xref: /openbmc/linux/fs/reiserfs/inode.c (revision 95e9fd10)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 
25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int depth;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	depth = reiserfs_write_lock_once(inode->i_sb);
43 
44 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46 		reiserfs_delete_xattrs(inode);
47 
48 		if (journal_begin(&th, inode->i_sb, jbegin_count))
49 			goto out;
50 		reiserfs_update_inode_transaction(inode);
51 
52 		reiserfs_discard_prealloc(&th, inode);
53 
54 		err = reiserfs_delete_object(&th, inode);
55 
56 		/* Do quota update inside a transaction for journaled quotas. We must do that
57 		 * after delete_object so that quota updates go into the same transaction as
58 		 * stat data deletion */
59 		if (!err)
60 			dquot_free_inode(inode);
61 
62 		if (journal_end(&th, inode->i_sb, jbegin_count))
63 			goto out;
64 
65 		/* check return value from reiserfs_delete_object after
66 		 * ending the transaction
67 		 */
68 		if (err)
69 		    goto out;
70 
71 		/* all items of file are deleted, so we can remove "save" link */
72 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73 								 * about an error here */
74 	} else {
75 		/* no object items are in the tree */
76 		;
77 	}
78       out:
79 	reiserfs_write_unlock_once(inode->i_sb, depth);
80 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
81 	dquot_drop(inode);
82 	inode->i_blocks = 0;
83 	return;
84 
85 no_delete:
86 	clear_inode(inode);
87 	dquot_drop(inode);
88 }
89 
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 			  __u32 objectid, loff_t offset, int type, int length)
92 {
93 	key->version = version;
94 
95 	key->on_disk_key.k_dir_id = dirid;
96 	key->on_disk_key.k_objectid = objectid;
97 	set_cpu_key_k_offset(key, offset);
98 	set_cpu_key_k_type(key, type);
99 	key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103    offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 		  int type, int length)
106 {
107 	_make_cpu_key(key, get_inode_item_key_version(inode),
108 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 		      length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 			      int version,
118 			      loff_t offset, int type, int length,
119 			      int entry_count /*or ih_free_space */ )
120 {
121 	if (key) {
122 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 		ih->ih_key.k_objectid =
124 		    cpu_to_le32(key->on_disk_key.k_objectid);
125 	}
126 	put_ih_version(ih, version);
127 	set_le_ih_k_offset(ih, offset);
128 	set_le_ih_k_type(ih, type);
129 	put_ih_item_len(ih, length);
130 	/*    set_ih_free_space (ih, 0); */
131 	// for directory items it is entry count, for directs and stat
132 	// datas - 0xffff, for indirects - 0
133 	put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh.  Not too eager for that....
140 //  I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in.  But, Vladimir has a really good idea here.  Think
145 ** about what happens for reading a file.  For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item.  This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right.  But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it.  So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers.  Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 	struct buffer_head *head, *next, *bh;
171 
172 	if (page && page_has_buffers(page)) {
173 		head = page_buffers(page);
174 		bh = head;
175 		do {
176 			next = bh->b_this_page;
177 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 				reiserfs_unmap_buffer(bh);
179 			}
180 			bh = next;
181 		} while (bh != head);
182 	}
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186    done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 				    struct item_head *ih,
189 				    __le32 * item, int pos_in_item)
190 {
191 	if (allocated)
192 		return 0;
193 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 	    get_block_num(item, pos_in_item))
195 		return 0;
196 	return 1;
197 }
198 
199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 					b_blocknr_t block, struct inode *inode)
206 {
207 	map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218 		return 1;
219 
220 	return 0;
221 }
222 
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 			       struct inode *inode, struct treepath *path)
225 {
226 	struct super_block *s = th->t_super;
227 	int len = th->t_blocks_allocated;
228 	int err;
229 
230 	BUG_ON(!th->t_trans_id);
231 	BUG_ON(!th->t_refcount);
232 
233 	pathrelse(path);
234 
235 	/* we cannot restart while nested */
236 	if (th->t_refcount > 1) {
237 		return 0;
238 	}
239 	reiserfs_update_sd(th, inode);
240 	err = journal_end(th, s, len);
241 	if (!err) {
242 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 		if (!err)
244 			reiserfs_update_inode_transaction(inode);
245 	}
246 	return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 			       struct buffer_head *bh_result, int args)
259 {
260 	INITIALIZE_PATH(path);
261 	struct cpu_key key;
262 	struct buffer_head *bh;
263 	struct item_head *ih, tmp_ih;
264 	b_blocknr_t blocknr;
265 	char *p = NULL;
266 	int chars;
267 	int ret;
268 	int result;
269 	int done = 0;
270 	unsigned long offset;
271 
272 	// prepare the key to look for the 'block'-th block of file
273 	make_cpu_key(&key, inode,
274 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 		     3);
276 
277 	result = search_for_position_by_key(inode->i_sb, &key, &path);
278 	if (result != POSITION_FOUND) {
279 		pathrelse(&path);
280 		if (p)
281 			kunmap(bh_result->b_page);
282 		if (result == IO_ERROR)
283 			return -EIO;
284 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 		// That there is some MMAPED data associated with it that is yet to be written to disk.
286 		if ((args & GET_BLOCK_NO_HOLE)
287 		    && !PageUptodate(bh_result->b_page)) {
288 			return -ENOENT;
289 		}
290 		return 0;
291 	}
292 	//
293 	bh = get_last_bh(&path);
294 	ih = get_ih(&path);
295 	if (is_indirect_le_ih(ih)) {
296 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298 		/* FIXME: here we could cache indirect item or part of it in
299 		   the inode to avoid search_by_key in case of subsequent
300 		   access to file */
301 		blocknr = get_block_num(ind_item, path.pos_in_item);
302 		ret = 0;
303 		if (blocknr) {
304 			map_bh(bh_result, inode->i_sb, blocknr);
305 			if (path.pos_in_item ==
306 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 				set_buffer_boundary(bh_result);
308 			}
309 		} else
310 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312 		if ((args & GET_BLOCK_NO_HOLE)
313 			    && !PageUptodate(bh_result->b_page)) {
314 			ret = -ENOENT;
315 		}
316 
317 		pathrelse(&path);
318 		if (p)
319 			kunmap(bh_result->b_page);
320 		return ret;
321 	}
322 	// requested data are in direct item(s)
323 	if (!(args & GET_BLOCK_READ_DIRECT)) {
324 		// we are called by bmap. FIXME: we can not map block of file
325 		// when it is stored in direct item(s)
326 		pathrelse(&path);
327 		if (p)
328 			kunmap(bh_result->b_page);
329 		return -ENOENT;
330 	}
331 
332 	/* if we've got a direct item, and the buffer or page was uptodate,
333 	 ** we don't want to pull data off disk again.  skip to the
334 	 ** end, where we map the buffer and return
335 	 */
336 	if (buffer_uptodate(bh_result)) {
337 		goto finished;
338 	} else
339 		/*
340 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 		 ** pages without any buffers.  If the page is up to date, we don't want
342 		 ** read old data off disk.  Set the up to date bit on the buffer instead
343 		 ** and jump to the end
344 		 */
345 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 		set_buffer_uptodate(bh_result);
347 		goto finished;
348 	}
349 	// read file tail into part of page
350 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 	copy_item_head(&tmp_ih, ih);
352 
353 	/* we only want to kmap if we are reading the tail into the page.
354 	 ** this is not the common case, so we don't kmap until we are
355 	 ** sure we need to.  But, this means the item might move if
356 	 ** kmap schedules
357 	 */
358 	if (!p)
359 		p = (char *)kmap(bh_result->b_page);
360 
361 	p += offset;
362 	memset(p, 0, inode->i_sb->s_blocksize);
363 	do {
364 		if (!is_direct_le_ih(ih)) {
365 			BUG();
366 		}
367 		/* make sure we don't read more bytes than actually exist in
368 		 ** the file.  This can happen in odd cases where i_size isn't
369 		 ** correct, and when direct item padding results in a few
370 		 ** extra bytes at the end of the direct item
371 		 */
372 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 			break;
374 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 			chars =
376 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377 			    path.pos_in_item;
378 			done = 1;
379 		} else {
380 			chars = ih_item_len(ih) - path.pos_in_item;
381 		}
382 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384 		if (done)
385 			break;
386 
387 		p += chars;
388 
389 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 			// we done, if read direct item is not the last item of
391 			// node FIXME: we could try to check right delimiting key
392 			// to see whether direct item continues in the right
393 			// neighbor or rely on i_size
394 			break;
395 
396 		// update key to look for the next piece
397 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 		result = search_for_position_by_key(inode->i_sb, &key, &path);
399 		if (result != POSITION_FOUND)
400 			// i/o error most likely
401 			break;
402 		bh = get_last_bh(&path);
403 		ih = get_ih(&path);
404 	} while (1);
405 
406 	flush_dcache_page(bh_result->b_page);
407 	kunmap(bh_result->b_page);
408 
409       finished:
410 	pathrelse(&path);
411 
412 	if (result == IO_ERROR)
413 		return -EIO;
414 
415 	/* this buffer has valid data, but isn't valid for io.  mapping it to
416 	 * block #0 tells the rest of reiserfs it just has a tail in it
417 	 */
418 	map_bh(bh_result, inode->i_sb, 0);
419 	set_buffer_uptodate(bh_result);
420 	return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 			 struct buffer_head *bh_result, int create)
427 {
428 	if (!file_capable(inode, block))
429 		return -EFBIG;
430 
431 	reiserfs_write_lock(inode->i_sb);
432 	/* do not read the direct item */
433 	_get_block_create_0(inode, block, bh_result, 0);
434 	reiserfs_write_unlock(inode->i_sb);
435 	return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now.  It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page.  Where it does not produce a valid page for holes, or past the
447 ** end of the file.  This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1.  If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 				       struct buffer_head *bh_result,
457 				       int create)
458 {
459 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463    direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 					 sector_t iblock,
466 					 struct buffer_head *bh_result,
467 					 int create)
468 {
469 	int ret;
470 
471 	bh_result->b_page = NULL;
472 
473 	/* We set the b_size before reiserfs_get_block call since it is
474 	   referenced in convert_tail_for_hole() that may be called from
475 	   reiserfs_get_block() */
476 	bh_result->b_size = (1 << inode->i_blkbits);
477 
478 	ret = reiserfs_get_block(inode, iblock, bh_result,
479 				 create | GET_BLOCK_NO_DANGLE);
480 	if (ret)
481 		goto out;
482 
483 	/* don't allow direct io onto tail pages */
484 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 		/* make sure future calls to the direct io funcs for this offset
486 		 ** in the file fail by unmapping the buffer
487 		 */
488 		clear_buffer_mapped(bh_result);
489 		ret = -EINVAL;
490 	}
491 	/* Possible unpacked tail. Flush the data before pages have
492 	   disappeared */
493 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 		int err;
495 
496 		reiserfs_write_lock(inode->i_sb);
497 
498 		err = reiserfs_commit_for_inode(inode);
499 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501 		reiserfs_write_unlock(inode->i_sb);
502 
503 		if (err < 0)
504 			ret = err;
505 	}
506       out:
507 	return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
520 static int convert_tail_for_hole(struct inode *inode,
521 				 struct buffer_head *bh_result,
522 				 loff_t tail_offset)
523 {
524 	unsigned long index;
525 	unsigned long tail_end;
526 	unsigned long tail_start;
527 	struct page *tail_page;
528 	struct page *hole_page = bh_result->b_page;
529 	int retval = 0;
530 
531 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 		return -EIO;
533 
534 	/* always try to read until the end of the block */
535 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538 	index = tail_offset >> PAGE_CACHE_SHIFT;
539 	/* hole_page can be zero in case of direct_io, we are sure
540 	   that we cannot get here if we write with O_DIRECT into
541 	   tail page */
542 	if (!hole_page || index != hole_page->index) {
543 		tail_page = grab_cache_page(inode->i_mapping, index);
544 		retval = -ENOMEM;
545 		if (!tail_page) {
546 			goto out;
547 		}
548 	} else {
549 		tail_page = hole_page;
550 	}
551 
552 	/* we don't have to make sure the conversion did not happen while
553 	 ** we were locking the page because anyone that could convert
554 	 ** must first take i_mutex.
555 	 **
556 	 ** We must fix the tail page for writing because it might have buffers
557 	 ** that are mapped, but have a block number of 0.  This indicates tail
558 	 ** data that has been read directly into the page, and
559 	 ** __block_write_begin won't trigger a get_block in this case.
560 	 */
561 	fix_tail_page_for_writing(tail_page);
562 	retval = __reiserfs_write_begin(tail_page, tail_start,
563 				      tail_end - tail_start);
564 	if (retval)
565 		goto unlock;
566 
567 	/* tail conversion might change the data in the page */
568 	flush_dcache_page(tail_page);
569 
570 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572       unlock:
573 	if (tail_page != hole_page) {
574 		unlock_page(tail_page);
575 		page_cache_release(tail_page);
576 	}
577       out:
578 	return retval;
579 }
580 
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 				  sector_t block,
583 				  struct inode *inode,
584 				  b_blocknr_t * allocated_block_nr,
585 				  struct treepath *path, int flags)
586 {
587 	BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590 	if (!(flags & GET_BLOCK_NO_IMUX)) {
591 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 						  path, block);
593 	}
594 #endif
595 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 					 block);
597 }
598 
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 		       struct buffer_head *bh_result, int create)
601 {
602 	int repeat, retval = 0;
603 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604 	INITIALIZE_PATH(path);
605 	int pos_in_item;
606 	struct cpu_key key;
607 	struct buffer_head *bh, *unbh = NULL;
608 	struct item_head *ih, tmp_ih;
609 	__le32 *item;
610 	int done;
611 	int fs_gen;
612 	int lock_depth;
613 	struct reiserfs_transaction_handle *th = NULL;
614 	/* space reserved in transaction batch:
615 	   . 3 balancings in direct->indirect conversion
616 	   . 1 block involved into reiserfs_update_sd()
617 	   XXX in practically impossible worst case direct2indirect()
618 	   can incur (much) more than 3 balancings.
619 	   quota update for user, group */
620 	int jbegin_count =
621 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 	int version;
624 	int dangle = 1;
625 	loff_t new_offset =
626 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 	version = get_inode_item_key_version(inode);
630 
631 	if (!file_capable(inode, block)) {
632 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 		return -EFBIG;
634 	}
635 
636 	/* if !create, we aren't changing the FS, so we don't need to
637 	 ** log anything, so we don't need to start a transaction
638 	 */
639 	if (!(create & GET_BLOCK_CREATE)) {
640 		int ret;
641 		/* find number of block-th logical block of the file */
642 		ret = _get_block_create_0(inode, block, bh_result,
643 					  create | GET_BLOCK_READ_DIRECT);
644 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 		return ret;
646 	}
647 	/*
648 	 * if we're already in a transaction, make sure to close
649 	 * any new transactions we start in this func
650 	 */
651 	if ((create & GET_BLOCK_NO_DANGLE) ||
652 	    reiserfs_transaction_running(inode->i_sb))
653 		dangle = 0;
654 
655 	/* If file is of such a size, that it might have a tail and tails are enabled
656 	 ** we should mark it as possibly needing tail packing on close
657 	 */
658 	if ((have_large_tails(inode->i_sb)
659 	     && inode->i_size < i_block_size(inode) * 4)
660 	    || (have_small_tails(inode->i_sb)
661 		&& inode->i_size < i_block_size(inode)))
662 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664 	/* set the key of the first byte in the 'block'-th block of file */
665 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 	      start_trans:
668 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 		if (!th) {
670 			retval = -ENOMEM;
671 			goto failure;
672 		}
673 		reiserfs_update_inode_transaction(inode);
674 	}
675       research:
676 
677 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 	if (retval == IO_ERROR) {
679 		retval = -EIO;
680 		goto failure;
681 	}
682 
683 	bh = get_last_bh(&path);
684 	ih = get_ih(&path);
685 	item = get_item(&path);
686 	pos_in_item = path.pos_in_item;
687 
688 	fs_gen = get_generation(inode->i_sb);
689 	copy_item_head(&tmp_ih, ih);
690 
691 	if (allocation_needed
692 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 		/* we have to allocate block for the unformatted node */
694 		if (!th) {
695 			pathrelse(&path);
696 			goto start_trans;
697 		}
698 
699 		repeat =
700 		    _allocate_block(th, block, inode, &allocated_block_nr,
701 				    &path, create);
702 
703 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 			/* restart the transaction to give the journal a chance to free
705 			 ** some blocks.  releases the path, so we have to go back to
706 			 ** research if we succeed on the second try
707 			 */
708 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 			retval = restart_transaction(th, inode, &path);
710 			if (retval)
711 				goto failure;
712 			repeat =
713 			    _allocate_block(th, block, inode,
714 					    &allocated_block_nr, NULL, create);
715 
716 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 				goto research;
718 			}
719 			if (repeat == QUOTA_EXCEEDED)
720 				retval = -EDQUOT;
721 			else
722 				retval = -ENOSPC;
723 			goto failure;
724 		}
725 
726 		if (fs_changed(fs_gen, inode->i_sb)
727 		    && item_moved(&tmp_ih, &path)) {
728 			goto research;
729 		}
730 	}
731 
732 	if (indirect_item_found(retval, ih)) {
733 		b_blocknr_t unfm_ptr;
734 		/* 'block'-th block is in the file already (there is
735 		   corresponding cell in some indirect item). But it may be
736 		   zero unformatted node pointer (hole) */
737 		unfm_ptr = get_block_num(item, pos_in_item);
738 		if (unfm_ptr == 0) {
739 			/* use allocated block to plug the hole */
740 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 			if (fs_changed(fs_gen, inode->i_sb)
742 			    && item_moved(&tmp_ih, &path)) {
743 				reiserfs_restore_prepared_buffer(inode->i_sb,
744 								 bh);
745 				goto research;
746 			}
747 			set_buffer_new(bh_result);
748 			if (buffer_dirty(bh_result)
749 			    && reiserfs_data_ordered(inode->i_sb))
750 				reiserfs_add_ordered_list(inode, bh_result);
751 			put_block_num(item, pos_in_item, allocated_block_nr);
752 			unfm_ptr = allocated_block_nr;
753 			journal_mark_dirty(th, inode->i_sb, bh);
754 			reiserfs_update_sd(th, inode);
755 		}
756 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 		pathrelse(&path);
758 		retval = 0;
759 		if (!dangle && th)
760 			retval = reiserfs_end_persistent_transaction(th);
761 
762 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764 		/* the item was found, so new blocks were not added to the file
765 		 ** there is no need to make sure the inode is updated with this
766 		 ** transaction
767 		 */
768 		return retval;
769 	}
770 
771 	if (!th) {
772 		pathrelse(&path);
773 		goto start_trans;
774 	}
775 
776 	/* desired position is not found or is in the direct item. We have
777 	   to append file with holes up to 'block'-th block converting
778 	   direct items to indirect one if necessary */
779 	done = 0;
780 	do {
781 		if (is_statdata_le_ih(ih)) {
782 			__le32 unp = 0;
783 			struct cpu_key tmp_key;
784 
785 			/* indirect item has to be inserted */
786 			make_le_item_head(&tmp_ih, &key, version, 1,
787 					  TYPE_INDIRECT, UNFM_P_SIZE,
788 					  0 /* free_space */ );
789 
790 			if (cpu_key_k_offset(&key) == 1) {
791 				/* we are going to add 'block'-th block to the file. Use
792 				   allocated block for that */
793 				unp = cpu_to_le32(allocated_block_nr);
794 				set_block_dev_mapped(bh_result,
795 						     allocated_block_nr, inode);
796 				set_buffer_new(bh_result);
797 				done = 1;
798 			}
799 			tmp_key = key;	// ;)
800 			set_cpu_key_k_offset(&tmp_key, 1);
801 			PATH_LAST_POSITION(&path)++;
802 
803 			retval =
804 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 						 inode, (char *)&unp);
806 			if (retval) {
807 				reiserfs_free_block(th, inode,
808 						    allocated_block_nr, 1);
809 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 			}
811 			//mark_tail_converted (inode);
812 		} else if (is_direct_le_ih(ih)) {
813 			/* direct item has to be converted */
814 			loff_t tail_offset;
815 
816 			tail_offset =
817 			    ((le_ih_k_offset(ih) -
818 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 			if (tail_offset == cpu_key_k_offset(&key)) {
820 				/* direct item we just found fits into block we have
821 				   to map. Convert it into unformatted node: use
822 				   bh_result for the conversion */
823 				set_block_dev_mapped(bh_result,
824 						     allocated_block_nr, inode);
825 				unbh = bh_result;
826 				done = 1;
827 			} else {
828 				/* we have to padd file tail stored in direct item(s)
829 				   up to block size and convert it to unformatted
830 				   node. FIXME: this should also get into page cache */
831 
832 				pathrelse(&path);
833 				/*
834 				 * ugly, but we can only end the transaction if
835 				 * we aren't nested
836 				 */
837 				BUG_ON(!th->t_refcount);
838 				if (th->t_refcount == 1) {
839 					retval =
840 					    reiserfs_end_persistent_transaction
841 					    (th);
842 					th = NULL;
843 					if (retval)
844 						goto failure;
845 				}
846 
847 				retval =
848 				    convert_tail_for_hole(inode, bh_result,
849 							  tail_offset);
850 				if (retval) {
851 					if (retval != -ENOSPC)
852 						reiserfs_error(inode->i_sb,
853 							"clm-6004",
854 							"convert tail failed "
855 							"inode %lu, error %d",
856 							inode->i_ino,
857 							retval);
858 					if (allocated_block_nr) {
859 						/* the bitmap, the super, and the stat data == 3 */
860 						if (!th)
861 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 						if (th)
863 							reiserfs_free_block(th,
864 									    inode,
865 									    allocated_block_nr,
866 									    1);
867 					}
868 					goto failure;
869 				}
870 				goto research;
871 			}
872 			retval =
873 			    direct2indirect(th, inode, &path, unbh,
874 					    tail_offset);
875 			if (retval) {
876 				reiserfs_unmap_buffer(unbh);
877 				reiserfs_free_block(th, inode,
878 						    allocated_block_nr, 1);
879 				goto failure;
880 			}
881 			/* it is important the set_buffer_uptodate is done after
882 			 ** the direct2indirect.  The buffer might contain valid
883 			 ** data newer than the data on disk (read by readpage, changed,
884 			 ** and then sent here by writepage).  direct2indirect needs
885 			 ** to know if unbh was already up to date, so it can decide
886 			 ** if the data in unbh needs to be replaced with data from
887 			 ** the disk
888 			 */
889 			set_buffer_uptodate(unbh);
890 
891 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 			   buffer will disappear shortly, so it should not be added to
893 			 */
894 			if (unbh->b_page) {
895 				/* we've converted the tail, so we must
896 				 ** flush unbh before the transaction commits
897 				 */
898 				reiserfs_add_tail_list(inode, unbh);
899 
900 				/* mark it dirty now to prevent commit_write from adding
901 				 ** this buffer to the inode's dirty buffer list
902 				 */
903 				/*
904 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 				 * It's still atomic, but it sets the page dirty too,
906 				 * which makes it eligible for writeback at any time by the
907 				 * VM (which was also the case with __mark_buffer_dirty())
908 				 */
909 				mark_buffer_dirty(unbh);
910 			}
911 		} else {
912 			/* append indirect item with holes if needed, when appending
913 			   pointer to 'block'-th block use block, which is already
914 			   allocated */
915 			struct cpu_key tmp_key;
916 			unp_t unf_single = 0;	// We use this in case we need to allocate only
917 			// one block which is a fastpath
918 			unp_t *un;
919 			__u64 max_to_insert =
920 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 			    UNFM_P_SIZE;
922 			__u64 blocks_needed;
923 
924 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 			       "vs-804: invalid position for append");
926 			/* indirect item has to be appended, set up key of that position */
927 			make_cpu_key(&tmp_key, inode,
928 				     le_key_k_offset(version,
929 						     &(ih->ih_key)) +
930 				     op_bytes_number(ih,
931 						     inode->i_sb->s_blocksize),
932 				     //pos_in_item * inode->i_sb->s_blocksize,
933 				     TYPE_INDIRECT, 3);	// key type is unimportant
934 
935 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 			       "green-805: invalid offset");
937 			blocks_needed =
938 			    1 +
939 			    ((cpu_key_k_offset(&key) -
940 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 			     s_blocksize_bits);
942 
943 			if (blocks_needed == 1) {
944 				un = &unf_single;
945 			} else {
946 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 				if (!un) {
948 					un = &unf_single;
949 					blocks_needed = 1;
950 					max_to_insert = 0;
951 				}
952 			}
953 			if (blocks_needed <= max_to_insert) {
954 				/* we are going to add target block to the file. Use allocated
955 				   block for that */
956 				un[blocks_needed - 1] =
957 				    cpu_to_le32(allocated_block_nr);
958 				set_block_dev_mapped(bh_result,
959 						     allocated_block_nr, inode);
960 				set_buffer_new(bh_result);
961 				done = 1;
962 			} else {
963 				/* paste hole to the indirect item */
964 				/* If kmalloc failed, max_to_insert becomes zero and it means we
965 				   only have space for one block */
966 				blocks_needed =
967 				    max_to_insert ? max_to_insert : 1;
968 			}
969 			retval =
970 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 						     (char *)un,
972 						     UNFM_P_SIZE *
973 						     blocks_needed);
974 
975 			if (blocks_needed != 1)
976 				kfree(un);
977 
978 			if (retval) {
979 				reiserfs_free_block(th, inode,
980 						    allocated_block_nr, 1);
981 				goto failure;
982 			}
983 			if (!done) {
984 				/* We need to mark new file size in case this function will be
985 				   interrupted/aborted later on. And we may do this only for
986 				   holes. */
987 				inode->i_size +=
988 				    inode->i_sb->s_blocksize * blocks_needed;
989 			}
990 		}
991 
992 		if (done == 1)
993 			break;
994 
995 		/* this loop could log more blocks than we had originally asked
996 		 ** for.  So, we have to allow the transaction to end if it is
997 		 ** too big or too full.  Update the inode so things are
998 		 ** consistent if we crash before the function returns
999 		 **
1000 		 ** release the path so that anybody waiting on the path before
1001 		 ** ending their transaction will be able to continue.
1002 		 */
1003 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 			retval = restart_transaction(th, inode, &path);
1005 			if (retval)
1006 				goto failure;
1007 		}
1008 		/*
1009 		 * inserting indirect pointers for a hole can take a
1010 		 * long time.  reschedule if needed and also release the write
1011 		 * lock for others.
1012 		 */
1013 		if (need_resched()) {
1014 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 			schedule();
1016 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 		}
1018 
1019 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 		if (retval == IO_ERROR) {
1021 			retval = -EIO;
1022 			goto failure;
1023 		}
1024 		if (retval == POSITION_FOUND) {
1025 			reiserfs_warning(inode->i_sb, "vs-825",
1026 					 "%K should not be found", &key);
1027 			retval = -EEXIST;
1028 			if (allocated_block_nr)
1029 				reiserfs_free_block(th, inode,
1030 						    allocated_block_nr, 1);
1031 			pathrelse(&path);
1032 			goto failure;
1033 		}
1034 		bh = get_last_bh(&path);
1035 		ih = get_ih(&path);
1036 		item = get_item(&path);
1037 		pos_in_item = path.pos_in_item;
1038 	} while (1);
1039 
1040 	retval = 0;
1041 
1042       failure:
1043 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 		int err;
1045 		if (th->t_trans_id)
1046 			reiserfs_update_sd(th, inode);
1047 		err = reiserfs_end_persistent_transaction(th);
1048 		if (err)
1049 			retval = err;
1050 	}
1051 
1052 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 	reiserfs_check_path(&path);
1054 	return retval;
1055 }
1056 
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 		   struct list_head *pages, unsigned nr_pages)
1060 {
1061 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 	int bytes;
1070 	loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 		return sd_size;
1074 
1075 	/* End of file is also in full block with indirect reference, so round
1076 	 ** up to the next block.
1077 	 **
1078 	 ** there is just no way to know if the tail is actually packed
1079 	 ** on the file, so we have to assume it isn't.  When we pack the
1080 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 	 ** node pointer
1082 	 */
1083 	bytes =
1084 	    ((inode->i_size +
1085 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 	    sd_size;
1087 	return bytes;
1088 }
1089 
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 					int sd_size)
1092 {
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		return inode->i_size +
1095 		    (loff_t) (real_space_diff(inode, sd_size));
1096 	}
1097 	return ((loff_t) real_space_diff(inode, sd_size)) +
1098 	    (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 	loff_t bytes = inode_get_bytes(inode);
1105 	loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107 	/* keeps fsck and non-quota versions of reiserfs happy */
1108 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 		bytes += (loff_t) 511;
1110 	}
1111 
1112 	/* files from before the quota patch might i_blocks such that
1113 	 ** bytes < real_space.  Deal with that here to prevent it from
1114 	 ** going negative.
1115 	 */
1116 	if (bytes < real_space)
1117 		return 0;
1118 	return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 	struct buffer_head *bh;
1132 	struct item_head *ih;
1133 	__u32 rdev;
1134 	//int version = ITEM_VERSION_1;
1135 
1136 	bh = PATH_PLAST_BUFFER(path);
1137 	ih = PATH_PITEM_HEAD(path);
1138 
1139 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 	REISERFS_I(inode)->i_flags = 0;
1143 	REISERFS_I(inode)->i_prealloc_block = 0;
1144 	REISERFS_I(inode)->i_prealloc_count = 0;
1145 	REISERFS_I(inode)->i_trans_id = 0;
1146 	REISERFS_I(inode)->i_jl = NULL;
1147 	reiserfs_init_xattr_rwsem(inode);
1148 
1149 	if (stat_data_v1(ih)) {
1150 		struct stat_data_v1 *sd =
1151 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 		unsigned long blocks;
1153 
1154 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 		set_inode_sd_version(inode, STAT_DATA_V1);
1156 		inode->i_mode = sd_v1_mode(sd);
1157 		set_nlink(inode, sd_v1_nlink(sd));
1158 		inode->i_uid = sd_v1_uid(sd);
1159 		inode->i_gid = sd_v1_gid(sd);
1160 		inode->i_size = sd_v1_size(sd);
1161 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 		inode->i_atime.tv_nsec = 0;
1165 		inode->i_ctime.tv_nsec = 0;
1166 		inode->i_mtime.tv_nsec = 0;
1167 
1168 		inode->i_blocks = sd_v1_blocks(sd);
1169 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 		blocks = (inode->i_size + 511) >> 9;
1171 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 		if (inode->i_blocks > blocks) {
1173 			// there was a bug in <=3.5.23 when i_blocks could take negative
1174 			// values. Starting from 3.5.17 this value could even be stored in
1175 			// stat data. For such files we set i_blocks based on file
1176 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 			// only updated if file's inode will ever change
1178 			inode->i_blocks = blocks;
1179 		}
1180 
1181 		rdev = sd_v1_rdev(sd);
1182 		REISERFS_I(inode)->i_first_direct_byte =
1183 		    sd_v1_first_direct_byte(sd);
1184 		/* an early bug in the quota code can give us an odd number for the
1185 		 ** block count.  This is incorrect, fix it here.
1186 		 */
1187 		if (inode->i_blocks & 1) {
1188 			inode->i_blocks++;
1189 		}
1190 		inode_set_bytes(inode,
1191 				to_real_used_space(inode, inode->i_blocks,
1192 						   SD_V1_SIZE));
1193 		/* nopack is initially zero for v1 objects. For v2 objects,
1194 		   nopack is initialised from sd_attrs */
1195 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 	} else {
1197 		// new stat data found, but object may have old items
1198 		// (directories and symlinks)
1199 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201 		inode->i_mode = sd_v2_mode(sd);
1202 		set_nlink(inode, sd_v2_nlink(sd));
1203 		inode->i_uid = sd_v2_uid(sd);
1204 		inode->i_size = sd_v2_size(sd);
1205 		inode->i_gid = sd_v2_gid(sd);
1206 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 		inode->i_ctime.tv_nsec = 0;
1210 		inode->i_mtime.tv_nsec = 0;
1211 		inode->i_atime.tv_nsec = 0;
1212 		inode->i_blocks = sd_v2_blocks(sd);
1213 		rdev = sd_v2_rdev(sd);
1214 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 			inode->i_generation =
1216 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 		else
1218 			inode->i_generation = sd_v2_generation(sd);
1219 
1220 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 		else
1223 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 		REISERFS_I(inode)->i_first_direct_byte = 0;
1225 		set_inode_sd_version(inode, STAT_DATA_V2);
1226 		inode_set_bytes(inode,
1227 				to_real_used_space(inode, inode->i_blocks,
1228 						   SD_V2_SIZE));
1229 		/* read persistent inode attributes from sd and initialise
1230 		   generic inode flags from them */
1231 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 	}
1234 
1235 	pathrelse(path);
1236 	if (S_ISREG(inode->i_mode)) {
1237 		inode->i_op = &reiserfs_file_inode_operations;
1238 		inode->i_fop = &reiserfs_file_operations;
1239 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 	} else if (S_ISDIR(inode->i_mode)) {
1241 		inode->i_op = &reiserfs_dir_inode_operations;
1242 		inode->i_fop = &reiserfs_dir_operations;
1243 	} else if (S_ISLNK(inode->i_mode)) {
1244 		inode->i_op = &reiserfs_symlink_inode_operations;
1245 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 	} else {
1247 		inode->i_blocks = 0;
1248 		inode->i_op = &reiserfs_special_inode_operations;
1249 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 	}
1251 }
1252 
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 	__u16 flags;
1258 
1259 	set_sd_v2_mode(sd_v2, inode->i_mode);
1260 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 	set_sd_v2_uid(sd_v2, inode->i_uid);
1262 	set_sd_v2_size(sd_v2, size);
1263 	set_sd_v2_gid(sd_v2, inode->i_gid);
1264 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 	else
1271 		set_sd_v2_generation(sd_v2, inode->i_generation);
1272 	flags = REISERFS_I(inode)->i_attrs;
1273 	i_attrs_to_sd_attrs(inode, &flags);
1274 	set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282 	set_sd_v1_mode(sd_v1, inode->i_mode);
1283 	set_sd_v1_uid(sd_v1, inode->i_uid);
1284 	set_sd_v1_gid(sd_v1, inode->i_gid);
1285 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 	set_sd_v1_size(sd_v1, size);
1287 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 	else
1294 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296 	// Sigh. i_first_direct_byte is back
1297 	set_sd_v1_first_direct_byte(sd_v1,
1298 				    REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 			     loff_t size)
1306 {
1307 	struct buffer_head *bh;
1308 	struct item_head *ih;
1309 
1310 	bh = PATH_PLAST_BUFFER(path);
1311 	ih = PATH_PITEM_HEAD(path);
1312 
1313 	if (!is_statdata_le_ih(ih))
1314 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 			       INODE_PKEY(inode), ih);
1316 
1317 	if (stat_data_v1(ih)) {
1318 		// path points to old stat data
1319 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 	} else {
1321 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 	}
1323 
1324 	return;
1325 }
1326 
1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 			     struct inode *inode, loff_t size)
1329 {
1330 	struct cpu_key key;
1331 	INITIALIZE_PATH(path);
1332 	struct buffer_head *bh;
1333 	int fs_gen;
1334 	struct item_head *ih, tmp_ih;
1335 	int retval;
1336 
1337 	BUG_ON(!th->t_trans_id);
1338 
1339 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340 
1341 	for (;;) {
1342 		int pos;
1343 		/* look for the object's stat data */
1344 		retval = search_item(inode->i_sb, &key, &path);
1345 		if (retval == IO_ERROR) {
1346 			reiserfs_error(inode->i_sb, "vs-13050",
1347 				       "i/o failure occurred trying to "
1348 				       "update %K stat data", &key);
1349 			return;
1350 		}
1351 		if (retval == ITEM_NOT_FOUND) {
1352 			pos = PATH_LAST_POSITION(&path);
1353 			pathrelse(&path);
1354 			if (inode->i_nlink == 0) {
1355 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 				return;
1357 			}
1358 			reiserfs_warning(inode->i_sb, "vs-13060",
1359 					 "stat data of object %k (nlink == %d) "
1360 					 "not found (pos %d)",
1361 					 INODE_PKEY(inode), inode->i_nlink,
1362 					 pos);
1363 			reiserfs_check_path(&path);
1364 			return;
1365 		}
1366 
1367 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368 		 ** FS might change.  We have to detect that, and loop back to the
1369 		 ** search if the stat data item has moved
1370 		 */
1371 		bh = get_last_bh(&path);
1372 		ih = get_ih(&path);
1373 		copy_item_head(&tmp_ih, ih);
1374 		fs_gen = get_generation(inode->i_sb);
1375 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 		if (fs_changed(fs_gen, inode->i_sb)
1377 		    && item_moved(&tmp_ih, &path)) {
1378 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 			continue;	/* Stat_data item has been moved after scheduling. */
1380 		}
1381 		break;
1382 	}
1383 	update_stat_data(&path, inode, size);
1384 	journal_mark_dirty(th, th->t_super, bh);
1385 	pathrelse(&path);
1386 	return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 	make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 	inode->i_ino = args->objectid;
1410 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 	return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415    inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 				struct reiserfs_iget_args *args)
1418 {
1419 	INITIALIZE_PATH(path_to_sd);
1420 	struct cpu_key key;
1421 	unsigned long dirino;
1422 	int retval;
1423 
1424 	dirino = args->dirid;
1425 
1426 	/* set version 1, version 2 could be used too, because stat data
1427 	   key is the same in both versions */
1428 	key.version = KEY_FORMAT_3_5;
1429 	key.on_disk_key.k_dir_id = dirino;
1430 	key.on_disk_key.k_objectid = inode->i_ino;
1431 	key.on_disk_key.k_offset = 0;
1432 	key.on_disk_key.k_type = 0;
1433 
1434 	/* look for the object's stat data */
1435 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 	if (retval == IO_ERROR) {
1437 		reiserfs_error(inode->i_sb, "vs-13070",
1438 			       "i/o failure occurred trying to find "
1439 			       "stat data of %K", &key);
1440 		reiserfs_make_bad_inode(inode);
1441 		return;
1442 	}
1443 	if (retval != ITEM_FOUND) {
1444 		/* a stale NFS handle can trigger this without it being an error */
1445 		pathrelse(&path_to_sd);
1446 		reiserfs_make_bad_inode(inode);
1447 		clear_nlink(inode);
1448 		return;
1449 	}
1450 
1451 	init_inode(inode, &path_to_sd);
1452 
1453 	/* It is possible that knfsd is trying to access inode of a file
1454 	   that is being removed from the disk by some other thread. As we
1455 	   update sd on unlink all that is required is to check for nlink
1456 	   here. This bug was first found by Sizif when debugging
1457 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459 
1460 	   More logical fix would require changes in fs/inode.c:iput() to
1461 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 	   in iget() to return NULL if I_FREEING inode is found in
1463 	   hash-table. */
1464 	/* Currently there is one place where it's ok to meet inode with
1465 	   nlink==0: processing of open-unlinked and half-truncated files
1466 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 	if ((inode->i_nlink == 0) &&
1468 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 		reiserfs_warning(inode->i_sb, "vs-13075",
1470 				 "dead inode read from disk %K. "
1471 				 "This is likely to be race with knfsd. Ignore",
1472 				 &key);
1473 		reiserfs_make_bad_inode(inode);
1474 	}
1475 
1476 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477 
1478 	/*
1479 	 * Stat data v1 doesn't support ACLs.
1480 	 */
1481 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 		cache_no_acl(inode);
1483 }
1484 
1485 /**
1486  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487  *
1488  * @inode:    inode from hash table to check
1489  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490  *
1491  * This function is called by iget5_locked() to distinguish reiserfs inodes
1492  * having the same inode numbers. Such inodes can only exist due to some
1493  * error condition. One of them should be bad. Inodes with identical
1494  * inode numbers (objectids) are distinguished by parent directory ids.
1495  *
1496  */
1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1498 {
1499 	struct reiserfs_iget_args *args;
1500 
1501 	args = opaque;
1502 	/* args is already in CPU order */
1503 	return (inode->i_ino == args->objectid) &&
1504 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505 }
1506 
1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508 {
1509 	struct inode *inode;
1510 	struct reiserfs_iget_args args;
1511 
1512 	args.objectid = key->on_disk_key.k_objectid;
1513 	args.dirid = key->on_disk_key.k_dir_id;
1514 	reiserfs_write_unlock(s);
1515 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517 			     (void *)(&args));
1518 	reiserfs_write_lock(s);
1519 	if (!inode)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	if (inode->i_state & I_NEW) {
1523 		reiserfs_read_locked_inode(inode, &args);
1524 		unlock_new_inode(inode);
1525 	}
1526 
1527 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 		/* either due to i/o error or a stale NFS handle */
1529 		iput(inode);
1530 		inode = NULL;
1531 	}
1532 	return inode;
1533 }
1534 
1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 	u32 objectid, u32 dir_id, u32 generation)
1537 
1538 {
1539 	struct cpu_key key;
1540 	struct inode *inode;
1541 
1542 	key.on_disk_key.k_objectid = objectid;
1543 	key.on_disk_key.k_dir_id = dir_id;
1544 	reiserfs_write_lock(sb);
1545 	inode = reiserfs_iget(sb, &key);
1546 	if (inode && !IS_ERR(inode) && generation != 0 &&
1547 	    generation != inode->i_generation) {
1548 		iput(inode);
1549 		inode = NULL;
1550 	}
1551 	reiserfs_write_unlock(sb);
1552 
1553 	return d_obtain_alias(inode);
1554 }
1555 
1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 		int fh_len, int fh_type)
1558 {
1559 	/* fhtype happens to reflect the number of u32s encoded.
1560 	 * due to a bug in earlier code, fhtype might indicate there
1561 	 * are more u32s then actually fitted.
1562 	 * so if fhtype seems to be more than len, reduce fhtype.
1563 	 * Valid types are:
1564 	 *   2 - objectid + dir_id - legacy support
1565 	 *   3 - objectid + dir_id + generation
1566 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568 	 *   6 - as above plus generation of directory
1569 	 * 6 does not fit in NFSv2 handles
1570 	 */
1571 	if (fh_type > fh_len) {
1572 		if (fh_type != 6 || fh_len != 5)
1573 			reiserfs_warning(sb, "reiserfs-13077",
1574 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 				fh_type, fh_len);
1576 		fh_type = 5;
1577 	}
1578 
1579 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1580 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1581 }
1582 
1583 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1584 		int fh_len, int fh_type)
1585 {
1586 	if (fh_type < 4)
1587 		return NULL;
1588 
1589 	return reiserfs_get_dentry(sb,
1590 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1591 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1592 		(fh_type == 6) ? fid->raw[5] : 0);
1593 }
1594 
1595 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1596 		       struct inode *parent)
1597 {
1598 	int maxlen = *lenp;
1599 
1600 	if (parent && (maxlen < 5)) {
1601 		*lenp = 5;
1602 		return 255;
1603 	} else if (maxlen < 3) {
1604 		*lenp = 3;
1605 		return 255;
1606 	}
1607 
1608 	data[0] = inode->i_ino;
1609 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1610 	data[2] = inode->i_generation;
1611 	*lenp = 3;
1612 	if (parent) {
1613 		data[3] = parent->i_ino;
1614 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1615 		*lenp = 5;
1616 		if (maxlen >= 6) {
1617 			data[5] = parent->i_generation;
1618 			*lenp = 6;
1619 		}
1620 	}
1621 	return *lenp;
1622 }
1623 
1624 /* looks for stat data, then copies fields to it, marks the buffer
1625    containing stat data as dirty */
1626 /* reiserfs inodes are never really dirty, since the dirty inode call
1627 ** always logs them.  This call allows the VFS inode marking routines
1628 ** to properly mark inodes for datasync and such, but only actually
1629 ** does something when called for a synchronous update.
1630 */
1631 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1632 {
1633 	struct reiserfs_transaction_handle th;
1634 	int jbegin_count = 1;
1635 
1636 	if (inode->i_sb->s_flags & MS_RDONLY)
1637 		return -EROFS;
1638 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1639 	 ** these cases are just when the system needs ram, not when the
1640 	 ** inode needs to reach disk for safety, and they can safely be
1641 	 ** ignored because the altered inode has already been logged.
1642 	 */
1643 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1644 		reiserfs_write_lock(inode->i_sb);
1645 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1646 			reiserfs_update_sd(&th, inode);
1647 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1648 		}
1649 		reiserfs_write_unlock(inode->i_sb);
1650 	}
1651 	return 0;
1652 }
1653 
1654 /* stat data of new object is inserted already, this inserts the item
1655    containing "." and ".." entries */
1656 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1657 				  struct inode *inode,
1658 				  struct item_head *ih, struct treepath *path,
1659 				  struct inode *dir)
1660 {
1661 	struct super_block *sb = th->t_super;
1662 	char empty_dir[EMPTY_DIR_SIZE];
1663 	char *body = empty_dir;
1664 	struct cpu_key key;
1665 	int retval;
1666 
1667 	BUG_ON(!th->t_trans_id);
1668 
1669 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1670 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1671 		      TYPE_DIRENTRY, 3 /*key length */ );
1672 
1673 	/* compose item head for new item. Directories consist of items of
1674 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1675 	   is done by reiserfs_new_inode */
1676 	if (old_format_only(sb)) {
1677 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1679 
1680 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1681 				       ih->ih_key.k_objectid,
1682 				       INODE_PKEY(dir)->k_dir_id,
1683 				       INODE_PKEY(dir)->k_objectid);
1684 	} else {
1685 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1686 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1687 
1688 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1689 				    ih->ih_key.k_objectid,
1690 				    INODE_PKEY(dir)->k_dir_id,
1691 				    INODE_PKEY(dir)->k_objectid);
1692 	}
1693 
1694 	/* look for place in the tree for new item */
1695 	retval = search_item(sb, &key, path);
1696 	if (retval == IO_ERROR) {
1697 		reiserfs_error(sb, "vs-13080",
1698 			       "i/o failure occurred creating new directory");
1699 		return -EIO;
1700 	}
1701 	if (retval == ITEM_FOUND) {
1702 		pathrelse(path);
1703 		reiserfs_warning(sb, "vs-13070",
1704 				 "object with this key exists (%k)",
1705 				 &(ih->ih_key));
1706 		return -EEXIST;
1707 	}
1708 
1709 	/* insert item, that is empty directory item */
1710 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711 }
1712 
1713 /* stat data of object has been inserted, this inserts the item
1714    containing the body of symlink */
1715 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1716 				struct item_head *ih,
1717 				struct treepath *path, const char *symname,
1718 				int item_len)
1719 {
1720 	struct super_block *sb = th->t_super;
1721 	struct cpu_key key;
1722 	int retval;
1723 
1724 	BUG_ON(!th->t_trans_id);
1725 
1726 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1727 		      le32_to_cpu(ih->ih_key.k_dir_id),
1728 		      le32_to_cpu(ih->ih_key.k_objectid),
1729 		      1, TYPE_DIRECT, 3 /*key length */ );
1730 
1731 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1732 			  0 /*free_space */ );
1733 
1734 	/* look for place in the tree for new item */
1735 	retval = search_item(sb, &key, path);
1736 	if (retval == IO_ERROR) {
1737 		reiserfs_error(sb, "vs-13080",
1738 			       "i/o failure occurred creating new symlink");
1739 		return -EIO;
1740 	}
1741 	if (retval == ITEM_FOUND) {
1742 		pathrelse(path);
1743 		reiserfs_warning(sb, "vs-13080",
1744 				 "object with this key exists (%k)",
1745 				 &(ih->ih_key));
1746 		return -EEXIST;
1747 	}
1748 
1749 	/* insert item, that is body of symlink */
1750 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751 }
1752 
1753 /* inserts the stat data into the tree, and then calls
1754    reiserfs_new_directory (to insert ".", ".." item if new object is
1755    directory) or reiserfs_new_symlink (to insert symlink body if new
1756    object is symlink) or nothing (if new object is regular file)
1757 
1758    NOTE! uid and gid must already be set in the inode.  If we return
1759    non-zero due to an error, we have to drop the quota previously allocated
1760    for the fresh inode.  This can only be done outside a transaction, so
1761    if we return non-zero, we also end the transaction.  */
1762 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1763 		       struct inode *dir, umode_t mode, const char *symname,
1764 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1765 		          strlen (symname) for symlinks) */
1766 		       loff_t i_size, struct dentry *dentry,
1767 		       struct inode *inode,
1768 		       struct reiserfs_security_handle *security)
1769 {
1770 	struct super_block *sb;
1771 	struct reiserfs_iget_args args;
1772 	INITIALIZE_PATH(path_to_key);
1773 	struct cpu_key key;
1774 	struct item_head ih;
1775 	struct stat_data sd;
1776 	int retval;
1777 	int err;
1778 
1779 	BUG_ON(!th->t_trans_id);
1780 
1781 	dquot_initialize(inode);
1782 	err = dquot_alloc_inode(inode);
1783 	if (err)
1784 		goto out_end_trans;
1785 	if (!dir->i_nlink) {
1786 		err = -EPERM;
1787 		goto out_bad_inode;
1788 	}
1789 
1790 	sb = dir->i_sb;
1791 
1792 	/* item head of new item */
1793 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1794 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1795 	if (!ih.ih_key.k_objectid) {
1796 		err = -ENOMEM;
1797 		goto out_bad_inode;
1798 	}
1799 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1800 	if (old_format_only(sb))
1801 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1802 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1803 	else
1804 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1805 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1806 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1807 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1808 	if (insert_inode_locked4(inode, args.objectid,
1809 			     reiserfs_find_actor, &args) < 0) {
1810 		err = -EINVAL;
1811 		goto out_bad_inode;
1812 	}
1813 	if (old_format_only(sb))
1814 		/* not a perfect generation count, as object ids can be reused, but
1815 		 ** this is as good as reiserfs can do right now.
1816 		 ** note that the private part of inode isn't filled in yet, we have
1817 		 ** to use the directory.
1818 		 */
1819 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1820 	else
1821 #if defined( USE_INODE_GENERATION_COUNTER )
1822 		inode->i_generation =
1823 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1824 #else
1825 		inode->i_generation = ++event;
1826 #endif
1827 
1828 	/* fill stat data */
1829 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1830 
1831 	/* uid and gid must already be set by the caller for quota init */
1832 
1833 	/* symlink cannot be immutable or append only, right? */
1834 	if (S_ISLNK(inode->i_mode))
1835 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1836 
1837 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1838 	inode->i_size = i_size;
1839 	inode->i_blocks = 0;
1840 	inode->i_bytes = 0;
1841 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1842 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1843 
1844 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1845 	REISERFS_I(inode)->i_flags = 0;
1846 	REISERFS_I(inode)->i_prealloc_block = 0;
1847 	REISERFS_I(inode)->i_prealloc_count = 0;
1848 	REISERFS_I(inode)->i_trans_id = 0;
1849 	REISERFS_I(inode)->i_jl = NULL;
1850 	REISERFS_I(inode)->i_attrs =
1851 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1852 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1853 	reiserfs_init_xattr_rwsem(inode);
1854 
1855 	/* key to search for correct place for new stat data */
1856 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1857 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1858 		      TYPE_STAT_DATA, 3 /*key length */ );
1859 
1860 	/* find proper place for inserting of stat data */
1861 	retval = search_item(sb, &key, &path_to_key);
1862 	if (retval == IO_ERROR) {
1863 		err = -EIO;
1864 		goto out_bad_inode;
1865 	}
1866 	if (retval == ITEM_FOUND) {
1867 		pathrelse(&path_to_key);
1868 		err = -EEXIST;
1869 		goto out_bad_inode;
1870 	}
1871 	if (old_format_only(sb)) {
1872 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1873 			pathrelse(&path_to_key);
1874 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1875 			err = -EINVAL;
1876 			goto out_bad_inode;
1877 		}
1878 		inode2sd_v1(&sd, inode, inode->i_size);
1879 	} else {
1880 		inode2sd(&sd, inode, inode->i_size);
1881 	}
1882 	// store in in-core inode the key of stat data and version all
1883 	// object items will have (directory items will have old offset
1884 	// format, other new objects will consist of new items)
1885 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1886 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1887 	else
1888 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1889 	if (old_format_only(sb))
1890 		set_inode_sd_version(inode, STAT_DATA_V1);
1891 	else
1892 		set_inode_sd_version(inode, STAT_DATA_V2);
1893 
1894 	/* insert the stat data into the tree */
1895 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1896 	if (REISERFS_I(dir)->new_packing_locality)
1897 		th->displace_new_blocks = 1;
1898 #endif
1899 	retval =
1900 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1901 				 (char *)(&sd));
1902 	if (retval) {
1903 		err = retval;
1904 		reiserfs_check_path(&path_to_key);
1905 		goto out_bad_inode;
1906 	}
1907 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1908 	if (!th->displace_new_blocks)
1909 		REISERFS_I(dir)->new_packing_locality = 0;
1910 #endif
1911 	if (S_ISDIR(mode)) {
1912 		/* insert item with "." and ".." */
1913 		retval =
1914 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1915 	}
1916 
1917 	if (S_ISLNK(mode)) {
1918 		/* insert body of symlink */
1919 		if (!old_format_only(sb))
1920 			i_size = ROUND_UP(i_size);
1921 		retval =
1922 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1923 					 i_size);
1924 	}
1925 	if (retval) {
1926 		err = retval;
1927 		reiserfs_check_path(&path_to_key);
1928 		journal_end(th, th->t_super, th->t_blocks_allocated);
1929 		goto out_inserted_sd;
1930 	}
1931 
1932 	if (reiserfs_posixacl(inode->i_sb)) {
1933 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1934 		if (retval) {
1935 			err = retval;
1936 			reiserfs_check_path(&path_to_key);
1937 			journal_end(th, th->t_super, th->t_blocks_allocated);
1938 			goto out_inserted_sd;
1939 		}
1940 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1941 		reiserfs_warning(inode->i_sb, "jdm-13090",
1942 				 "ACLs aren't enabled in the fs, "
1943 				 "but vfs thinks they are!");
1944 	} else if (IS_PRIVATE(dir))
1945 		inode->i_flags |= S_PRIVATE;
1946 
1947 	if (security->name) {
1948 		retval = reiserfs_security_write(th, inode, security);
1949 		if (retval) {
1950 			err = retval;
1951 			reiserfs_check_path(&path_to_key);
1952 			retval = journal_end(th, th->t_super,
1953 					     th->t_blocks_allocated);
1954 			if (retval)
1955 				err = retval;
1956 			goto out_inserted_sd;
1957 		}
1958 	}
1959 
1960 	reiserfs_update_sd(th, inode);
1961 	reiserfs_check_path(&path_to_key);
1962 
1963 	return 0;
1964 
1965 /* it looks like you can easily compress these two goto targets into
1966  * one.  Keeping it like this doesn't actually hurt anything, and they
1967  * are place holders for what the quota code actually needs.
1968  */
1969       out_bad_inode:
1970 	/* Invalidate the object, nothing was inserted yet */
1971 	INODE_PKEY(inode)->k_objectid = 0;
1972 
1973 	/* Quota change must be inside a transaction for journaling */
1974 	dquot_free_inode(inode);
1975 
1976       out_end_trans:
1977 	journal_end(th, th->t_super, th->t_blocks_allocated);
1978 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1979 	dquot_drop(inode);
1980 	inode->i_flags |= S_NOQUOTA;
1981 	make_bad_inode(inode);
1982 
1983       out_inserted_sd:
1984 	clear_nlink(inode);
1985 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1986 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1987 	iput(inode);
1988 	return err;
1989 }
1990 
1991 /*
1992 ** finds the tail page in the page cache,
1993 ** reads the last block in.
1994 **
1995 ** On success, page_result is set to a locked, pinned page, and bh_result
1996 ** is set to an up to date buffer for the last block in the file.  returns 0.
1997 **
1998 ** tail conversion is not done, so bh_result might not be valid for writing
1999 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2000 ** trying to write the block.
2001 **
2002 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2003 */
2004 static int grab_tail_page(struct inode *inode,
2005 			  struct page **page_result,
2006 			  struct buffer_head **bh_result)
2007 {
2008 
2009 	/* we want the page with the last byte in the file,
2010 	 ** not the page that will hold the next byte for appending
2011 	 */
2012 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2013 	unsigned long pos = 0;
2014 	unsigned long start = 0;
2015 	unsigned long blocksize = inode->i_sb->s_blocksize;
2016 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2017 	struct buffer_head *bh;
2018 	struct buffer_head *head;
2019 	struct page *page;
2020 	int error;
2021 
2022 	/* we know that we are only called with inode->i_size > 0.
2023 	 ** we also know that a file tail can never be as big as a block
2024 	 ** If i_size % blocksize == 0, our file is currently block aligned
2025 	 ** and it won't need converting or zeroing after a truncate.
2026 	 */
2027 	if ((offset & (blocksize - 1)) == 0) {
2028 		return -ENOENT;
2029 	}
2030 	page = grab_cache_page(inode->i_mapping, index);
2031 	error = -ENOMEM;
2032 	if (!page) {
2033 		goto out;
2034 	}
2035 	/* start within the page of the last block in the file */
2036 	start = (offset / blocksize) * blocksize;
2037 
2038 	error = __block_write_begin(page, start, offset - start,
2039 				    reiserfs_get_block_create_0);
2040 	if (error)
2041 		goto unlock;
2042 
2043 	head = page_buffers(page);
2044 	bh = head;
2045 	do {
2046 		if (pos >= start) {
2047 			break;
2048 		}
2049 		bh = bh->b_this_page;
2050 		pos += blocksize;
2051 	} while (bh != head);
2052 
2053 	if (!buffer_uptodate(bh)) {
2054 		/* note, this should never happen, prepare_write should
2055 		 ** be taking care of this for us.  If the buffer isn't up to date,
2056 		 ** I've screwed up the code to find the buffer, or the code to
2057 		 ** call prepare_write
2058 		 */
2059 		reiserfs_error(inode->i_sb, "clm-6000",
2060 			       "error reading block %lu", bh->b_blocknr);
2061 		error = -EIO;
2062 		goto unlock;
2063 	}
2064 	*bh_result = bh;
2065 	*page_result = page;
2066 
2067       out:
2068 	return error;
2069 
2070       unlock:
2071 	unlock_page(page);
2072 	page_cache_release(page);
2073 	return error;
2074 }
2075 
2076 /*
2077 ** vfs version of truncate file.  Must NOT be called with
2078 ** a transaction already started.
2079 **
2080 ** some code taken from block_truncate_page
2081 */
2082 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2083 {
2084 	struct reiserfs_transaction_handle th;
2085 	/* we want the offset for the first byte after the end of the file */
2086 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2087 	unsigned blocksize = inode->i_sb->s_blocksize;
2088 	unsigned length;
2089 	struct page *page = NULL;
2090 	int error;
2091 	struct buffer_head *bh = NULL;
2092 	int err2;
2093 	int lock_depth;
2094 
2095 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2096 
2097 	if (inode->i_size > 0) {
2098 		error = grab_tail_page(inode, &page, &bh);
2099 		if (error) {
2100 			// -ENOENT means we truncated past the end of the file,
2101 			// and get_block_create_0 could not find a block to read in,
2102 			// which is ok.
2103 			if (error != -ENOENT)
2104 				reiserfs_error(inode->i_sb, "clm-6001",
2105 					       "grab_tail_page failed %d",
2106 					       error);
2107 			page = NULL;
2108 			bh = NULL;
2109 		}
2110 	}
2111 
2112 	/* so, if page != NULL, we have a buffer head for the offset at
2113 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2114 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2115 	 ** and no zeroing is required on disk.  We zero after the truncate,
2116 	 ** because the truncate might pack the item anyway
2117 	 ** (it will unmap bh if it packs).
2118 	 */
2119 	/* it is enough to reserve space in transaction for 2 balancings:
2120 	   one for "save" link adding and another for the first
2121 	   cut_from_item. 1 is for update_sd */
2122 	error = journal_begin(&th, inode->i_sb,
2123 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2124 	if (error)
2125 		goto out;
2126 	reiserfs_update_inode_transaction(inode);
2127 	if (update_timestamps)
2128 		/* we are doing real truncate: if the system crashes before the last
2129 		   transaction of truncating gets committed - on reboot the file
2130 		   either appears truncated properly or not truncated at all */
2131 		add_save_link(&th, inode, 1);
2132 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2133 	error =
2134 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2135 	if (error)
2136 		goto out;
2137 
2138 	/* check reiserfs_do_truncate after ending the transaction */
2139 	if (err2) {
2140 		error = err2;
2141   		goto out;
2142 	}
2143 
2144 	if (update_timestamps) {
2145 		error = remove_save_link(inode, 1 /* truncate */);
2146 		if (error)
2147 			goto out;
2148 	}
2149 
2150 	if (page) {
2151 		length = offset & (blocksize - 1);
2152 		/* if we are not on a block boundary */
2153 		if (length) {
2154 			length = blocksize - length;
2155 			zero_user(page, offset, length);
2156 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2157 				mark_buffer_dirty(bh);
2158 			}
2159 		}
2160 		unlock_page(page);
2161 		page_cache_release(page);
2162 	}
2163 
2164 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2165 
2166 	return 0;
2167       out:
2168 	if (page) {
2169 		unlock_page(page);
2170 		page_cache_release(page);
2171 	}
2172 
2173 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2174 
2175 	return error;
2176 }
2177 
2178 static int map_block_for_writepage(struct inode *inode,
2179 				   struct buffer_head *bh_result,
2180 				   unsigned long block)
2181 {
2182 	struct reiserfs_transaction_handle th;
2183 	int fs_gen;
2184 	struct item_head tmp_ih;
2185 	struct item_head *ih;
2186 	struct buffer_head *bh;
2187 	__le32 *item;
2188 	struct cpu_key key;
2189 	INITIALIZE_PATH(path);
2190 	int pos_in_item;
2191 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2192 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2193 	int retval;
2194 	int use_get_block = 0;
2195 	int bytes_copied = 0;
2196 	int copy_size;
2197 	int trans_running = 0;
2198 
2199 	/* catch places below that try to log something without starting a trans */
2200 	th.t_trans_id = 0;
2201 
2202 	if (!buffer_uptodate(bh_result)) {
2203 		return -EIO;
2204 	}
2205 
2206 	kmap(bh_result->b_page);
2207       start_over:
2208 	reiserfs_write_lock(inode->i_sb);
2209 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2210 
2211       research:
2212 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2213 	if (retval != POSITION_FOUND) {
2214 		use_get_block = 1;
2215 		goto out;
2216 	}
2217 
2218 	bh = get_last_bh(&path);
2219 	ih = get_ih(&path);
2220 	item = get_item(&path);
2221 	pos_in_item = path.pos_in_item;
2222 
2223 	/* we've found an unformatted node */
2224 	if (indirect_item_found(retval, ih)) {
2225 		if (bytes_copied > 0) {
2226 			reiserfs_warning(inode->i_sb, "clm-6002",
2227 					 "bytes_copied %d", bytes_copied);
2228 		}
2229 		if (!get_block_num(item, pos_in_item)) {
2230 			/* crap, we are writing to a hole */
2231 			use_get_block = 1;
2232 			goto out;
2233 		}
2234 		set_block_dev_mapped(bh_result,
2235 				     get_block_num(item, pos_in_item), inode);
2236 	} else if (is_direct_le_ih(ih)) {
2237 		char *p;
2238 		p = page_address(bh_result->b_page);
2239 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2240 		copy_size = ih_item_len(ih) - pos_in_item;
2241 
2242 		fs_gen = get_generation(inode->i_sb);
2243 		copy_item_head(&tmp_ih, ih);
2244 
2245 		if (!trans_running) {
2246 			/* vs-3050 is gone, no need to drop the path */
2247 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2248 			if (retval)
2249 				goto out;
2250 			reiserfs_update_inode_transaction(inode);
2251 			trans_running = 1;
2252 			if (fs_changed(fs_gen, inode->i_sb)
2253 			    && item_moved(&tmp_ih, &path)) {
2254 				reiserfs_restore_prepared_buffer(inode->i_sb,
2255 								 bh);
2256 				goto research;
2257 			}
2258 		}
2259 
2260 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2261 
2262 		if (fs_changed(fs_gen, inode->i_sb)
2263 		    && item_moved(&tmp_ih, &path)) {
2264 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2265 			goto research;
2266 		}
2267 
2268 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2269 		       copy_size);
2270 
2271 		journal_mark_dirty(&th, inode->i_sb, bh);
2272 		bytes_copied += copy_size;
2273 		set_block_dev_mapped(bh_result, 0, inode);
2274 
2275 		/* are there still bytes left? */
2276 		if (bytes_copied < bh_result->b_size &&
2277 		    (byte_offset + bytes_copied) < inode->i_size) {
2278 			set_cpu_key_k_offset(&key,
2279 					     cpu_key_k_offset(&key) +
2280 					     copy_size);
2281 			goto research;
2282 		}
2283 	} else {
2284 		reiserfs_warning(inode->i_sb, "clm-6003",
2285 				 "bad item inode %lu", inode->i_ino);
2286 		retval = -EIO;
2287 		goto out;
2288 	}
2289 	retval = 0;
2290 
2291       out:
2292 	pathrelse(&path);
2293 	if (trans_running) {
2294 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2295 		if (err)
2296 			retval = err;
2297 		trans_running = 0;
2298 	}
2299 	reiserfs_write_unlock(inode->i_sb);
2300 
2301 	/* this is where we fill in holes in the file. */
2302 	if (use_get_block) {
2303 		retval = reiserfs_get_block(inode, block, bh_result,
2304 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2305 					    | GET_BLOCK_NO_DANGLE);
2306 		if (!retval) {
2307 			if (!buffer_mapped(bh_result)
2308 			    || bh_result->b_blocknr == 0) {
2309 				/* get_block failed to find a mapped unformatted node. */
2310 				use_get_block = 0;
2311 				goto start_over;
2312 			}
2313 		}
2314 	}
2315 	kunmap(bh_result->b_page);
2316 
2317 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2318 		/* we've copied data from the page into the direct item, so the
2319 		 * buffer in the page is now clean, mark it to reflect that.
2320 		 */
2321 		lock_buffer(bh_result);
2322 		clear_buffer_dirty(bh_result);
2323 		unlock_buffer(bh_result);
2324 	}
2325 	return retval;
2326 }
2327 
2328 /*
2329  * mason@suse.com: updated in 2.5.54 to follow the same general io
2330  * start/recovery path as __block_write_full_page, along with special
2331  * code to handle reiserfs tails.
2332  */
2333 static int reiserfs_write_full_page(struct page *page,
2334 				    struct writeback_control *wbc)
2335 {
2336 	struct inode *inode = page->mapping->host;
2337 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2338 	int error = 0;
2339 	unsigned long block;
2340 	sector_t last_block;
2341 	struct buffer_head *head, *bh;
2342 	int partial = 0;
2343 	int nr = 0;
2344 	int checked = PageChecked(page);
2345 	struct reiserfs_transaction_handle th;
2346 	struct super_block *s = inode->i_sb;
2347 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2348 	th.t_trans_id = 0;
2349 
2350 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2351 	if (checked && (current->flags & PF_MEMALLOC)) {
2352 		redirty_page_for_writepage(wbc, page);
2353 		unlock_page(page);
2354 		return 0;
2355 	}
2356 
2357 	/* The page dirty bit is cleared before writepage is called, which
2358 	 * means we have to tell create_empty_buffers to make dirty buffers
2359 	 * The page really should be up to date at this point, so tossing
2360 	 * in the BH_Uptodate is just a sanity check.
2361 	 */
2362 	if (!page_has_buffers(page)) {
2363 		create_empty_buffers(page, s->s_blocksize,
2364 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2365 	}
2366 	head = page_buffers(page);
2367 
2368 	/* last page in the file, zero out any contents past the
2369 	 ** last byte in the file
2370 	 */
2371 	if (page->index >= end_index) {
2372 		unsigned last_offset;
2373 
2374 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2375 		/* no file contents in this page */
2376 		if (page->index >= end_index + 1 || !last_offset) {
2377 			unlock_page(page);
2378 			return 0;
2379 		}
2380 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2381 	}
2382 	bh = head;
2383 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2384 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2385 	/* first map all the buffers, logging any direct items we find */
2386 	do {
2387 		if (block > last_block) {
2388 			/*
2389 			 * This can happen when the block size is less than
2390 			 * the page size.  The corresponding bytes in the page
2391 			 * were zero filled above
2392 			 */
2393 			clear_buffer_dirty(bh);
2394 			set_buffer_uptodate(bh);
2395 		} else if ((checked || buffer_dirty(bh)) &&
2396 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2397 						       && bh->b_blocknr ==
2398 						       0))) {
2399 			/* not mapped yet, or it points to a direct item, search
2400 			 * the btree for the mapping info, and log any direct
2401 			 * items found
2402 			 */
2403 			if ((error = map_block_for_writepage(inode, bh, block))) {
2404 				goto fail;
2405 			}
2406 		}
2407 		bh = bh->b_this_page;
2408 		block++;
2409 	} while (bh != head);
2410 
2411 	/*
2412 	 * we start the transaction after map_block_for_writepage,
2413 	 * because it can create holes in the file (an unbounded operation).
2414 	 * starting it here, we can make a reliable estimate for how many
2415 	 * blocks we're going to log
2416 	 */
2417 	if (checked) {
2418 		ClearPageChecked(page);
2419 		reiserfs_write_lock(s);
2420 		error = journal_begin(&th, s, bh_per_page + 1);
2421 		if (error) {
2422 			reiserfs_write_unlock(s);
2423 			goto fail;
2424 		}
2425 		reiserfs_update_inode_transaction(inode);
2426 	}
2427 	/* now go through and lock any dirty buffers on the page */
2428 	do {
2429 		get_bh(bh);
2430 		if (!buffer_mapped(bh))
2431 			continue;
2432 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2433 			continue;
2434 
2435 		if (checked) {
2436 			reiserfs_prepare_for_journal(s, bh, 1);
2437 			journal_mark_dirty(&th, s, bh);
2438 			continue;
2439 		}
2440 		/* from this point on, we know the buffer is mapped to a
2441 		 * real block and not a direct item
2442 		 */
2443 		if (wbc->sync_mode != WB_SYNC_NONE) {
2444 			lock_buffer(bh);
2445 		} else {
2446 			if (!trylock_buffer(bh)) {
2447 				redirty_page_for_writepage(wbc, page);
2448 				continue;
2449 			}
2450 		}
2451 		if (test_clear_buffer_dirty(bh)) {
2452 			mark_buffer_async_write(bh);
2453 		} else {
2454 			unlock_buffer(bh);
2455 		}
2456 	} while ((bh = bh->b_this_page) != head);
2457 
2458 	if (checked) {
2459 		error = journal_end(&th, s, bh_per_page + 1);
2460 		reiserfs_write_unlock(s);
2461 		if (error)
2462 			goto fail;
2463 	}
2464 	BUG_ON(PageWriteback(page));
2465 	set_page_writeback(page);
2466 	unlock_page(page);
2467 
2468 	/*
2469 	 * since any buffer might be the only dirty buffer on the page,
2470 	 * the first submit_bh can bring the page out of writeback.
2471 	 * be careful with the buffers.
2472 	 */
2473 	do {
2474 		struct buffer_head *next = bh->b_this_page;
2475 		if (buffer_async_write(bh)) {
2476 			submit_bh(WRITE, bh);
2477 			nr++;
2478 		}
2479 		put_bh(bh);
2480 		bh = next;
2481 	} while (bh != head);
2482 
2483 	error = 0;
2484       done:
2485 	if (nr == 0) {
2486 		/*
2487 		 * if this page only had a direct item, it is very possible for
2488 		 * no io to be required without there being an error.  Or,
2489 		 * someone else could have locked them and sent them down the
2490 		 * pipe without locking the page
2491 		 */
2492 		bh = head;
2493 		do {
2494 			if (!buffer_uptodate(bh)) {
2495 				partial = 1;
2496 				break;
2497 			}
2498 			bh = bh->b_this_page;
2499 		} while (bh != head);
2500 		if (!partial)
2501 			SetPageUptodate(page);
2502 		end_page_writeback(page);
2503 	}
2504 	return error;
2505 
2506       fail:
2507 	/* catches various errors, we need to make sure any valid dirty blocks
2508 	 * get to the media.  The page is currently locked and not marked for
2509 	 * writeback
2510 	 */
2511 	ClearPageUptodate(page);
2512 	bh = head;
2513 	do {
2514 		get_bh(bh);
2515 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2516 			lock_buffer(bh);
2517 			mark_buffer_async_write(bh);
2518 		} else {
2519 			/*
2520 			 * clear any dirty bits that might have come from getting
2521 			 * attached to a dirty page
2522 			 */
2523 			clear_buffer_dirty(bh);
2524 		}
2525 		bh = bh->b_this_page;
2526 	} while (bh != head);
2527 	SetPageError(page);
2528 	BUG_ON(PageWriteback(page));
2529 	set_page_writeback(page);
2530 	unlock_page(page);
2531 	do {
2532 		struct buffer_head *next = bh->b_this_page;
2533 		if (buffer_async_write(bh)) {
2534 			clear_buffer_dirty(bh);
2535 			submit_bh(WRITE, bh);
2536 			nr++;
2537 		}
2538 		put_bh(bh);
2539 		bh = next;
2540 	} while (bh != head);
2541 	goto done;
2542 }
2543 
2544 static int reiserfs_readpage(struct file *f, struct page *page)
2545 {
2546 	return block_read_full_page(page, reiserfs_get_block);
2547 }
2548 
2549 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2550 {
2551 	struct inode *inode = page->mapping->host;
2552 	reiserfs_wait_on_write_block(inode->i_sb);
2553 	return reiserfs_write_full_page(page, wbc);
2554 }
2555 
2556 static void reiserfs_truncate_failed_write(struct inode *inode)
2557 {
2558 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2559 	reiserfs_truncate_file(inode, 0);
2560 }
2561 
2562 static int reiserfs_write_begin(struct file *file,
2563 				struct address_space *mapping,
2564 				loff_t pos, unsigned len, unsigned flags,
2565 				struct page **pagep, void **fsdata)
2566 {
2567 	struct inode *inode;
2568 	struct page *page;
2569 	pgoff_t index;
2570 	int ret;
2571 	int old_ref = 0;
2572 
2573  	inode = mapping->host;
2574 	*fsdata = 0;
2575  	if (flags & AOP_FLAG_CONT_EXPAND &&
2576  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2577  		pos ++;
2578 		*fsdata = (void *)(unsigned long)flags;
2579 	}
2580 
2581 	index = pos >> PAGE_CACHE_SHIFT;
2582 	page = grab_cache_page_write_begin(mapping, index, flags);
2583 	if (!page)
2584 		return -ENOMEM;
2585 	*pagep = page;
2586 
2587 	reiserfs_wait_on_write_block(inode->i_sb);
2588 	fix_tail_page_for_writing(page);
2589 	if (reiserfs_transaction_running(inode->i_sb)) {
2590 		struct reiserfs_transaction_handle *th;
2591 		th = (struct reiserfs_transaction_handle *)current->
2592 		    journal_info;
2593 		BUG_ON(!th->t_refcount);
2594 		BUG_ON(!th->t_trans_id);
2595 		old_ref = th->t_refcount;
2596 		th->t_refcount++;
2597 	}
2598 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2599 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2600 		struct reiserfs_transaction_handle *th = current->journal_info;
2601 		/* this gets a little ugly.  If reiserfs_get_block returned an
2602 		 * error and left a transacstion running, we've got to close it,
2603 		 * and we've got to free handle if it was a persistent transaction.
2604 		 *
2605 		 * But, if we had nested into an existing transaction, we need
2606 		 * to just drop the ref count on the handle.
2607 		 *
2608 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2609 		 * and it was a persistent trans.  Otherwise, it was nested above.
2610 		 */
2611 		if (th->t_refcount > old_ref) {
2612 			if (old_ref)
2613 				th->t_refcount--;
2614 			else {
2615 				int err;
2616 				reiserfs_write_lock(inode->i_sb);
2617 				err = reiserfs_end_persistent_transaction(th);
2618 				reiserfs_write_unlock(inode->i_sb);
2619 				if (err)
2620 					ret = err;
2621 			}
2622 		}
2623 	}
2624 	if (ret) {
2625 		unlock_page(page);
2626 		page_cache_release(page);
2627 		/* Truncate allocated blocks */
2628 		reiserfs_truncate_failed_write(inode);
2629 	}
2630 	return ret;
2631 }
2632 
2633 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2634 {
2635 	struct inode *inode = page->mapping->host;
2636 	int ret;
2637 	int old_ref = 0;
2638 
2639 	reiserfs_write_unlock(inode->i_sb);
2640 	reiserfs_wait_on_write_block(inode->i_sb);
2641 	reiserfs_write_lock(inode->i_sb);
2642 
2643 	fix_tail_page_for_writing(page);
2644 	if (reiserfs_transaction_running(inode->i_sb)) {
2645 		struct reiserfs_transaction_handle *th;
2646 		th = (struct reiserfs_transaction_handle *)current->
2647 		    journal_info;
2648 		BUG_ON(!th->t_refcount);
2649 		BUG_ON(!th->t_trans_id);
2650 		old_ref = th->t_refcount;
2651 		th->t_refcount++;
2652 	}
2653 
2654 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2655 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2656 		struct reiserfs_transaction_handle *th = current->journal_info;
2657 		/* this gets a little ugly.  If reiserfs_get_block returned an
2658 		 * error and left a transacstion running, we've got to close it,
2659 		 * and we've got to free handle if it was a persistent transaction.
2660 		 *
2661 		 * But, if we had nested into an existing transaction, we need
2662 		 * to just drop the ref count on the handle.
2663 		 *
2664 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2665 		 * and it was a persistent trans.  Otherwise, it was nested above.
2666 		 */
2667 		if (th->t_refcount > old_ref) {
2668 			if (old_ref)
2669 				th->t_refcount--;
2670 			else {
2671 				int err;
2672 				reiserfs_write_lock(inode->i_sb);
2673 				err = reiserfs_end_persistent_transaction(th);
2674 				reiserfs_write_unlock(inode->i_sb);
2675 				if (err)
2676 					ret = err;
2677 			}
2678 		}
2679 	}
2680 	return ret;
2681 
2682 }
2683 
2684 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2685 {
2686 	return generic_block_bmap(as, block, reiserfs_bmap);
2687 }
2688 
2689 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2690 			      loff_t pos, unsigned len, unsigned copied,
2691 			      struct page *page, void *fsdata)
2692 {
2693 	struct inode *inode = page->mapping->host;
2694 	int ret = 0;
2695 	int update_sd = 0;
2696 	struct reiserfs_transaction_handle *th;
2697 	unsigned start;
2698 	int lock_depth = 0;
2699 	bool locked = false;
2700 
2701 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2702 		pos ++;
2703 
2704 	reiserfs_wait_on_write_block(inode->i_sb);
2705 	if (reiserfs_transaction_running(inode->i_sb))
2706 		th = current->journal_info;
2707 	else
2708 		th = NULL;
2709 
2710 	start = pos & (PAGE_CACHE_SIZE - 1);
2711 	if (unlikely(copied < len)) {
2712 		if (!PageUptodate(page))
2713 			copied = 0;
2714 
2715 		page_zero_new_buffers(page, start + copied, start + len);
2716 	}
2717 	flush_dcache_page(page);
2718 
2719 	reiserfs_commit_page(inode, page, start, start + copied);
2720 
2721 	/* generic_commit_write does this for us, but does not update the
2722 	 ** transaction tracking stuff when the size changes.  So, we have
2723 	 ** to do the i_size updates here.
2724 	 */
2725 	if (pos + copied > inode->i_size) {
2726 		struct reiserfs_transaction_handle myth;
2727 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2728 		locked = true;
2729 		/* If the file have grown beyond the border where it
2730 		   can have a tail, unmark it as needing a tail
2731 		   packing */
2732 		if ((have_large_tails(inode->i_sb)
2733 		     && inode->i_size > i_block_size(inode) * 4)
2734 		    || (have_small_tails(inode->i_sb)
2735 			&& inode->i_size > i_block_size(inode)))
2736 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2737 
2738 		ret = journal_begin(&myth, inode->i_sb, 1);
2739 		if (ret)
2740 			goto journal_error;
2741 
2742 		reiserfs_update_inode_transaction(inode);
2743 		inode->i_size = pos + copied;
2744 		/*
2745 		 * this will just nest into our transaction.  It's important
2746 		 * to use mark_inode_dirty so the inode gets pushed around on the
2747 		 * dirty lists, and so that O_SYNC works as expected
2748 		 */
2749 		mark_inode_dirty(inode);
2750 		reiserfs_update_sd(&myth, inode);
2751 		update_sd = 1;
2752 		ret = journal_end(&myth, inode->i_sb, 1);
2753 		if (ret)
2754 			goto journal_error;
2755 	}
2756 	if (th) {
2757 		if (!locked) {
2758 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2759 			locked = true;
2760 		}
2761 		if (!update_sd)
2762 			mark_inode_dirty(inode);
2763 		ret = reiserfs_end_persistent_transaction(th);
2764 		if (ret)
2765 			goto out;
2766 	}
2767 
2768       out:
2769 	if (locked)
2770 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2771 	unlock_page(page);
2772 	page_cache_release(page);
2773 
2774 	if (pos + len > inode->i_size)
2775 		reiserfs_truncate_failed_write(inode);
2776 
2777 	return ret == 0 ? copied : ret;
2778 
2779       journal_error:
2780 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2781 	locked = false;
2782 	if (th) {
2783 		if (!update_sd)
2784 			reiserfs_update_sd(th, inode);
2785 		ret = reiserfs_end_persistent_transaction(th);
2786 	}
2787 	goto out;
2788 }
2789 
2790 int reiserfs_commit_write(struct file *f, struct page *page,
2791 			  unsigned from, unsigned to)
2792 {
2793 	struct inode *inode = page->mapping->host;
2794 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2795 	int ret = 0;
2796 	int update_sd = 0;
2797 	struct reiserfs_transaction_handle *th = NULL;
2798 
2799 	reiserfs_write_unlock(inode->i_sb);
2800 	reiserfs_wait_on_write_block(inode->i_sb);
2801 	reiserfs_write_lock(inode->i_sb);
2802 
2803 	if (reiserfs_transaction_running(inode->i_sb)) {
2804 		th = current->journal_info;
2805 	}
2806 	reiserfs_commit_page(inode, page, from, to);
2807 
2808 	/* generic_commit_write does this for us, but does not update the
2809 	 ** transaction tracking stuff when the size changes.  So, we have
2810 	 ** to do the i_size updates here.
2811 	 */
2812 	if (pos > inode->i_size) {
2813 		struct reiserfs_transaction_handle myth;
2814 		/* If the file have grown beyond the border where it
2815 		   can have a tail, unmark it as needing a tail
2816 		   packing */
2817 		if ((have_large_tails(inode->i_sb)
2818 		     && inode->i_size > i_block_size(inode) * 4)
2819 		    || (have_small_tails(inode->i_sb)
2820 			&& inode->i_size > i_block_size(inode)))
2821 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2822 
2823 		ret = journal_begin(&myth, inode->i_sb, 1);
2824 		if (ret)
2825 			goto journal_error;
2826 
2827 		reiserfs_update_inode_transaction(inode);
2828 		inode->i_size = pos;
2829 		/*
2830 		 * this will just nest into our transaction.  It's important
2831 		 * to use mark_inode_dirty so the inode gets pushed around on the
2832 		 * dirty lists, and so that O_SYNC works as expected
2833 		 */
2834 		mark_inode_dirty(inode);
2835 		reiserfs_update_sd(&myth, inode);
2836 		update_sd = 1;
2837 		ret = journal_end(&myth, inode->i_sb, 1);
2838 		if (ret)
2839 			goto journal_error;
2840 	}
2841 	if (th) {
2842 		if (!update_sd)
2843 			mark_inode_dirty(inode);
2844 		ret = reiserfs_end_persistent_transaction(th);
2845 		if (ret)
2846 			goto out;
2847 	}
2848 
2849       out:
2850 	return ret;
2851 
2852       journal_error:
2853 	if (th) {
2854 		if (!update_sd)
2855 			reiserfs_update_sd(th, inode);
2856 		ret = reiserfs_end_persistent_transaction(th);
2857 	}
2858 
2859 	return ret;
2860 }
2861 
2862 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2863 {
2864 	if (reiserfs_attrs(inode->i_sb)) {
2865 		if (sd_attrs & REISERFS_SYNC_FL)
2866 			inode->i_flags |= S_SYNC;
2867 		else
2868 			inode->i_flags &= ~S_SYNC;
2869 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2870 			inode->i_flags |= S_IMMUTABLE;
2871 		else
2872 			inode->i_flags &= ~S_IMMUTABLE;
2873 		if (sd_attrs & REISERFS_APPEND_FL)
2874 			inode->i_flags |= S_APPEND;
2875 		else
2876 			inode->i_flags &= ~S_APPEND;
2877 		if (sd_attrs & REISERFS_NOATIME_FL)
2878 			inode->i_flags |= S_NOATIME;
2879 		else
2880 			inode->i_flags &= ~S_NOATIME;
2881 		if (sd_attrs & REISERFS_NOTAIL_FL)
2882 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2883 		else
2884 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2885 	}
2886 }
2887 
2888 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2889 {
2890 	if (reiserfs_attrs(inode->i_sb)) {
2891 		if (inode->i_flags & S_IMMUTABLE)
2892 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2893 		else
2894 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2895 		if (inode->i_flags & S_SYNC)
2896 			*sd_attrs |= REISERFS_SYNC_FL;
2897 		else
2898 			*sd_attrs &= ~REISERFS_SYNC_FL;
2899 		if (inode->i_flags & S_NOATIME)
2900 			*sd_attrs |= REISERFS_NOATIME_FL;
2901 		else
2902 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2903 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2904 			*sd_attrs |= REISERFS_NOTAIL_FL;
2905 		else
2906 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2907 	}
2908 }
2909 
2910 /* decide if this buffer needs to stay around for data logging or ordered
2911 ** write purposes
2912 */
2913 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2914 {
2915 	int ret = 1;
2916 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2917 
2918 	lock_buffer(bh);
2919 	spin_lock(&j->j_dirty_buffers_lock);
2920 	if (!buffer_mapped(bh)) {
2921 		goto free_jh;
2922 	}
2923 	/* the page is locked, and the only places that log a data buffer
2924 	 * also lock the page.
2925 	 */
2926 	if (reiserfs_file_data_log(inode)) {
2927 		/*
2928 		 * very conservative, leave the buffer pinned if
2929 		 * anyone might need it.
2930 		 */
2931 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2932 			ret = 0;
2933 		}
2934 	} else  if (buffer_dirty(bh)) {
2935 		struct reiserfs_journal_list *jl;
2936 		struct reiserfs_jh *jh = bh->b_private;
2937 
2938 		/* why is this safe?
2939 		 * reiserfs_setattr updates i_size in the on disk
2940 		 * stat data before allowing vmtruncate to be called.
2941 		 *
2942 		 * If buffer was put onto the ordered list for this
2943 		 * transaction, we know for sure either this transaction
2944 		 * or an older one already has updated i_size on disk,
2945 		 * and this ordered data won't be referenced in the file
2946 		 * if we crash.
2947 		 *
2948 		 * if the buffer was put onto the ordered list for an older
2949 		 * transaction, we need to leave it around
2950 		 */
2951 		if (jh && (jl = jh->jl)
2952 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2953 			ret = 0;
2954 	}
2955       free_jh:
2956 	if (ret && bh->b_private) {
2957 		reiserfs_free_jh(bh);
2958 	}
2959 	spin_unlock(&j->j_dirty_buffers_lock);
2960 	unlock_buffer(bh);
2961 	return ret;
2962 }
2963 
2964 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2965 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2966 {
2967 	struct buffer_head *head, *bh, *next;
2968 	struct inode *inode = page->mapping->host;
2969 	unsigned int curr_off = 0;
2970 	int ret = 1;
2971 
2972 	BUG_ON(!PageLocked(page));
2973 
2974 	if (offset == 0)
2975 		ClearPageChecked(page);
2976 
2977 	if (!page_has_buffers(page))
2978 		goto out;
2979 
2980 	head = page_buffers(page);
2981 	bh = head;
2982 	do {
2983 		unsigned int next_off = curr_off + bh->b_size;
2984 		next = bh->b_this_page;
2985 
2986 		/*
2987 		 * is this block fully invalidated?
2988 		 */
2989 		if (offset <= curr_off) {
2990 			if (invalidatepage_can_drop(inode, bh))
2991 				reiserfs_unmap_buffer(bh);
2992 			else
2993 				ret = 0;
2994 		}
2995 		curr_off = next_off;
2996 		bh = next;
2997 	} while (bh != head);
2998 
2999 	/*
3000 	 * We release buffers only if the entire page is being invalidated.
3001 	 * The get_block cached value has been unconditionally invalidated,
3002 	 * so real IO is not possible anymore.
3003 	 */
3004 	if (!offset && ret) {
3005 		ret = try_to_release_page(page, 0);
3006 		/* maybe should BUG_ON(!ret); - neilb */
3007 	}
3008       out:
3009 	return;
3010 }
3011 
3012 static int reiserfs_set_page_dirty(struct page *page)
3013 {
3014 	struct inode *inode = page->mapping->host;
3015 	if (reiserfs_file_data_log(inode)) {
3016 		SetPageChecked(page);
3017 		return __set_page_dirty_nobuffers(page);
3018 	}
3019 	return __set_page_dirty_buffers(page);
3020 }
3021 
3022 /*
3023  * Returns 1 if the page's buffers were dropped.  The page is locked.
3024  *
3025  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3026  * in the buffers at page_buffers(page).
3027  *
3028  * even in -o notail mode, we can't be sure an old mount without -o notail
3029  * didn't create files with tails.
3030  */
3031 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3032 {
3033 	struct inode *inode = page->mapping->host;
3034 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3035 	struct buffer_head *head;
3036 	struct buffer_head *bh;
3037 	int ret = 1;
3038 
3039 	WARN_ON(PageChecked(page));
3040 	spin_lock(&j->j_dirty_buffers_lock);
3041 	head = page_buffers(page);
3042 	bh = head;
3043 	do {
3044 		if (bh->b_private) {
3045 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3046 				reiserfs_free_jh(bh);
3047 			} else {
3048 				ret = 0;
3049 				break;
3050 			}
3051 		}
3052 		bh = bh->b_this_page;
3053 	} while (bh != head);
3054 	if (ret)
3055 		ret = try_to_free_buffers(page);
3056 	spin_unlock(&j->j_dirty_buffers_lock);
3057 	return ret;
3058 }
3059 
3060 /* We thank Mingming Cao for helping us understand in great detail what
3061    to do in this section of the code. */
3062 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3063 				  const struct iovec *iov, loff_t offset,
3064 				  unsigned long nr_segs)
3065 {
3066 	struct file *file = iocb->ki_filp;
3067 	struct inode *inode = file->f_mapping->host;
3068 	ssize_t ret;
3069 
3070 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3071 				  reiserfs_get_blocks_direct_io);
3072 
3073 	/*
3074 	 * In case of error extending write may have instantiated a few
3075 	 * blocks outside i_size. Trim these off again.
3076 	 */
3077 	if (unlikely((rw & WRITE) && ret < 0)) {
3078 		loff_t isize = i_size_read(inode);
3079 		loff_t end = offset + iov_length(iov, nr_segs);
3080 
3081 		if (end > isize)
3082 			vmtruncate(inode, isize);
3083 	}
3084 
3085 	return ret;
3086 }
3087 
3088 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3089 {
3090 	struct inode *inode = dentry->d_inode;
3091 	unsigned int ia_valid;
3092 	int depth;
3093 	int error;
3094 
3095 	error = inode_change_ok(inode, attr);
3096 	if (error)
3097 		return error;
3098 
3099 	/* must be turned off for recursive notify_change calls */
3100 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3101 
3102 	depth = reiserfs_write_lock_once(inode->i_sb);
3103 	if (is_quota_modification(inode, attr))
3104 		dquot_initialize(inode);
3105 
3106 	if (attr->ia_valid & ATTR_SIZE) {
3107 		/* version 2 items will be caught by the s_maxbytes check
3108 		 ** done for us in vmtruncate
3109 		 */
3110 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3111 		    attr->ia_size > MAX_NON_LFS) {
3112 			error = -EFBIG;
3113 			goto out;
3114 		}
3115 
3116 		inode_dio_wait(inode);
3117 
3118 		/* fill in hole pointers in the expanding truncate case. */
3119 		if (attr->ia_size > inode->i_size) {
3120 			error = generic_cont_expand_simple(inode, attr->ia_size);
3121 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3122 				int err;
3123 				struct reiserfs_transaction_handle th;
3124 				/* we're changing at most 2 bitmaps, inode + super */
3125 				err = journal_begin(&th, inode->i_sb, 4);
3126 				if (!err) {
3127 					reiserfs_discard_prealloc(&th, inode);
3128 					err = journal_end(&th, inode->i_sb, 4);
3129 				}
3130 				if (err)
3131 					error = err;
3132 			}
3133 			if (error)
3134 				goto out;
3135 			/*
3136 			 * file size is changed, ctime and mtime are
3137 			 * to be updated
3138 			 */
3139 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3140 		}
3141 	}
3142 
3143 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3144 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3145 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3146 		/* stat data of format v3.5 has 16 bit uid and gid */
3147 		error = -EINVAL;
3148 		goto out;
3149 	}
3150 
3151 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3152 	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3153 		struct reiserfs_transaction_handle th;
3154 		int jbegin_count =
3155 		    2 *
3156 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3157 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3158 		    2;
3159 
3160 		error = reiserfs_chown_xattrs(inode, attr);
3161 
3162 		if (error)
3163 			return error;
3164 
3165 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3166 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3167 		if (error)
3168 			goto out;
3169 		error = dquot_transfer(inode, attr);
3170 		if (error) {
3171 			journal_end(&th, inode->i_sb, jbegin_count);
3172 			goto out;
3173 		}
3174 
3175 		/* Update corresponding info in inode so that everything is in
3176 		 * one transaction */
3177 		if (attr->ia_valid & ATTR_UID)
3178 			inode->i_uid = attr->ia_uid;
3179 		if (attr->ia_valid & ATTR_GID)
3180 			inode->i_gid = attr->ia_gid;
3181 		mark_inode_dirty(inode);
3182 		error = journal_end(&th, inode->i_sb, jbegin_count);
3183 		if (error)
3184 			goto out;
3185 	}
3186 
3187 	/*
3188 	 * Relax the lock here, as it might truncate the
3189 	 * inode pages and wait for inode pages locks.
3190 	 * To release such page lock, the owner needs the
3191 	 * reiserfs lock
3192 	 */
3193 	reiserfs_write_unlock_once(inode->i_sb, depth);
3194 	if ((attr->ia_valid & ATTR_SIZE) &&
3195 	    attr->ia_size != i_size_read(inode))
3196 		error = vmtruncate(inode, attr->ia_size);
3197 
3198 	if (!error) {
3199 		setattr_copy(inode, attr);
3200 		mark_inode_dirty(inode);
3201 	}
3202 	depth = reiserfs_write_lock_once(inode->i_sb);
3203 
3204 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3205 		if (attr->ia_valid & ATTR_MODE)
3206 			error = reiserfs_acl_chmod(inode);
3207 	}
3208 
3209       out:
3210 	reiserfs_write_unlock_once(inode->i_sb, depth);
3211 
3212 	return error;
3213 }
3214 
3215 const struct address_space_operations reiserfs_address_space_operations = {
3216 	.writepage = reiserfs_writepage,
3217 	.readpage = reiserfs_readpage,
3218 	.readpages = reiserfs_readpages,
3219 	.releasepage = reiserfs_releasepage,
3220 	.invalidatepage = reiserfs_invalidatepage,
3221 	.write_begin = reiserfs_write_begin,
3222 	.write_end = reiserfs_write_end,
3223 	.bmap = reiserfs_aop_bmap,
3224 	.direct_IO = reiserfs_direct_IO,
3225 	.set_page_dirty = reiserfs_set_page_dirty,
3226 };
3227