tmp_ih, &path)) { 1502 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1503 continue; 1504 } 1505 break; 1506 } 1507 update_stat_data(&path, inode, size); 1508 journal_mark_dirty(th, bh); 1509 pathrelse(&path); 1510 return; 1511 } 1512 1513 /* 1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1515 * does a make_bad_inode when things go wrong. But, we need to make sure 1516 * and clear the key in the private portion of the inode, otherwise a 1517 * corresponding iput might try to delete whatever object the inode last 1518 * represented. 1519 */ 1520 static void reiserfs_make_bad_inode(struct inode *inode) 1521 { 1522 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1523 make_bad_inode(inode); 1524 } 1525 1526 /* 1527 * initially this function was derived from minix or ext2's analog and 1528 * evolved as the prototype did 1529 */ 1530 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1531 { 1532 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1533 inode->i_ino = args->objectid; 1534 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1535 return 0; 1536 } 1537 1538 /* 1539 * looks for stat data in the tree, and fills up the fields of in-core 1540 * inode stat data fields 1541 */ 1542 void reiserfs_read_locked_inode(struct inode *inode, 1543 struct reiserfs_iget_args *args) 1544 { 1545 INITIALIZE_PATH(path_to_sd); 1546 struct cpu_key key; 1547 unsigned long dirino; 1548 int retval; 1549 1550 dirino = args->dirid; 1551 1552 /* 1553 * set version 1, version 2 could be used too, because stat data 1554 * key is the same in both versions 1555 */ 1556 key.version = KEY_FORMAT_3_5; 1557 key.on_disk_key.k_dir_id = dirino; 1558 key.on_disk_key.k_objectid = inode->i_ino; 1559 key.on_disk_key.k_offset = 0; 1560 key.on_disk_key.k_type = 0; 1561 1562 /* look for the object's stat data */ 1563 retval = search_item(inode->i_sb, &key, &path_to_sd); 1564 if (retval == IO_ERROR) { 1565 reiserfs_error(inode->i_sb, "vs-13070", 1566 "i/o failure occurred trying to find " 1567 "stat data of %K", &key); 1568 reiserfs_make_bad_inode(inode); 1569 return; 1570 } 1571 1572 /* a stale NFS handle can trigger this without it being an error */ 1573 if (retval != ITEM_FOUND) { 1574 pathrelse(&path_to_sd); 1575 reiserfs_make_bad_inode(inode); 1576 clear_nlink(inode); 1577 return; 1578 } 1579 1580 init_inode(inode, &path_to_sd); 1581 1582 /* 1583 * It is possible that knfsd is trying to access inode of a file 1584 * that is being removed from the disk by some other thread. As we 1585 * update sd on unlink all that is required is to check for nlink 1586 * here. This bug was first found by Sizif when debugging 1587 * SquidNG/Butterfly, forgotten, and found again after Philippe 1588 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1589 1590 * More logical fix would require changes in fs/inode.c:iput() to 1591 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1592 * in iget() to return NULL if I_FREEING inode is found in 1593 * hash-table. 1594 */ 1595 1596 /* 1597 * Currently there is one place where it's ok to meet inode with 1598 * nlink==0: processing of open-unlinked and half-truncated files 1599 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1600 */ 1601 if ((inode->i_nlink == 0) && 1602 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1603 reiserfs_warning(inode->i_sb, "vs-13075", 1604 "dead inode read from disk %K. " 1605 "This is likely to be race with knfsd. Ignore", 1606 &key); 1607 reiserfs_make_bad_inode(inode); 1608 } 1609 1610 /* init inode should be relsing */ 1611 reiserfs_check_path(&path_to_sd); 1612 1613 /* 1614 * Stat data v1 doesn't support ACLs. 1615 */ 1616 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1617 cache_no_acl(inode); 1618 } 1619 1620 /* 1621 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1622 * 1623 * @inode: inode from hash table to check 1624 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1625 * 1626 * This function is called by iget5_locked() to distinguish reiserfs inodes 1627 * having the same inode numbers. Such inodes can only exist due to some 1628 * error condition. One of them should be bad. Inodes with identical 1629 * inode numbers (objectids) are distinguished by parent directory ids. 1630 * 1631 */ 1632 int reiserfs_find_actor(struct inode *inode, void *opaque) 1633 { 1634 struct reiserfs_iget_args *args; 1635 1636 args = opaque; 1637 /* args is already in CPU order */ 1638 return (inode->i_ino == args->objectid) && 1639 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1640 } 1641 1642 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1643 { 1644 struct inode *inode; 1645 struct reiserfs_iget_args args; 1646 int depth; 1647 1648 args.objectid = key->on_disk_key.k_objectid; 1649 args.dirid = key->on_disk_key.k_dir_id; 1650 depth = reiserfs_write_unlock_nested(s); 1651 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1652 reiserfs_find_actor, reiserfs_init_locked_inode, 1653 (void *)(&args)); 1654 reiserfs_write_lock_nested(s, depth); 1655 if (!inode) 1656 return ERR_PTR(-ENOMEM); 1657 1658 if (inode->i_state & I_NEW) { 1659 reiserfs_read_locked_inode(inode, &args); 1660 unlock_new_inode(inode); 1661 } 1662 1663 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1664 /* either due to i/o error or a stale NFS handle */ 1665 iput(inode); 1666 inode = NULL; 1667 } 1668 return inode; 1669 } 1670 1671 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1672 u32 objectid, u32 dir_id, u32 generation) 1673 1674 { 1675 struct cpu_key key; 1676 struct inode *inode; 1677 1678 key.on_disk_key.k_objectid = objectid; 1679 key.on_disk_key.k_dir_id = dir_id; 1680 reiserfs_write_lock(sb); 1681 inode = reiserfs_iget(sb, &key); 1682 if (inode && !IS_ERR(inode) && generation != 0 && 1683 generation != inode->i_generation) { 1684 iput(inode); 1685 inode = NULL; 1686 } 1687 reiserfs_write_unlock(sb); 1688 1689 return d_obtain_alias(inode); 1690 } 1691 1692 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1693 int fh_len, int fh_type) 1694 { 1695 /* 1696 * fhtype happens to reflect the number of u32s encoded. 1697 * due to a bug in earlier code, fhtype might indicate there 1698 * are more u32s then actually fitted. 1699 * so if fhtype seems to be more than len, reduce fhtype. 1700 * Valid types are: 1701 * 2 - objectid + dir_id - legacy support 1702 * 3 - objectid + dir_id + generation 1703 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1704 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1705 * 6 - as above plus generation of directory 1706 * 6 does not fit in NFSv2 handles 1707 */ 1708 if (fh_type > fh_len) { 1709 if (fh_type != 6 || fh_len != 5) 1710 reiserfs_warning(sb, "reiserfs-13077", 1711 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1712 fh_type, fh_len); 1713 fh_type = fh_len; 1714 } 1715 if (fh_len < 2) 1716 return NULL; 1717 1718 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1719 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1720 } 1721 1722 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1723 int fh_len, int fh_type) 1724 { 1725 if (fh_type > fh_len) 1726 fh_type = fh_len; 1727 if (fh_type < 4) 1728 return NULL; 1729 1730 return reiserfs_get_dentry(sb, 1731 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1732 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1733 (fh_type == 6) ? fid->raw[5] : 0); 1734 } 1735 1736 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1737 struct inode *parent) 1738 { 1739 int maxlen = *lenp; 1740 1741 if (parent && (maxlen < 5)) { 1742 *lenp = 5; 1743 return FILEID_INVALID; 1744 } else if (maxlen < 3) { 1745 *lenp = 3; 1746 return FILEID_INVALID; 1747 } 1748 1749 data[0] = inode->i_ino; 1750 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1751 data[2] = inode->i_generation; 1752 *lenp = 3; 1753 if (parent) { 1754 data[3] = parent->i_ino; 1755 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1756 *lenp = 5; 1757 if (maxlen >= 6) { 1758 data[5] = parent->i_generation; 1759 *lenp = 6; 1760 } 1761 } 1762 return *lenp; 1763 } 1764 1765 /* 1766 * looks for stat data, then copies fields to it, marks the buffer 1767 * containing stat data as dirty 1768 */ 1769 /* 1770 * reiserfs inodes are never really dirty, since the dirty inode call 1771 * always logs them. This call allows the VFS inode marking routines 1772 * to properly mark inodes for datasync and such, but only actually 1773 * does something when called for a synchronous update. 1774 */ 1775 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1776 { 1777 struct reiserfs_transaction_handle th; 1778 int jbegin_count = 1; 1779 1780 if (inode->i_sb->s_flags & MS_RDONLY) 1781 return -EROFS; 1782 /* 1783 * memory pressure can sometimes initiate write_inode calls with 1784 * sync == 1, 1785 * these cases are just when the system needs ram, not when the 1786 * inode needs to reach disk for safety, and they can safely be 1787 * ignored because the altered inode has already been logged. 1788 */ 1789 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1790 reiserfs_write_lock(inode->i_sb); 1791 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1792 reiserfs_update_sd(&th, inode); 1793 journal_end_sync(&th); 1794 } 1795 reiserfs_write_unlock(inode->i_sb); 1796 } 1797 return 0; 1798 } 1799 1800 /* 1801 * stat data of new object is inserted already, this inserts the item 1802 * containing "." and ".." entries 1803 */ 1804 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1805 struct inode *inode, 1806 struct item_head *ih, struct treepath *path, 1807 struct inode *dir) 1808 { 1809 struct super_block *sb = th->t_super; 1810 char empty_dir[EMPTY_DIR_SIZE]; 1811 char *body = empty_dir; 1812 struct cpu_key key; 1813 int retval; 1814 1815 BUG_ON(!th->t_trans_id); 1816 1817 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1818 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1819 TYPE_DIRENTRY, 3 /*key length */ ); 1820 1821 /* 1822 * compose item head for new item. Directories consist of items of 1823 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1824 * is done by reiserfs_new_inode 1825 */ 1826 if (old_format_only(sb)) { 1827 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1828 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1829 1830 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1831 ih->ih_key.k_objectid, 1832 INODE_PKEY(dir)->k_dir_id, 1833 INODE_PKEY(dir)->k_objectid); 1834 } else { 1835 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1836 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1837 1838 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1839 ih->ih_key.k_objectid, 1840 INODE_PKEY(dir)->k_dir_id, 1841 INODE_PKEY(dir)->k_objectid); 1842 } 1843 1844 /* look for place in the tree for new item */ 1845 retval = search_item(sb, &key, path); 1846 if (retval == IO_ERROR) { 1847 reiserfs_error(sb, "vs-13080", 1848 "i/o failure occurred creating new directory"); 1849 return -EIO; 1850 } 1851 if (retval == ITEM_FOUND) { 1852 pathrelse(path); 1853 reiserfs_warning(sb, "vs-13070", 1854 "object with this key exists (%k)", 1855 &(ih->ih_key)); 1856 return -EEXIST; 1857 } 1858 1859 /* insert item, that is empty directory item */ 1860 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1861 } 1862 1863 /* 1864 * stat data of object has been inserted, this inserts the item 1865 * containing the body of symlink 1866 */ 1867 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1868 struct inode *inode, 1869 struct item_head *ih, 1870 struct treepath *path, const char *symname, 1871 int item_len) 1872 { 1873 struct super_block *sb = th->t_super; 1874 struct cpu_key key; 1875 int retval; 1876 1877 BUG_ON(!th->t_trans_id); 1878 1879 _make_cpu_key(&key, KEY_FORMAT_3_5, 1880 le32_to_cpu(ih->ih_key.k_dir_id), 1881 le32_to_cpu(ih->ih_key.k_objectid), 1882 1, TYPE_DIRECT, 3 /*key length */ ); 1883 1884 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1885 0 /*free_space */ ); 1886 1887 /* look for place in the tree for new item */ 1888 retval = search_item(sb, &key, path); 1889 if (retval == IO_ERROR) { 1890 reiserfs_error(sb, "vs-13080", 1891 "i/o failure occurred creating new symlink"); 1892 return -EIO; 1893 } 1894 if (retval == ITEM_FOUND) { 1895 pathrelse(path); 1896 reiserfs_warning(sb, "vs-13080", 1897 "object with this key exists (%k)", 1898 &(ih->ih_key)); 1899 return -EEXIST; 1900 } 1901 1902 /* insert item, that is body of symlink */ 1903 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1904 } 1905 1906 /* 1907 * inserts the stat data into the tree, and then calls 1908 * reiserfs_new_directory (to insert ".", ".." item if new object is 1909 * directory) or reiserfs_new_symlink (to insert symlink body if new 1910 * object is symlink) or nothing (if new object is regular file) 1911 1912 * NOTE! uid and gid must already be set in the inode. If we return 1913 * non-zero due to an error, we have to drop the quota previously allocated 1914 * for the fresh inode. This can only be done outside a transaction, so 1915 * if we return non-zero, we also end the transaction. 1916 * 1917 * @th: active transaction handle 1918 * @dir: parent directory for new inode 1919 * @mode: mode of new inode 1920 * @symname: symlink contents if inode is symlink 1921 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1922 * symlinks 1923 * @inode: inode to be filled 1924 * @security: optional security context to associate with this inode 1925 */ 1926 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1927 struct inode *dir, umode_t mode, const char *symname, 1928 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1929 strlen (symname) for symlinks) */ 1930 loff_t i_size, struct dentry *dentry, 1931 struct inode *inode, 1932 struct reiserfs_security_handle *security) 1933 { 1934 struct super_block *sb = dir->i_sb; 1935 struct reiserfs_iget_args args; 1936 INITIALIZE_PATH(path_to_key); 1937 struct cpu_key key; 1938 struct item_head ih; 1939 struct stat_data sd; 1940 int retval; 1941 int err; 1942 int depth; 1943 1944 BUG_ON(!th->t_trans_id); 1945 1946 depth = reiserfs_write_unlock_nested(sb); 1947 err = dquot_alloc_inode(inode); 1948 reiserfs_write_lock_nested(sb, depth); 1949 if (err) 1950 goto out_end_trans; 1951 if (!dir->i_nlink) { 1952 err = -EPERM; 1953 goto out_bad_inode; 1954 } 1955 1956 /* item head of new item */ 1957 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1958 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1959 if (!ih.ih_key.k_objectid) { 1960 err = -ENOMEM; 1961 goto out_bad_inode; 1962 } 1963 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1964 if (old_format_only(sb)) 1965 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1966 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1967 else 1968 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1969 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1970 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1971 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1972 1973 depth = reiserfs_write_unlock_nested(inode->i_sb); 1974 err = insert_inode_locked4(inode, args.objectid, 1975 reiserfs_find_actor, &args); 1976 reiserfs_write_lock_nested(inode->i_sb, depth); 1977 if (err) { 1978 err = -EINVAL; 1979 goto out_bad_inode; 1980 } 1981 1982 if (old_format_only(sb)) 1983 /* 1984 * not a perfect generation count, as object ids can be reused, 1985 * but this is as good as reiserfs can do right now. 1986 * note that the private part of inode isn't filled in yet, 1987 * we have to use the directory. 1988 */ 1989 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1990 else 1991 #if defined( USE_INODE_GENERATION_COUNTER ) 1992 inode->i_generation = 1993 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1994 #else 1995 inode->i_generation = ++event; 1996 #endif 1997 1998 /* fill stat data */ 1999 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 2000 2001 /* uid and gid must already be set by the caller for quota init */ 2002 2003 /* symlink cannot be immutable or append only, right? */ 2004 if (S_ISLNK(inode->i_mode)) 2005 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 2006 2007 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 2008 inode->i_size = i_size; 2009 inode->i_blocks = 0; 2010 inode->i_bytes = 0; 2011 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2012 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2013 2014 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2015 REISERFS_I(inode)->i_flags = 0; 2016 REISERFS_I(inode)->i_prealloc_block = 0; 2017 REISERFS_I(inode)->i_prealloc_count = 0; 2018 REISERFS_I(inode)->i_trans_id = 0; 2019 REISERFS_I(inode)->i_jl = NULL; 2020 REISERFS_I(inode)->i_attrs = 2021 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2022 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2023 reiserfs_init_xattr_rwsem(inode); 2024 2025 /* key to search for correct place for new stat data */ 2026 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2027 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2028 TYPE_STAT_DATA, 3 /*key length */ ); 2029 2030 /* find proper place for inserting of stat data */ 2031 retval = search_item(sb, &key, &path_to_key); 2032 if (retval == IO_ERROR) { 2033 err = -EIO; 2034 goto out_bad_inode; 2035 } 2036 if (retval == ITEM_FOUND) { 2037 pathrelse(&path_to_key); 2038 err = -EEXIST; 2039 goto out_bad_inode; 2040 } 2041 if (old_format_only(sb)) { 2042 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2043 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2044 pathrelse(&path_to_key); 2045 err = -EINVAL; 2046 goto out_bad_inode; 2047 } 2048 inode2sd_v1(&sd, inode, inode->i_size); 2049 } else { 2050 inode2sd(&sd, inode, inode->i_size); 2051 } 2052 /* 2053 * store in in-core inode the key of stat data and version all 2054 * object items will have (directory items will have old offset 2055 * format, other new objects will consist of new items) 2056 */ 2057 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2058 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2059 else 2060 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2061 if (old_format_only(sb)) 2062 set_inode_sd_version(inode, STAT_DATA_V1); 2063 else 2064 set_inode_sd_version(inode, STAT_DATA_V2); 2065 2066 /* insert the stat data into the tree */ 2067 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2068 if (REISERFS_I(dir)->new_packing_locality) 2069 th->displace_new_blocks = 1; 2070 #endif 2071 retval = 2072 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2073 (char *)(&sd)); 2074 if (retval) { 2075 err = retval; 2076 reiserfs_check_path(&path_to_key); 2077 goto out_bad_inode; 2078 } 2079 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2080 if (!th->displace_new_blocks) 2081 REISERFS_I(dir)->new_packing_locality = 0; 2082 #endif 2083 if (S_ISDIR(mode)) { 2084 /* insert item with "." and ".." */ 2085 retval = 2086 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2087 } 2088 2089 if (S_ISLNK(mode)) { 2090 /* insert body of symlink */ 2091 if (!old_format_only(sb)) 2092 i_size = ROUND_UP(i_size); 2093 retval = 2094 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2095 i_size); 2096 } 2097 if (retval) { 2098 err = retval; 2099 reiserfs_check_path(&path_to_key); 2100 journal_end(th); 2101 goto out_inserted_sd; 2102 } 2103 2104 if (reiserfs_posixacl(inode->i_sb)) { 2105 reiserfs_write_unlock(inode->i_sb); 2106 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2107 reiserfs_write_lock(inode->i_sb); 2108 if (retval) { 2109 err = retval; 2110 reiserfs_check_path(&path_to_key); 2111 journal_end(th); 2112 goto out_inserted_sd; 2113 } 2114 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 2115 reiserfs_warning(inode->i_sb, "jdm-13090", 2116 "ACLs aren't enabled in the fs, " 2117 "but vfs thinks they are!"); 2118 } else if (IS_PRIVATE(dir)) 2119 inode->i_flags |= S_PRIVATE; 2120 2121 if (security->name) { 2122 reiserfs_write_unlock(inode->i_sb); 2123 retval = reiserfs_security_write(th, inode, security); 2124 reiserfs_write_lock(inode->i_sb); 2125 if (retval) { 2126 err = retval; 2127 reiserfs_check_path(&path_to_key); 2128 retval = journal_end(th); 2129 if (retval) 2130 err = retval; 2131 goto out_inserted_sd; 2132 } 2133 } 2134 2135 reiserfs_update_sd(th, inode); 2136 reiserfs_check_path(&path_to_key); 2137 2138 return 0; 2139 2140 out_bad_inode: 2141 /* Invalidate the object, nothing was inserted yet */ 2142 INODE_PKEY(inode)->k_objectid = 0; 2143 2144 /* Quota change must be inside a transaction for journaling */ 2145 depth = reiserfs_write_unlock_nested(inode->i_sb); 2146 dquot_free_inode(inode); 2147 reiserfs_write_lock_nested(inode->i_sb, depth); 2148 2149 out_end_trans: 2150 journal_end(th); 2151 /* 2152 * Drop can be outside and it needs more credits so it's better 2153 * to have it outside 2154 */ 2155 depth = reiserfs_write_unlock_nested(inode->i_sb); 2156 dquot_drop(inode); 2157 reiserfs_write_lock_nested(inode->i_sb, depth); 2158 inode->i_flags |= S_NOQUOTA; 2159 make_bad_inode(inode); 2160 2161 out_inserted_sd: 2162 clear_nlink(inode); 2163 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2164 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2165 iput(inode); 2166 return err; 2167 } 2168 2169 /* 2170 * finds the tail page in the page cache, 2171 * reads the last block in. 2172 * 2173 * On success, page_result is set to a locked, pinned page, and bh_result 2174 * is set to an up to date buffer for the last block in the file. returns 0. 2175 * 2176 * tail conversion is not done, so bh_result might not be valid for writing 2177 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2178 * trying to write the block. 2179 * 2180 * on failure, nonzero is returned, page_result and bh_result are untouched. 2181 */ 2182 static int grab_tail_page(struct inode *inode, 2183 struct page **page_result, 2184 struct buffer_head **bh_result) 2185 { 2186 2187 /* 2188 * we want the page with the last byte in the file, 2189 * not the page that will hold the next byte for appending 2190 */ 2191 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2192 unsigned long pos = 0; 2193 unsigned long start = 0; 2194 unsigned long blocksize = inode->i_sb->s_blocksize; 2195 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2196 struct buffer_head *bh; 2197 struct buffer_head *head; 2198 struct page *page; 2199 int error; 2200 2201 /* 2202 * we know that we are only called with inode->i_size > 0. 2203 * we also know that a file tail can never be as big as a block 2204 * If i_size % blocksize == 0, our file is currently block aligned 2205 * and it won't need converting or zeroing after a truncate. 2206 */ 2207 if ((offset & (blocksize - 1)) == 0) { 2208 return -ENOENT; 2209 } 2210 page = grab_cache_page(inode->i_mapping, index); 2211 error = -ENOMEM; 2212 if (!page) { 2213 goto out; 2214 } 2215 /* start within the page of the last block in the file */ 2216 start = (offset / blocksize) * blocksize; 2217 2218 error = __block_write_begin(page, start, offset - start, 2219 reiserfs_get_block_create_0); 2220 if (error) 2221 goto unlock; 2222 2223 head = page_buffers(page); 2224 bh = head; 2225 do { 2226 if (pos >= start) { 2227 break; 2228 } 2229 bh = bh->b_this_page; 2230 pos += blocksize; 2231 } while (bh != head); 2232 2233 if (!buffer_uptodate(bh)) { 2234 /* 2235 * note, this should never happen, prepare_write should be 2236 * taking care of this for us. If the buffer isn't up to 2237 * date, I've screwed up the code to find the buffer, or the 2238 * code to call prepare_write 2239 */ 2240 reiserfs_error(inode->i_sb, "clm-6000", 2241 "error reading block %lu", bh->b_blocknr); 2242 error = -EIO; 2243 goto unlock; 2244 } 2245 *bh_result = bh; 2246 *page_result = page; 2247 2248 out: 2249 return error; 2250 2251 unlock: 2252 unlock_page(page); 2253 page_cache_release(page); 2254 return error; 2255 } 2256 2257 /* 2258 * vfs version of truncate file. Must NOT be called with 2259 * a transaction already started. 2260 * 2261 * some code taken from block_truncate_page 2262 */ 2263 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2264 { 2265 struct reiserfs_transaction_handle th; 2266 /* we want the offset for the first byte after the end of the file */ 2267 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2268 unsigned blocksize = inode->i_sb->s_blocksize; 2269 unsigned length; 2270 struct page *page = NULL; 2271 int error; 2272 struct buffer_head *bh = NULL; 2273 int err2; 2274 2275 reiserfs_write_lock(inode->i_sb); 2276 2277 if (inode->i_size > 0) { 2278 error = grab_tail_page(inode, &page, &bh); 2279 if (error) { 2280 /* 2281 * -ENOENT means we truncated past the end of the 2282 * file, and get_block_create_0 could not find a 2283 * block to read in, which is ok. 2284 */ 2285 if (error != -ENOENT) 2286 reiserfs_error(inode->i_sb, "clm-6001", 2287 "grab_tail_page failed %d", 2288 error); 2289 page = NULL; 2290 bh = NULL; 2291 } 2292 } 2293 2294 /* 2295 * so, if page != NULL, we have a buffer head for the offset at 2296 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2297 * then we have an unformatted node. Otherwise, we have a direct item, 2298 * and no zeroing is required on disk. We zero after the truncate, 2299 * because the truncate might pack the item anyway 2300 * (it will unmap bh if it packs). 2301 * 2302 * it is enough to reserve space in transaction for 2 balancings: 2303 * one for "save" link adding and another for the first 2304 * cut_from_item. 1 is for update_sd 2305 */ 2306 error = journal_begin(&th, inode->i_sb, 2307 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2308 if (error) 2309 goto out; 2310 reiserfs_update_inode_transaction(inode); 2311 if (update_timestamps) 2312 /* 2313 * we are doing real truncate: if the system crashes 2314 * before the last transaction of truncating gets committed 2315 * - on reboot the file either appears truncated properly 2316 * or not truncated at all 2317 */ 2318 add_save_link(&th, inode, 1); 2319 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2320 error = journal_end(&th); 2321 if (error) 2322 goto out; 2323 2324 /* check reiserfs_do_truncate after ending the transaction */ 2325 if (err2) { 2326 error = err2; 2327 goto out; 2328 } 2329 2330 if (update_timestamps) { 2331 error = remove_save_link(inode, 1 /* truncate */); 2332 if (error) 2333 goto out; 2334 } 2335 2336 if (page) { 2337 length = offset & (blocksize - 1); 2338 /* if we are not on a block boundary */ 2339 if (length) { 2340 length = blocksize - length; 2341 zero_user(page, offset, length); 2342 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2343 mark_buffer_dirty(bh); 2344 } 2345 } 2346 unlock_page(page); 2347 page_cache_release(page); 2348 } 2349 2350 reiserfs_write_unlock(inode->i_sb); 2351 2352 return 0; 2353 out: 2354 if (page) { 2355 unlock_page(page); 2356 page_cache_release(page); 2357 } 2358 2359 reiserfs_write_unlock(inode->i_sb); 2360 2361 return error; 2362 } 2363 2364 static int map_block_for_writepage(struct inode *inode, 2365 struct buffer_head *bh_result, 2366 unsigned long block) 2367 { 2368 struct reiserfs_transaction_handle th; 2369 int fs_gen; 2370 struct item_head tmp_ih; 2371 struct item_head *ih; 2372 struct buffer_head *bh; 2373 __le32 *item; 2374 struct cpu_key key; 2375 INITIALIZE_PATH(path); 2376 int pos_in_item; 2377 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2378 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2379 int retval; 2380 int use_get_block = 0; 2381 int bytes_copied = 0; 2382 int copy_size; 2383 int trans_running = 0; 2384 2385 /* 2386 * catch places below that try to log something without 2387 * starting a trans 2388 */ 2389 th.t_trans_id = 0; 2390 2391 if (!buffer_uptodate(bh_result)) { 2392 return -EIO; 2393 } 2394 2395 kmap(bh_result->b_page); 2396 start_over: 2397 reiserfs_write_lock(inode->i_sb); 2398 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2399 2400 research: 2401 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2402 if (retval != POSITION_FOUND) { 2403 use_get_block = 1; 2404 goto out; 2405 } 2406 2407 bh = get_last_bh(&path); 2408 ih = tp_item_head(&path); 2409 item = tp_item_body(&path); 2410 pos_in_item = path.pos_in_item; 2411 2412 /* we've found an unformatted node */ 2413 if (indirect_item_found(retval, ih)) { 2414 if (bytes_copied > 0) { 2415 reiserfs_warning(inode->i_sb, "clm-6002", 2416 "bytes_copied %d", bytes_copied); 2417 } 2418 if (!get_block_num(item, pos_in_item)) { 2419 /* crap, we are writing to a hole */ 2420 use_get_block = 1; 2421 goto out; 2422 } 2423 set_block_dev_mapped(bh_result, 2424 get_block_num(item, pos_in_item), inode); 2425 } else if (is_direct_le_ih(ih)) { 2426 char *p; 2427 p = page_address(bh_result->b_page); 2428 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2429 copy_size = ih_item_len(ih) - pos_in_item; 2430 2431 fs_gen = get_generation(inode->i_sb); 2432 copy_item_head(&tmp_ih, ih); 2433 2434 if (!trans_running) { 2435 /* vs-3050 is gone, no need to drop the path */ 2436 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2437 if (retval) 2438 goto out; 2439 reiserfs_update_inode_transaction(inode); 2440 trans_running = 1; 2441 if (fs_changed(fs_gen, inode->i_sb) 2442 && item_moved(&tmp_ih, &path)) { 2443 reiserfs_restore_prepared_buffer(inode->i_sb, 2444 bh); 2445 goto research; 2446 } 2447 } 2448 2449 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2450 2451 if (fs_changed(fs_gen, inode->i_sb) 2452 && item_moved(&tmp_ih, &path)) { 2453 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2454 goto research; 2455 } 2456 2457 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2458 copy_size); 2459 2460 journal_mark_dirty(&th, bh); 2461 bytes_copied += copy_size; 2462 set_block_dev_mapped(bh_result, 0, inode); 2463 2464 /* are there still bytes left? */ 2465 if (bytes_copied < bh_result->b_size && 2466 (byte_offset + bytes_copied) < inode->i_size) { 2467 set_cpu_key_k_offset(&key, 2468 cpu_key_k_offset(&key) + 2469 copy_size); 2470 goto research; 2471 } 2472 } else { 2473 reiserfs_warning(inode->i_sb, "clm-6003", 2474 "bad item inode %lu", inode->i_ino); 2475 retval = -EIO; 2476 goto out; 2477 } 2478 retval = 0; 2479 2480 out: 2481 pathrelse(&path); 2482 if (trans_running) { 2483 int err = journal_end(&th); 2484 if (err) 2485 retval = err; 2486 trans_running = 0; 2487 } 2488 reiserfs_write_unlock(inode->i_sb); 2489 2490 /* this is where we fill in holes in the file. */ 2491 if (use_get_block) { 2492 retval = reiserfs_get_block(inode, block, bh_result, 2493 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2494 | GET_BLOCK_NO_DANGLE); 2495 if (!retval) { 2496 if (!buffer_mapped(bh_result) 2497 || bh_result->b_blocknr == 0) { 2498 /* get_block failed to find a mapped unformatted node. */ 2499 use_get_block = 0; 2500 goto start_over; 2501 } 2502 } 2503 } 2504 kunmap(bh_result->b_page); 2505 2506 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2507 /* 2508 * we've copied data from the page into the direct item, so the 2509 * buffer in the page is now clean, mark it to reflect that. 2510 */ 2511 lock_buffer(bh_result); 2512 clear_buffer_dirty(bh_result); 2513 unlock_buffer(bh_result); 2514 } 2515 return retval; 2516 } 2517 2518 /* 2519 * mason@suse.com: updated in 2.5.54 to follow the same general io 2520 * start/recovery path as __block_write_full_page, along with special 2521 * code to handle reiserfs tails. 2522 */ 2523 static int reiserfs_write_full_page(struct page *page, 2524 struct writeback_control *wbc) 2525 { 2526 struct inode *inode = page->mapping->host; 2527 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2528 int error = 0; 2529 unsigned long block; 2530 sector_t last_block; 2531 struct buffer_head *head, *bh; 2532 int partial = 0; 2533 int nr = 0; 2534 int checked = PageChecked(page); 2535 struct reiserfs_transaction_handle th; 2536 struct super_block *s = inode->i_sb; 2537 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2538 th.t_trans_id = 0; 2539 2540 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2541 if (checked && (current->flags & PF_MEMALLOC)) { 2542 redirty_page_for_writepage(wbc, page); 2543 unlock_page(page); 2544 return 0; 2545 } 2546 2547 /* 2548 * The page dirty bit is cleared before writepage is called, which 2549 * means we have to tell create_empty_buffers to make dirty buffers 2550 * The page really should be up to date at this point, so tossing 2551 * in the BH_Uptodate is just a sanity check. 2552 */ 2553 if (!page_has_buffers(page)) { 2554 create_empty_buffers(page, s->s_blocksize, 2555 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2556 } 2557 head = page_buffers(page); 2558 2559 /* 2560 * last page in the file, zero out any contents past the 2561 * last byte in the file 2562 */ 2563 if (page->index >= end_index) { 2564 unsigned last_offset; 2565 2566 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2567 /* no file contents in this page */ 2568 if (page->index >= end_index + 1 || !last_offset) { 2569 unlock_page(page); 2570 return 0; 2571 } 2572 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2573 } 2574 bh = head; 2575 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2576 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2577 /* first map all the buffers, logging any direct items we find */ 2578 do { 2579 if (block > last_block) { 2580 /* 2581 * This can happen when the block size is less than 2582 * the page size. The corresponding bytes in the page 2583 * were zero filled above 2584 */ 2585 clear_buffer_dirty(bh); 2586 set_buffer_uptodate(bh); 2587 } else if ((checked || buffer_dirty(bh)) && 2588 (!buffer_mapped(bh) || (buffer_mapped(bh) 2589 && bh->b_blocknr == 2590 0))) { 2591 /* 2592 * not mapped yet, or it points to a direct item, search 2593 * the btree for the mapping info, and log any direct 2594 * items found 2595 */ 2596 if ((error = map_block_for_writepage(inode, bh, block))) { 2597 goto fail; 2598 } 2599 } 2600 bh = bh->b_this_page; 2601 block++; 2602 } while (bh != head); 2603 2604 /* 2605 * we start the transaction after map_block_for_writepage, 2606 * because it can create holes in the file (an unbounded operation). 2607 * starting it here, we can make a reliable estimate for how many 2608 * blocks we're going to log 2609 */ 2610 if (checked) { 2611 ClearPageChecked(page); 2612 reiserfs_write_lock(s); 2613 error = journal_begin(&th, s, bh_per_page + 1); 2614 if (error) { 2615 reiserfs_write_unlock(s); 2616 goto fail; 2617 } 2618 reiserfs_update_inode_transaction(inode); 2619 } 2620 /* now go through and lock any dirty buffers on the page */ 2621 do { 2622 get_bh(bh); 2623 if (!buffer_mapped(bh)) 2624 continue; 2625 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2626 continue; 2627 2628 if (checked) { 2629 reiserfs_prepare_for_journal(s, bh, 1); 2630 journal_mark_dirty(&th, bh); 2631 continue; 2632 } 2633 /* 2634 * from this point on, we know the buffer is mapped to a 2635 * real block and not a direct item 2636 */ 2637 if (wbc->sync_mode != WB_SYNC_NONE) { 2638 lock_buffer(bh); 2639 } else { 2640 if (!trylock_buffer(bh)) { 2641 redirty_page_for_writepage(wbc, page); 2642 continue; 2643 } 2644 } 2645 if (test_clear_buffer_dirty(bh)) { 2646 mark_buffer_async_write(bh); 2647 } else { 2648 unlock_buffer(bh); 2649 } 2650 } while ((bh = bh->b_this_page) != head); 2651 2652 if (checked) { 2653 error = journal_end(&th); 2654 reiserfs_write_unlock(s); 2655 if (error) 2656 goto fail; 2657 } 2658 BUG_ON(PageWriteback(page)); 2659 set_page_writeback(page); 2660 unlock_page(page); 2661 2662 /* 2663 * since any buffer might be the only dirty buffer on the page, 2664 * the first submit_bh can bring the page out of writeback. 2665 * be careful with the buffers. 2666 */ 2667 do { 2668 struct buffer_head *next = bh->b_this_page; 2669 if (buffer_async_write(bh)) { 2670 submit_bh(WRITE, bh); 2671 nr++; 2672 } 2673 put_bh(bh); 2674 bh = next; 2675 } while (bh != head); 2676 2677 error = 0; 2678 done: 2679 if (nr == 0) { 2680 /* 2681 * if this page only had a direct item, it is very possible for 2682 * no io to be required without there being an error. Or, 2683 * someone else could have locked them and sent them down the 2684 * pipe without locking the page 2685 */ 2686 bh = head; 2687 do { 2688 if (!buffer_uptodate(bh)) { 2689 partial = 1; 2690 break; 2691 } 2692 bh = bh->b_this_page; 2693 } while (bh != head); 2694 if (!partial) 2695 SetPageUptodate(page); 2696 end_page_writeback(page); 2697 } 2698 return error; 2699 2700 fail: 2701 /* 2702 * catches various errors, we need to make sure any valid dirty blocks 2703 * get to the media. The page is currently locked and not marked for 2704 * writeback 2705 */ 2706 ClearPageUptodate(page); 2707 bh = head; 2708 do { 2709 get_bh(bh); 2710 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2711 lock_buffer(bh); 2712 mark_buffer_async_write(bh); 2713 } else { 2714 /* 2715 * clear any dirty bits that might have come from 2716 * getting attached to a dirty page 2717 */ 2718 clear_buffer_dirty(bh); 2719 } 2720 bh = bh->b_this_page; 2721 } while (bh != head); 2722 SetPageError(page); 2723 BUG_ON(PageWriteback(page)); 2724 set_page_writeback(page); 2725 unlock_page(page); 2726 do { 2727 struct buffer_head *next = bh->b_this_page; 2728 if (buffer_async_write(bh)) { 2729 clear_buffer_dirty(bh); 2730 submit_bh(WRITE, bh); 2731 nr++; 2732 } 2733 put_bh(bh); 2734 bh = next; 2735 } while (bh != head); 2736 goto done; 2737 } 2738 2739 static int reiserfs_readpage(struct file *f, struct page *page) 2740 { 2741 return block_read_full_page(page, reiserfs_get_block); 2742 } 2743 2744 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2745 { 2746 struct inode *inode = page->mapping->host; 2747 reiserfs_wait_on_write_block(inode->i_sb); 2748 return reiserfs_write_full_page(page, wbc); 2749 } 2750 2751 static void reiserfs_truncate_failed_write(struct inode *inode) 2752 { 2753 truncate_inode_pages(inode->i_mapping, inode->i_size); 2754 reiserfs_truncate_file(inode, 0); 2755 } 2756 2757 static int reiserfs_write_begin(struct file *file, 2758 struct address_space *mapping, 2759 loff_t pos, unsigned len, unsigned flags, 2760 struct page **pagep, void **fsdata) 2761 { 2762 struct inode *inode; 2763 struct page *page; 2764 pgoff_t index; 2765 int ret; 2766 int old_ref = 0; 2767 2768 inode = mapping->host; 2769 *fsdata = 0; 2770 if (flags & AOP_FLAG_CONT_EXPAND && 2771 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2772 pos ++; 2773 *fsdata = (void *)(unsigned long)flags; 2774 } 2775 2776 index = pos >> PAGE_CACHE_SHIFT; 2777 page = grab_cache_page_write_begin(mapping, index, flags); 2778 if (!page) 2779 return -ENOMEM; 2780 *pagep = page; 2781 2782 reiserfs_wait_on_write_block(inode->i_sb); 2783 fix_tail_page_for_writing(page); 2784 if (reiserfs_transaction_running(inode->i_sb)) { 2785 struct reiserfs_transaction_handle *th; 2786 th = (struct reiserfs_transaction_handle *)current-> 2787 journal_info; 2788 BUG_ON(!th->t_refcount); 2789 BUG_ON(!th->t_trans_id); 2790 old_ref = th->t_refcount; 2791 th->t_refcount++; 2792 } 2793 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2794 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2795 struct reiserfs_transaction_handle *th = current->journal_info; 2796 /* 2797 * this gets a little ugly. If reiserfs_get_block returned an 2798 * error and left a transacstion running, we've got to close 2799 * it, and we've got to free handle if it was a persistent 2800 * transaction. 2801 * 2802 * But, if we had nested into an existing transaction, we need 2803 * to just drop the ref count on the handle. 2804 * 2805 * If old_ref == 0, the transaction is from reiserfs_get_block, 2806 * and it was a persistent trans. Otherwise, it was nested 2807 * above. 2808 */ 2809 if (th->t_refcount > old_ref) { 2810 if (old_ref) 2811 th->t_refcount--; 2812 else { 2813 int err; 2814 reiserfs_write_lock(inode->i_sb); 2815 err = reiserfs_end_persistent_transaction(th); 2816 reiserfs_write_unlock(inode->i_sb); 2817 if (err) 2818 ret = err; 2819 } 2820 } 2821 } 2822 if (ret) { 2823 unlock_page(page); 2824 page_cache_release(page); 2825 /* Truncate allocated blocks */ 2826 reiserfs_truncate_failed_write(inode); 2827 } 2828 return ret; 2829 } 2830 2831 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2832 { 2833 struct inode *inode = page->mapping->host; 2834 int ret; 2835 int old_ref = 0; 2836 int depth; 2837 2838 depth = reiserfs_write_unlock_nested(inode->i_sb); 2839 reiserfs_wait_on_write_block(inode->i_sb); 2840 reiserfs_write_lock_nested(inode->i_sb, depth); 2841 2842 fix_tail_page_for_writing(page); 2843 if (reiserfs_transaction_running(inode->i_sb)) { 2844 struct reiserfs_transaction_handle *th; 2845 th = (struct reiserfs_transaction_handle *)current-> 2846 journal_info; 2847 BUG_ON(!th->t_refcount); 2848 BUG_ON(!th->t_trans_id); 2849 old_ref = th->t_refcount; 2850 th->t_refcount++; 2851 } 2852 2853 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2854 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2855 struct reiserfs_transaction_handle *th = current->journal_info; 2856 /* 2857 * this gets a little ugly. If reiserfs_get_block returned an 2858 * error and left a transacstion running, we've got to close 2859 * it, and we've got to free handle if it was a persistent 2860 * transaction. 2861 * 2862 * But, if we had nested into an existing transaction, we need 2863 * to just drop the ref count on the handle. 2864 * 2865 * If old_ref == 0, the transaction is from reiserfs_get_block, 2866 * and it was a persistent trans. Otherwise, it was nested 2867 * above. 2868 */ 2869 if (th->t_refcount > old_ref) { 2870 if (old_ref) 2871 th->t_refcount--; 2872 else { 2873 int err; 2874 reiserfs_write_lock(inode->i_sb); 2875 err = reiserfs_end_persistent_transaction(th); 2876 reiserfs_write_unlock(inode->i_sb); 2877 if (err) 2878 ret = err; 2879 } 2880 } 2881 } 2882 return ret; 2883 2884 } 2885 2886 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2887 { 2888 return generic_block_bmap(as, block, reiserfs_bmap); 2889 } 2890 2891 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2892 loff_t pos, unsigned len, unsigned copied, 2893 struct page *page, void *fsdata) 2894 { 2895 struct inode *inode = page->mapping->host; 2896 int ret = 0; 2897 int update_sd = 0; 2898 struct reiserfs_transaction_handle *th; 2899 unsigned start; 2900 bool locked = false; 2901 2902 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2903 pos ++; 2904 2905 reiserfs_wait_on_write_block(inode->i_sb); 2906 if (reiserfs_transaction_running(inode->i_sb)) 2907 th = current->journal_info; 2908 else 2909 th = NULL; 2910 2911 start = pos & (PAGE_CACHE_SIZE - 1); 2912 if (unlikely(copied < len)) { 2913 if (!PageUptodate(page)) 2914 copied = 0; 2915 2916 page_zero_new_buffers(page, start + copied, start + len); 2917 } 2918 flush_dcache_page(page); 2919 2920 reiserfs_commit_page(inode, page, start, start + copied); 2921 2922 /* 2923 * generic_commit_write does this for us, but does not update the 2924 * transaction tracking stuff when the size changes. So, we have 2925 * to do the i_size updates here. 2926 */ 2927 if (pos + copied > inode->i_size) { 2928 struct reiserfs_transaction_handle myth; 2929 reiserfs_write_lock(inode->i_sb); 2930 locked = true; 2931 /* 2932 * If the file have grown beyond the border where it 2933 * can have a tail, unmark it as needing a tail 2934 * packing 2935 */ 2936 if ((have_large_tails(inode->i_sb) 2937 && inode->i_size > i_block_size(inode) * 4) 2938 || (have_small_tails(inode->i_sb) 2939 && inode->i_size > i_block_size(inode))) 2940 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2941 2942 ret = journal_begin(&myth, inode->i_sb, 1); 2943 if (ret) 2944 goto journal_error; 2945 2946 reiserfs_update_inode_transaction(inode); 2947 inode->i_size = pos + copied; 2948 /* 2949 * this will just nest into our transaction. It's important 2950 * to use mark_inode_dirty so the inode gets pushed around on 2951 * the dirty lists, and so that O_SYNC works as expected 2952 */ 2953 mark_inode_dirty(inode); 2954 reiserfs_update_sd(&myth, inode); 2955 update_sd = 1; 2956 ret = journal_end(&myth); 2957 if (ret) 2958 goto journal_error; 2959 } 2960 if (th) { 2961 if (!locked) { 2962 reiserfs_write_lock(inode->i_sb); 2963 locked = true; 2964 } 2965 if (!update_sd) 2966 mark_inode_dirty(inode); 2967 ret = reiserfs_end_persistent_transaction(th); 2968 if (ret) 2969 goto out; 2970 } 2971 2972 out: 2973 if (locked) 2974 reiserfs_write_unlock(inode->i_sb); 2975 unlock_page(page); 2976 page_cache_release(page); 2977 2978 if (pos + len > inode->i_size) 2979 reiserfs_truncate_failed_write(inode); 2980 2981 return ret == 0 ? copied : ret; 2982 2983 journal_error: 2984 reiserfs_write_unlock(inode->i_sb); 2985 locked = false; 2986 if (th) { 2987 if (!update_sd) 2988 reiserfs_update_sd(th, inode); 2989 ret = reiserfs_end_persistent_transaction(th); 2990 } 2991 goto out; 2992 } 2993 2994 int reiserfs_commit_write(struct file *f, struct page *page, 2995 unsigned from, unsigned to) 2996 { 2997 struct inode *inode = page->mapping->host; 2998 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2999 int ret = 0; 3000 int update_sd = 0; 3001 struct reiserfs_transaction_handle *th = NULL; 3002 int depth; 3003 3004 depth = reiserfs_write_unlock_nested(inode->i_sb); 3005 reiserfs_wait_on_write_block(inode->i_sb); 3006 reiserfs_write_lock_nested(inode->i_sb, depth); 3007 3008 if (reiserfs_transaction_running(inode->i_sb)) { 3009 th = current->journal_info; 3010 } 3011 reiserfs_commit_page(inode, page, from, to); 3012 3013 /* 3014 * generic_commit_write does this for us, but does not update the 3015 * transaction tracking stuff when the size changes. So, we have 3016 * to do the i_size updates here. 3017 */ 3018 if (pos > inode->i_size) { 3019 struct reiserfs_transaction_handle myth; 3020 /* 3021 * If the file have grown beyond the border where it 3022 * can have a tail, unmark it as needing a tail 3023 * packing 3024 */ 3025 if ((have_large_tails(inode->i_sb) 3026 && inode->i_size > i_block_size(inode) * 4) 3027 || (have_small_tails(inode->i_sb) 3028 && inode->i_size > i_block_size(inode))) 3029 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3030 3031 ret = journal_begin(&myth, inode->i_sb, 1); 3032 if (ret) 3033 goto journal_error; 3034 3035 reiserfs_update_inode_transaction(inode); 3036 inode->i_size = pos; 3037 /* 3038 * this will just nest into our transaction. It's important 3039 * to use mark_inode_dirty so the inode gets pushed around 3040 * on the dirty lists, and so that O_SYNC works as expected 3041 */ 3042 mark_inode_dirty(inode); 3043 reiserfs_update_sd(&myth, inode); 3044 update_sd = 1; 3045 ret = journal_end(&myth); 3046 if (ret) 3047 goto journal_error; 3048 } 3049 if (th) { 3050 if (!update_sd) 3051 mark_inode_dirty(inode); 3052 ret = reiserfs_end_persistent_transaction(th); 3053 if (ret) 3054 goto out; 3055 } 3056 3057 out: 3058 return ret; 3059 3060 journal_error: 3061 if (th) { 3062 if (!update_sd) 3063 reiserfs_update_sd(th, inode); 3064 ret = reiserfs_end_persistent_transaction(th); 3065 } 3066 3067 return ret; 3068 } 3069 3070 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3071 { 3072 if (reiserfs_attrs(inode->i_sb)) { 3073 if (sd_attrs & REISERFS_SYNC_FL) 3074 inode->i_flags |= S_SYNC; 3075 else 3076 inode->i_flags &= ~S_SYNC; 3077 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3078 inode->i_flags |= S_IMMUTABLE; 3079 else 3080 inode->i_flags &= ~S_IMMUTABLE; 3081 if (sd_attrs & REISERFS_APPEND_FL) 3082 inode->i_flags |= S_APPEND; 3083 else 3084 inode->i_flags &= ~S_APPEND; 3085 if (sd_attrs & REISERFS_NOATIME_FL) 3086 inode->i_flags |= S_NOATIME; 3087 else 3088 inode->i_flags &= ~S_NOATIME; 3089 if (sd_attrs & REISERFS_NOTAIL_FL) 3090 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3091 else 3092 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3093 } 3094 } 3095 3096 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 3097 { 3098 if (reiserfs_attrs(inode->i_sb)) { 3099 if (inode->i_flags & S_IMMUTABLE) 3100 *sd_attrs |= REISERFS_IMMUTABLE_FL; 3101 else 3102 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 3103 if (inode->i_flags & S_SYNC) 3104 *sd_attrs |= REISERFS_SYNC_FL; 3105 else 3106 *sd_attrs &= ~REISERFS_SYNC_FL; 3107 if (inode->i_flags & S_NOATIME) 3108 *sd_attrs |= REISERFS_NOATIME_FL; 3109 else 3110 *sd_attrs &= ~REISERFS_NOATIME_FL; 3111 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 3112 *sd_attrs |= REISERFS_NOTAIL_FL; 3113 else 3114 *sd_attrs &= ~REISERFS_NOTAIL_FL; 3115 } 3116 } 3117 3118 /* 3119 * decide if this buffer needs to stay around for data logging or ordered 3120 * write purposes 3121 */ 3122 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3123 { 3124 int ret = 1; 3125 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3126 3127 lock_buffer(bh); 3128 spin_lock(&j->j_dirty_buffers_lock); 3129 if (!buffer_mapped(bh)) { 3130 goto free_jh; 3131 } 3132 /* 3133 * the page is locked, and the only places that log a data buffer 3134 * also lock the page. 3135 */ 3136 if (reiserfs_file_data_log(inode)) { 3137 /* 3138 * very conservative, leave the buffer pinned if 3139 * anyone might need it. 3140 */ 3141 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3142 ret = 0; 3143 } 3144 } else if (buffer_dirty(bh)) { 3145 struct reiserfs_journal_list *jl; 3146 struct reiserfs_jh *jh = bh->b_private; 3147 3148 /* 3149 * why is this safe? 3150 * reiserfs_setattr updates i_size in the on disk 3151 * stat data before allowing vmtruncate to be called. 3152 * 3153 * If buffer was put onto the ordered list for this 3154 * transaction, we know for sure either this transaction 3155 * or an older one already has updated i_size on disk, 3156 * and this ordered data won't be referenced in the file 3157 * if we crash. 3158 * 3159 * if the buffer was put onto the ordered list for an older 3160 * transaction, we need to leave it around 3161 */ 3162 if (jh && (jl = jh->jl) 3163 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3164 ret = 0; 3165 } 3166 free_jh: 3167 if (ret && bh->b_private) { 3168 reiserfs_free_jh(bh); 3169 } 3170 spin_unlock(&j->j_dirty_buffers_lock); 3171 unlock_buffer(bh); 3172 return ret; 3173 } 3174 3175 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3176 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3177 unsigned int length) 3178 { 3179 struct buffer_head *head, *bh, *next; 3180 struct inode *inode = page->mapping->host; 3181 unsigned int curr_off = 0; 3182 unsigned int stop = offset + length; 3183 int partial_page = (offset || length < PAGE_CACHE_SIZE); 3184 int ret = 1; 3185 3186 BUG_ON(!PageLocked(page)); 3187 3188 if (!partial_page) 3189 ClearPageChecked(page); 3190 3191 if (!page_has_buffers(page)) 3192 goto out; 3193 3194 head = page_buffers(page); 3195 bh = head; 3196 do { 3197 unsigned int next_off = curr_off + bh->b_size; 3198 next = bh->b_this_page; 3199 3200 if (next_off > stop) 3201 goto out; 3202 3203 /* 3204 * is this block fully invalidated? 3205 */ 3206 if (offset <= curr_off) { 3207 if (invalidatepage_can_drop(inode, bh)) 3208 reiserfs_unmap_buffer(bh); 3209 else 3210 ret = 0; 3211 } 3212 curr_off = next_off; 3213 bh = next; 3214 } while (bh != head); 3215 3216 /* 3217 * We release buffers only if the entire page is being invalidated. 3218 * The get_block cached value has been unconditionally invalidated, 3219 * so real IO is not possible anymore. 3220 */ 3221 if (!partial_page && ret) { 3222 ret = try_to_release_page(page, 0); 3223 /* maybe should BUG_ON(!ret); - neilb */ 3224 } 3225 out: 3226 return; 3227 } 3228 3229 static int reiserfs_set_page_dirty(struct page *page) 3230 { 3231 struct inode *inode = page->mapping->host; 3232 if (reiserfs_file_data_log(inode)) { 3233 SetPageChecked(page); 3234 return __set_page_dirty_nobuffers(page); 3235 } 3236 return __set_page_dirty_buffers(page); 3237 } 3238 3239 /* 3240 * Returns 1 if the page's buffers were dropped. The page is locked. 3241 * 3242 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3243 * in the buffers at page_buffers(page). 3244 * 3245 * even in -o notail mode, we can't be sure an old mount without -o notail 3246 * didn't create files with tails. 3247 */ 3248 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3249 { 3250 struct inode *inode = page->mapping->host; 3251 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3252 struct buffer_head *head; 3253 struct buffer_head *bh; 3254 int ret = 1; 3255 3256 WARN_ON(PageChecked(page)); 3257 spin_lock(&j->j_dirty_buffers_lock); 3258 head = page_buffers(page); 3259 bh = head; 3260 do { 3261 if (bh->b_private) { 3262 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3263 reiserfs_free_jh(bh); 3264 } else { 3265 ret = 0; 3266 break; 3267 } 3268 } 3269 bh = bh->b_this_page; 3270 } while (bh != head); 3271 if (ret) 3272 ret = try_to_free_buffers(page); 3273 spin_unlock(&j->j_dirty_buffers_lock); 3274 return ret; 3275 } 3276 3277 /* 3278 * We thank Mingming Cao for helping us understand in great detail what 3279 * to do in this section of the code. 3280 */ 3281 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3282 struct iov_iter *iter, loff_t offset) 3283 { 3284 struct file *file = iocb->ki_filp; 3285 struct inode *inode = file->f_mapping->host; 3286 size_t count = iov_iter_count(iter); 3287 ssize_t ret; 3288 3289 ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, 3290 reiserfs_get_blocks_direct_io); 3291 3292 /* 3293 * In case of error extending write may have instantiated a few 3294 * blocks outside i_size. Trim these off again. 3295 */ 3296 if (unlikely((rw & WRITE) && ret < 0)) { 3297 loff_t isize = i_size_read(inode); 3298 loff_t end = offset + count; 3299 3300 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3301 truncate_setsize(inode, isize); 3302 reiserfs_vfs_truncate_file(inode); 3303 } 3304 } 3305 3306 return ret; 3307 } 3308 3309 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3310 { 3311 struct inode *inode = dentry->d_inode; 3312 unsigned int ia_valid; 3313 int error; 3314 3315 error = inode_change_ok(inode, attr); 3316 if (error) 3317 return error; 3318 3319 /* must be turned off for recursive notify_change calls */ 3320 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3321 3322 if (is_quota_modification(inode, attr)) 3323 dquot_initialize(inode); 3324 reiserfs_write_lock(inode->i_sb); 3325 if (attr->ia_valid & ATTR_SIZE) { 3326 /* 3327 * version 2 items will be caught by the s_maxbytes check 3328 * done for us in vmtruncate 3329 */ 3330 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3331 attr->ia_size > MAX_NON_LFS) { 3332 reiserfs_write_unlock(inode->i_sb); 3333 error = -EFBIG; 3334 goto out; 3335 } 3336 3337 inode_dio_wait(inode); 3338 3339 /* fill in hole pointers in the expanding truncate case. */ 3340 if (attr->ia_size > inode->i_size) { 3341 error = generic_cont_expand_simple(inode, attr->ia_size); 3342 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3343 int err; 3344 struct reiserfs_transaction_handle th; 3345 /* we're changing at most 2 bitmaps, inode + super */ 3346 err = journal_begin(&th, inode->i_sb, 4); 3347 if (!err) { 3348 reiserfs_discard_prealloc(&th, inode); 3349 err = journal_end(&th); 3350 } 3351 if (err) 3352 error = err; 3353 } 3354 if (error) { 3355 reiserfs_write_unlock(inode->i_sb); 3356 goto out; 3357 } 3358 /* 3359 * file size is changed, ctime and mtime are 3360 * to be updated 3361 */ 3362 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3363 } 3364 } 3365 reiserfs_write_unlock(inode->i_sb); 3366 3367 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3368 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3369 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3370 /* stat data of format v3.5 has 16 bit uid and gid */ 3371 error = -EINVAL; 3372 goto out; 3373 } 3374 3375 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3376 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3377 struct reiserfs_transaction_handle th; 3378 int jbegin_count = 3379 2 * 3380 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3381 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3382 2; 3383 3384 error = reiserfs_chown_xattrs(inode, attr); 3385 3386 if (error) 3387 return error; 3388 3389 /* 3390 * (user+group)*(old+new) structure - we count quota 3391 * info and , inode write (sb, inode) 3392 */ 3393 reiserfs_write_lock(inode->i_sb); 3394 error = journal_begin(&th, inode->i_sb, jbegin_count); 3395 reiserfs_write_unlock(inode->i_sb); 3396 if (error) 3397 goto out; 3398 error = dquot_transfer(inode, attr); 3399 reiserfs_write_lock(inode->i_sb); 3400 if (error) { 3401 journal_end(&th); 3402 reiserfs_write_unlock(inode->i_sb); 3403 goto out; 3404 } 3405 3406 /* 3407 * Update corresponding info in inode so that everything 3408 * is in one transaction 3409 */ 3410 if (attr->ia_valid & ATTR_UID) 3411 inode->i_uid = attr->ia_uid; 3412 if (attr->ia_valid & ATTR_GID) 3413 inode->i_gid = attr->ia_gid; 3414 mark_inode_dirty(inode); 3415 error = journal_end(&th); 3416 reiserfs_write_unlock(inode->i_sb); 3417 if (error) 3418 goto out; 3419 } 3420 3421 if ((attr->ia_valid & ATTR_SIZE) && 3422 attr->ia_size != i_size_read(inode)) { 3423 error = inode_newsize_ok(inode, attr->ia_size); 3424 if (!error) { 3425 /* 3426 * Could race against reiserfs_file_release 3427 * if called from NFS, so take tailpack mutex. 3428 */ 3429 mutex_lock(&REISERFS_I(inode)->tailpack); 3430 truncate_setsize(inode, attr->ia_size); 3431 reiserfs_truncate_file(inode, 1); 3432 mutex_unlock(&REISERFS_I(inode)->tailpack); 3433 } 3434 } 3435 3436 if (!error) { 3437 setattr_copy(inode, attr); 3438 mark_inode_dirty(inode); 3439 } 3440 3441 if (!error && reiserfs_posixacl(inode->i_sb)) { 3442 if (attr->ia_valid & ATTR_MODE) 3443 error = reiserfs_acl_chmod(inode); 3444 } 3445 3446 out: 3447 return error; 3448 } 3449 3450 const struct address_space_operations reiserfs_address_space_operations = { 3451 .writepage = reiserfs_writepage, 3452 .readpage = reiserfs_readpage, 3453 .readpages = reiserfs_readpages, 3454 .releasepage = reiserfs_releasepage, 3455 .invalidatepage = reiserfs_invalidatepage, 3456 .write_begin = reiserfs_write_begin, 3457 .write_end = reiserfs_write_end, 3458 .bmap = reiserfs_aop_bmap, 3459 .direct_IO = reiserfs_direct_IO, 3460 .set_page_dirty = reiserfs_set_page_dirty, 3461 }; 3462