1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ 127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ 137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to readpage, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ 193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ 214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ 241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ 285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p = NULL; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 if (result == IO_ERROR) 311 return -EIO; 312 /* 313 * We do not return -ENOENT if there is a hole but page is 314 * uptodate, because it means that there is some MMAPED data 315 * associated with it that is yet to be written to disk. 316 */ 317 if ((args & GET_BLOCK_NO_HOLE) 318 && !PageUptodate(bh_result->b_page)) { 319 return -ENOENT; 320 } 321 return 0; 322 } 323 324 bh = get_last_bh(&path); 325 ih = tp_item_head(&path); 326 if (is_indirect_le_ih(ih)) { 327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 328 329 /* 330 * FIXME: here we could cache indirect item or part of it in 331 * the inode to avoid search_by_key in case of subsequent 332 * access to file 333 */ 334 blocknr = get_block_num(ind_item, path.pos_in_item); 335 ret = 0; 336 if (blocknr) { 337 map_bh(bh_result, inode->i_sb, blocknr); 338 if (path.pos_in_item == 339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 340 set_buffer_boundary(bh_result); 341 } 342 } else 343 /* 344 * We do not return -ENOENT if there is a hole but 345 * page is uptodate, because it means that there is 346 * some MMAPED data associated with it that is 347 * yet to be written to disk. 348 */ 349 if ((args & GET_BLOCK_NO_HOLE) 350 && !PageUptodate(bh_result->b_page)) { 351 ret = -ENOENT; 352 } 353 354 pathrelse(&path); 355 if (p) 356 kunmap(bh_result->b_page); 357 return ret; 358 } 359 /* requested data are in direct item(s) */ 360 if (!(args & GET_BLOCK_READ_DIRECT)) { 361 /* 362 * we are called by bmap. FIXME: we can not map block of file 363 * when it is stored in direct item(s) 364 */ 365 pathrelse(&path); 366 if (p) 367 kunmap(bh_result->b_page); 368 return -ENOENT; 369 } 370 371 /* 372 * if we've got a direct item, and the buffer or page was uptodate, 373 * we don't want to pull data off disk again. skip to the 374 * end, where we map the buffer and return 375 */ 376 if (buffer_uptodate(bh_result)) { 377 goto finished; 378 } else 379 /* 380 * grab_tail_page can trigger calls to reiserfs_get_block on 381 * up to date pages without any buffers. If the page is up 382 * to date, we don't want read old data off disk. Set the up 383 * to date bit on the buffer instead and jump to the end 384 */ 385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 386 set_buffer_uptodate(bh_result); 387 goto finished; 388 } 389 /* read file tail into part of page */ 390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 391 copy_item_head(&tmp_ih, ih); 392 393 /* 394 * we only want to kmap if we are reading the tail into the page. 395 * this is not the common case, so we don't kmap until we are 396 * sure we need to. But, this means the item might move if 397 * kmap schedules 398 */ 399 if (!p) 400 p = (char *)kmap(bh_result->b_page); 401 402 p += offset; 403 memset(p, 0, inode->i_sb->s_blocksize); 404 do { 405 if (!is_direct_le_ih(ih)) { 406 BUG(); 407 } 408 /* 409 * make sure we don't read more bytes than actually exist in 410 * the file. This can happen in odd cases where i_size isn't 411 * correct, and when direct item padding results in a few 412 * extra bytes at the end of the direct item 413 */ 414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 415 break; 416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 417 chars = 418 inode->i_size - (le_ih_k_offset(ih) - 1) - 419 path.pos_in_item; 420 done = 1; 421 } else { 422 chars = ih_item_len(ih) - path.pos_in_item; 423 } 424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 425 426 if (done) 427 break; 428 429 p += chars; 430 431 /* 432 * we done, if read direct item is not the last item of 433 * node FIXME: we could try to check right delimiting key 434 * to see whether direct item continues in the right 435 * neighbor or rely on i_size 436 */ 437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 438 break; 439 440 /* update key to look for the next piece */ 441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 442 result = search_for_position_by_key(inode->i_sb, &key, &path); 443 if (result != POSITION_FOUND) 444 /* i/o error most likely */ 445 break; 446 bh = get_last_bh(&path); 447 ih = tp_item_head(&path); 448 } while (1); 449 450 flush_dcache_page(bh_result->b_page); 451 kunmap(bh_result->b_page); 452 453 finished: 454 pathrelse(&path); 455 456 if (result == IO_ERROR) 457 return -EIO; 458 459 /* 460 * this buffer has valid data, but isn't valid for io. mapping it to 461 * block #0 tells the rest of reiserfs it just has a tail in it 462 */ 463 map_bh(bh_result, inode->i_sb, 0); 464 set_buffer_uptodate(bh_result); 465 return 0; 466 } 467 468 /* 469 * this is called to create file map. So, _get_block_create_0 will not 470 * read direct item 471 */ 472 static int reiserfs_bmap(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 if (!file_capable(inode, block)) 476 return -EFBIG; 477 478 reiserfs_write_lock(inode->i_sb); 479 /* do not read the direct item */ 480 _get_block_create_0(inode, block, bh_result, 0); 481 reiserfs_write_unlock(inode->i_sb); 482 return 0; 483 } 484 485 /* 486 * special version of get_block that is only used by grab_tail_page right 487 * now. It is sent to __block_write_begin, and when you try to get a 488 * block past the end of the file (or a block from a hole) it returns 489 * -ENOENT instead of a valid buffer. __block_write_begin expects to 490 * be able to do i/o on the buffers returned, unless an error value 491 * is also returned. 492 * 493 * So, this allows __block_write_begin to be used for reading a single block 494 * in a page. Where it does not produce a valid page for holes, or past the 495 * end of the file. This turns out to be exactly what we need for reading 496 * tails for conversion. 497 * 498 * The point of the wrapper is forcing a certain value for create, even 499 * though the VFS layer is calling this function with create==1. If you 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 501 * don't use this function. 502 */ 503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 504 struct buffer_head *bh_result, 505 int create) 506 { 507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 508 } 509 510 /* 511 * This is special helper for reiserfs_get_block in case we are executing 512 * direct_IO request. 513 */ 514 static int reiserfs_get_blocks_direct_io(struct inode *inode, 515 sector_t iblock, 516 struct buffer_head *bh_result, 517 int create) 518 { 519 int ret; 520 521 bh_result->b_page = NULL; 522 523 /* 524 * We set the b_size before reiserfs_get_block call since it is 525 * referenced in convert_tail_for_hole() that may be called from 526 * reiserfs_get_block() 527 */ 528 bh_result->b_size = i_blocksize(inode); 529 530 ret = reiserfs_get_block(inode, iblock, bh_result, 531 create | GET_BLOCK_NO_DANGLE); 532 if (ret) 533 goto out; 534 535 /* don't allow direct io onto tail pages */ 536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 537 /* 538 * make sure future calls to the direct io funcs for this 539 * offset in the file fail by unmapping the buffer 540 */ 541 clear_buffer_mapped(bh_result); 542 ret = -EINVAL; 543 } 544 545 /* 546 * Possible unpacked tail. Flush the data before pages have 547 * disappeared 548 */ 549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 550 int err; 551 552 reiserfs_write_lock(inode->i_sb); 553 554 err = reiserfs_commit_for_inode(inode); 555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 556 557 reiserfs_write_unlock(inode->i_sb); 558 559 if (err < 0) 560 ret = err; 561 } 562 out: 563 return ret; 564 } 565 566 /* 567 * helper function for when reiserfs_get_block is called for a hole 568 * but the file tail is still in a direct item 569 * bh_result is the buffer head for the hole 570 * tail_offset is the offset of the start of the tail in the file 571 * 572 * This calls prepare_write, which will start a new transaction 573 * you should not be in a transaction, or have any paths held when you 574 * call this. 575 */ 576 static int convert_tail_for_hole(struct inode *inode, 577 struct buffer_head *bh_result, 578 loff_t tail_offset) 579 { 580 unsigned long index; 581 unsigned long tail_end; 582 unsigned long tail_start; 583 struct page *tail_page; 584 struct page *hole_page = bh_result->b_page; 585 int retval = 0; 586 587 if ((tail_offset & (bh_result->b_size - 1)) != 1) 588 return -EIO; 589 590 /* always try to read until the end of the block */ 591 tail_start = tail_offset & (PAGE_SIZE - 1); 592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 593 594 index = tail_offset >> PAGE_SHIFT; 595 /* 596 * hole_page can be zero in case of direct_io, we are sure 597 * that we cannot get here if we write with O_DIRECT into tail page 598 */ 599 if (!hole_page || index != hole_page->index) { 600 tail_page = grab_cache_page(inode->i_mapping, index); 601 retval = -ENOMEM; 602 if (!tail_page) { 603 goto out; 604 } 605 } else { 606 tail_page = hole_page; 607 } 608 609 /* 610 * we don't have to make sure the conversion did not happen while 611 * we were locking the page because anyone that could convert 612 * must first take i_mutex. 613 * 614 * We must fix the tail page for writing because it might have buffers 615 * that are mapped, but have a block number of 0. This indicates tail 616 * data that has been read directly into the page, and 617 * __block_write_begin won't trigger a get_block in this case. 618 */ 619 fix_tail_page_for_writing(tail_page); 620 retval = __reiserfs_write_begin(tail_page, tail_start, 621 tail_end - tail_start); 622 if (retval) 623 goto unlock; 624 625 /* tail conversion might change the data in the page */ 626 flush_dcache_page(tail_page); 627 628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 629 630 unlock: 631 if (tail_page != hole_page) { 632 unlock_page(tail_page); 633 put_page(tail_page); 634 } 635 out: 636 return retval; 637 } 638 639 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 640 sector_t block, 641 struct inode *inode, 642 b_blocknr_t * allocated_block_nr, 643 struct treepath *path, int flags) 644 { 645 BUG_ON(!th->t_trans_id); 646 647 #ifdef REISERFS_PREALLOCATE 648 if (!(flags & GET_BLOCK_NO_IMUX)) { 649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 650 path, block); 651 } 652 #endif 653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 654 block); 655 } 656 657 int reiserfs_get_block(struct inode *inode, sector_t block, 658 struct buffer_head *bh_result, int create) 659 { 660 int repeat, retval = 0; 661 /* b_blocknr_t is (unsigned) 32 bit int*/ 662 b_blocknr_t allocated_block_nr = 0; 663 INITIALIZE_PATH(path); 664 int pos_in_item; 665 struct cpu_key key; 666 struct buffer_head *bh, *unbh = NULL; 667 struct item_head *ih, tmp_ih; 668 __le32 *item; 669 int done; 670 int fs_gen; 671 struct reiserfs_transaction_handle *th = NULL; 672 /* 673 * space reserved in transaction batch: 674 * . 3 balancings in direct->indirect conversion 675 * . 1 block involved into reiserfs_update_sd() 676 * XXX in practically impossible worst case direct2indirect() 677 * can incur (much) more than 3 balancings. 678 * quota update for user, group 679 */ 680 int jbegin_count = 681 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 683 int version; 684 int dangle = 1; 685 loff_t new_offset = 686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 687 688 reiserfs_write_lock(inode->i_sb); 689 version = get_inode_item_key_version(inode); 690 691 if (!file_capable(inode, block)) { 692 reiserfs_write_unlock(inode->i_sb); 693 return -EFBIG; 694 } 695 696 /* 697 * if !create, we aren't changing the FS, so we don't need to 698 * log anything, so we don't need to start a transaction 699 */ 700 if (!(create & GET_BLOCK_CREATE)) { 701 int ret; 702 /* find number of block-th logical block of the file */ 703 ret = _get_block_create_0(inode, block, bh_result, 704 create | GET_BLOCK_READ_DIRECT); 705 reiserfs_write_unlock(inode->i_sb); 706 return ret; 707 } 708 709 /* 710 * if we're already in a transaction, make sure to close 711 * any new transactions we start in this func 712 */ 713 if ((create & GET_BLOCK_NO_DANGLE) || 714 reiserfs_transaction_running(inode->i_sb)) 715 dangle = 0; 716 717 /* 718 * If file is of such a size, that it might have a tail and 719 * tails are enabled we should mark it as possibly needing 720 * tail packing on close 721 */ 722 if ((have_large_tails(inode->i_sb) 723 && inode->i_size < i_block_size(inode) * 4) 724 || (have_small_tails(inode->i_sb) 725 && inode->i_size < i_block_size(inode))) 726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 727 728 /* set the key of the first byte in the 'block'-th block of file */ 729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 731 start_trans: 732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 733 if (!th) { 734 retval = -ENOMEM; 735 goto failure; 736 } 737 reiserfs_update_inode_transaction(inode); 738 } 739 research: 740 741 retval = search_for_position_by_key(inode->i_sb, &key, &path); 742 if (retval == IO_ERROR) { 743 retval = -EIO; 744 goto failure; 745 } 746 747 bh = get_last_bh(&path); 748 ih = tp_item_head(&path); 749 item = tp_item_body(&path); 750 pos_in_item = path.pos_in_item; 751 752 fs_gen = get_generation(inode->i_sb); 753 copy_item_head(&tmp_ih, ih); 754 755 if (allocation_needed 756 (retval, allocated_block_nr, ih, item, pos_in_item)) { 757 /* we have to allocate block for the unformatted node */ 758 if (!th) { 759 pathrelse(&path); 760 goto start_trans; 761 } 762 763 repeat = 764 _allocate_block(th, block, inode, &allocated_block_nr, 765 &path, create); 766 767 /* 768 * restart the transaction to give the journal a chance to free 769 * some blocks. releases the path, so we have to go back to 770 * research if we succeed on the second try 771 */ 772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 774 retval = restart_transaction(th, inode, &path); 775 if (retval) 776 goto failure; 777 repeat = 778 _allocate_block(th, block, inode, 779 &allocated_block_nr, NULL, create); 780 781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 782 goto research; 783 } 784 if (repeat == QUOTA_EXCEEDED) 785 retval = -EDQUOT; 786 else 787 retval = -ENOSPC; 788 goto failure; 789 } 790 791 if (fs_changed(fs_gen, inode->i_sb) 792 && item_moved(&tmp_ih, &path)) { 793 goto research; 794 } 795 } 796 797 if (indirect_item_found(retval, ih)) { 798 b_blocknr_t unfm_ptr; 799 /* 800 * 'block'-th block is in the file already (there is 801 * corresponding cell in some indirect item). But it may be 802 * zero unformatted node pointer (hole) 803 */ 804 unfm_ptr = get_block_num(item, pos_in_item); 805 if (unfm_ptr == 0) { 806 /* use allocated block to plug the hole */ 807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 808 if (fs_changed(fs_gen, inode->i_sb) 809 && item_moved(&tmp_ih, &path)) { 810 reiserfs_restore_prepared_buffer(inode->i_sb, 811 bh); 812 goto research; 813 } 814 set_buffer_new(bh_result); 815 if (buffer_dirty(bh_result) 816 && reiserfs_data_ordered(inode->i_sb)) 817 reiserfs_add_ordered_list(inode, bh_result); 818 put_block_num(item, pos_in_item, allocated_block_nr); 819 unfm_ptr = allocated_block_nr; 820 journal_mark_dirty(th, bh); 821 reiserfs_update_sd(th, inode); 822 } 823 set_block_dev_mapped(bh_result, unfm_ptr, inode); 824 pathrelse(&path); 825 retval = 0; 826 if (!dangle && th) 827 retval = reiserfs_end_persistent_transaction(th); 828 829 reiserfs_write_unlock(inode->i_sb); 830 831 /* 832 * the item was found, so new blocks were not added to the file 833 * there is no need to make sure the inode is updated with this 834 * transaction 835 */ 836 return retval; 837 } 838 839 if (!th) { 840 pathrelse(&path); 841 goto start_trans; 842 } 843 844 /* 845 * desired position is not found or is in the direct item. We have 846 * to append file with holes up to 'block'-th block converting 847 * direct items to indirect one if necessary 848 */ 849 done = 0; 850 do { 851 if (is_statdata_le_ih(ih)) { 852 __le32 unp = 0; 853 struct cpu_key tmp_key; 854 855 /* indirect item has to be inserted */ 856 make_le_item_head(&tmp_ih, &key, version, 1, 857 TYPE_INDIRECT, UNFM_P_SIZE, 858 0 /* free_space */ ); 859 860 /* 861 * we are going to add 'block'-th block to the file. 862 * Use allocated block for that 863 */ 864 if (cpu_key_k_offset(&key) == 1) { 865 unp = cpu_to_le32(allocated_block_nr); 866 set_block_dev_mapped(bh_result, 867 allocated_block_nr, inode); 868 set_buffer_new(bh_result); 869 done = 1; 870 } 871 tmp_key = key; /* ;) */ 872 set_cpu_key_k_offset(&tmp_key, 1); 873 PATH_LAST_POSITION(&path)++; 874 875 retval = 876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 877 inode, (char *)&unp); 878 if (retval) { 879 reiserfs_free_block(th, inode, 880 allocated_block_nr, 1); 881 /* 882 * retval == -ENOSPC, -EDQUOT or -EIO 883 * or -EEXIST 884 */ 885 goto failure; 886 } 887 } else if (is_direct_le_ih(ih)) { 888 /* direct item has to be converted */ 889 loff_t tail_offset; 890 891 tail_offset = 892 ((le_ih_k_offset(ih) - 893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 894 895 /* 896 * direct item we just found fits into block we have 897 * to map. Convert it into unformatted node: use 898 * bh_result for the conversion 899 */ 900 if (tail_offset == cpu_key_k_offset(&key)) { 901 set_block_dev_mapped(bh_result, 902 allocated_block_nr, inode); 903 unbh = bh_result; 904 done = 1; 905 } else { 906 /* 907 * we have to pad file tail stored in direct 908 * item(s) up to block size and convert it 909 * to unformatted node. FIXME: this should 910 * also get into page cache 911 */ 912 913 pathrelse(&path); 914 /* 915 * ugly, but we can only end the transaction if 916 * we aren't nested 917 */ 918 BUG_ON(!th->t_refcount); 919 if (th->t_refcount == 1) { 920 retval = 921 reiserfs_end_persistent_transaction 922 (th); 923 th = NULL; 924 if (retval) 925 goto failure; 926 } 927 928 retval = 929 convert_tail_for_hole(inode, bh_result, 930 tail_offset); 931 if (retval) { 932 if (retval != -ENOSPC) 933 reiserfs_error(inode->i_sb, 934 "clm-6004", 935 "convert tail failed " 936 "inode %lu, error %d", 937 inode->i_ino, 938 retval); 939 if (allocated_block_nr) { 940 /* 941 * the bitmap, the super, 942 * and the stat data == 3 943 */ 944 if (!th) 945 th = reiserfs_persistent_transaction(inode->i_sb, 3); 946 if (th) 947 reiserfs_free_block(th, 948 inode, 949 allocated_block_nr, 950 1); 951 } 952 goto failure; 953 } 954 goto research; 955 } 956 retval = 957 direct2indirect(th, inode, &path, unbh, 958 tail_offset); 959 if (retval) { 960 reiserfs_unmap_buffer(unbh); 961 reiserfs_free_block(th, inode, 962 allocated_block_nr, 1); 963 goto failure; 964 } 965 /* 966 * it is important the set_buffer_uptodate is done 967 * after the direct2indirect. The buffer might 968 * contain valid data newer than the data on disk 969 * (read by readpage, changed, and then sent here by 970 * writepage). direct2indirect needs to know if unbh 971 * was already up to date, so it can decide if the 972 * data in unbh needs to be replaced with data from 973 * the disk 974 */ 975 set_buffer_uptodate(unbh); 976 977 /* 978 * unbh->b_page == NULL in case of DIRECT_IO request, 979 * this means buffer will disappear shortly, so it 980 * should not be added to 981 */ 982 if (unbh->b_page) { 983 /* 984 * we've converted the tail, so we must 985 * flush unbh before the transaction commits 986 */ 987 reiserfs_add_tail_list(inode, unbh); 988 989 /* 990 * mark it dirty now to prevent commit_write 991 * from adding this buffer to the inode's 992 * dirty buffer list 993 */ 994 /* 995 * AKPM: changed __mark_buffer_dirty to 996 * mark_buffer_dirty(). It's still atomic, 997 * but it sets the page dirty too, which makes 998 * it eligible for writeback at any time by the 999 * VM (which was also the case with 1000 * __mark_buffer_dirty()) 1001 */ 1002 mark_buffer_dirty(unbh); 1003 } 1004 } else { 1005 /* 1006 * append indirect item with holes if needed, when 1007 * appending pointer to 'block'-th block use block, 1008 * which is already allocated 1009 */ 1010 struct cpu_key tmp_key; 1011 /* 1012 * We use this in case we need to allocate 1013 * only one block which is a fastpath 1014 */ 1015 unp_t unf_single = 0; 1016 unp_t *un; 1017 __u64 max_to_insert = 1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1019 UNFM_P_SIZE; 1020 __u64 blocks_needed; 1021 1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1023 "vs-804: invalid position for append"); 1024 /* 1025 * indirect item has to be appended, 1026 * set up key of that position 1027 * (key type is unimportant) 1028 */ 1029 make_cpu_key(&tmp_key, inode, 1030 le_key_k_offset(version, 1031 &ih->ih_key) + 1032 op_bytes_number(ih, 1033 inode->i_sb->s_blocksize), 1034 TYPE_INDIRECT, 3); 1035 1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1037 "green-805: invalid offset"); 1038 blocks_needed = 1039 1 + 1040 ((cpu_key_k_offset(&key) - 1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1042 s_blocksize_bits); 1043 1044 if (blocks_needed == 1) { 1045 un = &unf_single; 1046 } else { 1047 un = kcalloc(min(blocks_needed, max_to_insert), 1048 UNFM_P_SIZE, GFP_NOFS); 1049 if (!un) { 1050 un = &unf_single; 1051 blocks_needed = 1; 1052 max_to_insert = 0; 1053 } 1054 } 1055 if (blocks_needed <= max_to_insert) { 1056 /* 1057 * we are going to add target block to 1058 * the file. Use allocated block for that 1059 */ 1060 un[blocks_needed - 1] = 1061 cpu_to_le32(allocated_block_nr); 1062 set_block_dev_mapped(bh_result, 1063 allocated_block_nr, inode); 1064 set_buffer_new(bh_result); 1065 done = 1; 1066 } else { 1067 /* paste hole to the indirect item */ 1068 /* 1069 * If kmalloc failed, max_to_insert becomes 1070 * zero and it means we only have space for 1071 * one block 1072 */ 1073 blocks_needed = 1074 max_to_insert ? max_to_insert : 1; 1075 } 1076 retval = 1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1078 (char *)un, 1079 UNFM_P_SIZE * 1080 blocks_needed); 1081 1082 if (blocks_needed != 1) 1083 kfree(un); 1084 1085 if (retval) { 1086 reiserfs_free_block(th, inode, 1087 allocated_block_nr, 1); 1088 goto failure; 1089 } 1090 if (!done) { 1091 /* 1092 * We need to mark new file size in case 1093 * this function will be interrupted/aborted 1094 * later on. And we may do this only for 1095 * holes. 1096 */ 1097 inode->i_size += 1098 inode->i_sb->s_blocksize * blocks_needed; 1099 } 1100 } 1101 1102 if (done == 1) 1103 break; 1104 1105 /* 1106 * this loop could log more blocks than we had originally 1107 * asked for. So, we have to allow the transaction to end 1108 * if it is too big or too full. Update the inode so things 1109 * are consistent if we crash before the function returns 1110 * release the path so that anybody waiting on the path before 1111 * ending their transaction will be able to continue. 1112 */ 1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1114 retval = restart_transaction(th, inode, &path); 1115 if (retval) 1116 goto failure; 1117 } 1118 /* 1119 * inserting indirect pointers for a hole can take a 1120 * long time. reschedule if needed and also release the write 1121 * lock for others. 1122 */ 1123 reiserfs_cond_resched(inode->i_sb); 1124 1125 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1126 if (retval == IO_ERROR) { 1127 retval = -EIO; 1128 goto failure; 1129 } 1130 if (retval == POSITION_FOUND) { 1131 reiserfs_warning(inode->i_sb, "vs-825", 1132 "%K should not be found", &key); 1133 retval = -EEXIST; 1134 if (allocated_block_nr) 1135 reiserfs_free_block(th, inode, 1136 allocated_block_nr, 1); 1137 pathrelse(&path); 1138 goto failure; 1139 } 1140 bh = get_last_bh(&path); 1141 ih = tp_item_head(&path); 1142 item = tp_item_body(&path); 1143 pos_in_item = path.pos_in_item; 1144 } while (1); 1145 1146 retval = 0; 1147 1148 failure: 1149 if (th && (!dangle || (retval && !th->t_trans_id))) { 1150 int err; 1151 if (th->t_trans_id) 1152 reiserfs_update_sd(th, inode); 1153 err = reiserfs_end_persistent_transaction(th); 1154 if (err) 1155 retval = err; 1156 } 1157 1158 reiserfs_write_unlock(inode->i_sb); 1159 reiserfs_check_path(&path); 1160 return retval; 1161 } 1162 1163 static void reiserfs_readahead(struct readahead_control *rac) 1164 { 1165 mpage_readahead(rac, reiserfs_get_block); 1166 } 1167 1168 /* 1169 * Compute real number of used bytes by file 1170 * Following three functions can go away when we'll have enough space in 1171 * stat item 1172 */ 1173 static int real_space_diff(struct inode *inode, int sd_size) 1174 { 1175 int bytes; 1176 loff_t blocksize = inode->i_sb->s_blocksize; 1177 1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1179 return sd_size; 1180 1181 /* 1182 * End of file is also in full block with indirect reference, so round 1183 * up to the next block. 1184 * 1185 * there is just no way to know if the tail is actually packed 1186 * on the file, so we have to assume it isn't. When we pack the 1187 * tail, we add 4 bytes to pretend there really is an unformatted 1188 * node pointer 1189 */ 1190 bytes = 1191 ((inode->i_size + 1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1193 sd_size; 1194 return bytes; 1195 } 1196 1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1198 int sd_size) 1199 { 1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1201 return inode->i_size + 1202 (loff_t) (real_space_diff(inode, sd_size)); 1203 } 1204 return ((loff_t) real_space_diff(inode, sd_size)) + 1205 (((loff_t) blocks) << 9); 1206 } 1207 1208 /* Compute number of blocks used by file in ReiserFS counting */ 1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1210 { 1211 loff_t bytes = inode_get_bytes(inode); 1212 loff_t real_space = real_space_diff(inode, sd_size); 1213 1214 /* keeps fsck and non-quota versions of reiserfs happy */ 1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1216 bytes += (loff_t) 511; 1217 } 1218 1219 /* 1220 * files from before the quota patch might i_blocks such that 1221 * bytes < real_space. Deal with that here to prevent it from 1222 * going negative. 1223 */ 1224 if (bytes < real_space) 1225 return 0; 1226 return (bytes - real_space) >> 9; 1227 } 1228 1229 /* 1230 * BAD: new directories have stat data of new type and all other items 1231 * of old type. Version stored in the inode says about body items, so 1232 * in update_stat_data we can not rely on inode, but have to check 1233 * item version directly 1234 */ 1235 1236 /* called by read_locked_inode */ 1237 static void init_inode(struct inode *inode, struct treepath *path) 1238 { 1239 struct buffer_head *bh; 1240 struct item_head *ih; 1241 __u32 rdev; 1242 1243 bh = PATH_PLAST_BUFFER(path); 1244 ih = tp_item_head(path); 1245 1246 copy_key(INODE_PKEY(inode), &ih->ih_key); 1247 1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1249 REISERFS_I(inode)->i_flags = 0; 1250 REISERFS_I(inode)->i_prealloc_block = 0; 1251 REISERFS_I(inode)->i_prealloc_count = 0; 1252 REISERFS_I(inode)->i_trans_id = 0; 1253 REISERFS_I(inode)->i_jl = NULL; 1254 reiserfs_init_xattr_rwsem(inode); 1255 1256 if (stat_data_v1(ih)) { 1257 struct stat_data_v1 *sd = 1258 (struct stat_data_v1 *)ih_item_body(bh, ih); 1259 unsigned long blocks; 1260 1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1262 set_inode_sd_version(inode, STAT_DATA_V1); 1263 inode->i_mode = sd_v1_mode(sd); 1264 set_nlink(inode, sd_v1_nlink(sd)); 1265 i_uid_write(inode, sd_v1_uid(sd)); 1266 i_gid_write(inode, sd_v1_gid(sd)); 1267 inode->i_size = sd_v1_size(sd); 1268 inode->i_atime.tv_sec = sd_v1_atime(sd); 1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1271 inode->i_atime.tv_nsec = 0; 1272 inode->i_ctime.tv_nsec = 0; 1273 inode->i_mtime.tv_nsec = 0; 1274 1275 inode->i_blocks = sd_v1_blocks(sd); 1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1277 blocks = (inode->i_size + 511) >> 9; 1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1279 1280 /* 1281 * there was a bug in <=3.5.23 when i_blocks could take 1282 * negative values. Starting from 3.5.17 this value could 1283 * even be stored in stat data. For such files we set 1284 * i_blocks based on file size. Just 2 notes: this can be 1285 * wrong for sparse files. On-disk value will be only 1286 * updated if file's inode will ever change 1287 */ 1288 if (inode->i_blocks > blocks) { 1289 inode->i_blocks = blocks; 1290 } 1291 1292 rdev = sd_v1_rdev(sd); 1293 REISERFS_I(inode)->i_first_direct_byte = 1294 sd_v1_first_direct_byte(sd); 1295 1296 /* 1297 * an early bug in the quota code can give us an odd 1298 * number for the block count. This is incorrect, fix it here. 1299 */ 1300 if (inode->i_blocks & 1) { 1301 inode->i_blocks++; 1302 } 1303 inode_set_bytes(inode, 1304 to_real_used_space(inode, inode->i_blocks, 1305 SD_V1_SIZE)); 1306 /* 1307 * nopack is initially zero for v1 objects. For v2 objects, 1308 * nopack is initialised from sd_attrs 1309 */ 1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1311 } else { 1312 /* 1313 * new stat data found, but object may have old items 1314 * (directories and symlinks) 1315 */ 1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1317 1318 inode->i_mode = sd_v2_mode(sd); 1319 set_nlink(inode, sd_v2_nlink(sd)); 1320 i_uid_write(inode, sd_v2_uid(sd)); 1321 inode->i_size = sd_v2_size(sd); 1322 i_gid_write(inode, sd_v2_gid(sd)); 1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1324 inode->i_atime.tv_sec = sd_v2_atime(sd); 1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1326 inode->i_ctime.tv_nsec = 0; 1327 inode->i_mtime.tv_nsec = 0; 1328 inode->i_atime.tv_nsec = 0; 1329 inode->i_blocks = sd_v2_blocks(sd); 1330 rdev = sd_v2_rdev(sd); 1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1332 inode->i_generation = 1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1334 else 1335 inode->i_generation = sd_v2_generation(sd); 1336 1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1339 else 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1341 REISERFS_I(inode)->i_first_direct_byte = 0; 1342 set_inode_sd_version(inode, STAT_DATA_V2); 1343 inode_set_bytes(inode, 1344 to_real_used_space(inode, inode->i_blocks, 1345 SD_V2_SIZE)); 1346 /* 1347 * read persistent inode attributes from sd and initialise 1348 * generic inode flags from them 1349 */ 1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1352 } 1353 1354 pathrelse(path); 1355 if (S_ISREG(inode->i_mode)) { 1356 inode->i_op = &reiserfs_file_inode_operations; 1357 inode->i_fop = &reiserfs_file_operations; 1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1359 } else if (S_ISDIR(inode->i_mode)) { 1360 inode->i_op = &reiserfs_dir_inode_operations; 1361 inode->i_fop = &reiserfs_dir_operations; 1362 } else if (S_ISLNK(inode->i_mode)) { 1363 inode->i_op = &reiserfs_symlink_inode_operations; 1364 inode_nohighmem(inode); 1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1366 } else { 1367 inode->i_blocks = 0; 1368 inode->i_op = &reiserfs_special_inode_operations; 1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1370 } 1371 } 1372 1373 /* update new stat data with inode fields */ 1374 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1375 { 1376 struct stat_data *sd_v2 = (struct stat_data *)sd; 1377 1378 set_sd_v2_mode(sd_v2, inode->i_mode); 1379 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1380 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1381 set_sd_v2_size(sd_v2, size); 1382 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1383 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1384 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1385 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1386 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1387 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1388 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1389 else 1390 set_sd_v2_generation(sd_v2, inode->i_generation); 1391 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1392 } 1393 1394 /* used to copy inode's fields to old stat data */ 1395 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1396 { 1397 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1398 1399 set_sd_v1_mode(sd_v1, inode->i_mode); 1400 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1401 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1402 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1403 set_sd_v1_size(sd_v1, size); 1404 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1405 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1406 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1407 1408 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1409 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1410 else 1411 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1412 1413 /* Sigh. i_first_direct_byte is back */ 1414 set_sd_v1_first_direct_byte(sd_v1, 1415 REISERFS_I(inode)->i_first_direct_byte); 1416 } 1417 1418 /* 1419 * NOTE, you must prepare the buffer head before sending it here, 1420 * and then log it after the call 1421 */ 1422 static void update_stat_data(struct treepath *path, struct inode *inode, 1423 loff_t size) 1424 { 1425 struct buffer_head *bh; 1426 struct item_head *ih; 1427 1428 bh = PATH_PLAST_BUFFER(path); 1429 ih = tp_item_head(path); 1430 1431 if (!is_statdata_le_ih(ih)) 1432 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1433 INODE_PKEY(inode), ih); 1434 1435 /* path points to old stat data */ 1436 if (stat_data_v1(ih)) { 1437 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1438 } else { 1439 inode2sd(ih_item_body(bh, ih), inode, size); 1440 } 1441 1442 return; 1443 } 1444 1445 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1446 struct inode *inode, loff_t size) 1447 { 1448 struct cpu_key key; 1449 INITIALIZE_PATH(path); 1450 struct buffer_head *bh; 1451 int fs_gen; 1452 struct item_head *ih, tmp_ih; 1453 int retval; 1454 1455 BUG_ON(!th->t_trans_id); 1456 1457 /* key type is unimportant */ 1458 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1459 1460 for (;;) { 1461 int pos; 1462 /* look for the object's stat data */ 1463 retval = search_item(inode->i_sb, &key, &path); 1464 if (retval == IO_ERROR) { 1465 reiserfs_error(inode->i_sb, "vs-13050", 1466 "i/o failure occurred trying to " 1467 "update %K stat data", &key); 1468 return; 1469 } 1470 if (retval == ITEM_NOT_FOUND) { 1471 pos = PATH_LAST_POSITION(&path); 1472 pathrelse(&path); 1473 if (inode->i_nlink == 0) { 1474 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1475 return; 1476 } 1477 reiserfs_warning(inode->i_sb, "vs-13060", 1478 "stat data of object %k (nlink == %d) " 1479 "not found (pos %d)", 1480 INODE_PKEY(inode), inode->i_nlink, 1481 pos); 1482 reiserfs_check_path(&path); 1483 return; 1484 } 1485 1486 /* 1487 * sigh, prepare_for_journal might schedule. When it 1488 * schedules the FS might change. We have to detect that, 1489 * and loop back to the search if the stat data item has moved 1490 */ 1491 bh = get_last_bh(&path); 1492 ih = tp_item_head(&path); 1493 copy_item_head(&tmp_ih, ih); 1494 fs_gen = get_generation(inode->i_sb); 1495 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1496 1497 /* Stat_data item has been moved after scheduling. */ 1498 if (fs_changed(fs_gen, inode->i_sb) 1499 && item_moved(&tmp_ih, &path)) { 1500 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1501 continue; 1502 } 1503 break; 1504 } 1505 update_stat_data(&path, inode, size); 1506 journal_mark_dirty(th, bh); 1507 pathrelse(&path); 1508 return; 1509 } 1510 1511 /* 1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1513 * does a make_bad_inode when things go wrong. But, we need to make sure 1514 * and clear the key in the private portion of the inode, otherwise a 1515 * corresponding iput might try to delete whatever object the inode last 1516 * represented. 1517 */ 1518 static void reiserfs_make_bad_inode(struct inode *inode) 1519 { 1520 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1521 make_bad_inode(inode); 1522 } 1523 1524 /* 1525 * initially this function was derived from minix or ext2's analog and 1526 * evolved as the prototype did 1527 */ 1528 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1529 { 1530 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1531 inode->i_ino = args->objectid; 1532 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1533 return 0; 1534 } 1535 1536 /* 1537 * looks for stat data in the tree, and fills up the fields of in-core 1538 * inode stat data fields 1539 */ 1540 void reiserfs_read_locked_inode(struct inode *inode, 1541 struct reiserfs_iget_args *args) 1542 { 1543 INITIALIZE_PATH(path_to_sd); 1544 struct cpu_key key; 1545 unsigned long dirino; 1546 int retval; 1547 1548 dirino = args->dirid; 1549 1550 /* 1551 * set version 1, version 2 could be used too, because stat data 1552 * key is the same in both versions 1553 */ 1554 key.version = KEY_FORMAT_3_5; 1555 key.on_disk_key.k_dir_id = dirino; 1556 key.on_disk_key.k_objectid = inode->i_ino; 1557 key.on_disk_key.k_offset = 0; 1558 key.on_disk_key.k_type = 0; 1559 1560 /* look for the object's stat data */ 1561 retval = search_item(inode->i_sb, &key, &path_to_sd); 1562 if (retval == IO_ERROR) { 1563 reiserfs_error(inode->i_sb, "vs-13070", 1564 "i/o failure occurred trying to find " 1565 "stat data of %K", &key); 1566 reiserfs_make_bad_inode(inode); 1567 return; 1568 } 1569 1570 /* a stale NFS handle can trigger this without it being an error */ 1571 if (retval != ITEM_FOUND) { 1572 pathrelse(&path_to_sd); 1573 reiserfs_make_bad_inode(inode); 1574 clear_nlink(inode); 1575 return; 1576 } 1577 1578 init_inode(inode, &path_to_sd); 1579 1580 /* 1581 * It is possible that knfsd is trying to access inode of a file 1582 * that is being removed from the disk by some other thread. As we 1583 * update sd on unlink all that is required is to check for nlink 1584 * here. This bug was first found by Sizif when debugging 1585 * SquidNG/Butterfly, forgotten, and found again after Philippe 1586 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1587 1588 * More logical fix would require changes in fs/inode.c:iput() to 1589 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1590 * in iget() to return NULL if I_FREEING inode is found in 1591 * hash-table. 1592 */ 1593 1594 /* 1595 * Currently there is one place where it's ok to meet inode with 1596 * nlink==0: processing of open-unlinked and half-truncated files 1597 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1598 */ 1599 if ((inode->i_nlink == 0) && 1600 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1601 reiserfs_warning(inode->i_sb, "vs-13075", 1602 "dead inode read from disk %K. " 1603 "This is likely to be race with knfsd. Ignore", 1604 &key); 1605 reiserfs_make_bad_inode(inode); 1606 } 1607 1608 /* init inode should be relsing */ 1609 reiserfs_check_path(&path_to_sd); 1610 1611 /* 1612 * Stat data v1 doesn't support ACLs. 1613 */ 1614 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1615 cache_no_acl(inode); 1616 } 1617 1618 /* 1619 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1620 * 1621 * @inode: inode from hash table to check 1622 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1623 * 1624 * This function is called by iget5_locked() to distinguish reiserfs inodes 1625 * having the same inode numbers. Such inodes can only exist due to some 1626 * error condition. One of them should be bad. Inodes with identical 1627 * inode numbers (objectids) are distinguished by parent directory ids. 1628 * 1629 */ 1630 int reiserfs_find_actor(struct inode *inode, void *opaque) 1631 { 1632 struct reiserfs_iget_args *args; 1633 1634 args = opaque; 1635 /* args is already in CPU order */ 1636 return (inode->i_ino == args->objectid) && 1637 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1638 } 1639 1640 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1641 { 1642 struct inode *inode; 1643 struct reiserfs_iget_args args; 1644 int depth; 1645 1646 args.objectid = key->on_disk_key.k_objectid; 1647 args.dirid = key->on_disk_key.k_dir_id; 1648 depth = reiserfs_write_unlock_nested(s); 1649 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1650 reiserfs_find_actor, reiserfs_init_locked_inode, 1651 (void *)(&args)); 1652 reiserfs_write_lock_nested(s, depth); 1653 if (!inode) 1654 return ERR_PTR(-ENOMEM); 1655 1656 if (inode->i_state & I_NEW) { 1657 reiserfs_read_locked_inode(inode, &args); 1658 unlock_new_inode(inode); 1659 } 1660 1661 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1662 /* either due to i/o error or a stale NFS handle */ 1663 iput(inode); 1664 inode = NULL; 1665 } 1666 return inode; 1667 } 1668 1669 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1670 u32 objectid, u32 dir_id, u32 generation) 1671 1672 { 1673 struct cpu_key key; 1674 struct inode *inode; 1675 1676 key.on_disk_key.k_objectid = objectid; 1677 key.on_disk_key.k_dir_id = dir_id; 1678 reiserfs_write_lock(sb); 1679 inode = reiserfs_iget(sb, &key); 1680 if (inode && !IS_ERR(inode) && generation != 0 && 1681 generation != inode->i_generation) { 1682 iput(inode); 1683 inode = NULL; 1684 } 1685 reiserfs_write_unlock(sb); 1686 1687 return d_obtain_alias(inode); 1688 } 1689 1690 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1691 int fh_len, int fh_type) 1692 { 1693 /* 1694 * fhtype happens to reflect the number of u32s encoded. 1695 * due to a bug in earlier code, fhtype might indicate there 1696 * are more u32s then actually fitted. 1697 * so if fhtype seems to be more than len, reduce fhtype. 1698 * Valid types are: 1699 * 2 - objectid + dir_id - legacy support 1700 * 3 - objectid + dir_id + generation 1701 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1702 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1703 * 6 - as above plus generation of directory 1704 * 6 does not fit in NFSv2 handles 1705 */ 1706 if (fh_type > fh_len) { 1707 if (fh_type != 6 || fh_len != 5) 1708 reiserfs_warning(sb, "reiserfs-13077", 1709 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1710 fh_type, fh_len); 1711 fh_type = fh_len; 1712 } 1713 if (fh_len < 2) 1714 return NULL; 1715 1716 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1717 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1718 } 1719 1720 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1721 int fh_len, int fh_type) 1722 { 1723 if (fh_type > fh_len) 1724 fh_type = fh_len; 1725 if (fh_type < 4) 1726 return NULL; 1727 1728 return reiserfs_get_dentry(sb, 1729 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1730 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1731 (fh_type == 6) ? fid->raw[5] : 0); 1732 } 1733 1734 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1735 struct inode *parent) 1736 { 1737 int maxlen = *lenp; 1738 1739 if (parent && (maxlen < 5)) { 1740 *lenp = 5; 1741 return FILEID_INVALID; 1742 } else if (maxlen < 3) { 1743 *lenp = 3; 1744 return FILEID_INVALID; 1745 } 1746 1747 data[0] = inode->i_ino; 1748 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1749 data[2] = inode->i_generation; 1750 *lenp = 3; 1751 if (parent) { 1752 data[3] = parent->i_ino; 1753 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1754 *lenp = 5; 1755 if (maxlen >= 6) { 1756 data[5] = parent->i_generation; 1757 *lenp = 6; 1758 } 1759 } 1760 return *lenp; 1761 } 1762 1763 /* 1764 * looks for stat data, then copies fields to it, marks the buffer 1765 * containing stat data as dirty 1766 */ 1767 /* 1768 * reiserfs inodes are never really dirty, since the dirty inode call 1769 * always logs them. This call allows the VFS inode marking routines 1770 * to properly mark inodes for datasync and such, but only actually 1771 * does something when called for a synchronous update. 1772 */ 1773 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1774 { 1775 struct reiserfs_transaction_handle th; 1776 int jbegin_count = 1; 1777 1778 if (sb_rdonly(inode->i_sb)) 1779 return -EROFS; 1780 /* 1781 * memory pressure can sometimes initiate write_inode calls with 1782 * sync == 1, 1783 * these cases are just when the system needs ram, not when the 1784 * inode needs to reach disk for safety, and they can safely be 1785 * ignored because the altered inode has already been logged. 1786 */ 1787 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1788 reiserfs_write_lock(inode->i_sb); 1789 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1790 reiserfs_update_sd(&th, inode); 1791 journal_end_sync(&th); 1792 } 1793 reiserfs_write_unlock(inode->i_sb); 1794 } 1795 return 0; 1796 } 1797 1798 /* 1799 * stat data of new object is inserted already, this inserts the item 1800 * containing "." and ".." entries 1801 */ 1802 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1803 struct inode *inode, 1804 struct item_head *ih, struct treepath *path, 1805 struct inode *dir) 1806 { 1807 struct super_block *sb = th->t_super; 1808 char empty_dir[EMPTY_DIR_SIZE]; 1809 char *body = empty_dir; 1810 struct cpu_key key; 1811 int retval; 1812 1813 BUG_ON(!th->t_trans_id); 1814 1815 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1816 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1817 TYPE_DIRENTRY, 3 /*key length */ ); 1818 1819 /* 1820 * compose item head for new item. Directories consist of items of 1821 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1822 * is done by reiserfs_new_inode 1823 */ 1824 if (old_format_only(sb)) { 1825 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1826 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1827 1828 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1829 ih->ih_key.k_objectid, 1830 INODE_PKEY(dir)->k_dir_id, 1831 INODE_PKEY(dir)->k_objectid); 1832 } else { 1833 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1834 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1835 1836 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1837 ih->ih_key.k_objectid, 1838 INODE_PKEY(dir)->k_dir_id, 1839 INODE_PKEY(dir)->k_objectid); 1840 } 1841 1842 /* look for place in the tree for new item */ 1843 retval = search_item(sb, &key, path); 1844 if (retval == IO_ERROR) { 1845 reiserfs_error(sb, "vs-13080", 1846 "i/o failure occurred creating new directory"); 1847 return -EIO; 1848 } 1849 if (retval == ITEM_FOUND) { 1850 pathrelse(path); 1851 reiserfs_warning(sb, "vs-13070", 1852 "object with this key exists (%k)", 1853 &(ih->ih_key)); 1854 return -EEXIST; 1855 } 1856 1857 /* insert item, that is empty directory item */ 1858 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1859 } 1860 1861 /* 1862 * stat data of object has been inserted, this inserts the item 1863 * containing the body of symlink 1864 */ 1865 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1866 struct inode *inode, 1867 struct item_head *ih, 1868 struct treepath *path, const char *symname, 1869 int item_len) 1870 { 1871 struct super_block *sb = th->t_super; 1872 struct cpu_key key; 1873 int retval; 1874 1875 BUG_ON(!th->t_trans_id); 1876 1877 _make_cpu_key(&key, KEY_FORMAT_3_5, 1878 le32_to_cpu(ih->ih_key.k_dir_id), 1879 le32_to_cpu(ih->ih_key.k_objectid), 1880 1, TYPE_DIRECT, 3 /*key length */ ); 1881 1882 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1883 0 /*free_space */ ); 1884 1885 /* look for place in the tree for new item */ 1886 retval = search_item(sb, &key, path); 1887 if (retval == IO_ERROR) { 1888 reiserfs_error(sb, "vs-13080", 1889 "i/o failure occurred creating new symlink"); 1890 return -EIO; 1891 } 1892 if (retval == ITEM_FOUND) { 1893 pathrelse(path); 1894 reiserfs_warning(sb, "vs-13080", 1895 "object with this key exists (%k)", 1896 &(ih->ih_key)); 1897 return -EEXIST; 1898 } 1899 1900 /* insert item, that is body of symlink */ 1901 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1902 } 1903 1904 /* 1905 * inserts the stat data into the tree, and then calls 1906 * reiserfs_new_directory (to insert ".", ".." item if new object is 1907 * directory) or reiserfs_new_symlink (to insert symlink body if new 1908 * object is symlink) or nothing (if new object is regular file) 1909 1910 * NOTE! uid and gid must already be set in the inode. If we return 1911 * non-zero due to an error, we have to drop the quota previously allocated 1912 * for the fresh inode. This can only be done outside a transaction, so 1913 * if we return non-zero, we also end the transaction. 1914 * 1915 * @th: active transaction handle 1916 * @dir: parent directory for new inode 1917 * @mode: mode of new inode 1918 * @symname: symlink contents if inode is symlink 1919 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1920 * symlinks 1921 * @inode: inode to be filled 1922 * @security: optional security context to associate with this inode 1923 */ 1924 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1925 struct inode *dir, umode_t mode, const char *symname, 1926 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1927 strlen (symname) for symlinks) */ 1928 loff_t i_size, struct dentry *dentry, 1929 struct inode *inode, 1930 struct reiserfs_security_handle *security) 1931 { 1932 struct super_block *sb = dir->i_sb; 1933 struct reiserfs_iget_args args; 1934 INITIALIZE_PATH(path_to_key); 1935 struct cpu_key key; 1936 struct item_head ih; 1937 struct stat_data sd; 1938 int retval; 1939 int err; 1940 int depth; 1941 1942 BUG_ON(!th->t_trans_id); 1943 1944 depth = reiserfs_write_unlock_nested(sb); 1945 err = dquot_alloc_inode(inode); 1946 reiserfs_write_lock_nested(sb, depth); 1947 if (err) 1948 goto out_end_trans; 1949 if (!dir->i_nlink) { 1950 err = -EPERM; 1951 goto out_bad_inode; 1952 } 1953 1954 /* item head of new item */ 1955 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1956 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1957 if (!ih.ih_key.k_objectid) { 1958 err = -ENOMEM; 1959 goto out_bad_inode; 1960 } 1961 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1962 if (old_format_only(sb)) 1963 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1964 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1965 else 1966 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1967 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1968 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1969 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1970 1971 depth = reiserfs_write_unlock_nested(inode->i_sb); 1972 err = insert_inode_locked4(inode, args.objectid, 1973 reiserfs_find_actor, &args); 1974 reiserfs_write_lock_nested(inode->i_sb, depth); 1975 if (err) { 1976 err = -EINVAL; 1977 goto out_bad_inode; 1978 } 1979 1980 if (old_format_only(sb)) 1981 /* 1982 * not a perfect generation count, as object ids can be reused, 1983 * but this is as good as reiserfs can do right now. 1984 * note that the private part of inode isn't filled in yet, 1985 * we have to use the directory. 1986 */ 1987 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1988 else 1989 #if defined( USE_INODE_GENERATION_COUNTER ) 1990 inode->i_generation = 1991 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1992 #else 1993 inode->i_generation = ++event; 1994 #endif 1995 1996 /* fill stat data */ 1997 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1998 1999 /* uid and gid must already be set by the caller for quota init */ 2000 2001 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2002 inode->i_size = i_size; 2003 inode->i_blocks = 0; 2004 inode->i_bytes = 0; 2005 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2006 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2007 2008 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2009 REISERFS_I(inode)->i_flags = 0; 2010 REISERFS_I(inode)->i_prealloc_block = 0; 2011 REISERFS_I(inode)->i_prealloc_count = 0; 2012 REISERFS_I(inode)->i_trans_id = 0; 2013 REISERFS_I(inode)->i_jl = NULL; 2014 REISERFS_I(inode)->i_attrs = 2015 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2016 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2017 reiserfs_init_xattr_rwsem(inode); 2018 2019 /* key to search for correct place for new stat data */ 2020 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2021 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2022 TYPE_STAT_DATA, 3 /*key length */ ); 2023 2024 /* find proper place for inserting of stat data */ 2025 retval = search_item(sb, &key, &path_to_key); 2026 if (retval == IO_ERROR) { 2027 err = -EIO; 2028 goto out_bad_inode; 2029 } 2030 if (retval == ITEM_FOUND) { 2031 pathrelse(&path_to_key); 2032 err = -EEXIST; 2033 goto out_bad_inode; 2034 } 2035 if (old_format_only(sb)) { 2036 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2037 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2038 pathrelse(&path_to_key); 2039 err = -EINVAL; 2040 goto out_bad_inode; 2041 } 2042 inode2sd_v1(&sd, inode, inode->i_size); 2043 } else { 2044 inode2sd(&sd, inode, inode->i_size); 2045 } 2046 /* 2047 * store in in-core inode the key of stat data and version all 2048 * object items will have (directory items will have old offset 2049 * format, other new objects will consist of new items) 2050 */ 2051 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2052 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2053 else 2054 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2055 if (old_format_only(sb)) 2056 set_inode_sd_version(inode, STAT_DATA_V1); 2057 else 2058 set_inode_sd_version(inode, STAT_DATA_V2); 2059 2060 /* insert the stat data into the tree */ 2061 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2062 if (REISERFS_I(dir)->new_packing_locality) 2063 th->displace_new_blocks = 1; 2064 #endif 2065 retval = 2066 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2067 (char *)(&sd)); 2068 if (retval) { 2069 err = retval; 2070 reiserfs_check_path(&path_to_key); 2071 goto out_bad_inode; 2072 } 2073 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2074 if (!th->displace_new_blocks) 2075 REISERFS_I(dir)->new_packing_locality = 0; 2076 #endif 2077 if (S_ISDIR(mode)) { 2078 /* insert item with "." and ".." */ 2079 retval = 2080 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2081 } 2082 2083 if (S_ISLNK(mode)) { 2084 /* insert body of symlink */ 2085 if (!old_format_only(sb)) 2086 i_size = ROUND_UP(i_size); 2087 retval = 2088 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2089 i_size); 2090 } 2091 if (retval) { 2092 err = retval; 2093 reiserfs_check_path(&path_to_key); 2094 journal_end(th); 2095 goto out_inserted_sd; 2096 } 2097 2098 /* 2099 * Mark it private if we're creating the privroot 2100 * or something under it. 2101 */ 2102 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) { 2103 inode->i_flags |= S_PRIVATE; 2104 inode->i_opflags &= ~IOP_XATTR; 2105 } 2106 2107 if (reiserfs_posixacl(inode->i_sb)) { 2108 reiserfs_write_unlock(inode->i_sb); 2109 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2110 reiserfs_write_lock(inode->i_sb); 2111 if (retval) { 2112 err = retval; 2113 reiserfs_check_path(&path_to_key); 2114 journal_end(th); 2115 goto out_inserted_sd; 2116 } 2117 } else if (inode->i_sb->s_flags & SB_POSIXACL) { 2118 reiserfs_warning(inode->i_sb, "jdm-13090", 2119 "ACLs aren't enabled in the fs, " 2120 "but vfs thinks they are!"); 2121 } 2122 2123 if (security->name) { 2124 reiserfs_write_unlock(inode->i_sb); 2125 retval = reiserfs_security_write(th, inode, security); 2126 reiserfs_write_lock(inode->i_sb); 2127 if (retval) { 2128 err = retval; 2129 reiserfs_check_path(&path_to_key); 2130 retval = journal_end(th); 2131 if (retval) 2132 err = retval; 2133 goto out_inserted_sd; 2134 } 2135 } 2136 2137 reiserfs_update_sd(th, inode); 2138 reiserfs_check_path(&path_to_key); 2139 2140 return 0; 2141 2142 out_bad_inode: 2143 /* Invalidate the object, nothing was inserted yet */ 2144 INODE_PKEY(inode)->k_objectid = 0; 2145 2146 /* Quota change must be inside a transaction for journaling */ 2147 depth = reiserfs_write_unlock_nested(inode->i_sb); 2148 dquot_free_inode(inode); 2149 reiserfs_write_lock_nested(inode->i_sb, depth); 2150 2151 out_end_trans: 2152 journal_end(th); 2153 /* 2154 * Drop can be outside and it needs more credits so it's better 2155 * to have it outside 2156 */ 2157 depth = reiserfs_write_unlock_nested(inode->i_sb); 2158 dquot_drop(inode); 2159 reiserfs_write_lock_nested(inode->i_sb, depth); 2160 inode->i_flags |= S_NOQUOTA; 2161 make_bad_inode(inode); 2162 2163 out_inserted_sd: 2164 clear_nlink(inode); 2165 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2166 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2167 iput(inode); 2168 return err; 2169 } 2170 2171 /* 2172 * finds the tail page in the page cache, 2173 * reads the last block in. 2174 * 2175 * On success, page_result is set to a locked, pinned page, and bh_result 2176 * is set to an up to date buffer for the last block in the file. returns 0. 2177 * 2178 * tail conversion is not done, so bh_result might not be valid for writing 2179 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2180 * trying to write the block. 2181 * 2182 * on failure, nonzero is returned, page_result and bh_result are untouched. 2183 */ 2184 static int grab_tail_page(struct inode *inode, 2185 struct page **page_result, 2186 struct buffer_head **bh_result) 2187 { 2188 2189 /* 2190 * we want the page with the last byte in the file, 2191 * not the page that will hold the next byte for appending 2192 */ 2193 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2194 unsigned long pos = 0; 2195 unsigned long start = 0; 2196 unsigned long blocksize = inode->i_sb->s_blocksize; 2197 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2198 struct buffer_head *bh; 2199 struct buffer_head *head; 2200 struct page *page; 2201 int error; 2202 2203 /* 2204 * we know that we are only called with inode->i_size > 0. 2205 * we also know that a file tail can never be as big as a block 2206 * If i_size % blocksize == 0, our file is currently block aligned 2207 * and it won't need converting or zeroing after a truncate. 2208 */ 2209 if ((offset & (blocksize - 1)) == 0) { 2210 return -ENOENT; 2211 } 2212 page = grab_cache_page(inode->i_mapping, index); 2213 error = -ENOMEM; 2214 if (!page) { 2215 goto out; 2216 } 2217 /* start within the page of the last block in the file */ 2218 start = (offset / blocksize) * blocksize; 2219 2220 error = __block_write_begin(page, start, offset - start, 2221 reiserfs_get_block_create_0); 2222 if (error) 2223 goto unlock; 2224 2225 head = page_buffers(page); 2226 bh = head; 2227 do { 2228 if (pos >= start) { 2229 break; 2230 } 2231 bh = bh->b_this_page; 2232 pos += blocksize; 2233 } while (bh != head); 2234 2235 if (!buffer_uptodate(bh)) { 2236 /* 2237 * note, this should never happen, prepare_write should be 2238 * taking care of this for us. If the buffer isn't up to 2239 * date, I've screwed up the code to find the buffer, or the 2240 * code to call prepare_write 2241 */ 2242 reiserfs_error(inode->i_sb, "clm-6000", 2243 "error reading block %lu", bh->b_blocknr); 2244 error = -EIO; 2245 goto unlock; 2246 } 2247 *bh_result = bh; 2248 *page_result = page; 2249 2250 out: 2251 return error; 2252 2253 unlock: 2254 unlock_page(page); 2255 put_page(page); 2256 return error; 2257 } 2258 2259 /* 2260 * vfs version of truncate file. Must NOT be called with 2261 * a transaction already started. 2262 * 2263 * some code taken from block_truncate_page 2264 */ 2265 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2266 { 2267 struct reiserfs_transaction_handle th; 2268 /* we want the offset for the first byte after the end of the file */ 2269 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2270 unsigned blocksize = inode->i_sb->s_blocksize; 2271 unsigned length; 2272 struct page *page = NULL; 2273 int error; 2274 struct buffer_head *bh = NULL; 2275 int err2; 2276 2277 reiserfs_write_lock(inode->i_sb); 2278 2279 if (inode->i_size > 0) { 2280 error = grab_tail_page(inode, &page, &bh); 2281 if (error) { 2282 /* 2283 * -ENOENT means we truncated past the end of the 2284 * file, and get_block_create_0 could not find a 2285 * block to read in, which is ok. 2286 */ 2287 if (error != -ENOENT) 2288 reiserfs_error(inode->i_sb, "clm-6001", 2289 "grab_tail_page failed %d", 2290 error); 2291 page = NULL; 2292 bh = NULL; 2293 } 2294 } 2295 2296 /* 2297 * so, if page != NULL, we have a buffer head for the offset at 2298 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2299 * then we have an unformatted node. Otherwise, we have a direct item, 2300 * and no zeroing is required on disk. We zero after the truncate, 2301 * because the truncate might pack the item anyway 2302 * (it will unmap bh if it packs). 2303 * 2304 * it is enough to reserve space in transaction for 2 balancings: 2305 * one for "save" link adding and another for the first 2306 * cut_from_item. 1 is for update_sd 2307 */ 2308 error = journal_begin(&th, inode->i_sb, 2309 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2310 if (error) 2311 goto out; 2312 reiserfs_update_inode_transaction(inode); 2313 if (update_timestamps) 2314 /* 2315 * we are doing real truncate: if the system crashes 2316 * before the last transaction of truncating gets committed 2317 * - on reboot the file either appears truncated properly 2318 * or not truncated at all 2319 */ 2320 add_save_link(&th, inode, 1); 2321 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2322 error = journal_end(&th); 2323 if (error) 2324 goto out; 2325 2326 /* check reiserfs_do_truncate after ending the transaction */ 2327 if (err2) { 2328 error = err2; 2329 goto out; 2330 } 2331 2332 if (update_timestamps) { 2333 error = remove_save_link(inode, 1 /* truncate */); 2334 if (error) 2335 goto out; 2336 } 2337 2338 if (page) { 2339 length = offset & (blocksize - 1); 2340 /* if we are not on a block boundary */ 2341 if (length) { 2342 length = blocksize - length; 2343 zero_user(page, offset, length); 2344 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2345 mark_buffer_dirty(bh); 2346 } 2347 } 2348 unlock_page(page); 2349 put_page(page); 2350 } 2351 2352 reiserfs_write_unlock(inode->i_sb); 2353 2354 return 0; 2355 out: 2356 if (page) { 2357 unlock_page(page); 2358 put_page(page); 2359 } 2360 2361 reiserfs_write_unlock(inode->i_sb); 2362 2363 return error; 2364 } 2365 2366 static int map_block_for_writepage(struct inode *inode, 2367 struct buffer_head *bh_result, 2368 unsigned long block) 2369 { 2370 struct reiserfs_transaction_handle th; 2371 int fs_gen; 2372 struct item_head tmp_ih; 2373 struct item_head *ih; 2374 struct buffer_head *bh; 2375 __le32 *item; 2376 struct cpu_key key; 2377 INITIALIZE_PATH(path); 2378 int pos_in_item; 2379 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2380 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2381 int retval; 2382 int use_get_block = 0; 2383 int bytes_copied = 0; 2384 int copy_size; 2385 int trans_running = 0; 2386 2387 /* 2388 * catch places below that try to log something without 2389 * starting a trans 2390 */ 2391 th.t_trans_id = 0; 2392 2393 if (!buffer_uptodate(bh_result)) { 2394 return -EIO; 2395 } 2396 2397 kmap(bh_result->b_page); 2398 start_over: 2399 reiserfs_write_lock(inode->i_sb); 2400 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2401 2402 research: 2403 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2404 if (retval != POSITION_FOUND) { 2405 use_get_block = 1; 2406 goto out; 2407 } 2408 2409 bh = get_last_bh(&path); 2410 ih = tp_item_head(&path); 2411 item = tp_item_body(&path); 2412 pos_in_item = path.pos_in_item; 2413 2414 /* we've found an unformatted node */ 2415 if (indirect_item_found(retval, ih)) { 2416 if (bytes_copied > 0) { 2417 reiserfs_warning(inode->i_sb, "clm-6002", 2418 "bytes_copied %d", bytes_copied); 2419 } 2420 if (!get_block_num(item, pos_in_item)) { 2421 /* crap, we are writing to a hole */ 2422 use_get_block = 1; 2423 goto out; 2424 } 2425 set_block_dev_mapped(bh_result, 2426 get_block_num(item, pos_in_item), inode); 2427 } else if (is_direct_le_ih(ih)) { 2428 char *p; 2429 p = page_address(bh_result->b_page); 2430 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2431 copy_size = ih_item_len(ih) - pos_in_item; 2432 2433 fs_gen = get_generation(inode->i_sb); 2434 copy_item_head(&tmp_ih, ih); 2435 2436 if (!trans_running) { 2437 /* vs-3050 is gone, no need to drop the path */ 2438 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2439 if (retval) 2440 goto out; 2441 reiserfs_update_inode_transaction(inode); 2442 trans_running = 1; 2443 if (fs_changed(fs_gen, inode->i_sb) 2444 && item_moved(&tmp_ih, &path)) { 2445 reiserfs_restore_prepared_buffer(inode->i_sb, 2446 bh); 2447 goto research; 2448 } 2449 } 2450 2451 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2452 2453 if (fs_changed(fs_gen, inode->i_sb) 2454 && item_moved(&tmp_ih, &path)) { 2455 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2456 goto research; 2457 } 2458 2459 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2460 copy_size); 2461 2462 journal_mark_dirty(&th, bh); 2463 bytes_copied += copy_size; 2464 set_block_dev_mapped(bh_result, 0, inode); 2465 2466 /* are there still bytes left? */ 2467 if (bytes_copied < bh_result->b_size && 2468 (byte_offset + bytes_copied) < inode->i_size) { 2469 set_cpu_key_k_offset(&key, 2470 cpu_key_k_offset(&key) + 2471 copy_size); 2472 goto research; 2473 } 2474 } else { 2475 reiserfs_warning(inode->i_sb, "clm-6003", 2476 "bad item inode %lu", inode->i_ino); 2477 retval = -EIO; 2478 goto out; 2479 } 2480 retval = 0; 2481 2482 out: 2483 pathrelse(&path); 2484 if (trans_running) { 2485 int err = journal_end(&th); 2486 if (err) 2487 retval = err; 2488 trans_running = 0; 2489 } 2490 reiserfs_write_unlock(inode->i_sb); 2491 2492 /* this is where we fill in holes in the file. */ 2493 if (use_get_block) { 2494 retval = reiserfs_get_block(inode, block, bh_result, 2495 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2496 | GET_BLOCK_NO_DANGLE); 2497 if (!retval) { 2498 if (!buffer_mapped(bh_result) 2499 || bh_result->b_blocknr == 0) { 2500 /* get_block failed to find a mapped unformatted node. */ 2501 use_get_block = 0; 2502 goto start_over; 2503 } 2504 } 2505 } 2506 kunmap(bh_result->b_page); 2507 2508 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2509 /* 2510 * we've copied data from the page into the direct item, so the 2511 * buffer in the page is now clean, mark it to reflect that. 2512 */ 2513 lock_buffer(bh_result); 2514 clear_buffer_dirty(bh_result); 2515 unlock_buffer(bh_result); 2516 } 2517 return retval; 2518 } 2519 2520 /* 2521 * mason@suse.com: updated in 2.5.54 to follow the same general io 2522 * start/recovery path as __block_write_full_page, along with special 2523 * code to handle reiserfs tails. 2524 */ 2525 static int reiserfs_write_full_page(struct page *page, 2526 struct writeback_control *wbc) 2527 { 2528 struct inode *inode = page->mapping->host; 2529 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2530 int error = 0; 2531 unsigned long block; 2532 sector_t last_block; 2533 struct buffer_head *head, *bh; 2534 int partial = 0; 2535 int nr = 0; 2536 int checked = PageChecked(page); 2537 struct reiserfs_transaction_handle th; 2538 struct super_block *s = inode->i_sb; 2539 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2540 th.t_trans_id = 0; 2541 2542 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2543 if (checked && (current->flags & PF_MEMALLOC)) { 2544 redirty_page_for_writepage(wbc, page); 2545 unlock_page(page); 2546 return 0; 2547 } 2548 2549 /* 2550 * The page dirty bit is cleared before writepage is called, which 2551 * means we have to tell create_empty_buffers to make dirty buffers 2552 * The page really should be up to date at this point, so tossing 2553 * in the BH_Uptodate is just a sanity check. 2554 */ 2555 if (!page_has_buffers(page)) { 2556 create_empty_buffers(page, s->s_blocksize, 2557 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2558 } 2559 head = page_buffers(page); 2560 2561 /* 2562 * last page in the file, zero out any contents past the 2563 * last byte in the file 2564 */ 2565 if (page->index >= end_index) { 2566 unsigned last_offset; 2567 2568 last_offset = inode->i_size & (PAGE_SIZE - 1); 2569 /* no file contents in this page */ 2570 if (page->index >= end_index + 1 || !last_offset) { 2571 unlock_page(page); 2572 return 0; 2573 } 2574 zero_user_segment(page, last_offset, PAGE_SIZE); 2575 } 2576 bh = head; 2577 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2578 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2579 /* first map all the buffers, logging any direct items we find */ 2580 do { 2581 if (block > last_block) { 2582 /* 2583 * This can happen when the block size is less than 2584 * the page size. The corresponding bytes in the page 2585 * were zero filled above 2586 */ 2587 clear_buffer_dirty(bh); 2588 set_buffer_uptodate(bh); 2589 } else if ((checked || buffer_dirty(bh)) && 2590 (!buffer_mapped(bh) || (buffer_mapped(bh) 2591 && bh->b_blocknr == 2592 0))) { 2593 /* 2594 * not mapped yet, or it points to a direct item, search 2595 * the btree for the mapping info, and log any direct 2596 * items found 2597 */ 2598 if ((error = map_block_for_writepage(inode, bh, block))) { 2599 goto fail; 2600 } 2601 } 2602 bh = bh->b_this_page; 2603 block++; 2604 } while (bh != head); 2605 2606 /* 2607 * we start the transaction after map_block_for_writepage, 2608 * because it can create holes in the file (an unbounded operation). 2609 * starting it here, we can make a reliable estimate for how many 2610 * blocks we're going to log 2611 */ 2612 if (checked) { 2613 ClearPageChecked(page); 2614 reiserfs_write_lock(s); 2615 error = journal_begin(&th, s, bh_per_page + 1); 2616 if (error) { 2617 reiserfs_write_unlock(s); 2618 goto fail; 2619 } 2620 reiserfs_update_inode_transaction(inode); 2621 } 2622 /* now go through and lock any dirty buffers on the page */ 2623 do { 2624 get_bh(bh); 2625 if (!buffer_mapped(bh)) 2626 continue; 2627 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2628 continue; 2629 2630 if (checked) { 2631 reiserfs_prepare_for_journal(s, bh, 1); 2632 journal_mark_dirty(&th, bh); 2633 continue; 2634 } 2635 /* 2636 * from this point on, we know the buffer is mapped to a 2637 * real block and not a direct item 2638 */ 2639 if (wbc->sync_mode != WB_SYNC_NONE) { 2640 lock_buffer(bh); 2641 } else { 2642 if (!trylock_buffer(bh)) { 2643 redirty_page_for_writepage(wbc, page); 2644 continue; 2645 } 2646 } 2647 if (test_clear_buffer_dirty(bh)) { 2648 mark_buffer_async_write(bh); 2649 } else { 2650 unlock_buffer(bh); 2651 } 2652 } while ((bh = bh->b_this_page) != head); 2653 2654 if (checked) { 2655 error = journal_end(&th); 2656 reiserfs_write_unlock(s); 2657 if (error) 2658 goto fail; 2659 } 2660 BUG_ON(PageWriteback(page)); 2661 set_page_writeback(page); 2662 unlock_page(page); 2663 2664 /* 2665 * since any buffer might be the only dirty buffer on the page, 2666 * the first submit_bh can bring the page out of writeback. 2667 * be careful with the buffers. 2668 */ 2669 do { 2670 struct buffer_head *next = bh->b_this_page; 2671 if (buffer_async_write(bh)) { 2672 submit_bh(REQ_OP_WRITE, 0, bh); 2673 nr++; 2674 } 2675 put_bh(bh); 2676 bh = next; 2677 } while (bh != head); 2678 2679 error = 0; 2680 done: 2681 if (nr == 0) { 2682 /* 2683 * if this page only had a direct item, it is very possible for 2684 * no io to be required without there being an error. Or, 2685 * someone else could have locked them and sent them down the 2686 * pipe without locking the page 2687 */ 2688 bh = head; 2689 do { 2690 if (!buffer_uptodate(bh)) { 2691 partial = 1; 2692 break; 2693 } 2694 bh = bh->b_this_page; 2695 } while (bh != head); 2696 if (!partial) 2697 SetPageUptodate(page); 2698 end_page_writeback(page); 2699 } 2700 return error; 2701 2702 fail: 2703 /* 2704 * catches various errors, we need to make sure any valid dirty blocks 2705 * get to the media. The page is currently locked and not marked for 2706 * writeback 2707 */ 2708 ClearPageUptodate(page); 2709 bh = head; 2710 do { 2711 get_bh(bh); 2712 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2713 lock_buffer(bh); 2714 mark_buffer_async_write(bh); 2715 } else { 2716 /* 2717 * clear any dirty bits that might have come from 2718 * getting attached to a dirty page 2719 */ 2720 clear_buffer_dirty(bh); 2721 } 2722 bh = bh->b_this_page; 2723 } while (bh != head); 2724 SetPageError(page); 2725 BUG_ON(PageWriteback(page)); 2726 set_page_writeback(page); 2727 unlock_page(page); 2728 do { 2729 struct buffer_head *next = bh->b_this_page; 2730 if (buffer_async_write(bh)) { 2731 clear_buffer_dirty(bh); 2732 submit_bh(REQ_OP_WRITE, 0, bh); 2733 nr++; 2734 } 2735 put_bh(bh); 2736 bh = next; 2737 } while (bh != head); 2738 goto done; 2739 } 2740 2741 static int reiserfs_readpage(struct file *f, struct page *page) 2742 { 2743 return block_read_full_page(page, reiserfs_get_block); 2744 } 2745 2746 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2747 { 2748 struct inode *inode = page->mapping->host; 2749 reiserfs_wait_on_write_block(inode->i_sb); 2750 return reiserfs_write_full_page(page, wbc); 2751 } 2752 2753 static void reiserfs_truncate_failed_write(struct inode *inode) 2754 { 2755 truncate_inode_pages(inode->i_mapping, inode->i_size); 2756 reiserfs_truncate_file(inode, 0); 2757 } 2758 2759 static int reiserfs_write_begin(struct file *file, 2760 struct address_space *mapping, 2761 loff_t pos, unsigned len, unsigned flags, 2762 struct page **pagep, void **fsdata) 2763 { 2764 struct inode *inode; 2765 struct page *page; 2766 pgoff_t index; 2767 int ret; 2768 int old_ref = 0; 2769 2770 inode = mapping->host; 2771 *fsdata = NULL; 2772 if (flags & AOP_FLAG_CONT_EXPAND && 2773 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2774 pos ++; 2775 *fsdata = (void *)(unsigned long)flags; 2776 } 2777 2778 index = pos >> PAGE_SHIFT; 2779 page = grab_cache_page_write_begin(mapping, index, flags); 2780 if (!page) 2781 return -ENOMEM; 2782 *pagep = page; 2783 2784 reiserfs_wait_on_write_block(inode->i_sb); 2785 fix_tail_page_for_writing(page); 2786 if (reiserfs_transaction_running(inode->i_sb)) { 2787 struct reiserfs_transaction_handle *th; 2788 th = (struct reiserfs_transaction_handle *)current-> 2789 journal_info; 2790 BUG_ON(!th->t_refcount); 2791 BUG_ON(!th->t_trans_id); 2792 old_ref = th->t_refcount; 2793 th->t_refcount++; 2794 } 2795 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2796 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2797 struct reiserfs_transaction_handle *th = current->journal_info; 2798 /* 2799 * this gets a little ugly. If reiserfs_get_block returned an 2800 * error and left a transacstion running, we've got to close 2801 * it, and we've got to free handle if it was a persistent 2802 * transaction. 2803 * 2804 * But, if we had nested into an existing transaction, we need 2805 * to just drop the ref count on the handle. 2806 * 2807 * If old_ref == 0, the transaction is from reiserfs_get_block, 2808 * and it was a persistent trans. Otherwise, it was nested 2809 * above. 2810 */ 2811 if (th->t_refcount > old_ref) { 2812 if (old_ref) 2813 th->t_refcount--; 2814 else { 2815 int err; 2816 reiserfs_write_lock(inode->i_sb); 2817 err = reiserfs_end_persistent_transaction(th); 2818 reiserfs_write_unlock(inode->i_sb); 2819 if (err) 2820 ret = err; 2821 } 2822 } 2823 } 2824 if (ret) { 2825 unlock_page(page); 2826 put_page(page); 2827 /* Truncate allocated blocks */ 2828 reiserfs_truncate_failed_write(inode); 2829 } 2830 return ret; 2831 } 2832 2833 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2834 { 2835 struct inode *inode = page->mapping->host; 2836 int ret; 2837 int old_ref = 0; 2838 int depth; 2839 2840 depth = reiserfs_write_unlock_nested(inode->i_sb); 2841 reiserfs_wait_on_write_block(inode->i_sb); 2842 reiserfs_write_lock_nested(inode->i_sb, depth); 2843 2844 fix_tail_page_for_writing(page); 2845 if (reiserfs_transaction_running(inode->i_sb)) { 2846 struct reiserfs_transaction_handle *th; 2847 th = (struct reiserfs_transaction_handle *)current-> 2848 journal_info; 2849 BUG_ON(!th->t_refcount); 2850 BUG_ON(!th->t_trans_id); 2851 old_ref = th->t_refcount; 2852 th->t_refcount++; 2853 } 2854 2855 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2856 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2857 struct reiserfs_transaction_handle *th = current->journal_info; 2858 /* 2859 * this gets a little ugly. If reiserfs_get_block returned an 2860 * error and left a transacstion running, we've got to close 2861 * it, and we've got to free handle if it was a persistent 2862 * transaction. 2863 * 2864 * But, if we had nested into an existing transaction, we need 2865 * to just drop the ref count on the handle. 2866 * 2867 * If old_ref == 0, the transaction is from reiserfs_get_block, 2868 * and it was a persistent trans. Otherwise, it was nested 2869 * above. 2870 */ 2871 if (th->t_refcount > old_ref) { 2872 if (old_ref) 2873 th->t_refcount--; 2874 else { 2875 int err; 2876 reiserfs_write_lock(inode->i_sb); 2877 err = reiserfs_end_persistent_transaction(th); 2878 reiserfs_write_unlock(inode->i_sb); 2879 if (err) 2880 ret = err; 2881 } 2882 } 2883 } 2884 return ret; 2885 2886 } 2887 2888 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2889 { 2890 return generic_block_bmap(as, block, reiserfs_bmap); 2891 } 2892 2893 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2894 loff_t pos, unsigned len, unsigned copied, 2895 struct page *page, void *fsdata) 2896 { 2897 struct inode *inode = page->mapping->host; 2898 int ret = 0; 2899 int update_sd = 0; 2900 struct reiserfs_transaction_handle *th; 2901 unsigned start; 2902 bool locked = false; 2903 2904 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2905 pos ++; 2906 2907 reiserfs_wait_on_write_block(inode->i_sb); 2908 if (reiserfs_transaction_running(inode->i_sb)) 2909 th = current->journal_info; 2910 else 2911 th = NULL; 2912 2913 start = pos & (PAGE_SIZE - 1); 2914 if (unlikely(copied < len)) { 2915 if (!PageUptodate(page)) 2916 copied = 0; 2917 2918 page_zero_new_buffers(page, start + copied, start + len); 2919 } 2920 flush_dcache_page(page); 2921 2922 reiserfs_commit_page(inode, page, start, start + copied); 2923 2924 /* 2925 * generic_commit_write does this for us, but does not update the 2926 * transaction tracking stuff when the size changes. So, we have 2927 * to do the i_size updates here. 2928 */ 2929 if (pos + copied > inode->i_size) { 2930 struct reiserfs_transaction_handle myth; 2931 reiserfs_write_lock(inode->i_sb); 2932 locked = true; 2933 /* 2934 * If the file have grown beyond the border where it 2935 * can have a tail, unmark it as needing a tail 2936 * packing 2937 */ 2938 if ((have_large_tails(inode->i_sb) 2939 && inode->i_size > i_block_size(inode) * 4) 2940 || (have_small_tails(inode->i_sb) 2941 && inode->i_size > i_block_size(inode))) 2942 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2943 2944 ret = journal_begin(&myth, inode->i_sb, 1); 2945 if (ret) 2946 goto journal_error; 2947 2948 reiserfs_update_inode_transaction(inode); 2949 inode->i_size = pos + copied; 2950 /* 2951 * this will just nest into our transaction. It's important 2952 * to use mark_inode_dirty so the inode gets pushed around on 2953 * the dirty lists, and so that O_SYNC works as expected 2954 */ 2955 mark_inode_dirty(inode); 2956 reiserfs_update_sd(&myth, inode); 2957 update_sd = 1; 2958 ret = journal_end(&myth); 2959 if (ret) 2960 goto journal_error; 2961 } 2962 if (th) { 2963 if (!locked) { 2964 reiserfs_write_lock(inode->i_sb); 2965 locked = true; 2966 } 2967 if (!update_sd) 2968 mark_inode_dirty(inode); 2969 ret = reiserfs_end_persistent_transaction(th); 2970 if (ret) 2971 goto out; 2972 } 2973 2974 out: 2975 if (locked) 2976 reiserfs_write_unlock(inode->i_sb); 2977 unlock_page(page); 2978 put_page(page); 2979 2980 if (pos + len > inode->i_size) 2981 reiserfs_truncate_failed_write(inode); 2982 2983 return ret == 0 ? copied : ret; 2984 2985 journal_error: 2986 reiserfs_write_unlock(inode->i_sb); 2987 locked = false; 2988 if (th) { 2989 if (!update_sd) 2990 reiserfs_update_sd(th, inode); 2991 ret = reiserfs_end_persistent_transaction(th); 2992 } 2993 goto out; 2994 } 2995 2996 int reiserfs_commit_write(struct file *f, struct page *page, 2997 unsigned from, unsigned to) 2998 { 2999 struct inode *inode = page->mapping->host; 3000 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 3001 int ret = 0; 3002 int update_sd = 0; 3003 struct reiserfs_transaction_handle *th = NULL; 3004 int depth; 3005 3006 depth = reiserfs_write_unlock_nested(inode->i_sb); 3007 reiserfs_wait_on_write_block(inode->i_sb); 3008 reiserfs_write_lock_nested(inode->i_sb, depth); 3009 3010 if (reiserfs_transaction_running(inode->i_sb)) { 3011 th = current->journal_info; 3012 } 3013 reiserfs_commit_page(inode, page, from, to); 3014 3015 /* 3016 * generic_commit_write does this for us, but does not update the 3017 * transaction tracking stuff when the size changes. So, we have 3018 * to do the i_size updates here. 3019 */ 3020 if (pos > inode->i_size) { 3021 struct reiserfs_transaction_handle myth; 3022 /* 3023 * If the file have grown beyond the border where it 3024 * can have a tail, unmark it as needing a tail 3025 * packing 3026 */ 3027 if ((have_large_tails(inode->i_sb) 3028 && inode->i_size > i_block_size(inode) * 4) 3029 || (have_small_tails(inode->i_sb) 3030 && inode->i_size > i_block_size(inode))) 3031 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3032 3033 ret = journal_begin(&myth, inode->i_sb, 1); 3034 if (ret) 3035 goto journal_error; 3036 3037 reiserfs_update_inode_transaction(inode); 3038 inode->i_size = pos; 3039 /* 3040 * this will just nest into our transaction. It's important 3041 * to use mark_inode_dirty so the inode gets pushed around 3042 * on the dirty lists, and so that O_SYNC works as expected 3043 */ 3044 mark_inode_dirty(inode); 3045 reiserfs_update_sd(&myth, inode); 3046 update_sd = 1; 3047 ret = journal_end(&myth); 3048 if (ret) 3049 goto journal_error; 3050 } 3051 if (th) { 3052 if (!update_sd) 3053 mark_inode_dirty(inode); 3054 ret = reiserfs_end_persistent_transaction(th); 3055 if (ret) 3056 goto out; 3057 } 3058 3059 out: 3060 return ret; 3061 3062 journal_error: 3063 if (th) { 3064 if (!update_sd) 3065 reiserfs_update_sd(th, inode); 3066 ret = reiserfs_end_persistent_transaction(th); 3067 } 3068 3069 return ret; 3070 } 3071 3072 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3073 { 3074 if (reiserfs_attrs(inode->i_sb)) { 3075 if (sd_attrs & REISERFS_SYNC_FL) 3076 inode->i_flags |= S_SYNC; 3077 else 3078 inode->i_flags &= ~S_SYNC; 3079 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3080 inode->i_flags |= S_IMMUTABLE; 3081 else 3082 inode->i_flags &= ~S_IMMUTABLE; 3083 if (sd_attrs & REISERFS_APPEND_FL) 3084 inode->i_flags |= S_APPEND; 3085 else 3086 inode->i_flags &= ~S_APPEND; 3087 if (sd_attrs & REISERFS_NOATIME_FL) 3088 inode->i_flags |= S_NOATIME; 3089 else 3090 inode->i_flags &= ~S_NOATIME; 3091 if (sd_attrs & REISERFS_NOTAIL_FL) 3092 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3093 else 3094 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3095 } 3096 } 3097 3098 /* 3099 * decide if this buffer needs to stay around for data logging or ordered 3100 * write purposes 3101 */ 3102 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3103 { 3104 int ret = 1; 3105 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3106 3107 lock_buffer(bh); 3108 spin_lock(&j->j_dirty_buffers_lock); 3109 if (!buffer_mapped(bh)) { 3110 goto free_jh; 3111 } 3112 /* 3113 * the page is locked, and the only places that log a data buffer 3114 * also lock the page. 3115 */ 3116 if (reiserfs_file_data_log(inode)) { 3117 /* 3118 * very conservative, leave the buffer pinned if 3119 * anyone might need it. 3120 */ 3121 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3122 ret = 0; 3123 } 3124 } else if (buffer_dirty(bh)) { 3125 struct reiserfs_journal_list *jl; 3126 struct reiserfs_jh *jh = bh->b_private; 3127 3128 /* 3129 * why is this safe? 3130 * reiserfs_setattr updates i_size in the on disk 3131 * stat data before allowing vmtruncate to be called. 3132 * 3133 * If buffer was put onto the ordered list for this 3134 * transaction, we know for sure either this transaction 3135 * or an older one already has updated i_size on disk, 3136 * and this ordered data won't be referenced in the file 3137 * if we crash. 3138 * 3139 * if the buffer was put onto the ordered list for an older 3140 * transaction, we need to leave it around 3141 */ 3142 if (jh && (jl = jh->jl) 3143 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3144 ret = 0; 3145 } 3146 free_jh: 3147 if (ret && bh->b_private) { 3148 reiserfs_free_jh(bh); 3149 } 3150 spin_unlock(&j->j_dirty_buffers_lock); 3151 unlock_buffer(bh); 3152 return ret; 3153 } 3154 3155 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3156 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3157 unsigned int length) 3158 { 3159 struct buffer_head *head, *bh, *next; 3160 struct inode *inode = page->mapping->host; 3161 unsigned int curr_off = 0; 3162 unsigned int stop = offset + length; 3163 int partial_page = (offset || length < PAGE_SIZE); 3164 int ret = 1; 3165 3166 BUG_ON(!PageLocked(page)); 3167 3168 if (!partial_page) 3169 ClearPageChecked(page); 3170 3171 if (!page_has_buffers(page)) 3172 goto out; 3173 3174 head = page_buffers(page); 3175 bh = head; 3176 do { 3177 unsigned int next_off = curr_off + bh->b_size; 3178 next = bh->b_this_page; 3179 3180 if (next_off > stop) 3181 goto out; 3182 3183 /* 3184 * is this block fully invalidated? 3185 */ 3186 if (offset <= curr_off) { 3187 if (invalidatepage_can_drop(inode, bh)) 3188 reiserfs_unmap_buffer(bh); 3189 else 3190 ret = 0; 3191 } 3192 curr_off = next_off; 3193 bh = next; 3194 } while (bh != head); 3195 3196 /* 3197 * We release buffers only if the entire page is being invalidated. 3198 * The get_block cached value has been unconditionally invalidated, 3199 * so real IO is not possible anymore. 3200 */ 3201 if (!partial_page && ret) { 3202 ret = try_to_release_page(page, 0); 3203 /* maybe should BUG_ON(!ret); - neilb */ 3204 } 3205 out: 3206 return; 3207 } 3208 3209 static int reiserfs_set_page_dirty(struct page *page) 3210 { 3211 struct inode *inode = page->mapping->host; 3212 if (reiserfs_file_data_log(inode)) { 3213 SetPageChecked(page); 3214 return __set_page_dirty_nobuffers(page); 3215 } 3216 return __set_page_dirty_buffers(page); 3217 } 3218 3219 /* 3220 * Returns 1 if the page's buffers were dropped. The page is locked. 3221 * 3222 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3223 * in the buffers at page_buffers(page). 3224 * 3225 * even in -o notail mode, we can't be sure an old mount without -o notail 3226 * didn't create files with tails. 3227 */ 3228 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3229 { 3230 struct inode *inode = page->mapping->host; 3231 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3232 struct buffer_head *head; 3233 struct buffer_head *bh; 3234 int ret = 1; 3235 3236 WARN_ON(PageChecked(page)); 3237 spin_lock(&j->j_dirty_buffers_lock); 3238 head = page_buffers(page); 3239 bh = head; 3240 do { 3241 if (bh->b_private) { 3242 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3243 reiserfs_free_jh(bh); 3244 } else { 3245 ret = 0; 3246 break; 3247 } 3248 } 3249 bh = bh->b_this_page; 3250 } while (bh != head); 3251 if (ret) 3252 ret = try_to_free_buffers(page); 3253 spin_unlock(&j->j_dirty_buffers_lock); 3254 return ret; 3255 } 3256 3257 /* 3258 * We thank Mingming Cao for helping us understand in great detail what 3259 * to do in this section of the code. 3260 */ 3261 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3262 { 3263 struct file *file = iocb->ki_filp; 3264 struct inode *inode = file->f_mapping->host; 3265 size_t count = iov_iter_count(iter); 3266 ssize_t ret; 3267 3268 ret = blockdev_direct_IO(iocb, inode, iter, 3269 reiserfs_get_blocks_direct_io); 3270 3271 /* 3272 * In case of error extending write may have instantiated a few 3273 * blocks outside i_size. Trim these off again. 3274 */ 3275 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3276 loff_t isize = i_size_read(inode); 3277 loff_t end = iocb->ki_pos + count; 3278 3279 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3280 truncate_setsize(inode, isize); 3281 reiserfs_vfs_truncate_file(inode); 3282 } 3283 } 3284 3285 return ret; 3286 } 3287 3288 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3289 { 3290 struct inode *inode = d_inode(dentry); 3291 unsigned int ia_valid; 3292 int error; 3293 3294 error = setattr_prepare(dentry, attr); 3295 if (error) 3296 return error; 3297 3298 /* must be turned off for recursive notify_change calls */ 3299 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3300 3301 if (is_quota_modification(inode, attr)) { 3302 error = dquot_initialize(inode); 3303 if (error) 3304 return error; 3305 } 3306 reiserfs_write_lock(inode->i_sb); 3307 if (attr->ia_valid & ATTR_SIZE) { 3308 /* 3309 * version 2 items will be caught by the s_maxbytes check 3310 * done for us in vmtruncate 3311 */ 3312 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3313 attr->ia_size > MAX_NON_LFS) { 3314 reiserfs_write_unlock(inode->i_sb); 3315 error = -EFBIG; 3316 goto out; 3317 } 3318 3319 inode_dio_wait(inode); 3320 3321 /* fill in hole pointers in the expanding truncate case. */ 3322 if (attr->ia_size > inode->i_size) { 3323 error = generic_cont_expand_simple(inode, attr->ia_size); 3324 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3325 int err; 3326 struct reiserfs_transaction_handle th; 3327 /* we're changing at most 2 bitmaps, inode + super */ 3328 err = journal_begin(&th, inode->i_sb, 4); 3329 if (!err) { 3330 reiserfs_discard_prealloc(&th, inode); 3331 err = journal_end(&th); 3332 } 3333 if (err) 3334 error = err; 3335 } 3336 if (error) { 3337 reiserfs_write_unlock(inode->i_sb); 3338 goto out; 3339 } 3340 /* 3341 * file size is changed, ctime and mtime are 3342 * to be updated 3343 */ 3344 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3345 } 3346 } 3347 reiserfs_write_unlock(inode->i_sb); 3348 3349 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3350 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3351 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3352 /* stat data of format v3.5 has 16 bit uid and gid */ 3353 error = -EINVAL; 3354 goto out; 3355 } 3356 3357 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3358 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3359 struct reiserfs_transaction_handle th; 3360 int jbegin_count = 3361 2 * 3362 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3363 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3364 2; 3365 3366 error = reiserfs_chown_xattrs(inode, attr); 3367 3368 if (error) 3369 return error; 3370 3371 /* 3372 * (user+group)*(old+new) structure - we count quota 3373 * info and , inode write (sb, inode) 3374 */ 3375 reiserfs_write_lock(inode->i_sb); 3376 error = journal_begin(&th, inode->i_sb, jbegin_count); 3377 reiserfs_write_unlock(inode->i_sb); 3378 if (error) 3379 goto out; 3380 error = dquot_transfer(inode, attr); 3381 reiserfs_write_lock(inode->i_sb); 3382 if (error) { 3383 journal_end(&th); 3384 reiserfs_write_unlock(inode->i_sb); 3385 goto out; 3386 } 3387 3388 /* 3389 * Update corresponding info in inode so that everything 3390 * is in one transaction 3391 */ 3392 if (attr->ia_valid & ATTR_UID) 3393 inode->i_uid = attr->ia_uid; 3394 if (attr->ia_valid & ATTR_GID) 3395 inode->i_gid = attr->ia_gid; 3396 mark_inode_dirty(inode); 3397 error = journal_end(&th); 3398 reiserfs_write_unlock(inode->i_sb); 3399 if (error) 3400 goto out; 3401 } 3402 3403 if ((attr->ia_valid & ATTR_SIZE) && 3404 attr->ia_size != i_size_read(inode)) { 3405 error = inode_newsize_ok(inode, attr->ia_size); 3406 if (!error) { 3407 /* 3408 * Could race against reiserfs_file_release 3409 * if called from NFS, so take tailpack mutex. 3410 */ 3411 mutex_lock(&REISERFS_I(inode)->tailpack); 3412 truncate_setsize(inode, attr->ia_size); 3413 reiserfs_truncate_file(inode, 1); 3414 mutex_unlock(&REISERFS_I(inode)->tailpack); 3415 } 3416 } 3417 3418 if (!error) { 3419 setattr_copy(inode, attr); 3420 mark_inode_dirty(inode); 3421 } 3422 3423 if (!error && reiserfs_posixacl(inode->i_sb)) { 3424 if (attr->ia_valid & ATTR_MODE) 3425 error = reiserfs_acl_chmod(inode); 3426 } 3427 3428 out: 3429 return error; 3430 } 3431 3432 const struct address_space_operations reiserfs_address_space_operations = { 3433 .writepage = reiserfs_writepage, 3434 .readpage = reiserfs_readpage, 3435 .readahead = reiserfs_readahead, 3436 .releasepage = reiserfs_releasepage, 3437 .invalidatepage = reiserfs_invalidatepage, 3438 .write_begin = reiserfs_write_begin, 3439 .write_end = reiserfs_write_end, 3440 .bmap = reiserfs_aop_bmap, 3441 .direct_IO = reiserfs_direct_IO, 3442 .set_page_dirty = reiserfs_set_page_dirty, 3443 }; 3444