1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_xattr.h> 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 22 int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 25 void reiserfs_evict_inode(struct inode *inode) 26 { 27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 28 int jbegin_count = 29 JOURNAL_PER_BALANCE_CNT * 2 + 30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 31 struct reiserfs_transaction_handle th; 32 int depth; 33 int err; 34 35 if (!inode->i_nlink && !is_bad_inode(inode)) 36 dquot_initialize(inode); 37 38 truncate_inode_pages(&inode->i_data, 0); 39 if (inode->i_nlink) 40 goto no_delete; 41 42 depth = reiserfs_write_lock_once(inode->i_sb); 43 44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 46 reiserfs_delete_xattrs(inode); 47 48 if (journal_begin(&th, inode->i_sb, jbegin_count)) 49 goto out; 50 reiserfs_update_inode_transaction(inode); 51 52 reiserfs_discard_prealloc(&th, inode); 53 54 err = reiserfs_delete_object(&th, inode); 55 56 /* Do quota update inside a transaction for journaled quotas. We must do that 57 * after delete_object so that quota updates go into the same transaction as 58 * stat data deletion */ 59 if (!err) 60 dquot_free_inode(inode); 61 62 if (journal_end(&th, inode->i_sb, jbegin_count)) 63 goto out; 64 65 /* check return value from reiserfs_delete_object after 66 * ending the transaction 67 */ 68 if (err) 69 goto out; 70 71 /* all items of file are deleted, so we can remove "save" link */ 72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 73 * about an error here */ 74 } else { 75 /* no object items are in the tree */ 76 ; 77 } 78 out: 79 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */ 80 dquot_drop(inode); 81 inode->i_blocks = 0; 82 reiserfs_write_unlock_once(inode->i_sb, depth); 83 return; 84 85 no_delete: 86 end_writeback(inode); 87 dquot_drop(inode); 88 } 89 90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 91 __u32 objectid, loff_t offset, int type, int length) 92 { 93 key->version = version; 94 95 key->on_disk_key.k_dir_id = dirid; 96 key->on_disk_key.k_objectid = objectid; 97 set_cpu_key_k_offset(key, offset); 98 set_cpu_key_k_type(key, type); 99 key->key_length = length; 100 } 101 102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 103 offset and type of key */ 104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 105 int type, int length) 106 { 107 _make_cpu_key(key, get_inode_item_key_version(inode), 108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 110 length); 111 } 112 113 // 114 // when key is 0, do not set version and short key 115 // 116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 117 int version, 118 loff_t offset, int type, int length, 119 int entry_count /*or ih_free_space */ ) 120 { 121 if (key) { 122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 123 ih->ih_key.k_objectid = 124 cpu_to_le32(key->on_disk_key.k_objectid); 125 } 126 put_ih_version(ih, version); 127 set_le_ih_k_offset(ih, offset); 128 set_le_ih_k_type(ih, type); 129 put_ih_item_len(ih, length); 130 /* set_ih_free_space (ih, 0); */ 131 // for directory items it is entry count, for directs and stat 132 // datas - 0xffff, for indirects - 0 133 put_ih_entry_count(ih, entry_count); 134 } 135 136 // 137 // FIXME: we might cache recently accessed indirect item 138 139 // Ugh. Not too eager for that.... 140 // I cut the code until such time as I see a convincing argument (benchmark). 141 // I don't want a bloated inode struct..., and I don't like code complexity.... 142 143 /* cutting the code is fine, since it really isn't in use yet and is easy 144 ** to add back in. But, Vladimir has a really good idea here. Think 145 ** about what happens for reading a file. For each page, 146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 147 ** an indirect item. This indirect item has X number of pointers, where 148 ** X is a big number if we've done the block allocation right. But, 149 ** we only use one or two of these pointers during each call to readpage, 150 ** needlessly researching again later on. 151 ** 152 ** The size of the cache could be dynamic based on the size of the file. 153 ** 154 ** I'd also like to see us cache the location the stat data item, since 155 ** we are needlessly researching for that frequently. 156 ** 157 ** --chris 158 */ 159 160 /* If this page has a file tail in it, and 161 ** it was read in by get_block_create_0, the page data is valid, 162 ** but tail is still sitting in a direct item, and we can't write to 163 ** it. So, look through this page, and check all the mapped buffers 164 ** to make sure they have valid block numbers. Any that don't need 165 ** to be unmapped, so that __block_write_begin will correctly call 166 ** reiserfs_get_block to convert the tail into an unformatted node 167 */ 168 static inline void fix_tail_page_for_writing(struct page *page) 169 { 170 struct buffer_head *head, *next, *bh; 171 172 if (page && page_has_buffers(page)) { 173 head = page_buffers(page); 174 bh = head; 175 do { 176 next = bh->b_this_page; 177 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 178 reiserfs_unmap_buffer(bh); 179 } 180 bh = next; 181 } while (bh != head); 182 } 183 } 184 185 /* reiserfs_get_block does not need to allocate a block only if it has been 186 done already or non-hole position has been found in the indirect item */ 187 static inline int allocation_needed(int retval, b_blocknr_t allocated, 188 struct item_head *ih, 189 __le32 * item, int pos_in_item) 190 { 191 if (allocated) 192 return 0; 193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 194 get_block_num(item, pos_in_item)) 195 return 0; 196 return 1; 197 } 198 199 static inline int indirect_item_found(int retval, struct item_head *ih) 200 { 201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 202 } 203 204 static inline void set_block_dev_mapped(struct buffer_head *bh, 205 b_blocknr_t block, struct inode *inode) 206 { 207 map_bh(bh, inode->i_sb, block); 208 } 209 210 // 211 // files which were created in the earlier version can not be longer, 212 // than 2 gb 213 // 214 static int file_capable(struct inode *inode, sector_t block) 215 { 216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 218 return 1; 219 220 return 0; 221 } 222 223 static int restart_transaction(struct reiserfs_transaction_handle *th, 224 struct inode *inode, struct treepath *path) 225 { 226 struct super_block *s = th->t_super; 227 int len = th->t_blocks_allocated; 228 int err; 229 230 BUG_ON(!th->t_trans_id); 231 BUG_ON(!th->t_refcount); 232 233 pathrelse(path); 234 235 /* we cannot restart while nested */ 236 if (th->t_refcount > 1) { 237 return 0; 238 } 239 reiserfs_update_sd(th, inode); 240 err = journal_end(th, s, len); 241 if (!err) { 242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 243 if (!err) 244 reiserfs_update_inode_transaction(inode); 245 } 246 return err; 247 } 248 249 // it is called by get_block when create == 0. Returns block number 250 // for 'block'-th logical block of file. When it hits direct item it 251 // returns 0 (being called from bmap) or read direct item into piece 252 // of page (bh_result) 253 254 // Please improve the english/clarity in the comment above, as it is 255 // hard to understand. 256 257 static int _get_block_create_0(struct inode *inode, sector_t block, 258 struct buffer_head *bh_result, int args) 259 { 260 INITIALIZE_PATH(path); 261 struct cpu_key key; 262 struct buffer_head *bh; 263 struct item_head *ih, tmp_ih; 264 b_blocknr_t blocknr; 265 char *p = NULL; 266 int chars; 267 int ret; 268 int result; 269 int done = 0; 270 unsigned long offset; 271 272 // prepare the key to look for the 'block'-th block of file 273 make_cpu_key(&key, inode, 274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 275 3); 276 277 result = search_for_position_by_key(inode->i_sb, &key, &path); 278 if (result != POSITION_FOUND) { 279 pathrelse(&path); 280 if (p) 281 kunmap(bh_result->b_page); 282 if (result == IO_ERROR) 283 return -EIO; 284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 285 // That there is some MMAPED data associated with it that is yet to be written to disk. 286 if ((args & GET_BLOCK_NO_HOLE) 287 && !PageUptodate(bh_result->b_page)) { 288 return -ENOENT; 289 } 290 return 0; 291 } 292 // 293 bh = get_last_bh(&path); 294 ih = get_ih(&path); 295 if (is_indirect_le_ih(ih)) { 296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 297 298 /* FIXME: here we could cache indirect item or part of it in 299 the inode to avoid search_by_key in case of subsequent 300 access to file */ 301 blocknr = get_block_num(ind_item, path.pos_in_item); 302 ret = 0; 303 if (blocknr) { 304 map_bh(bh_result, inode->i_sb, blocknr); 305 if (path.pos_in_item == 306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 307 set_buffer_boundary(bh_result); 308 } 309 } else 310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 311 // That there is some MMAPED data associated with it that is yet to be written to disk. 312 if ((args & GET_BLOCK_NO_HOLE) 313 && !PageUptodate(bh_result->b_page)) { 314 ret = -ENOENT; 315 } 316 317 pathrelse(&path); 318 if (p) 319 kunmap(bh_result->b_page); 320 return ret; 321 } 322 // requested data are in direct item(s) 323 if (!(args & GET_BLOCK_READ_DIRECT)) { 324 // we are called by bmap. FIXME: we can not map block of file 325 // when it is stored in direct item(s) 326 pathrelse(&path); 327 if (p) 328 kunmap(bh_result->b_page); 329 return -ENOENT; 330 } 331 332 /* if we've got a direct item, and the buffer or page was uptodate, 333 ** we don't want to pull data off disk again. skip to the 334 ** end, where we map the buffer and return 335 */ 336 if (buffer_uptodate(bh_result)) { 337 goto finished; 338 } else 339 /* 340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 341 ** pages without any buffers. If the page is up to date, we don't want 342 ** read old data off disk. Set the up to date bit on the buffer instead 343 ** and jump to the end 344 */ 345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 346 set_buffer_uptodate(bh_result); 347 goto finished; 348 } 349 // read file tail into part of page 350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 351 copy_item_head(&tmp_ih, ih); 352 353 /* we only want to kmap if we are reading the tail into the page. 354 ** this is not the common case, so we don't kmap until we are 355 ** sure we need to. But, this means the item might move if 356 ** kmap schedules 357 */ 358 if (!p) 359 p = (char *)kmap(bh_result->b_page); 360 361 p += offset; 362 memset(p, 0, inode->i_sb->s_blocksize); 363 do { 364 if (!is_direct_le_ih(ih)) { 365 BUG(); 366 } 367 /* make sure we don't read more bytes than actually exist in 368 ** the file. This can happen in odd cases where i_size isn't 369 ** correct, and when direct item padding results in a few 370 ** extra bytes at the end of the direct item 371 */ 372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 373 break; 374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 375 chars = 376 inode->i_size - (le_ih_k_offset(ih) - 1) - 377 path.pos_in_item; 378 done = 1; 379 } else { 380 chars = ih_item_len(ih) - path.pos_in_item; 381 } 382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 383 384 if (done) 385 break; 386 387 p += chars; 388 389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 390 // we done, if read direct item is not the last item of 391 // node FIXME: we could try to check right delimiting key 392 // to see whether direct item continues in the right 393 // neighbor or rely on i_size 394 break; 395 396 // update key to look for the next piece 397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 398 result = search_for_position_by_key(inode->i_sb, &key, &path); 399 if (result != POSITION_FOUND) 400 // i/o error most likely 401 break; 402 bh = get_last_bh(&path); 403 ih = get_ih(&path); 404 } while (1); 405 406 flush_dcache_page(bh_result->b_page); 407 kunmap(bh_result->b_page); 408 409 finished: 410 pathrelse(&path); 411 412 if (result == IO_ERROR) 413 return -EIO; 414 415 /* this buffer has valid data, but isn't valid for io. mapping it to 416 * block #0 tells the rest of reiserfs it just has a tail in it 417 */ 418 map_bh(bh_result, inode->i_sb, 0); 419 set_buffer_uptodate(bh_result); 420 return 0; 421 } 422 423 // this is called to create file map. So, _get_block_create_0 will not 424 // read direct item 425 static int reiserfs_bmap(struct inode *inode, sector_t block, 426 struct buffer_head *bh_result, int create) 427 { 428 if (!file_capable(inode, block)) 429 return -EFBIG; 430 431 reiserfs_write_lock(inode->i_sb); 432 /* do not read the direct item */ 433 _get_block_create_0(inode, block, bh_result, 0); 434 reiserfs_write_unlock(inode->i_sb); 435 return 0; 436 } 437 438 /* special version of get_block that is only used by grab_tail_page right 439 ** now. It is sent to __block_write_begin, and when you try to get a 440 ** block past the end of the file (or a block from a hole) it returns 441 ** -ENOENT instead of a valid buffer. __block_write_begin expects to 442 ** be able to do i/o on the buffers returned, unless an error value 443 ** is also returned. 444 ** 445 ** So, this allows __block_write_begin to be used for reading a single block 446 ** in a page. Where it does not produce a valid page for holes, or past the 447 ** end of the file. This turns out to be exactly what we need for reading 448 ** tails for conversion. 449 ** 450 ** The point of the wrapper is forcing a certain value for create, even 451 ** though the VFS layer is calling this function with create==1. If you 452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 453 ** don't use this function. 454 */ 455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 456 struct buffer_head *bh_result, 457 int create) 458 { 459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 460 } 461 462 /* This is special helper for reiserfs_get_block in case we are executing 463 direct_IO request. */ 464 static int reiserfs_get_blocks_direct_io(struct inode *inode, 465 sector_t iblock, 466 struct buffer_head *bh_result, 467 int create) 468 { 469 int ret; 470 471 bh_result->b_page = NULL; 472 473 /* We set the b_size before reiserfs_get_block call since it is 474 referenced in convert_tail_for_hole() that may be called from 475 reiserfs_get_block() */ 476 bh_result->b_size = (1 << inode->i_blkbits); 477 478 ret = reiserfs_get_block(inode, iblock, bh_result, 479 create | GET_BLOCK_NO_DANGLE); 480 if (ret) 481 goto out; 482 483 /* don't allow direct io onto tail pages */ 484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 485 /* make sure future calls to the direct io funcs for this offset 486 ** in the file fail by unmapping the buffer 487 */ 488 clear_buffer_mapped(bh_result); 489 ret = -EINVAL; 490 } 491 /* Possible unpacked tail. Flush the data before pages have 492 disappeared */ 493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 494 int err; 495 496 reiserfs_write_lock(inode->i_sb); 497 498 err = reiserfs_commit_for_inode(inode); 499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 500 501 reiserfs_write_unlock(inode->i_sb); 502 503 if (err < 0) 504 ret = err; 505 } 506 out: 507 return ret; 508 } 509 510 /* 511 ** helper function for when reiserfs_get_block is called for a hole 512 ** but the file tail is still in a direct item 513 ** bh_result is the buffer head for the hole 514 ** tail_offset is the offset of the start of the tail in the file 515 ** 516 ** This calls prepare_write, which will start a new transaction 517 ** you should not be in a transaction, or have any paths held when you 518 ** call this. 519 */ 520 static int convert_tail_for_hole(struct inode *inode, 521 struct buffer_head *bh_result, 522 loff_t tail_offset) 523 { 524 unsigned long index; 525 unsigned long tail_end; 526 unsigned long tail_start; 527 struct page *tail_page; 528 struct page *hole_page = bh_result->b_page; 529 int retval = 0; 530 531 if ((tail_offset & (bh_result->b_size - 1)) != 1) 532 return -EIO; 533 534 /* always try to read until the end of the block */ 535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 537 538 index = tail_offset >> PAGE_CACHE_SHIFT; 539 /* hole_page can be zero in case of direct_io, we are sure 540 that we cannot get here if we write with O_DIRECT into 541 tail page */ 542 if (!hole_page || index != hole_page->index) { 543 tail_page = grab_cache_page(inode->i_mapping, index); 544 retval = -ENOMEM; 545 if (!tail_page) { 546 goto out; 547 } 548 } else { 549 tail_page = hole_page; 550 } 551 552 /* we don't have to make sure the conversion did not happen while 553 ** we were locking the page because anyone that could convert 554 ** must first take i_mutex. 555 ** 556 ** We must fix the tail page for writing because it might have buffers 557 ** that are mapped, but have a block number of 0. This indicates tail 558 ** data that has been read directly into the page, and 559 ** __block_write_begin won't trigger a get_block in this case. 560 */ 561 fix_tail_page_for_writing(tail_page); 562 retval = __reiserfs_write_begin(tail_page, tail_start, 563 tail_end - tail_start); 564 if (retval) 565 goto unlock; 566 567 /* tail conversion might change the data in the page */ 568 flush_dcache_page(tail_page); 569 570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 571 572 unlock: 573 if (tail_page != hole_page) { 574 unlock_page(tail_page); 575 page_cache_release(tail_page); 576 } 577 out: 578 return retval; 579 } 580 581 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 582 sector_t block, 583 struct inode *inode, 584 b_blocknr_t * allocated_block_nr, 585 struct treepath *path, int flags) 586 { 587 BUG_ON(!th->t_trans_id); 588 589 #ifdef REISERFS_PREALLOCATE 590 if (!(flags & GET_BLOCK_NO_IMUX)) { 591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 592 path, block); 593 } 594 #endif 595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 596 block); 597 } 598 599 int reiserfs_get_block(struct inode *inode, sector_t block, 600 struct buffer_head *bh_result, int create) 601 { 602 int repeat, retval = 0; 603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 604 INITIALIZE_PATH(path); 605 int pos_in_item; 606 struct cpu_key key; 607 struct buffer_head *bh, *unbh = NULL; 608 struct item_head *ih, tmp_ih; 609 __le32 *item; 610 int done; 611 int fs_gen; 612 int lock_depth; 613 struct reiserfs_transaction_handle *th = NULL; 614 /* space reserved in transaction batch: 615 . 3 balancings in direct->indirect conversion 616 . 1 block involved into reiserfs_update_sd() 617 XXX in practically impossible worst case direct2indirect() 618 can incur (much) more than 3 balancings. 619 quota update for user, group */ 620 int jbegin_count = 621 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 623 int version; 624 int dangle = 1; 625 loff_t new_offset = 626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 627 628 lock_depth = reiserfs_write_lock_once(inode->i_sb); 629 version = get_inode_item_key_version(inode); 630 631 if (!file_capable(inode, block)) { 632 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 633 return -EFBIG; 634 } 635 636 /* if !create, we aren't changing the FS, so we don't need to 637 ** log anything, so we don't need to start a transaction 638 */ 639 if (!(create & GET_BLOCK_CREATE)) { 640 int ret; 641 /* find number of block-th logical block of the file */ 642 ret = _get_block_create_0(inode, block, bh_result, 643 create | GET_BLOCK_READ_DIRECT); 644 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 645 return ret; 646 } 647 /* 648 * if we're already in a transaction, make sure to close 649 * any new transactions we start in this func 650 */ 651 if ((create & GET_BLOCK_NO_DANGLE) || 652 reiserfs_transaction_running(inode->i_sb)) 653 dangle = 0; 654 655 /* If file is of such a size, that it might have a tail and tails are enabled 656 ** we should mark it as possibly needing tail packing on close 657 */ 658 if ((have_large_tails(inode->i_sb) 659 && inode->i_size < i_block_size(inode) * 4) 660 || (have_small_tails(inode->i_sb) 661 && inode->i_size < i_block_size(inode))) 662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 663 664 /* set the key of the first byte in the 'block'-th block of file */ 665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 667 start_trans: 668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 669 if (!th) { 670 retval = -ENOMEM; 671 goto failure; 672 } 673 reiserfs_update_inode_transaction(inode); 674 } 675 research: 676 677 retval = search_for_position_by_key(inode->i_sb, &key, &path); 678 if (retval == IO_ERROR) { 679 retval = -EIO; 680 goto failure; 681 } 682 683 bh = get_last_bh(&path); 684 ih = get_ih(&path); 685 item = get_item(&path); 686 pos_in_item = path.pos_in_item; 687 688 fs_gen = get_generation(inode->i_sb); 689 copy_item_head(&tmp_ih, ih); 690 691 if (allocation_needed 692 (retval, allocated_block_nr, ih, item, pos_in_item)) { 693 /* we have to allocate block for the unformatted node */ 694 if (!th) { 695 pathrelse(&path); 696 goto start_trans; 697 } 698 699 repeat = 700 _allocate_block(th, block, inode, &allocated_block_nr, 701 &path, create); 702 703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 704 /* restart the transaction to give the journal a chance to free 705 ** some blocks. releases the path, so we have to go back to 706 ** research if we succeed on the second try 707 */ 708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 709 retval = restart_transaction(th, inode, &path); 710 if (retval) 711 goto failure; 712 repeat = 713 _allocate_block(th, block, inode, 714 &allocated_block_nr, NULL, create); 715 716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 717 goto research; 718 } 719 if (repeat == QUOTA_EXCEEDED) 720 retval = -EDQUOT; 721 else 722 retval = -ENOSPC; 723 goto failure; 724 } 725 726 if (fs_changed(fs_gen, inode->i_sb) 727 && item_moved(&tmp_ih, &path)) { 728 goto research; 729 } 730 } 731 732 if (indirect_item_found(retval, ih)) { 733 b_blocknr_t unfm_ptr; 734 /* 'block'-th block is in the file already (there is 735 corresponding cell in some indirect item). But it may be 736 zero unformatted node pointer (hole) */ 737 unfm_ptr = get_block_num(item, pos_in_item); 738 if (unfm_ptr == 0) { 739 /* use allocated block to plug the hole */ 740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 741 if (fs_changed(fs_gen, inode->i_sb) 742 && item_moved(&tmp_ih, &path)) { 743 reiserfs_restore_prepared_buffer(inode->i_sb, 744 bh); 745 goto research; 746 } 747 set_buffer_new(bh_result); 748 if (buffer_dirty(bh_result) 749 && reiserfs_data_ordered(inode->i_sb)) 750 reiserfs_add_ordered_list(inode, bh_result); 751 put_block_num(item, pos_in_item, allocated_block_nr); 752 unfm_ptr = allocated_block_nr; 753 journal_mark_dirty(th, inode->i_sb, bh); 754 reiserfs_update_sd(th, inode); 755 } 756 set_block_dev_mapped(bh_result, unfm_ptr, inode); 757 pathrelse(&path); 758 retval = 0; 759 if (!dangle && th) 760 retval = reiserfs_end_persistent_transaction(th); 761 762 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 763 764 /* the item was found, so new blocks were not added to the file 765 ** there is no need to make sure the inode is updated with this 766 ** transaction 767 */ 768 return retval; 769 } 770 771 if (!th) { 772 pathrelse(&path); 773 goto start_trans; 774 } 775 776 /* desired position is not found or is in the direct item. We have 777 to append file with holes up to 'block'-th block converting 778 direct items to indirect one if necessary */ 779 done = 0; 780 do { 781 if (is_statdata_le_ih(ih)) { 782 __le32 unp = 0; 783 struct cpu_key tmp_key; 784 785 /* indirect item has to be inserted */ 786 make_le_item_head(&tmp_ih, &key, version, 1, 787 TYPE_INDIRECT, UNFM_P_SIZE, 788 0 /* free_space */ ); 789 790 if (cpu_key_k_offset(&key) == 1) { 791 /* we are going to add 'block'-th block to the file. Use 792 allocated block for that */ 793 unp = cpu_to_le32(allocated_block_nr); 794 set_block_dev_mapped(bh_result, 795 allocated_block_nr, inode); 796 set_buffer_new(bh_result); 797 done = 1; 798 } 799 tmp_key = key; // ;) 800 set_cpu_key_k_offset(&tmp_key, 1); 801 PATH_LAST_POSITION(&path)++; 802 803 retval = 804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 805 inode, (char *)&unp); 806 if (retval) { 807 reiserfs_free_block(th, inode, 808 allocated_block_nr, 1); 809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 810 } 811 //mark_tail_converted (inode); 812 } else if (is_direct_le_ih(ih)) { 813 /* direct item has to be converted */ 814 loff_t tail_offset; 815 816 tail_offset = 817 ((le_ih_k_offset(ih) - 818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 819 if (tail_offset == cpu_key_k_offset(&key)) { 820 /* direct item we just found fits into block we have 821 to map. Convert it into unformatted node: use 822 bh_result for the conversion */ 823 set_block_dev_mapped(bh_result, 824 allocated_block_nr, inode); 825 unbh = bh_result; 826 done = 1; 827 } else { 828 /* we have to padd file tail stored in direct item(s) 829 up to block size and convert it to unformatted 830 node. FIXME: this should also get into page cache */ 831 832 pathrelse(&path); 833 /* 834 * ugly, but we can only end the transaction if 835 * we aren't nested 836 */ 837 BUG_ON(!th->t_refcount); 838 if (th->t_refcount == 1) { 839 retval = 840 reiserfs_end_persistent_transaction 841 (th); 842 th = NULL; 843 if (retval) 844 goto failure; 845 } 846 847 retval = 848 convert_tail_for_hole(inode, bh_result, 849 tail_offset); 850 if (retval) { 851 if (retval != -ENOSPC) 852 reiserfs_error(inode->i_sb, 853 "clm-6004", 854 "convert tail failed " 855 "inode %lu, error %d", 856 inode->i_ino, 857 retval); 858 if (allocated_block_nr) { 859 /* the bitmap, the super, and the stat data == 3 */ 860 if (!th) 861 th = reiserfs_persistent_transaction(inode->i_sb, 3); 862 if (th) 863 reiserfs_free_block(th, 864 inode, 865 allocated_block_nr, 866 1); 867 } 868 goto failure; 869 } 870 goto research; 871 } 872 retval = 873 direct2indirect(th, inode, &path, unbh, 874 tail_offset); 875 if (retval) { 876 reiserfs_unmap_buffer(unbh); 877 reiserfs_free_block(th, inode, 878 allocated_block_nr, 1); 879 goto failure; 880 } 881 /* it is important the set_buffer_uptodate is done after 882 ** the direct2indirect. The buffer might contain valid 883 ** data newer than the data on disk (read by readpage, changed, 884 ** and then sent here by writepage). direct2indirect needs 885 ** to know if unbh was already up to date, so it can decide 886 ** if the data in unbh needs to be replaced with data from 887 ** the disk 888 */ 889 set_buffer_uptodate(unbh); 890 891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 892 buffer will disappear shortly, so it should not be added to 893 */ 894 if (unbh->b_page) { 895 /* we've converted the tail, so we must 896 ** flush unbh before the transaction commits 897 */ 898 reiserfs_add_tail_list(inode, unbh); 899 900 /* mark it dirty now to prevent commit_write from adding 901 ** this buffer to the inode's dirty buffer list 902 */ 903 /* 904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 905 * It's still atomic, but it sets the page dirty too, 906 * which makes it eligible for writeback at any time by the 907 * VM (which was also the case with __mark_buffer_dirty()) 908 */ 909 mark_buffer_dirty(unbh); 910 } 911 } else { 912 /* append indirect item with holes if needed, when appending 913 pointer to 'block'-th block use block, which is already 914 allocated */ 915 struct cpu_key tmp_key; 916 unp_t unf_single = 0; // We use this in case we need to allocate only 917 // one block which is a fastpath 918 unp_t *un; 919 __u64 max_to_insert = 920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 921 UNFM_P_SIZE; 922 __u64 blocks_needed; 923 924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 925 "vs-804: invalid position for append"); 926 /* indirect item has to be appended, set up key of that position */ 927 make_cpu_key(&tmp_key, inode, 928 le_key_k_offset(version, 929 &(ih->ih_key)) + 930 op_bytes_number(ih, 931 inode->i_sb->s_blocksize), 932 //pos_in_item * inode->i_sb->s_blocksize, 933 TYPE_INDIRECT, 3); // key type is unimportant 934 935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 936 "green-805: invalid offset"); 937 blocks_needed = 938 1 + 939 ((cpu_key_k_offset(&key) - 940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 941 s_blocksize_bits); 942 943 if (blocks_needed == 1) { 944 un = &unf_single; 945 } else { 946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 947 if (!un) { 948 un = &unf_single; 949 blocks_needed = 1; 950 max_to_insert = 0; 951 } 952 } 953 if (blocks_needed <= max_to_insert) { 954 /* we are going to add target block to the file. Use allocated 955 block for that */ 956 un[blocks_needed - 1] = 957 cpu_to_le32(allocated_block_nr); 958 set_block_dev_mapped(bh_result, 959 allocated_block_nr, inode); 960 set_buffer_new(bh_result); 961 done = 1; 962 } else { 963 /* paste hole to the indirect item */ 964 /* If kmalloc failed, max_to_insert becomes zero and it means we 965 only have space for one block */ 966 blocks_needed = 967 max_to_insert ? max_to_insert : 1; 968 } 969 retval = 970 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 971 (char *)un, 972 UNFM_P_SIZE * 973 blocks_needed); 974 975 if (blocks_needed != 1) 976 kfree(un); 977 978 if (retval) { 979 reiserfs_free_block(th, inode, 980 allocated_block_nr, 1); 981 goto failure; 982 } 983 if (!done) { 984 /* We need to mark new file size in case this function will be 985 interrupted/aborted later on. And we may do this only for 986 holes. */ 987 inode->i_size += 988 inode->i_sb->s_blocksize * blocks_needed; 989 } 990 } 991 992 if (done == 1) 993 break; 994 995 /* this loop could log more blocks than we had originally asked 996 ** for. So, we have to allow the transaction to end if it is 997 ** too big or too full. Update the inode so things are 998 ** consistent if we crash before the function returns 999 ** 1000 ** release the path so that anybody waiting on the path before 1001 ** ending their transaction will be able to continue. 1002 */ 1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1004 retval = restart_transaction(th, inode, &path); 1005 if (retval) 1006 goto failure; 1007 } 1008 /* 1009 * inserting indirect pointers for a hole can take a 1010 * long time. reschedule if needed and also release the write 1011 * lock for others. 1012 */ 1013 if (need_resched()) { 1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1015 schedule(); 1016 lock_depth = reiserfs_write_lock_once(inode->i_sb); 1017 } 1018 1019 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1020 if (retval == IO_ERROR) { 1021 retval = -EIO; 1022 goto failure; 1023 } 1024 if (retval == POSITION_FOUND) { 1025 reiserfs_warning(inode->i_sb, "vs-825", 1026 "%K should not be found", &key); 1027 retval = -EEXIST; 1028 if (allocated_block_nr) 1029 reiserfs_free_block(th, inode, 1030 allocated_block_nr, 1); 1031 pathrelse(&path); 1032 goto failure; 1033 } 1034 bh = get_last_bh(&path); 1035 ih = get_ih(&path); 1036 item = get_item(&path); 1037 pos_in_item = path.pos_in_item; 1038 } while (1); 1039 1040 retval = 0; 1041 1042 failure: 1043 if (th && (!dangle || (retval && !th->t_trans_id))) { 1044 int err; 1045 if (th->t_trans_id) 1046 reiserfs_update_sd(th, inode); 1047 err = reiserfs_end_persistent_transaction(th); 1048 if (err) 1049 retval = err; 1050 } 1051 1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 1053 reiserfs_check_path(&path); 1054 return retval; 1055 } 1056 1057 static int 1058 reiserfs_readpages(struct file *file, struct address_space *mapping, 1059 struct list_head *pages, unsigned nr_pages) 1060 { 1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1062 } 1063 1064 /* Compute real number of used bytes by file 1065 * Following three functions can go away when we'll have enough space in stat item 1066 */ 1067 static int real_space_diff(struct inode *inode, int sd_size) 1068 { 1069 int bytes; 1070 loff_t blocksize = inode->i_sb->s_blocksize; 1071 1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1073 return sd_size; 1074 1075 /* End of file is also in full block with indirect reference, so round 1076 ** up to the next block. 1077 ** 1078 ** there is just no way to know if the tail is actually packed 1079 ** on the file, so we have to assume it isn't. When we pack the 1080 ** tail, we add 4 bytes to pretend there really is an unformatted 1081 ** node pointer 1082 */ 1083 bytes = 1084 ((inode->i_size + 1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1086 sd_size; 1087 return bytes; 1088 } 1089 1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1091 int sd_size) 1092 { 1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1094 return inode->i_size + 1095 (loff_t) (real_space_diff(inode, sd_size)); 1096 } 1097 return ((loff_t) real_space_diff(inode, sd_size)) + 1098 (((loff_t) blocks) << 9); 1099 } 1100 1101 /* Compute number of blocks used by file in ReiserFS counting */ 1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1103 { 1104 loff_t bytes = inode_get_bytes(inode); 1105 loff_t real_space = real_space_diff(inode, sd_size); 1106 1107 /* keeps fsck and non-quota versions of reiserfs happy */ 1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1109 bytes += (loff_t) 511; 1110 } 1111 1112 /* files from before the quota patch might i_blocks such that 1113 ** bytes < real_space. Deal with that here to prevent it from 1114 ** going negative. 1115 */ 1116 if (bytes < real_space) 1117 return 0; 1118 return (bytes - real_space) >> 9; 1119 } 1120 1121 // 1122 // BAD: new directories have stat data of new type and all other items 1123 // of old type. Version stored in the inode says about body items, so 1124 // in update_stat_data we can not rely on inode, but have to check 1125 // item version directly 1126 // 1127 1128 // called by read_locked_inode 1129 static void init_inode(struct inode *inode, struct treepath *path) 1130 { 1131 struct buffer_head *bh; 1132 struct item_head *ih; 1133 __u32 rdev; 1134 //int version = ITEM_VERSION_1; 1135 1136 bh = PATH_PLAST_BUFFER(path); 1137 ih = PATH_PITEM_HEAD(path); 1138 1139 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1140 1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1142 REISERFS_I(inode)->i_flags = 0; 1143 REISERFS_I(inode)->i_prealloc_block = 0; 1144 REISERFS_I(inode)->i_prealloc_count = 0; 1145 REISERFS_I(inode)->i_trans_id = 0; 1146 REISERFS_I(inode)->i_jl = NULL; 1147 reiserfs_init_xattr_rwsem(inode); 1148 1149 if (stat_data_v1(ih)) { 1150 struct stat_data_v1 *sd = 1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1152 unsigned long blocks; 1153 1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1155 set_inode_sd_version(inode, STAT_DATA_V1); 1156 inode->i_mode = sd_v1_mode(sd); 1157 inode->i_nlink = sd_v1_nlink(sd); 1158 inode->i_uid = sd_v1_uid(sd); 1159 inode->i_gid = sd_v1_gid(sd); 1160 inode->i_size = sd_v1_size(sd); 1161 inode->i_atime.tv_sec = sd_v1_atime(sd); 1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1164 inode->i_atime.tv_nsec = 0; 1165 inode->i_ctime.tv_nsec = 0; 1166 inode->i_mtime.tv_nsec = 0; 1167 1168 inode->i_blocks = sd_v1_blocks(sd); 1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1170 blocks = (inode->i_size + 511) >> 9; 1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1172 if (inode->i_blocks > blocks) { 1173 // there was a bug in <=3.5.23 when i_blocks could take negative 1174 // values. Starting from 3.5.17 this value could even be stored in 1175 // stat data. For such files we set i_blocks based on file 1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1177 // only updated if file's inode will ever change 1178 inode->i_blocks = blocks; 1179 } 1180 1181 rdev = sd_v1_rdev(sd); 1182 REISERFS_I(inode)->i_first_direct_byte = 1183 sd_v1_first_direct_byte(sd); 1184 /* an early bug in the quota code can give us an odd number for the 1185 ** block count. This is incorrect, fix it here. 1186 */ 1187 if (inode->i_blocks & 1) { 1188 inode->i_blocks++; 1189 } 1190 inode_set_bytes(inode, 1191 to_real_used_space(inode, inode->i_blocks, 1192 SD_V1_SIZE)); 1193 /* nopack is initially zero for v1 objects. For v2 objects, 1194 nopack is initialised from sd_attrs */ 1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1196 } else { 1197 // new stat data found, but object may have old items 1198 // (directories and symlinks) 1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1200 1201 inode->i_mode = sd_v2_mode(sd); 1202 inode->i_nlink = sd_v2_nlink(sd); 1203 inode->i_uid = sd_v2_uid(sd); 1204 inode->i_size = sd_v2_size(sd); 1205 inode->i_gid = sd_v2_gid(sd); 1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1207 inode->i_atime.tv_sec = sd_v2_atime(sd); 1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1209 inode->i_ctime.tv_nsec = 0; 1210 inode->i_mtime.tv_nsec = 0; 1211 inode->i_atime.tv_nsec = 0; 1212 inode->i_blocks = sd_v2_blocks(sd); 1213 rdev = sd_v2_rdev(sd); 1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1215 inode->i_generation = 1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1217 else 1218 inode->i_generation = sd_v2_generation(sd); 1219 1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1222 else 1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1224 REISERFS_I(inode)->i_first_direct_byte = 0; 1225 set_inode_sd_version(inode, STAT_DATA_V2); 1226 inode_set_bytes(inode, 1227 to_real_used_space(inode, inode->i_blocks, 1228 SD_V2_SIZE)); 1229 /* read persistent inode attributes from sd and initialise 1230 generic inode flags from them */ 1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1233 } 1234 1235 pathrelse(path); 1236 if (S_ISREG(inode->i_mode)) { 1237 inode->i_op = &reiserfs_file_inode_operations; 1238 inode->i_fop = &reiserfs_file_operations; 1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1240 } else if (S_ISDIR(inode->i_mode)) { 1241 inode->i_op = &reiserfs_dir_inode_operations; 1242 inode->i_fop = &reiserfs_dir_operations; 1243 } else if (S_ISLNK(inode->i_mode)) { 1244 inode->i_op = &reiserfs_symlink_inode_operations; 1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1246 } else { 1247 inode->i_blocks = 0; 1248 inode->i_op = &reiserfs_special_inode_operations; 1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1250 } 1251 } 1252 1253 // update new stat data with inode fields 1254 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1255 { 1256 struct stat_data *sd_v2 = (struct stat_data *)sd; 1257 __u16 flags; 1258 1259 set_sd_v2_mode(sd_v2, inode->i_mode); 1260 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1261 set_sd_v2_uid(sd_v2, inode->i_uid); 1262 set_sd_v2_size(sd_v2, size); 1263 set_sd_v2_gid(sd_v2, inode->i_gid); 1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1270 else 1271 set_sd_v2_generation(sd_v2, inode->i_generation); 1272 flags = REISERFS_I(inode)->i_attrs; 1273 i_attrs_to_sd_attrs(inode, &flags); 1274 set_sd_v2_attrs(sd_v2, flags); 1275 } 1276 1277 // used to copy inode's fields to old stat data 1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1279 { 1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1281 1282 set_sd_v1_mode(sd_v1, inode->i_mode); 1283 set_sd_v1_uid(sd_v1, inode->i_uid); 1284 set_sd_v1_gid(sd_v1, inode->i_gid); 1285 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1286 set_sd_v1_size(sd_v1, size); 1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1290 1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1293 else 1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1295 1296 // Sigh. i_first_direct_byte is back 1297 set_sd_v1_first_direct_byte(sd_v1, 1298 REISERFS_I(inode)->i_first_direct_byte); 1299 } 1300 1301 /* NOTE, you must prepare the buffer head before sending it here, 1302 ** and then log it after the call 1303 */ 1304 static void update_stat_data(struct treepath *path, struct inode *inode, 1305 loff_t size) 1306 { 1307 struct buffer_head *bh; 1308 struct item_head *ih; 1309 1310 bh = PATH_PLAST_BUFFER(path); 1311 ih = PATH_PITEM_HEAD(path); 1312 1313 if (!is_statdata_le_ih(ih)) 1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1315 INODE_PKEY(inode), ih); 1316 1317 if (stat_data_v1(ih)) { 1318 // path points to old stat data 1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1320 } else { 1321 inode2sd(B_I_PITEM(bh, ih), inode, size); 1322 } 1323 1324 return; 1325 } 1326 1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1328 struct inode *inode, loff_t size) 1329 { 1330 struct cpu_key key; 1331 INITIALIZE_PATH(path); 1332 struct buffer_head *bh; 1333 int fs_gen; 1334 struct item_head *ih, tmp_ih; 1335 int retval; 1336 1337 BUG_ON(!th->t_trans_id); 1338 1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1340 1341 for (;;) { 1342 int pos; 1343 /* look for the object's stat data */ 1344 retval = search_item(inode->i_sb, &key, &path); 1345 if (retval == IO_ERROR) { 1346 reiserfs_error(inode->i_sb, "vs-13050", 1347 "i/o failure occurred trying to " 1348 "update %K stat data", &key); 1349 return; 1350 } 1351 if (retval == ITEM_NOT_FOUND) { 1352 pos = PATH_LAST_POSITION(&path); 1353 pathrelse(&path); 1354 if (inode->i_nlink == 0) { 1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1356 return; 1357 } 1358 reiserfs_warning(inode->i_sb, "vs-13060", 1359 "stat data of object %k (nlink == %d) " 1360 "not found (pos %d)", 1361 INODE_PKEY(inode), inode->i_nlink, 1362 pos); 1363 reiserfs_check_path(&path); 1364 return; 1365 } 1366 1367 /* sigh, prepare_for_journal might schedule. When it schedules the 1368 ** FS might change. We have to detect that, and loop back to the 1369 ** search if the stat data item has moved 1370 */ 1371 bh = get_last_bh(&path); 1372 ih = get_ih(&path); 1373 copy_item_head(&tmp_ih, ih); 1374 fs_gen = get_generation(inode->i_sb); 1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1376 if (fs_changed(fs_gen, inode->i_sb) 1377 && item_moved(&tmp_ih, &path)) { 1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1379 continue; /* Stat_data item has been moved after scheduling. */ 1380 } 1381 break; 1382 } 1383 update_stat_data(&path, inode, size); 1384 journal_mark_dirty(th, th->t_super, bh); 1385 pathrelse(&path); 1386 return; 1387 } 1388 1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1390 ** does a make_bad_inode when things go wrong. But, we need to make sure 1391 ** and clear the key in the private portion of the inode, otherwise a 1392 ** corresponding iput might try to delete whatever object the inode last 1393 ** represented. 1394 */ 1395 static void reiserfs_make_bad_inode(struct inode *inode) 1396 { 1397 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1398 make_bad_inode(inode); 1399 } 1400 1401 // 1402 // initially this function was derived from minix or ext2's analog and 1403 // evolved as the prototype did 1404 // 1405 1406 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1407 { 1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1409 inode->i_ino = args->objectid; 1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1411 return 0; 1412 } 1413 1414 /* looks for stat data in the tree, and fills up the fields of in-core 1415 inode stat data fields */ 1416 void reiserfs_read_locked_inode(struct inode *inode, 1417 struct reiserfs_iget_args *args) 1418 { 1419 INITIALIZE_PATH(path_to_sd); 1420 struct cpu_key key; 1421 unsigned long dirino; 1422 int retval; 1423 1424 dirino = args->dirid; 1425 1426 /* set version 1, version 2 could be used too, because stat data 1427 key is the same in both versions */ 1428 key.version = KEY_FORMAT_3_5; 1429 key.on_disk_key.k_dir_id = dirino; 1430 key.on_disk_key.k_objectid = inode->i_ino; 1431 key.on_disk_key.k_offset = 0; 1432 key.on_disk_key.k_type = 0; 1433 1434 /* look for the object's stat data */ 1435 retval = search_item(inode->i_sb, &key, &path_to_sd); 1436 if (retval == IO_ERROR) { 1437 reiserfs_error(inode->i_sb, "vs-13070", 1438 "i/o failure occurred trying to find " 1439 "stat data of %K", &key); 1440 reiserfs_make_bad_inode(inode); 1441 return; 1442 } 1443 if (retval != ITEM_FOUND) { 1444 /* a stale NFS handle can trigger this without it being an error */ 1445 pathrelse(&path_to_sd); 1446 reiserfs_make_bad_inode(inode); 1447 inode->i_nlink = 0; 1448 return; 1449 } 1450 1451 init_inode(inode, &path_to_sd); 1452 1453 /* It is possible that knfsd is trying to access inode of a file 1454 that is being removed from the disk by some other thread. As we 1455 update sd on unlink all that is required is to check for nlink 1456 here. This bug was first found by Sizif when debugging 1457 SquidNG/Butterfly, forgotten, and found again after Philippe 1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1459 1460 More logical fix would require changes in fs/inode.c:iput() to 1461 remove inode from hash-table _after_ fs cleaned disk stuff up and 1462 in iget() to return NULL if I_FREEING inode is found in 1463 hash-table. */ 1464 /* Currently there is one place where it's ok to meet inode with 1465 nlink==0: processing of open-unlinked and half-truncated files 1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1467 if ((inode->i_nlink == 0) && 1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1469 reiserfs_warning(inode->i_sb, "vs-13075", 1470 "dead inode read from disk %K. " 1471 "This is likely to be race with knfsd. Ignore", 1472 &key); 1473 reiserfs_make_bad_inode(inode); 1474 } 1475 1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1477 1478 /* 1479 * Stat data v1 doesn't support ACLs. 1480 */ 1481 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1482 cache_no_acl(inode); 1483 } 1484 1485 /** 1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1487 * 1488 * @inode: inode from hash table to check 1489 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1490 * 1491 * This function is called by iget5_locked() to distinguish reiserfs inodes 1492 * having the same inode numbers. Such inodes can only exist due to some 1493 * error condition. One of them should be bad. Inodes with identical 1494 * inode numbers (objectids) are distinguished by parent directory ids. 1495 * 1496 */ 1497 int reiserfs_find_actor(struct inode *inode, void *opaque) 1498 { 1499 struct reiserfs_iget_args *args; 1500 1501 args = opaque; 1502 /* args is already in CPU order */ 1503 return (inode->i_ino == args->objectid) && 1504 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1505 } 1506 1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1508 { 1509 struct inode *inode; 1510 struct reiserfs_iget_args args; 1511 1512 args.objectid = key->on_disk_key.k_objectid; 1513 args.dirid = key->on_disk_key.k_dir_id; 1514 reiserfs_write_unlock(s); 1515 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1516 reiserfs_find_actor, reiserfs_init_locked_inode, 1517 (void *)(&args)); 1518 reiserfs_write_lock(s); 1519 if (!inode) 1520 return ERR_PTR(-ENOMEM); 1521 1522 if (inode->i_state & I_NEW) { 1523 reiserfs_read_locked_inode(inode, &args); 1524 unlock_new_inode(inode); 1525 } 1526 1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1528 /* either due to i/o error or a stale NFS handle */ 1529 iput(inode); 1530 inode = NULL; 1531 } 1532 return inode; 1533 } 1534 1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1536 u32 objectid, u32 dir_id, u32 generation) 1537 1538 { 1539 struct cpu_key key; 1540 struct inode *inode; 1541 1542 key.on_disk_key.k_objectid = objectid; 1543 key.on_disk_key.k_dir_id = dir_id; 1544 reiserfs_write_lock(sb); 1545 inode = reiserfs_iget(sb, &key); 1546 if (inode && !IS_ERR(inode) && generation != 0 && 1547 generation != inode->i_generation) { 1548 iput(inode); 1549 inode = NULL; 1550 } 1551 reiserfs_write_unlock(sb); 1552 1553 return d_obtain_alias(inode); 1554 } 1555 1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1557 int fh_len, int fh_type) 1558 { 1559 /* fhtype happens to reflect the number of u32s encoded. 1560 * due to a bug in earlier code, fhtype might indicate there 1561 * are more u32s then actually fitted. 1562 * so if fhtype seems to be more than len, reduce fhtype. 1563 * Valid types are: 1564 * 2 - objectid + dir_id - legacy support 1565 * 3 - objectid + dir_id + generation 1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1568 * 6 - as above plus generation of directory 1569 * 6 does not fit in NFSv2 handles 1570 */ 1571 if (fh_type > fh_len) { 1572 if (fh_type != 6 || fh_len != 5) 1573 reiserfs_warning(sb, "reiserfs-13077", 1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1575 fh_type, fh_len); 1576 fh_type = 5; 1577 } 1578 1579 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1580 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1581 } 1582 1583 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1584 int fh_len, int fh_type) 1585 { 1586 if (fh_type < 4) 1587 return NULL; 1588 1589 return reiserfs_get_dentry(sb, 1590 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1591 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1592 (fh_type == 6) ? fid->raw[5] : 0); 1593 } 1594 1595 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1596 int need_parent) 1597 { 1598 struct inode *inode = dentry->d_inode; 1599 int maxlen = *lenp; 1600 1601 if (need_parent && (maxlen < 5)) { 1602 *lenp = 5; 1603 return 255; 1604 } else if (maxlen < 3) { 1605 *lenp = 3; 1606 return 255; 1607 } 1608 1609 data[0] = inode->i_ino; 1610 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1611 data[2] = inode->i_generation; 1612 *lenp = 3; 1613 /* no room for directory info? return what we've stored so far */ 1614 if (maxlen < 5 || !need_parent) 1615 return 3; 1616 1617 spin_lock(&dentry->d_lock); 1618 inode = dentry->d_parent->d_inode; 1619 data[3] = inode->i_ino; 1620 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1621 *lenp = 5; 1622 if (maxlen >= 6) { 1623 data[5] = inode->i_generation; 1624 *lenp = 6; 1625 } 1626 spin_unlock(&dentry->d_lock); 1627 return *lenp; 1628 } 1629 1630 /* looks for stat data, then copies fields to it, marks the buffer 1631 containing stat data as dirty */ 1632 /* reiserfs inodes are never really dirty, since the dirty inode call 1633 ** always logs them. This call allows the VFS inode marking routines 1634 ** to properly mark inodes for datasync and such, but only actually 1635 ** does something when called for a synchronous update. 1636 */ 1637 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1638 { 1639 struct reiserfs_transaction_handle th; 1640 int jbegin_count = 1; 1641 1642 if (inode->i_sb->s_flags & MS_RDONLY) 1643 return -EROFS; 1644 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1645 ** these cases are just when the system needs ram, not when the 1646 ** inode needs to reach disk for safety, and they can safely be 1647 ** ignored because the altered inode has already been logged. 1648 */ 1649 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1650 reiserfs_write_lock(inode->i_sb); 1651 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1652 reiserfs_update_sd(&th, inode); 1653 journal_end_sync(&th, inode->i_sb, jbegin_count); 1654 } 1655 reiserfs_write_unlock(inode->i_sb); 1656 } 1657 return 0; 1658 } 1659 1660 /* stat data of new object is inserted already, this inserts the item 1661 containing "." and ".." entries */ 1662 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1663 struct inode *inode, 1664 struct item_head *ih, struct treepath *path, 1665 struct inode *dir) 1666 { 1667 struct super_block *sb = th->t_super; 1668 char empty_dir[EMPTY_DIR_SIZE]; 1669 char *body = empty_dir; 1670 struct cpu_key key; 1671 int retval; 1672 1673 BUG_ON(!th->t_trans_id); 1674 1675 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1676 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1677 TYPE_DIRENTRY, 3 /*key length */ ); 1678 1679 /* compose item head for new item. Directories consist of items of 1680 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1681 is done by reiserfs_new_inode */ 1682 if (old_format_only(sb)) { 1683 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1684 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1685 1686 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1687 ih->ih_key.k_objectid, 1688 INODE_PKEY(dir)->k_dir_id, 1689 INODE_PKEY(dir)->k_objectid); 1690 } else { 1691 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1692 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1693 1694 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1695 ih->ih_key.k_objectid, 1696 INODE_PKEY(dir)->k_dir_id, 1697 INODE_PKEY(dir)->k_objectid); 1698 } 1699 1700 /* look for place in the tree for new item */ 1701 retval = search_item(sb, &key, path); 1702 if (retval == IO_ERROR) { 1703 reiserfs_error(sb, "vs-13080", 1704 "i/o failure occurred creating new directory"); 1705 return -EIO; 1706 } 1707 if (retval == ITEM_FOUND) { 1708 pathrelse(path); 1709 reiserfs_warning(sb, "vs-13070", 1710 "object with this key exists (%k)", 1711 &(ih->ih_key)); 1712 return -EEXIST; 1713 } 1714 1715 /* insert item, that is empty directory item */ 1716 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1717 } 1718 1719 /* stat data of object has been inserted, this inserts the item 1720 containing the body of symlink */ 1721 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1722 struct item_head *ih, 1723 struct treepath *path, const char *symname, 1724 int item_len) 1725 { 1726 struct super_block *sb = th->t_super; 1727 struct cpu_key key; 1728 int retval; 1729 1730 BUG_ON(!th->t_trans_id); 1731 1732 _make_cpu_key(&key, KEY_FORMAT_3_5, 1733 le32_to_cpu(ih->ih_key.k_dir_id), 1734 le32_to_cpu(ih->ih_key.k_objectid), 1735 1, TYPE_DIRECT, 3 /*key length */ ); 1736 1737 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1738 0 /*free_space */ ); 1739 1740 /* look for place in the tree for new item */ 1741 retval = search_item(sb, &key, path); 1742 if (retval == IO_ERROR) { 1743 reiserfs_error(sb, "vs-13080", 1744 "i/o failure occurred creating new symlink"); 1745 return -EIO; 1746 } 1747 if (retval == ITEM_FOUND) { 1748 pathrelse(path); 1749 reiserfs_warning(sb, "vs-13080", 1750 "object with this key exists (%k)", 1751 &(ih->ih_key)); 1752 return -EEXIST; 1753 } 1754 1755 /* insert item, that is body of symlink */ 1756 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1757 } 1758 1759 /* inserts the stat data into the tree, and then calls 1760 reiserfs_new_directory (to insert ".", ".." item if new object is 1761 directory) or reiserfs_new_symlink (to insert symlink body if new 1762 object is symlink) or nothing (if new object is regular file) 1763 1764 NOTE! uid and gid must already be set in the inode. If we return 1765 non-zero due to an error, we have to drop the quota previously allocated 1766 for the fresh inode. This can only be done outside a transaction, so 1767 if we return non-zero, we also end the transaction. */ 1768 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1769 struct inode *dir, int mode, const char *symname, 1770 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1771 strlen (symname) for symlinks) */ 1772 loff_t i_size, struct dentry *dentry, 1773 struct inode *inode, 1774 struct reiserfs_security_handle *security) 1775 { 1776 struct super_block *sb; 1777 struct reiserfs_iget_args args; 1778 INITIALIZE_PATH(path_to_key); 1779 struct cpu_key key; 1780 struct item_head ih; 1781 struct stat_data sd; 1782 int retval; 1783 int err; 1784 1785 BUG_ON(!th->t_trans_id); 1786 1787 dquot_initialize(inode); 1788 err = dquot_alloc_inode(inode); 1789 if (err) 1790 goto out_end_trans; 1791 if (!dir->i_nlink) { 1792 err = -EPERM; 1793 goto out_bad_inode; 1794 } 1795 1796 sb = dir->i_sb; 1797 1798 /* item head of new item */ 1799 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1800 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1801 if (!ih.ih_key.k_objectid) { 1802 err = -ENOMEM; 1803 goto out_bad_inode; 1804 } 1805 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1806 if (old_format_only(sb)) 1807 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1808 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1809 else 1810 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1811 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1812 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1813 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1814 if (insert_inode_locked4(inode, args.objectid, 1815 reiserfs_find_actor, &args) < 0) { 1816 err = -EINVAL; 1817 goto out_bad_inode; 1818 } 1819 if (old_format_only(sb)) 1820 /* not a perfect generation count, as object ids can be reused, but 1821 ** this is as good as reiserfs can do right now. 1822 ** note that the private part of inode isn't filled in yet, we have 1823 ** to use the directory. 1824 */ 1825 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1826 else 1827 #if defined( USE_INODE_GENERATION_COUNTER ) 1828 inode->i_generation = 1829 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1830 #else 1831 inode->i_generation = ++event; 1832 #endif 1833 1834 /* fill stat data */ 1835 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1836 1837 /* uid and gid must already be set by the caller for quota init */ 1838 1839 /* symlink cannot be immutable or append only, right? */ 1840 if (S_ISLNK(inode->i_mode)) 1841 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1842 1843 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1844 inode->i_size = i_size; 1845 inode->i_blocks = 0; 1846 inode->i_bytes = 0; 1847 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1848 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1849 1850 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1851 REISERFS_I(inode)->i_flags = 0; 1852 REISERFS_I(inode)->i_prealloc_block = 0; 1853 REISERFS_I(inode)->i_prealloc_count = 0; 1854 REISERFS_I(inode)->i_trans_id = 0; 1855 REISERFS_I(inode)->i_jl = NULL; 1856 REISERFS_I(inode)->i_attrs = 1857 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1858 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1859 reiserfs_init_xattr_rwsem(inode); 1860 1861 /* key to search for correct place for new stat data */ 1862 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1863 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1864 TYPE_STAT_DATA, 3 /*key length */ ); 1865 1866 /* find proper place for inserting of stat data */ 1867 retval = search_item(sb, &key, &path_to_key); 1868 if (retval == IO_ERROR) { 1869 err = -EIO; 1870 goto out_bad_inode; 1871 } 1872 if (retval == ITEM_FOUND) { 1873 pathrelse(&path_to_key); 1874 err = -EEXIST; 1875 goto out_bad_inode; 1876 } 1877 if (old_format_only(sb)) { 1878 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1879 pathrelse(&path_to_key); 1880 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1881 err = -EINVAL; 1882 goto out_bad_inode; 1883 } 1884 inode2sd_v1(&sd, inode, inode->i_size); 1885 } else { 1886 inode2sd(&sd, inode, inode->i_size); 1887 } 1888 // store in in-core inode the key of stat data and version all 1889 // object items will have (directory items will have old offset 1890 // format, other new objects will consist of new items) 1891 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1892 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1893 else 1894 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1895 if (old_format_only(sb)) 1896 set_inode_sd_version(inode, STAT_DATA_V1); 1897 else 1898 set_inode_sd_version(inode, STAT_DATA_V2); 1899 1900 /* insert the stat data into the tree */ 1901 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1902 if (REISERFS_I(dir)->new_packing_locality) 1903 th->displace_new_blocks = 1; 1904 #endif 1905 retval = 1906 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1907 (char *)(&sd)); 1908 if (retval) { 1909 err = retval; 1910 reiserfs_check_path(&path_to_key); 1911 goto out_bad_inode; 1912 } 1913 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1914 if (!th->displace_new_blocks) 1915 REISERFS_I(dir)->new_packing_locality = 0; 1916 #endif 1917 if (S_ISDIR(mode)) { 1918 /* insert item with "." and ".." */ 1919 retval = 1920 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1921 } 1922 1923 if (S_ISLNK(mode)) { 1924 /* insert body of symlink */ 1925 if (!old_format_only(sb)) 1926 i_size = ROUND_UP(i_size); 1927 retval = 1928 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1929 i_size); 1930 } 1931 if (retval) { 1932 err = retval; 1933 reiserfs_check_path(&path_to_key); 1934 journal_end(th, th->t_super, th->t_blocks_allocated); 1935 goto out_inserted_sd; 1936 } 1937 1938 if (reiserfs_posixacl(inode->i_sb)) { 1939 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 1940 if (retval) { 1941 err = retval; 1942 reiserfs_check_path(&path_to_key); 1943 journal_end(th, th->t_super, th->t_blocks_allocated); 1944 goto out_inserted_sd; 1945 } 1946 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1947 reiserfs_warning(inode->i_sb, "jdm-13090", 1948 "ACLs aren't enabled in the fs, " 1949 "but vfs thinks they are!"); 1950 } else if (IS_PRIVATE(dir)) 1951 inode->i_flags |= S_PRIVATE; 1952 1953 if (security->name) { 1954 retval = reiserfs_security_write(th, inode, security); 1955 if (retval) { 1956 err = retval; 1957 reiserfs_check_path(&path_to_key); 1958 retval = journal_end(th, th->t_super, 1959 th->t_blocks_allocated); 1960 if (retval) 1961 err = retval; 1962 goto out_inserted_sd; 1963 } 1964 } 1965 1966 reiserfs_update_sd(th, inode); 1967 reiserfs_check_path(&path_to_key); 1968 1969 return 0; 1970 1971 /* it looks like you can easily compress these two goto targets into 1972 * one. Keeping it like this doesn't actually hurt anything, and they 1973 * are place holders for what the quota code actually needs. 1974 */ 1975 out_bad_inode: 1976 /* Invalidate the object, nothing was inserted yet */ 1977 INODE_PKEY(inode)->k_objectid = 0; 1978 1979 /* Quota change must be inside a transaction for journaling */ 1980 dquot_free_inode(inode); 1981 1982 out_end_trans: 1983 journal_end(th, th->t_super, th->t_blocks_allocated); 1984 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1985 dquot_drop(inode); 1986 inode->i_flags |= S_NOQUOTA; 1987 make_bad_inode(inode); 1988 1989 out_inserted_sd: 1990 inode->i_nlink = 0; 1991 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1992 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 1993 iput(inode); 1994 return err; 1995 } 1996 1997 /* 1998 ** finds the tail page in the page cache, 1999 ** reads the last block in. 2000 ** 2001 ** On success, page_result is set to a locked, pinned page, and bh_result 2002 ** is set to an up to date buffer for the last block in the file. returns 0. 2003 ** 2004 ** tail conversion is not done, so bh_result might not be valid for writing 2005 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2006 ** trying to write the block. 2007 ** 2008 ** on failure, nonzero is returned, page_result and bh_result are untouched. 2009 */ 2010 static int grab_tail_page(struct inode *inode, 2011 struct page **page_result, 2012 struct buffer_head **bh_result) 2013 { 2014 2015 /* we want the page with the last byte in the file, 2016 ** not the page that will hold the next byte for appending 2017 */ 2018 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2019 unsigned long pos = 0; 2020 unsigned long start = 0; 2021 unsigned long blocksize = inode->i_sb->s_blocksize; 2022 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1); 2023 struct buffer_head *bh; 2024 struct buffer_head *head; 2025 struct page *page; 2026 int error; 2027 2028 /* we know that we are only called with inode->i_size > 0. 2029 ** we also know that a file tail can never be as big as a block 2030 ** If i_size % blocksize == 0, our file is currently block aligned 2031 ** and it won't need converting or zeroing after a truncate. 2032 */ 2033 if ((offset & (blocksize - 1)) == 0) { 2034 return -ENOENT; 2035 } 2036 page = grab_cache_page(inode->i_mapping, index); 2037 error = -ENOMEM; 2038 if (!page) { 2039 goto out; 2040 } 2041 /* start within the page of the last block in the file */ 2042 start = (offset / blocksize) * blocksize; 2043 2044 error = __block_write_begin(page, start, offset - start, 2045 reiserfs_get_block_create_0); 2046 if (error) 2047 goto unlock; 2048 2049 head = page_buffers(page); 2050 bh = head; 2051 do { 2052 if (pos >= start) { 2053 break; 2054 } 2055 bh = bh->b_this_page; 2056 pos += blocksize; 2057 } while (bh != head); 2058 2059 if (!buffer_uptodate(bh)) { 2060 /* note, this should never happen, prepare_write should 2061 ** be taking care of this for us. If the buffer isn't up to date, 2062 ** I've screwed up the code to find the buffer, or the code to 2063 ** call prepare_write 2064 */ 2065 reiserfs_error(inode->i_sb, "clm-6000", 2066 "error reading block %lu", bh->b_blocknr); 2067 error = -EIO; 2068 goto unlock; 2069 } 2070 *bh_result = bh; 2071 *page_result = page; 2072 2073 out: 2074 return error; 2075 2076 unlock: 2077 unlock_page(page); 2078 page_cache_release(page); 2079 return error; 2080 } 2081 2082 /* 2083 ** vfs version of truncate file. Must NOT be called with 2084 ** a transaction already started. 2085 ** 2086 ** some code taken from block_truncate_page 2087 */ 2088 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2089 { 2090 struct reiserfs_transaction_handle th; 2091 /* we want the offset for the first byte after the end of the file */ 2092 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2093 unsigned blocksize = inode->i_sb->s_blocksize; 2094 unsigned length; 2095 struct page *page = NULL; 2096 int error; 2097 struct buffer_head *bh = NULL; 2098 int err2; 2099 int lock_depth; 2100 2101 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2102 2103 if (inode->i_size > 0) { 2104 error = grab_tail_page(inode, &page, &bh); 2105 if (error) { 2106 // -ENOENT means we truncated past the end of the file, 2107 // and get_block_create_0 could not find a block to read in, 2108 // which is ok. 2109 if (error != -ENOENT) 2110 reiserfs_error(inode->i_sb, "clm-6001", 2111 "grab_tail_page failed %d", 2112 error); 2113 page = NULL; 2114 bh = NULL; 2115 } 2116 } 2117 2118 /* so, if page != NULL, we have a buffer head for the offset at 2119 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2120 ** then we have an unformatted node. Otherwise, we have a direct item, 2121 ** and no zeroing is required on disk. We zero after the truncate, 2122 ** because the truncate might pack the item anyway 2123 ** (it will unmap bh if it packs). 2124 */ 2125 /* it is enough to reserve space in transaction for 2 balancings: 2126 one for "save" link adding and another for the first 2127 cut_from_item. 1 is for update_sd */ 2128 error = journal_begin(&th, inode->i_sb, 2129 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2130 if (error) 2131 goto out; 2132 reiserfs_update_inode_transaction(inode); 2133 if (update_timestamps) 2134 /* we are doing real truncate: if the system crashes before the last 2135 transaction of truncating gets committed - on reboot the file 2136 either appears truncated properly or not truncated at all */ 2137 add_save_link(&th, inode, 1); 2138 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2139 error = 2140 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2141 if (error) 2142 goto out; 2143 2144 /* check reiserfs_do_truncate after ending the transaction */ 2145 if (err2) { 2146 error = err2; 2147 goto out; 2148 } 2149 2150 if (update_timestamps) { 2151 error = remove_save_link(inode, 1 /* truncate */); 2152 if (error) 2153 goto out; 2154 } 2155 2156 if (page) { 2157 length = offset & (blocksize - 1); 2158 /* if we are not on a block boundary */ 2159 if (length) { 2160 length = blocksize - length; 2161 zero_user(page, offset, length); 2162 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2163 mark_buffer_dirty(bh); 2164 } 2165 } 2166 unlock_page(page); 2167 page_cache_release(page); 2168 } 2169 2170 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2171 2172 return 0; 2173 out: 2174 if (page) { 2175 unlock_page(page); 2176 page_cache_release(page); 2177 } 2178 2179 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2180 2181 return error; 2182 } 2183 2184 static int map_block_for_writepage(struct inode *inode, 2185 struct buffer_head *bh_result, 2186 unsigned long block) 2187 { 2188 struct reiserfs_transaction_handle th; 2189 int fs_gen; 2190 struct item_head tmp_ih; 2191 struct item_head *ih; 2192 struct buffer_head *bh; 2193 __le32 *item; 2194 struct cpu_key key; 2195 INITIALIZE_PATH(path); 2196 int pos_in_item; 2197 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2198 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2199 int retval; 2200 int use_get_block = 0; 2201 int bytes_copied = 0; 2202 int copy_size; 2203 int trans_running = 0; 2204 2205 /* catch places below that try to log something without starting a trans */ 2206 th.t_trans_id = 0; 2207 2208 if (!buffer_uptodate(bh_result)) { 2209 return -EIO; 2210 } 2211 2212 kmap(bh_result->b_page); 2213 start_over: 2214 reiserfs_write_lock(inode->i_sb); 2215 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2216 2217 research: 2218 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2219 if (retval != POSITION_FOUND) { 2220 use_get_block = 1; 2221 goto out; 2222 } 2223 2224 bh = get_last_bh(&path); 2225 ih = get_ih(&path); 2226 item = get_item(&path); 2227 pos_in_item = path.pos_in_item; 2228 2229 /* we've found an unformatted node */ 2230 if (indirect_item_found(retval, ih)) { 2231 if (bytes_copied > 0) { 2232 reiserfs_warning(inode->i_sb, "clm-6002", 2233 "bytes_copied %d", bytes_copied); 2234 } 2235 if (!get_block_num(item, pos_in_item)) { 2236 /* crap, we are writing to a hole */ 2237 use_get_block = 1; 2238 goto out; 2239 } 2240 set_block_dev_mapped(bh_result, 2241 get_block_num(item, pos_in_item), inode); 2242 } else if (is_direct_le_ih(ih)) { 2243 char *p; 2244 p = page_address(bh_result->b_page); 2245 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2246 copy_size = ih_item_len(ih) - pos_in_item; 2247 2248 fs_gen = get_generation(inode->i_sb); 2249 copy_item_head(&tmp_ih, ih); 2250 2251 if (!trans_running) { 2252 /* vs-3050 is gone, no need to drop the path */ 2253 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2254 if (retval) 2255 goto out; 2256 reiserfs_update_inode_transaction(inode); 2257 trans_running = 1; 2258 if (fs_changed(fs_gen, inode->i_sb) 2259 && item_moved(&tmp_ih, &path)) { 2260 reiserfs_restore_prepared_buffer(inode->i_sb, 2261 bh); 2262 goto research; 2263 } 2264 } 2265 2266 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2267 2268 if (fs_changed(fs_gen, inode->i_sb) 2269 && item_moved(&tmp_ih, &path)) { 2270 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2271 goto research; 2272 } 2273 2274 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2275 copy_size); 2276 2277 journal_mark_dirty(&th, inode->i_sb, bh); 2278 bytes_copied += copy_size; 2279 set_block_dev_mapped(bh_result, 0, inode); 2280 2281 /* are there still bytes left? */ 2282 if (bytes_copied < bh_result->b_size && 2283 (byte_offset + bytes_copied) < inode->i_size) { 2284 set_cpu_key_k_offset(&key, 2285 cpu_key_k_offset(&key) + 2286 copy_size); 2287 goto research; 2288 } 2289 } else { 2290 reiserfs_warning(inode->i_sb, "clm-6003", 2291 "bad item inode %lu", inode->i_ino); 2292 retval = -EIO; 2293 goto out; 2294 } 2295 retval = 0; 2296 2297 out: 2298 pathrelse(&path); 2299 if (trans_running) { 2300 int err = journal_end(&th, inode->i_sb, jbegin_count); 2301 if (err) 2302 retval = err; 2303 trans_running = 0; 2304 } 2305 reiserfs_write_unlock(inode->i_sb); 2306 2307 /* this is where we fill in holes in the file. */ 2308 if (use_get_block) { 2309 retval = reiserfs_get_block(inode, block, bh_result, 2310 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2311 | GET_BLOCK_NO_DANGLE); 2312 if (!retval) { 2313 if (!buffer_mapped(bh_result) 2314 || bh_result->b_blocknr == 0) { 2315 /* get_block failed to find a mapped unformatted node. */ 2316 use_get_block = 0; 2317 goto start_over; 2318 } 2319 } 2320 } 2321 kunmap(bh_result->b_page); 2322 2323 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2324 /* we've copied data from the page into the direct item, so the 2325 * buffer in the page is now clean, mark it to reflect that. 2326 */ 2327 lock_buffer(bh_result); 2328 clear_buffer_dirty(bh_result); 2329 unlock_buffer(bh_result); 2330 } 2331 return retval; 2332 } 2333 2334 /* 2335 * mason@suse.com: updated in 2.5.54 to follow the same general io 2336 * start/recovery path as __block_write_full_page, along with special 2337 * code to handle reiserfs tails. 2338 */ 2339 static int reiserfs_write_full_page(struct page *page, 2340 struct writeback_control *wbc) 2341 { 2342 struct inode *inode = page->mapping->host; 2343 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2344 int error = 0; 2345 unsigned long block; 2346 sector_t last_block; 2347 struct buffer_head *head, *bh; 2348 int partial = 0; 2349 int nr = 0; 2350 int checked = PageChecked(page); 2351 struct reiserfs_transaction_handle th; 2352 struct super_block *s = inode->i_sb; 2353 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2354 th.t_trans_id = 0; 2355 2356 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2357 if (checked && (current->flags & PF_MEMALLOC)) { 2358 redirty_page_for_writepage(wbc, page); 2359 unlock_page(page); 2360 return 0; 2361 } 2362 2363 /* The page dirty bit is cleared before writepage is called, which 2364 * means we have to tell create_empty_buffers to make dirty buffers 2365 * The page really should be up to date at this point, so tossing 2366 * in the BH_Uptodate is just a sanity check. 2367 */ 2368 if (!page_has_buffers(page)) { 2369 create_empty_buffers(page, s->s_blocksize, 2370 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2371 } 2372 head = page_buffers(page); 2373 2374 /* last page in the file, zero out any contents past the 2375 ** last byte in the file 2376 */ 2377 if (page->index >= end_index) { 2378 unsigned last_offset; 2379 2380 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2381 /* no file contents in this page */ 2382 if (page->index >= end_index + 1 || !last_offset) { 2383 unlock_page(page); 2384 return 0; 2385 } 2386 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2387 } 2388 bh = head; 2389 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2390 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2391 /* first map all the buffers, logging any direct items we find */ 2392 do { 2393 if (block > last_block) { 2394 /* 2395 * This can happen when the block size is less than 2396 * the page size. The corresponding bytes in the page 2397 * were zero filled above 2398 */ 2399 clear_buffer_dirty(bh); 2400 set_buffer_uptodate(bh); 2401 } else if ((checked || buffer_dirty(bh)) && 2402 (!buffer_mapped(bh) || (buffer_mapped(bh) 2403 && bh->b_blocknr == 2404 0))) { 2405 /* not mapped yet, or it points to a direct item, search 2406 * the btree for the mapping info, and log any direct 2407 * items found 2408 */ 2409 if ((error = map_block_for_writepage(inode, bh, block))) { 2410 goto fail; 2411 } 2412 } 2413 bh = bh->b_this_page; 2414 block++; 2415 } while (bh != head); 2416 2417 /* 2418 * we start the transaction after map_block_for_writepage, 2419 * because it can create holes in the file (an unbounded operation). 2420 * starting it here, we can make a reliable estimate for how many 2421 * blocks we're going to log 2422 */ 2423 if (checked) { 2424 ClearPageChecked(page); 2425 reiserfs_write_lock(s); 2426 error = journal_begin(&th, s, bh_per_page + 1); 2427 if (error) { 2428 reiserfs_write_unlock(s); 2429 goto fail; 2430 } 2431 reiserfs_update_inode_transaction(inode); 2432 } 2433 /* now go through and lock any dirty buffers on the page */ 2434 do { 2435 get_bh(bh); 2436 if (!buffer_mapped(bh)) 2437 continue; 2438 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2439 continue; 2440 2441 if (checked) { 2442 reiserfs_prepare_for_journal(s, bh, 1); 2443 journal_mark_dirty(&th, s, bh); 2444 continue; 2445 } 2446 /* from this point on, we know the buffer is mapped to a 2447 * real block and not a direct item 2448 */ 2449 if (wbc->sync_mode != WB_SYNC_NONE) { 2450 lock_buffer(bh); 2451 } else { 2452 if (!trylock_buffer(bh)) { 2453 redirty_page_for_writepage(wbc, page); 2454 continue; 2455 } 2456 } 2457 if (test_clear_buffer_dirty(bh)) { 2458 mark_buffer_async_write(bh); 2459 } else { 2460 unlock_buffer(bh); 2461 } 2462 } while ((bh = bh->b_this_page) != head); 2463 2464 if (checked) { 2465 error = journal_end(&th, s, bh_per_page + 1); 2466 reiserfs_write_unlock(s); 2467 if (error) 2468 goto fail; 2469 } 2470 BUG_ON(PageWriteback(page)); 2471 set_page_writeback(page); 2472 unlock_page(page); 2473 2474 /* 2475 * since any buffer might be the only dirty buffer on the page, 2476 * the first submit_bh can bring the page out of writeback. 2477 * be careful with the buffers. 2478 */ 2479 do { 2480 struct buffer_head *next = bh->b_this_page; 2481 if (buffer_async_write(bh)) { 2482 submit_bh(WRITE, bh); 2483 nr++; 2484 } 2485 put_bh(bh); 2486 bh = next; 2487 } while (bh != head); 2488 2489 error = 0; 2490 done: 2491 if (nr == 0) { 2492 /* 2493 * if this page only had a direct item, it is very possible for 2494 * no io to be required without there being an error. Or, 2495 * someone else could have locked them and sent them down the 2496 * pipe without locking the page 2497 */ 2498 bh = head; 2499 do { 2500 if (!buffer_uptodate(bh)) { 2501 partial = 1; 2502 break; 2503 } 2504 bh = bh->b_this_page; 2505 } while (bh != head); 2506 if (!partial) 2507 SetPageUptodate(page); 2508 end_page_writeback(page); 2509 } 2510 return error; 2511 2512 fail: 2513 /* catches various errors, we need to make sure any valid dirty blocks 2514 * get to the media. The page is currently locked and not marked for 2515 * writeback 2516 */ 2517 ClearPageUptodate(page); 2518 bh = head; 2519 do { 2520 get_bh(bh); 2521 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2522 lock_buffer(bh); 2523 mark_buffer_async_write(bh); 2524 } else { 2525 /* 2526 * clear any dirty bits that might have come from getting 2527 * attached to a dirty page 2528 */ 2529 clear_buffer_dirty(bh); 2530 } 2531 bh = bh->b_this_page; 2532 } while (bh != head); 2533 SetPageError(page); 2534 BUG_ON(PageWriteback(page)); 2535 set_page_writeback(page); 2536 unlock_page(page); 2537 do { 2538 struct buffer_head *next = bh->b_this_page; 2539 if (buffer_async_write(bh)) { 2540 clear_buffer_dirty(bh); 2541 submit_bh(WRITE, bh); 2542 nr++; 2543 } 2544 put_bh(bh); 2545 bh = next; 2546 } while (bh != head); 2547 goto done; 2548 } 2549 2550 static int reiserfs_readpage(struct file *f, struct page *page) 2551 { 2552 return block_read_full_page(page, reiserfs_get_block); 2553 } 2554 2555 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2556 { 2557 struct inode *inode = page->mapping->host; 2558 reiserfs_wait_on_write_block(inode->i_sb); 2559 return reiserfs_write_full_page(page, wbc); 2560 } 2561 2562 static void reiserfs_truncate_failed_write(struct inode *inode) 2563 { 2564 truncate_inode_pages(inode->i_mapping, inode->i_size); 2565 reiserfs_truncate_file(inode, 0); 2566 } 2567 2568 static int reiserfs_write_begin(struct file *file, 2569 struct address_space *mapping, 2570 loff_t pos, unsigned len, unsigned flags, 2571 struct page **pagep, void **fsdata) 2572 { 2573 struct inode *inode; 2574 struct page *page; 2575 pgoff_t index; 2576 int ret; 2577 int old_ref = 0; 2578 2579 inode = mapping->host; 2580 *fsdata = 0; 2581 if (flags & AOP_FLAG_CONT_EXPAND && 2582 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2583 pos ++; 2584 *fsdata = (void *)(unsigned long)flags; 2585 } 2586 2587 index = pos >> PAGE_CACHE_SHIFT; 2588 page = grab_cache_page_write_begin(mapping, index, flags); 2589 if (!page) 2590 return -ENOMEM; 2591 *pagep = page; 2592 2593 reiserfs_wait_on_write_block(inode->i_sb); 2594 fix_tail_page_for_writing(page); 2595 if (reiserfs_transaction_running(inode->i_sb)) { 2596 struct reiserfs_transaction_handle *th; 2597 th = (struct reiserfs_transaction_handle *)current-> 2598 journal_info; 2599 BUG_ON(!th->t_refcount); 2600 BUG_ON(!th->t_trans_id); 2601 old_ref = th->t_refcount; 2602 th->t_refcount++; 2603 } 2604 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2605 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2606 struct reiserfs_transaction_handle *th = current->journal_info; 2607 /* this gets a little ugly. If reiserfs_get_block returned an 2608 * error and left a transacstion running, we've got to close it, 2609 * and we've got to free handle if it was a persistent transaction. 2610 * 2611 * But, if we had nested into an existing transaction, we need 2612 * to just drop the ref count on the handle. 2613 * 2614 * If old_ref == 0, the transaction is from reiserfs_get_block, 2615 * and it was a persistent trans. Otherwise, it was nested above. 2616 */ 2617 if (th->t_refcount > old_ref) { 2618 if (old_ref) 2619 th->t_refcount--; 2620 else { 2621 int err; 2622 reiserfs_write_lock(inode->i_sb); 2623 err = reiserfs_end_persistent_transaction(th); 2624 reiserfs_write_unlock(inode->i_sb); 2625 if (err) 2626 ret = err; 2627 } 2628 } 2629 } 2630 if (ret) { 2631 unlock_page(page); 2632 page_cache_release(page); 2633 /* Truncate allocated blocks */ 2634 reiserfs_truncate_failed_write(inode); 2635 } 2636 return ret; 2637 } 2638 2639 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2640 { 2641 struct inode *inode = page->mapping->host; 2642 int ret; 2643 int old_ref = 0; 2644 2645 reiserfs_write_unlock(inode->i_sb); 2646 reiserfs_wait_on_write_block(inode->i_sb); 2647 reiserfs_write_lock(inode->i_sb); 2648 2649 fix_tail_page_for_writing(page); 2650 if (reiserfs_transaction_running(inode->i_sb)) { 2651 struct reiserfs_transaction_handle *th; 2652 th = (struct reiserfs_transaction_handle *)current-> 2653 journal_info; 2654 BUG_ON(!th->t_refcount); 2655 BUG_ON(!th->t_trans_id); 2656 old_ref = th->t_refcount; 2657 th->t_refcount++; 2658 } 2659 2660 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2661 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2662 struct reiserfs_transaction_handle *th = current->journal_info; 2663 /* this gets a little ugly. If reiserfs_get_block returned an 2664 * error and left a transacstion running, we've got to close it, 2665 * and we've got to free handle if it was a persistent transaction. 2666 * 2667 * But, if we had nested into an existing transaction, we need 2668 * to just drop the ref count on the handle. 2669 * 2670 * If old_ref == 0, the transaction is from reiserfs_get_block, 2671 * and it was a persistent trans. Otherwise, it was nested above. 2672 */ 2673 if (th->t_refcount > old_ref) { 2674 if (old_ref) 2675 th->t_refcount--; 2676 else { 2677 int err; 2678 reiserfs_write_lock(inode->i_sb); 2679 err = reiserfs_end_persistent_transaction(th); 2680 reiserfs_write_unlock(inode->i_sb); 2681 if (err) 2682 ret = err; 2683 } 2684 } 2685 } 2686 return ret; 2687 2688 } 2689 2690 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2691 { 2692 return generic_block_bmap(as, block, reiserfs_bmap); 2693 } 2694 2695 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2696 loff_t pos, unsigned len, unsigned copied, 2697 struct page *page, void *fsdata) 2698 { 2699 struct inode *inode = page->mapping->host; 2700 int ret = 0; 2701 int update_sd = 0; 2702 struct reiserfs_transaction_handle *th; 2703 unsigned start; 2704 int lock_depth = 0; 2705 bool locked = false; 2706 2707 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2708 pos ++; 2709 2710 reiserfs_wait_on_write_block(inode->i_sb); 2711 if (reiserfs_transaction_running(inode->i_sb)) 2712 th = current->journal_info; 2713 else 2714 th = NULL; 2715 2716 start = pos & (PAGE_CACHE_SIZE - 1); 2717 if (unlikely(copied < len)) { 2718 if (!PageUptodate(page)) 2719 copied = 0; 2720 2721 page_zero_new_buffers(page, start + copied, start + len); 2722 } 2723 flush_dcache_page(page); 2724 2725 reiserfs_commit_page(inode, page, start, start + copied); 2726 2727 /* generic_commit_write does this for us, but does not update the 2728 ** transaction tracking stuff when the size changes. So, we have 2729 ** to do the i_size updates here. 2730 */ 2731 if (pos + copied > inode->i_size) { 2732 struct reiserfs_transaction_handle myth; 2733 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2734 locked = true; 2735 /* If the file have grown beyond the border where it 2736 can have a tail, unmark it as needing a tail 2737 packing */ 2738 if ((have_large_tails(inode->i_sb) 2739 && inode->i_size > i_block_size(inode) * 4) 2740 || (have_small_tails(inode->i_sb) 2741 && inode->i_size > i_block_size(inode))) 2742 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2743 2744 ret = journal_begin(&myth, inode->i_sb, 1); 2745 if (ret) 2746 goto journal_error; 2747 2748 reiserfs_update_inode_transaction(inode); 2749 inode->i_size = pos + copied; 2750 /* 2751 * this will just nest into our transaction. It's important 2752 * to use mark_inode_dirty so the inode gets pushed around on the 2753 * dirty lists, and so that O_SYNC works as expected 2754 */ 2755 mark_inode_dirty(inode); 2756 reiserfs_update_sd(&myth, inode); 2757 update_sd = 1; 2758 ret = journal_end(&myth, inode->i_sb, 1); 2759 if (ret) 2760 goto journal_error; 2761 } 2762 if (th) { 2763 if (!locked) { 2764 lock_depth = reiserfs_write_lock_once(inode->i_sb); 2765 locked = true; 2766 } 2767 if (!update_sd) 2768 mark_inode_dirty(inode); 2769 ret = reiserfs_end_persistent_transaction(th); 2770 if (ret) 2771 goto out; 2772 } 2773 2774 out: 2775 if (locked) 2776 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2777 unlock_page(page); 2778 page_cache_release(page); 2779 2780 if (pos + len > inode->i_size) 2781 reiserfs_truncate_failed_write(inode); 2782 2783 return ret == 0 ? copied : ret; 2784 2785 journal_error: 2786 reiserfs_write_unlock_once(inode->i_sb, lock_depth); 2787 locked = false; 2788 if (th) { 2789 if (!update_sd) 2790 reiserfs_update_sd(th, inode); 2791 ret = reiserfs_end_persistent_transaction(th); 2792 } 2793 goto out; 2794 } 2795 2796 int reiserfs_commit_write(struct file *f, struct page *page, 2797 unsigned from, unsigned to) 2798 { 2799 struct inode *inode = page->mapping->host; 2800 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2801 int ret = 0; 2802 int update_sd = 0; 2803 struct reiserfs_transaction_handle *th = NULL; 2804 2805 reiserfs_write_unlock(inode->i_sb); 2806 reiserfs_wait_on_write_block(inode->i_sb); 2807 reiserfs_write_lock(inode->i_sb); 2808 2809 if (reiserfs_transaction_running(inode->i_sb)) { 2810 th = current->journal_info; 2811 } 2812 reiserfs_commit_page(inode, page, from, to); 2813 2814 /* generic_commit_write does this for us, but does not update the 2815 ** transaction tracking stuff when the size changes. So, we have 2816 ** to do the i_size updates here. 2817 */ 2818 if (pos > inode->i_size) { 2819 struct reiserfs_transaction_handle myth; 2820 /* If the file have grown beyond the border where it 2821 can have a tail, unmark it as needing a tail 2822 packing */ 2823 if ((have_large_tails(inode->i_sb) 2824 && inode->i_size > i_block_size(inode) * 4) 2825 || (have_small_tails(inode->i_sb) 2826 && inode->i_size > i_block_size(inode))) 2827 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2828 2829 ret = journal_begin(&myth, inode->i_sb, 1); 2830 if (ret) 2831 goto journal_error; 2832 2833 reiserfs_update_inode_transaction(inode); 2834 inode->i_size = pos; 2835 /* 2836 * this will just nest into our transaction. It's important 2837 * to use mark_inode_dirty so the inode gets pushed around on the 2838 * dirty lists, and so that O_SYNC works as expected 2839 */ 2840 mark_inode_dirty(inode); 2841 reiserfs_update_sd(&myth, inode); 2842 update_sd = 1; 2843 ret = journal_end(&myth, inode->i_sb, 1); 2844 if (ret) 2845 goto journal_error; 2846 } 2847 if (th) { 2848 if (!update_sd) 2849 mark_inode_dirty(inode); 2850 ret = reiserfs_end_persistent_transaction(th); 2851 if (ret) 2852 goto out; 2853 } 2854 2855 out: 2856 return ret; 2857 2858 journal_error: 2859 if (th) { 2860 if (!update_sd) 2861 reiserfs_update_sd(th, inode); 2862 ret = reiserfs_end_persistent_transaction(th); 2863 } 2864 2865 return ret; 2866 } 2867 2868 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2869 { 2870 if (reiserfs_attrs(inode->i_sb)) { 2871 if (sd_attrs & REISERFS_SYNC_FL) 2872 inode->i_flags |= S_SYNC; 2873 else 2874 inode->i_flags &= ~S_SYNC; 2875 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2876 inode->i_flags |= S_IMMUTABLE; 2877 else 2878 inode->i_flags &= ~S_IMMUTABLE; 2879 if (sd_attrs & REISERFS_APPEND_FL) 2880 inode->i_flags |= S_APPEND; 2881 else 2882 inode->i_flags &= ~S_APPEND; 2883 if (sd_attrs & REISERFS_NOATIME_FL) 2884 inode->i_flags |= S_NOATIME; 2885 else 2886 inode->i_flags &= ~S_NOATIME; 2887 if (sd_attrs & REISERFS_NOTAIL_FL) 2888 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2889 else 2890 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2891 } 2892 } 2893 2894 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2895 { 2896 if (reiserfs_attrs(inode->i_sb)) { 2897 if (inode->i_flags & S_IMMUTABLE) 2898 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2899 else 2900 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2901 if (inode->i_flags & S_SYNC) 2902 *sd_attrs |= REISERFS_SYNC_FL; 2903 else 2904 *sd_attrs &= ~REISERFS_SYNC_FL; 2905 if (inode->i_flags & S_NOATIME) 2906 *sd_attrs |= REISERFS_NOATIME_FL; 2907 else 2908 *sd_attrs &= ~REISERFS_NOATIME_FL; 2909 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2910 *sd_attrs |= REISERFS_NOTAIL_FL; 2911 else 2912 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2913 } 2914 } 2915 2916 /* decide if this buffer needs to stay around for data logging or ordered 2917 ** write purposes 2918 */ 2919 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2920 { 2921 int ret = 1; 2922 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2923 2924 lock_buffer(bh); 2925 spin_lock(&j->j_dirty_buffers_lock); 2926 if (!buffer_mapped(bh)) { 2927 goto free_jh; 2928 } 2929 /* the page is locked, and the only places that log a data buffer 2930 * also lock the page. 2931 */ 2932 if (reiserfs_file_data_log(inode)) { 2933 /* 2934 * very conservative, leave the buffer pinned if 2935 * anyone might need it. 2936 */ 2937 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2938 ret = 0; 2939 } 2940 } else if (buffer_dirty(bh)) { 2941 struct reiserfs_journal_list *jl; 2942 struct reiserfs_jh *jh = bh->b_private; 2943 2944 /* why is this safe? 2945 * reiserfs_setattr updates i_size in the on disk 2946 * stat data before allowing vmtruncate to be called. 2947 * 2948 * If buffer was put onto the ordered list for this 2949 * transaction, we know for sure either this transaction 2950 * or an older one already has updated i_size on disk, 2951 * and this ordered data won't be referenced in the file 2952 * if we crash. 2953 * 2954 * if the buffer was put onto the ordered list for an older 2955 * transaction, we need to leave it around 2956 */ 2957 if (jh && (jl = jh->jl) 2958 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2959 ret = 0; 2960 } 2961 free_jh: 2962 if (ret && bh->b_private) { 2963 reiserfs_free_jh(bh); 2964 } 2965 spin_unlock(&j->j_dirty_buffers_lock); 2966 unlock_buffer(bh); 2967 return ret; 2968 } 2969 2970 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2971 static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2972 { 2973 struct buffer_head *head, *bh, *next; 2974 struct inode *inode = page->mapping->host; 2975 unsigned int curr_off = 0; 2976 int ret = 1; 2977 2978 BUG_ON(!PageLocked(page)); 2979 2980 if (offset == 0) 2981 ClearPageChecked(page); 2982 2983 if (!page_has_buffers(page)) 2984 goto out; 2985 2986 head = page_buffers(page); 2987 bh = head; 2988 do { 2989 unsigned int next_off = curr_off + bh->b_size; 2990 next = bh->b_this_page; 2991 2992 /* 2993 * is this block fully invalidated? 2994 */ 2995 if (offset <= curr_off) { 2996 if (invalidatepage_can_drop(inode, bh)) 2997 reiserfs_unmap_buffer(bh); 2998 else 2999 ret = 0; 3000 } 3001 curr_off = next_off; 3002 bh = next; 3003 } while (bh != head); 3004 3005 /* 3006 * We release buffers only if the entire page is being invalidated. 3007 * The get_block cached value has been unconditionally invalidated, 3008 * so real IO is not possible anymore. 3009 */ 3010 if (!offset && ret) { 3011 ret = try_to_release_page(page, 0); 3012 /* maybe should BUG_ON(!ret); - neilb */ 3013 } 3014 out: 3015 return; 3016 } 3017 3018 static int reiserfs_set_page_dirty(struct page *page) 3019 { 3020 struct inode *inode = page->mapping->host; 3021 if (reiserfs_file_data_log(inode)) { 3022 SetPageChecked(page); 3023 return __set_page_dirty_nobuffers(page); 3024 } 3025 return __set_page_dirty_buffers(page); 3026 } 3027 3028 /* 3029 * Returns 1 if the page's buffers were dropped. The page is locked. 3030 * 3031 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3032 * in the buffers at page_buffers(page). 3033 * 3034 * even in -o notail mode, we can't be sure an old mount without -o notail 3035 * didn't create files with tails. 3036 */ 3037 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3038 { 3039 struct inode *inode = page->mapping->host; 3040 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3041 struct buffer_head *head; 3042 struct buffer_head *bh; 3043 int ret = 1; 3044 3045 WARN_ON(PageChecked(page)); 3046 spin_lock(&j->j_dirty_buffers_lock); 3047 head = page_buffers(page); 3048 bh = head; 3049 do { 3050 if (bh->b_private) { 3051 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3052 reiserfs_free_jh(bh); 3053 } else { 3054 ret = 0; 3055 break; 3056 } 3057 } 3058 bh = bh->b_this_page; 3059 } while (bh != head); 3060 if (ret) 3061 ret = try_to_free_buffers(page); 3062 spin_unlock(&j->j_dirty_buffers_lock); 3063 return ret; 3064 } 3065 3066 /* We thank Mingming Cao for helping us understand in great detail what 3067 to do in this section of the code. */ 3068 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3069 const struct iovec *iov, loff_t offset, 3070 unsigned long nr_segs) 3071 { 3072 struct file *file = iocb->ki_filp; 3073 struct inode *inode = file->f_mapping->host; 3074 ssize_t ret; 3075 3076 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 3077 reiserfs_get_blocks_direct_io); 3078 3079 /* 3080 * In case of error extending write may have instantiated a few 3081 * blocks outside i_size. Trim these off again. 3082 */ 3083 if (unlikely((rw & WRITE) && ret < 0)) { 3084 loff_t isize = i_size_read(inode); 3085 loff_t end = offset + iov_length(iov, nr_segs); 3086 3087 if (end > isize) 3088 vmtruncate(inode, isize); 3089 } 3090 3091 return ret; 3092 } 3093 3094 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3095 { 3096 struct inode *inode = dentry->d_inode; 3097 unsigned int ia_valid; 3098 int depth; 3099 int error; 3100 3101 error = inode_change_ok(inode, attr); 3102 if (error) 3103 return error; 3104 3105 /* must be turned off for recursive notify_change calls */ 3106 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3107 3108 depth = reiserfs_write_lock_once(inode->i_sb); 3109 if (is_quota_modification(inode, attr)) 3110 dquot_initialize(inode); 3111 3112 if (attr->ia_valid & ATTR_SIZE) { 3113 /* version 2 items will be caught by the s_maxbytes check 3114 ** done for us in vmtruncate 3115 */ 3116 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3117 attr->ia_size > MAX_NON_LFS) { 3118 error = -EFBIG; 3119 goto out; 3120 } 3121 3122 inode_dio_wait(inode); 3123 3124 /* fill in hole pointers in the expanding truncate case. */ 3125 if (attr->ia_size > inode->i_size) { 3126 error = generic_cont_expand_simple(inode, attr->ia_size); 3127 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3128 int err; 3129 struct reiserfs_transaction_handle th; 3130 /* we're changing at most 2 bitmaps, inode + super */ 3131 err = journal_begin(&th, inode->i_sb, 4); 3132 if (!err) { 3133 reiserfs_discard_prealloc(&th, inode); 3134 err = journal_end(&th, inode->i_sb, 4); 3135 } 3136 if (err) 3137 error = err; 3138 } 3139 if (error) 3140 goto out; 3141 /* 3142 * file size is changed, ctime and mtime are 3143 * to be updated 3144 */ 3145 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3146 } 3147 } 3148 3149 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3150 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3151 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3152 /* stat data of format v3.5 has 16 bit uid and gid */ 3153 error = -EINVAL; 3154 goto out; 3155 } 3156 3157 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3158 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3159 struct reiserfs_transaction_handle th; 3160 int jbegin_count = 3161 2 * 3162 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3163 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3164 2; 3165 3166 error = reiserfs_chown_xattrs(inode, attr); 3167 3168 if (error) 3169 return error; 3170 3171 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3172 error = journal_begin(&th, inode->i_sb, jbegin_count); 3173 if (error) 3174 goto out; 3175 error = dquot_transfer(inode, attr); 3176 if (error) { 3177 journal_end(&th, inode->i_sb, jbegin_count); 3178 goto out; 3179 } 3180 3181 /* Update corresponding info in inode so that everything is in 3182 * one transaction */ 3183 if (attr->ia_valid & ATTR_UID) 3184 inode->i_uid = attr->ia_uid; 3185 if (attr->ia_valid & ATTR_GID) 3186 inode->i_gid = attr->ia_gid; 3187 mark_inode_dirty(inode); 3188 error = journal_end(&th, inode->i_sb, jbegin_count); 3189 if (error) 3190 goto out; 3191 } 3192 3193 /* 3194 * Relax the lock here, as it might truncate the 3195 * inode pages and wait for inode pages locks. 3196 * To release such page lock, the owner needs the 3197 * reiserfs lock 3198 */ 3199 reiserfs_write_unlock_once(inode->i_sb, depth); 3200 if ((attr->ia_valid & ATTR_SIZE) && 3201 attr->ia_size != i_size_read(inode)) 3202 error = vmtruncate(inode, attr->ia_size); 3203 3204 if (!error) { 3205 setattr_copy(inode, attr); 3206 mark_inode_dirty(inode); 3207 } 3208 depth = reiserfs_write_lock_once(inode->i_sb); 3209 3210 if (!error && reiserfs_posixacl(inode->i_sb)) { 3211 if (attr->ia_valid & ATTR_MODE) 3212 error = reiserfs_acl_chmod(inode); 3213 } 3214 3215 out: 3216 reiserfs_write_unlock_once(inode->i_sb, depth); 3217 3218 return error; 3219 } 3220 3221 const struct address_space_operations reiserfs_address_space_operations = { 3222 .writepage = reiserfs_writepage, 3223 .readpage = reiserfs_readpage, 3224 .readpages = reiserfs_readpages, 3225 .releasepage = reiserfs_releasepage, 3226 .invalidatepage = reiserfs_invalidatepage, 3227 .write_begin = reiserfs_write_begin, 3228 .write_end = reiserfs_write_end, 3229 .bmap = reiserfs_aop_bmap, 3230 .direct_IO = reiserfs_direct_IO, 3231 .set_page_dirty = reiserfs_set_page_dirty, 3232 }; 3233