1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 23 int reiserfs_commit_write(struct file *f, struct page *page, 24 unsigned from, unsigned to); 25 26 void reiserfs_evict_inode(struct inode *inode) 27 { 28 /* 29 * We need blocks for transaction + (user+group) quota 30 * update (possibly delete) 31 */ 32 int jbegin_count = 33 JOURNAL_PER_BALANCE_CNT * 2 + 34 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 35 struct reiserfs_transaction_handle th; 36 int err; 37 38 if (!inode->i_nlink && !is_bad_inode(inode)) 39 dquot_initialize(inode); 40 41 truncate_inode_pages_final(&inode->i_data); 42 if (inode->i_nlink) 43 goto no_delete; 44 45 /* 46 * The = 0 happens when we abort creating a new inode 47 * for some reason like lack of space.. 48 * also handles bad_inode case 49 */ 50 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 51 52 reiserfs_delete_xattrs(inode); 53 54 reiserfs_write_lock(inode->i_sb); 55 56 if (journal_begin(&th, inode->i_sb, jbegin_count)) 57 goto out; 58 reiserfs_update_inode_transaction(inode); 59 60 reiserfs_discard_prealloc(&th, inode); 61 62 err = reiserfs_delete_object(&th, inode); 63 64 /* 65 * Do quota update inside a transaction for journaled quotas. 66 * We must do that after delete_object so that quota updates 67 * go into the same transaction as stat data deletion 68 */ 69 if (!err) { 70 int depth = reiserfs_write_unlock_nested(inode->i_sb); 71 dquot_free_inode(inode); 72 reiserfs_write_lock_nested(inode->i_sb, depth); 73 } 74 75 if (journal_end(&th)) 76 goto out; 77 78 /* 79 * check return value from reiserfs_delete_object after 80 * ending the transaction 81 */ 82 if (err) 83 goto out; 84 85 /* 86 * all items of file are deleted, so we can remove 87 * "save" link 88 * we can't do anything about an error here 89 */ 90 remove_save_link(inode, 0 /* not truncate */); 91 out: 92 reiserfs_write_unlock(inode->i_sb); 93 } else { 94 /* no object items are in the tree */ 95 ; 96 } 97 98 /* note this must go after the journal_end to prevent deadlock */ 99 clear_inode(inode); 100 101 dquot_drop(inode); 102 inode->i_blocks = 0; 103 return; 104 105 no_delete: 106 clear_inode(inode); 107 dquot_drop(inode); 108 } 109 110 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 111 __u32 objectid, loff_t offset, int type, int length) 112 { 113 key->version = version; 114 115 key->on_disk_key.k_dir_id = dirid; 116 key->on_disk_key.k_objectid = objectid; 117 set_cpu_key_k_offset(key, offset); 118 set_cpu_key_k_type(key, type); 119 key->key_length = length; 120 } 121 122 /* 123 * take base of inode_key (it comes from inode always) (dirid, objectid) 124 * and version from an inode, set offset and type of key 125 */ 126 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 127 int type, int length) 128 { 129 _make_cpu_key(key, get_inode_item_key_version(inode), 130 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 131 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 132 length); 133 } 134 135 /* when key is 0, do not set version and short key */ 136 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 137 int version, 138 loff_t offset, int type, int length, 139 int entry_count /*or ih_free_space */ ) 140 { 141 if (key) { 142 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 143 ih->ih_key.k_objectid = 144 cpu_to_le32(key->on_disk_key.k_objectid); 145 } 146 put_ih_version(ih, version); 147 set_le_ih_k_offset(ih, offset); 148 set_le_ih_k_type(ih, type); 149 put_ih_item_len(ih, length); 150 /* set_ih_free_space (ih, 0); */ 151 /* 152 * for directory items it is entry count, for directs and stat 153 * datas - 0xffff, for indirects - 0 154 */ 155 put_ih_entry_count(ih, entry_count); 156 } 157 158 /* 159 * FIXME: we might cache recently accessed indirect item 160 * Ugh. Not too eager for that.... 161 * I cut the code until such time as I see a convincing argument (benchmark). 162 * I don't want a bloated inode struct..., and I don't like code complexity.... 163 */ 164 165 /* 166 * cutting the code is fine, since it really isn't in use yet and is easy 167 * to add back in. But, Vladimir has a really good idea here. Think 168 * about what happens for reading a file. For each page, 169 * The VFS layer calls reiserfs_readpage, who searches the tree to find 170 * an indirect item. This indirect item has X number of pointers, where 171 * X is a big number if we've done the block allocation right. But, 172 * we only use one or two of these pointers during each call to readpage, 173 * needlessly researching again later on. 174 * 175 * The size of the cache could be dynamic based on the size of the file. 176 * 177 * I'd also like to see us cache the location the stat data item, since 178 * we are needlessly researching for that frequently. 179 * 180 * --chris 181 */ 182 183 /* 184 * If this page has a file tail in it, and 185 * it was read in by get_block_create_0, the page data is valid, 186 * but tail is still sitting in a direct item, and we can't write to 187 * it. So, look through this page, and check all the mapped buffers 188 * to make sure they have valid block numbers. Any that don't need 189 * to be unmapped, so that __block_write_begin will correctly call 190 * reiserfs_get_block to convert the tail into an unformatted node 191 */ 192 static inline void fix_tail_page_for_writing(struct page *page) 193 { 194 struct buffer_head *head, *next, *bh; 195 196 if (page && page_has_buffers(page)) { 197 head = page_buffers(page); 198 bh = head; 199 do { 200 next = bh->b_this_page; 201 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 202 reiserfs_unmap_buffer(bh); 203 } 204 bh = next; 205 } while (bh != head); 206 } 207 } 208 209 /* 210 * reiserfs_get_block does not need to allocate a block only if it has been 211 * done already or non-hole position has been found in the indirect item 212 */ 213 static inline int allocation_needed(int retval, b_blocknr_t allocated, 214 struct item_head *ih, 215 __le32 * item, int pos_in_item) 216 { 217 if (allocated) 218 return 0; 219 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 220 get_block_num(item, pos_in_item)) 221 return 0; 222 return 1; 223 } 224 225 static inline int indirect_item_found(int retval, struct item_head *ih) 226 { 227 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 228 } 229 230 static inline void set_block_dev_mapped(struct buffer_head *bh, 231 b_blocknr_t block, struct inode *inode) 232 { 233 map_bh(bh, inode->i_sb, block); 234 } 235 236 /* 237 * files which were created in the earlier version can not be longer, 238 * than 2 gb 239 */ 240 static int file_capable(struct inode *inode, sector_t block) 241 { 242 /* it is new file. */ 243 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 244 /* old file, but 'block' is inside of 2gb */ 245 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 246 return 1; 247 248 return 0; 249 } 250 251 static int restart_transaction(struct reiserfs_transaction_handle *th, 252 struct inode *inode, struct treepath *path) 253 { 254 struct super_block *s = th->t_super; 255 int err; 256 257 BUG_ON(!th->t_trans_id); 258 BUG_ON(!th->t_refcount); 259 260 pathrelse(path); 261 262 /* we cannot restart while nested */ 263 if (th->t_refcount > 1) { 264 return 0; 265 } 266 reiserfs_update_sd(th, inode); 267 err = journal_end(th); 268 if (!err) { 269 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 270 if (!err) 271 reiserfs_update_inode_transaction(inode); 272 } 273 return err; 274 } 275 276 /* 277 * it is called by get_block when create == 0. Returns block number 278 * for 'block'-th logical block of file. When it hits direct item it 279 * returns 0 (being called from bmap) or read direct item into piece 280 * of page (bh_result) 281 * Please improve the english/clarity in the comment above, as it is 282 * hard to understand. 283 */ 284 static int _get_block_create_0(struct inode *inode, sector_t block, 285 struct buffer_head *bh_result, int args) 286 { 287 INITIALIZE_PATH(path); 288 struct cpu_key key; 289 struct buffer_head *bh; 290 struct item_head *ih, tmp_ih; 291 b_blocknr_t blocknr; 292 char *p = NULL; 293 int chars; 294 int ret; 295 int result; 296 int done = 0; 297 unsigned long offset; 298 299 /* prepare the key to look for the 'block'-th block of file */ 300 make_cpu_key(&key, inode, 301 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 302 3); 303 304 result = search_for_position_by_key(inode->i_sb, &key, &path); 305 if (result != POSITION_FOUND) { 306 pathrelse(&path); 307 if (p) 308 kunmap(bh_result->b_page); 309 if (result == IO_ERROR) 310 return -EIO; 311 /* 312 * We do not return -ENOENT if there is a hole but page is 313 * uptodate, because it means that there is some MMAPED data 314 * associated with it that is yet to be written to disk. 315 */ 316 if ((args & GET_BLOCK_NO_HOLE) 317 && !PageUptodate(bh_result->b_page)) { 318 return -ENOENT; 319 } 320 return 0; 321 } 322 323 bh = get_last_bh(&path); 324 ih = tp_item_head(&path); 325 if (is_indirect_le_ih(ih)) { 326 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 327 328 /* 329 * FIXME: here we could cache indirect item or part of it in 330 * the inode to avoid search_by_key in case of subsequent 331 * access to file 332 */ 333 blocknr = get_block_num(ind_item, path.pos_in_item); 334 ret = 0; 335 if (blocknr) { 336 map_bh(bh_result, inode->i_sb, blocknr); 337 if (path.pos_in_item == 338 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 339 set_buffer_boundary(bh_result); 340 } 341 } else 342 /* 343 * We do not return -ENOENT if there is a hole but 344 * page is uptodate, because it means that there is 345 * some MMAPED data associated with it that is 346 * yet to be written to disk. 347 */ 348 if ((args & GET_BLOCK_NO_HOLE) 349 && !PageUptodate(bh_result->b_page)) { 350 ret = -ENOENT; 351 } 352 353 pathrelse(&path); 354 if (p) 355 kunmap(bh_result->b_page); 356 return ret; 357 } 358 /* requested data are in direct item(s) */ 359 if (!(args & GET_BLOCK_READ_DIRECT)) { 360 /* 361 * we are called by bmap. FIXME: we can not map block of file 362 * when it is stored in direct item(s) 363 */ 364 pathrelse(&path); 365 if (p) 366 kunmap(bh_result->b_page); 367 return -ENOENT; 368 } 369 370 /* 371 * if we've got a direct item, and the buffer or page was uptodate, 372 * we don't want to pull data off disk again. skip to the 373 * end, where we map the buffer and return 374 */ 375 if (buffer_uptodate(bh_result)) { 376 goto finished; 377 } else 378 /* 379 * grab_tail_page can trigger calls to reiserfs_get_block on 380 * up to date pages without any buffers. If the page is up 381 * to date, we don't want read old data off disk. Set the up 382 * to date bit on the buffer instead and jump to the end 383 */ 384 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 385 set_buffer_uptodate(bh_result); 386 goto finished; 387 } 388 /* read file tail into part of page */ 389 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 390 copy_item_head(&tmp_ih, ih); 391 392 /* 393 * we only want to kmap if we are reading the tail into the page. 394 * this is not the common case, so we don't kmap until we are 395 * sure we need to. But, this means the item might move if 396 * kmap schedules 397 */ 398 if (!p) 399 p = (char *)kmap(bh_result->b_page); 400 401 p += offset; 402 memset(p, 0, inode->i_sb->s_blocksize); 403 do { 404 if (!is_direct_le_ih(ih)) { 405 BUG(); 406 } 407 /* 408 * make sure we don't read more bytes than actually exist in 409 * the file. This can happen in odd cases where i_size isn't 410 * correct, and when direct item padding results in a few 411 * extra bytes at the end of the direct item 412 */ 413 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 414 break; 415 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 416 chars = 417 inode->i_size - (le_ih_k_offset(ih) - 1) - 418 path.pos_in_item; 419 done = 1; 420 } else { 421 chars = ih_item_len(ih) - path.pos_in_item; 422 } 423 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 424 425 if (done) 426 break; 427 428 p += chars; 429 430 /* 431 * we done, if read direct item is not the last item of 432 * node FIXME: we could try to check right delimiting key 433 * to see whether direct item continues in the right 434 * neighbor or rely on i_size 435 */ 436 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 437 break; 438 439 /* update key to look for the next piece */ 440 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 441 result = search_for_position_by_key(inode->i_sb, &key, &path); 442 if (result != POSITION_FOUND) 443 /* i/o error most likely */ 444 break; 445 bh = get_last_bh(&path); 446 ih = tp_item_head(&path); 447 } while (1); 448 449 flush_dcache_page(bh_result->b_page); 450 kunmap(bh_result->b_page); 451 452 finished: 453 pathrelse(&path); 454 455 if (result == IO_ERROR) 456 return -EIO; 457 458 /* 459 * this buffer has valid data, but isn't valid for io. mapping it to 460 * block #0 tells the rest of reiserfs it just has a tail in it 461 */ 462 map_bh(bh_result, inode->i_sb, 0); 463 set_buffer_uptodate(bh_result); 464 return 0; 465 } 466 467 /* 468 * this is called to create file map. So, _get_block_create_0 will not 469 * read direct item 470 */ 471 static int reiserfs_bmap(struct inode *inode, sector_t block, 472 struct buffer_head *bh_result, int create) 473 { 474 if (!file_capable(inode, block)) 475 return -EFBIG; 476 477 reiserfs_write_lock(inode->i_sb); 478 /* do not read the direct item */ 479 _get_block_create_0(inode, block, bh_result, 0); 480 reiserfs_write_unlock(inode->i_sb); 481 return 0; 482 } 483 484 /* 485 * special version of get_block that is only used by grab_tail_page right 486 * now. It is sent to __block_write_begin, and when you try to get a 487 * block past the end of the file (or a block from a hole) it returns 488 * -ENOENT instead of a valid buffer. __block_write_begin expects to 489 * be able to do i/o on the buffers returned, unless an error value 490 * is also returned. 491 * 492 * So, this allows __block_write_begin to be used for reading a single block 493 * in a page. Where it does not produce a valid page for holes, or past the 494 * end of the file. This turns out to be exactly what we need for reading 495 * tails for conversion. 496 * 497 * The point of the wrapper is forcing a certain value for create, even 498 * though the VFS layer is calling this function with create==1. If you 499 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 500 * don't use this function. 501 */ 502 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 503 struct buffer_head *bh_result, 504 int create) 505 { 506 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 507 } 508 509 /* 510 * This is special helper for reiserfs_get_block in case we are executing 511 * direct_IO request. 512 */ 513 static int reiserfs_get_blocks_direct_io(struct inode *inode, 514 sector_t iblock, 515 struct buffer_head *bh_result, 516 int create) 517 { 518 int ret; 519 520 bh_result->b_page = NULL; 521 522 /* 523 * We set the b_size before reiserfs_get_block call since it is 524 * referenced in convert_tail_for_hole() that may be called from 525 * reiserfs_get_block() 526 */ 527 bh_result->b_size = (1 << inode->i_blkbits); 528 529 ret = reiserfs_get_block(inode, iblock, bh_result, 530 create | GET_BLOCK_NO_DANGLE); 531 if (ret) 532 goto out; 533 534 /* don't allow direct io onto tail pages */ 535 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 536 /* 537 * make sure future calls to the direct io funcs for this 538 * offset in the file fail by unmapping the buffer 539 */ 540 clear_buffer_mapped(bh_result); 541 ret = -EINVAL; 542 } 543 544 /* 545 * Possible unpacked tail. Flush the data before pages have 546 * disappeared 547 */ 548 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 549 int err; 550 551 reiserfs_write_lock(inode->i_sb); 552 553 err = reiserfs_commit_for_inode(inode); 554 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 555 556 reiserfs_write_unlock(inode->i_sb); 557 558 if (err < 0) 559 ret = err; 560 } 561 out: 562 return ret; 563 } 564 565 /* 566 * helper function for when reiserfs_get_block is called for a hole 567 * but the file tail is still in a direct item 568 * bh_result is the buffer head for the hole 569 * tail_offset is the offset of the start of the tail in the file 570 * 571 * This calls prepare_write, which will start a new transaction 572 * you should not be in a transaction, or have any paths held when you 573 * call this. 574 */ 575 static int convert_tail_for_hole(struct inode *inode, 576 struct buffer_head *bh_result, 577 loff_t tail_offset) 578 { 579 unsigned long index; 580 unsigned long tail_end; 581 unsigned long tail_start; 582 struct page *tail_page; 583 struct page *hole_page = bh_result->b_page; 584 int retval = 0; 585 586 if ((tail_offset & (bh_result->b_size - 1)) != 1) 587 return -EIO; 588 589 /* always try to read until the end of the block */ 590 tail_start = tail_offset & (PAGE_SIZE - 1); 591 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 592 593 index = tail_offset >> PAGE_SHIFT; 594 /* 595 * hole_page can be zero in case of direct_io, we are sure 596 * that we cannot get here if we write with O_DIRECT into tail page 597 */ 598 if (!hole_page || index != hole_page->index) { 599 tail_page = grab_cache_page(inode->i_mapping, index); 600 retval = -ENOMEM; 601 if (!tail_page) { 602 goto out; 603 } 604 } else { 605 tail_page = hole_page; 606 } 607 608 /* 609 * we don't have to make sure the conversion did not happen while 610 * we were locking the page because anyone that could convert 611 * must first take i_mutex. 612 * 613 * We must fix the tail page for writing because it might have buffers 614 * that are mapped, but have a block number of 0. This indicates tail 615 * data that has been read directly into the page, and 616 * __block_write_begin won't trigger a get_block in this case. 617 */ 618 fix_tail_page_for_writing(tail_page); 619 retval = __reiserfs_write_begin(tail_page, tail_start, 620 tail_end - tail_start); 621 if (retval) 622 goto unlock; 623 624 /* tail conversion might change the data in the page */ 625 flush_dcache_page(tail_page); 626 627 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 628 629 unlock: 630 if (tail_page != hole_page) { 631 unlock_page(tail_page); 632 put_page(tail_page); 633 } 634 out: 635 return retval; 636 } 637 638 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 639 sector_t block, 640 struct inode *inode, 641 b_blocknr_t * allocated_block_nr, 642 struct treepath *path, int flags) 643 { 644 BUG_ON(!th->t_trans_id); 645 646 #ifdef REISERFS_PREALLOCATE 647 if (!(flags & GET_BLOCK_NO_IMUX)) { 648 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 649 path, block); 650 } 651 #endif 652 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 653 block); 654 } 655 656 int reiserfs_get_block(struct inode *inode, sector_t block, 657 struct buffer_head *bh_result, int create) 658 { 659 int repeat, retval = 0; 660 /* b_blocknr_t is (unsigned) 32 bit int*/ 661 b_blocknr_t allocated_block_nr = 0; 662 INITIALIZE_PATH(path); 663 int pos_in_item; 664 struct cpu_key key; 665 struct buffer_head *bh, *unbh = NULL; 666 struct item_head *ih, tmp_ih; 667 __le32 *item; 668 int done; 669 int fs_gen; 670 struct reiserfs_transaction_handle *th = NULL; 671 /* 672 * space reserved in transaction batch: 673 * . 3 balancings in direct->indirect conversion 674 * . 1 block involved into reiserfs_update_sd() 675 * XXX in practically impossible worst case direct2indirect() 676 * can incur (much) more than 3 balancings. 677 * quota update for user, group 678 */ 679 int jbegin_count = 680 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 681 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 682 int version; 683 int dangle = 1; 684 loff_t new_offset = 685 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 686 687 reiserfs_write_lock(inode->i_sb); 688 version = get_inode_item_key_version(inode); 689 690 if (!file_capable(inode, block)) { 691 reiserfs_write_unlock(inode->i_sb); 692 return -EFBIG; 693 } 694 695 /* 696 * if !create, we aren't changing the FS, so we don't need to 697 * log anything, so we don't need to start a transaction 698 */ 699 if (!(create & GET_BLOCK_CREATE)) { 700 int ret; 701 /* find number of block-th logical block of the file */ 702 ret = _get_block_create_0(inode, block, bh_result, 703 create | GET_BLOCK_READ_DIRECT); 704 reiserfs_write_unlock(inode->i_sb); 705 return ret; 706 } 707 708 /* 709 * if we're already in a transaction, make sure to close 710 * any new transactions we start in this func 711 */ 712 if ((create & GET_BLOCK_NO_DANGLE) || 713 reiserfs_transaction_running(inode->i_sb)) 714 dangle = 0; 715 716 /* 717 * If file is of such a size, that it might have a tail and 718 * tails are enabled we should mark it as possibly needing 719 * tail packing on close 720 */ 721 if ((have_large_tails(inode->i_sb) 722 && inode->i_size < i_block_size(inode) * 4) 723 || (have_small_tails(inode->i_sb) 724 && inode->i_size < i_block_size(inode))) 725 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 726 727 /* set the key of the first byte in the 'block'-th block of file */ 728 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 729 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 730 start_trans: 731 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 732 if (!th) { 733 retval = -ENOMEM; 734 goto failure; 735 } 736 reiserfs_update_inode_transaction(inode); 737 } 738 research: 739 740 retval = search_for_position_by_key(inode->i_sb, &key, &path); 741 if (retval == IO_ERROR) { 742 retval = -EIO; 743 goto failure; 744 } 745 746 bh = get_last_bh(&path); 747 ih = tp_item_head(&path); 748 item = tp_item_body(&path); 749 pos_in_item = path.pos_in_item; 750 751 fs_gen = get_generation(inode->i_sb); 752 copy_item_head(&tmp_ih, ih); 753 754 if (allocation_needed 755 (retval, allocated_block_nr, ih, item, pos_in_item)) { 756 /* we have to allocate block for the unformatted node */ 757 if (!th) { 758 pathrelse(&path); 759 goto start_trans; 760 } 761 762 repeat = 763 _allocate_block(th, block, inode, &allocated_block_nr, 764 &path, create); 765 766 /* 767 * restart the transaction to give the journal a chance to free 768 * some blocks. releases the path, so we have to go back to 769 * research if we succeed on the second try 770 */ 771 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 772 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 773 retval = restart_transaction(th, inode, &path); 774 if (retval) 775 goto failure; 776 repeat = 777 _allocate_block(th, block, inode, 778 &allocated_block_nr, NULL, create); 779 780 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 781 goto research; 782 } 783 if (repeat == QUOTA_EXCEEDED) 784 retval = -EDQUOT; 785 else 786 retval = -ENOSPC; 787 goto failure; 788 } 789 790 if (fs_changed(fs_gen, inode->i_sb) 791 && item_moved(&tmp_ih, &path)) { 792 goto research; 793 } 794 } 795 796 if (indirect_item_found(retval, ih)) { 797 b_blocknr_t unfm_ptr; 798 /* 799 * 'block'-th block is in the file already (there is 800 * corresponding cell in some indirect item). But it may be 801 * zero unformatted node pointer (hole) 802 */ 803 unfm_ptr = get_block_num(item, pos_in_item); 804 if (unfm_ptr == 0) { 805 /* use allocated block to plug the hole */ 806 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 807 if (fs_changed(fs_gen, inode->i_sb) 808 && item_moved(&tmp_ih, &path)) { 809 reiserfs_restore_prepared_buffer(inode->i_sb, 810 bh); 811 goto research; 812 } 813 set_buffer_new(bh_result); 814 if (buffer_dirty(bh_result) 815 && reiserfs_data_ordered(inode->i_sb)) 816 reiserfs_add_ordered_list(inode, bh_result); 817 put_block_num(item, pos_in_item, allocated_block_nr); 818 unfm_ptr = allocated_block_nr; 819 journal_mark_dirty(th, bh); 820 reiserfs_update_sd(th, inode); 821 } 822 set_block_dev_mapped(bh_result, unfm_ptr, inode); 823 pathrelse(&path); 824 retval = 0; 825 if (!dangle && th) 826 retval = reiserfs_end_persistent_transaction(th); 827 828 reiserfs_write_unlock(inode->i_sb); 829 830 /* 831 * the item was found, so new blocks were not added to the file 832 * there is no need to make sure the inode is updated with this 833 * transaction 834 */ 835 return retval; 836 } 837 838 if (!th) { 839 pathrelse(&path); 840 goto start_trans; 841 } 842 843 /* 844 * desired position is not found or is in the direct item. We have 845 * to append file with holes up to 'block'-th block converting 846 * direct items to indirect one if necessary 847 */ 848 done = 0; 849 do { 850 if (is_statdata_le_ih(ih)) { 851 __le32 unp = 0; 852 struct cpu_key tmp_key; 853 854 /* indirect item has to be inserted */ 855 make_le_item_head(&tmp_ih, &key, version, 1, 856 TYPE_INDIRECT, UNFM_P_SIZE, 857 0 /* free_space */ ); 858 859 /* 860 * we are going to add 'block'-th block to the file. 861 * Use allocated block for that 862 */ 863 if (cpu_key_k_offset(&key) == 1) { 864 unp = cpu_to_le32(allocated_block_nr); 865 set_block_dev_mapped(bh_result, 866 allocated_block_nr, inode); 867 set_buffer_new(bh_result); 868 done = 1; 869 } 870 tmp_key = key; /* ;) */ 871 set_cpu_key_k_offset(&tmp_key, 1); 872 PATH_LAST_POSITION(&path)++; 873 874 retval = 875 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 876 inode, (char *)&unp); 877 if (retval) { 878 reiserfs_free_block(th, inode, 879 allocated_block_nr, 1); 880 /* 881 * retval == -ENOSPC, -EDQUOT or -EIO 882 * or -EEXIST 883 */ 884 goto failure; 885 } 886 } else if (is_direct_le_ih(ih)) { 887 /* direct item has to be converted */ 888 loff_t tail_offset; 889 890 tail_offset = 891 ((le_ih_k_offset(ih) - 892 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 893 894 /* 895 * direct item we just found fits into block we have 896 * to map. Convert it into unformatted node: use 897 * bh_result for the conversion 898 */ 899 if (tail_offset == cpu_key_k_offset(&key)) { 900 set_block_dev_mapped(bh_result, 901 allocated_block_nr, inode); 902 unbh = bh_result; 903 done = 1; 904 } else { 905 /* 906 * we have to pad file tail stored in direct 907 * item(s) up to block size and convert it 908 * to unformatted node. FIXME: this should 909 * also get into page cache 910 */ 911 912 pathrelse(&path); 913 /* 914 * ugly, but we can only end the transaction if 915 * we aren't nested 916 */ 917 BUG_ON(!th->t_refcount); 918 if (th->t_refcount == 1) { 919 retval = 920 reiserfs_end_persistent_transaction 921 (th); 922 th = NULL; 923 if (retval) 924 goto failure; 925 } 926 927 retval = 928 convert_tail_for_hole(inode, bh_result, 929 tail_offset); 930 if (retval) { 931 if (retval != -ENOSPC) 932 reiserfs_error(inode->i_sb, 933 "clm-6004", 934 "convert tail failed " 935 "inode %lu, error %d", 936 inode->i_ino, 937 retval); 938 if (allocated_block_nr) { 939 /* 940 * the bitmap, the super, 941 * and the stat data == 3 942 */ 943 if (!th) 944 th = reiserfs_persistent_transaction(inode->i_sb, 3); 945 if (th) 946 reiserfs_free_block(th, 947 inode, 948 allocated_block_nr, 949 1); 950 } 951 goto failure; 952 } 953 goto research; 954 } 955 retval = 956 direct2indirect(th, inode, &path, unbh, 957 tail_offset); 958 if (retval) { 959 reiserfs_unmap_buffer(unbh); 960 reiserfs_free_block(th, inode, 961 allocated_block_nr, 1); 962 goto failure; 963 } 964 /* 965 * it is important the set_buffer_uptodate is done 966 * after the direct2indirect. The buffer might 967 * contain valid data newer than the data on disk 968 * (read by readpage, changed, and then sent here by 969 * writepage). direct2indirect needs to know if unbh 970 * was already up to date, so it can decide if the 971 * data in unbh needs to be replaced with data from 972 * the disk 973 */ 974 set_buffer_uptodate(unbh); 975 976 /* 977 * unbh->b_page == NULL in case of DIRECT_IO request, 978 * this means buffer will disappear shortly, so it 979 * should not be added to 980 */ 981 if (unbh->b_page) { 982 /* 983 * we've converted the tail, so we must 984 * flush unbh before the transaction commits 985 */ 986 reiserfs_add_tail_list(inode, unbh); 987 988 /* 989 * mark it dirty now to prevent commit_write 990 * from adding this buffer to the inode's 991 * dirty buffer list 992 */ 993 /* 994 * AKPM: changed __mark_buffer_dirty to 995 * mark_buffer_dirty(). It's still atomic, 996 * but it sets the page dirty too, which makes 997 * it eligible for writeback at any time by the 998 * VM (which was also the case with 999 * __mark_buffer_dirty()) 1000 */ 1001 mark_buffer_dirty(unbh); 1002 } 1003 } else { 1004 /* 1005 * append indirect item with holes if needed, when 1006 * appending pointer to 'block'-th block use block, 1007 * which is already allocated 1008 */ 1009 struct cpu_key tmp_key; 1010 /* 1011 * We use this in case we need to allocate 1012 * only one block which is a fastpath 1013 */ 1014 unp_t unf_single = 0; 1015 unp_t *un; 1016 __u64 max_to_insert = 1017 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1018 UNFM_P_SIZE; 1019 __u64 blocks_needed; 1020 1021 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1022 "vs-804: invalid position for append"); 1023 /* 1024 * indirect item has to be appended, 1025 * set up key of that position 1026 * (key type is unimportant) 1027 */ 1028 make_cpu_key(&tmp_key, inode, 1029 le_key_k_offset(version, 1030 &ih->ih_key) + 1031 op_bytes_number(ih, 1032 inode->i_sb->s_blocksize), 1033 TYPE_INDIRECT, 3); 1034 1035 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1036 "green-805: invalid offset"); 1037 blocks_needed = 1038 1 + 1039 ((cpu_key_k_offset(&key) - 1040 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1041 s_blocksize_bits); 1042 1043 if (blocks_needed == 1) { 1044 un = &unf_single; 1045 } else { 1046 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS); 1047 if (!un) { 1048 un = &unf_single; 1049 blocks_needed = 1; 1050 max_to_insert = 0; 1051 } 1052 } 1053 if (blocks_needed <= max_to_insert) { 1054 /* 1055 * we are going to add target block to 1056 * the file. Use allocated block for that 1057 */ 1058 un[blocks_needed - 1] = 1059 cpu_to_le32(allocated_block_nr); 1060 set_block_dev_mapped(bh_result, 1061 allocated_block_nr, inode); 1062 set_buffer_new(bh_result); 1063 done = 1; 1064 } else { 1065 /* paste hole to the indirect item */ 1066 /* 1067 * If kmalloc failed, max_to_insert becomes 1068 * zero and it means we only have space for 1069 * one block 1070 */ 1071 blocks_needed = 1072 max_to_insert ? max_to_insert : 1; 1073 } 1074 retval = 1075 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1076 (char *)un, 1077 UNFM_P_SIZE * 1078 blocks_needed); 1079 1080 if (blocks_needed != 1) 1081 kfree(un); 1082 1083 if (retval) { 1084 reiserfs_free_block(th, inode, 1085 allocated_block_nr, 1); 1086 goto failure; 1087 } 1088 if (!done) { 1089 /* 1090 * We need to mark new file size in case 1091 * this function will be interrupted/aborted 1092 * later on. And we may do this only for 1093 * holes. 1094 */ 1095 inode->i_size += 1096 inode->i_sb->s_blocksize * blocks_needed; 1097 } 1098 } 1099 1100 if (done == 1) 1101 break; 1102 1103 /* 1104 * this loop could log more blocks than we had originally 1105 * asked for. So, we have to allow the transaction to end 1106 * if it is too big or too full. Update the inode so things 1107 * are consistent if we crash before the function returns 1108 * release the path so that anybody waiting on the path before 1109 * ending their transaction will be able to continue. 1110 */ 1111 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1112 retval = restart_transaction(th, inode, &path); 1113 if (retval) 1114 goto failure; 1115 } 1116 /* 1117 * inserting indirect pointers for a hole can take a 1118 * long time. reschedule if needed and also release the write 1119 * lock for others. 1120 */ 1121 reiserfs_cond_resched(inode->i_sb); 1122 1123 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1124 if (retval == IO_ERROR) { 1125 retval = -EIO; 1126 goto failure; 1127 } 1128 if (retval == POSITION_FOUND) { 1129 reiserfs_warning(inode->i_sb, "vs-825", 1130 "%K should not be found", &key); 1131 retval = -EEXIST; 1132 if (allocated_block_nr) 1133 reiserfs_free_block(th, inode, 1134 allocated_block_nr, 1); 1135 pathrelse(&path); 1136 goto failure; 1137 } 1138 bh = get_last_bh(&path); 1139 ih = tp_item_head(&path); 1140 item = tp_item_body(&path); 1141 pos_in_item = path.pos_in_item; 1142 } while (1); 1143 1144 retval = 0; 1145 1146 failure: 1147 if (th && (!dangle || (retval && !th->t_trans_id))) { 1148 int err; 1149 if (th->t_trans_id) 1150 reiserfs_update_sd(th, inode); 1151 err = reiserfs_end_persistent_transaction(th); 1152 if (err) 1153 retval = err; 1154 } 1155 1156 reiserfs_write_unlock(inode->i_sb); 1157 reiserfs_check_path(&path); 1158 return retval; 1159 } 1160 1161 static int 1162 reiserfs_readpages(struct file *file, struct address_space *mapping, 1163 struct list_head *pages, unsigned nr_pages) 1164 { 1165 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1166 } 1167 1168 /* 1169 * Compute real number of used bytes by file 1170 * Following three functions can go away when we'll have enough space in 1171 * stat item 1172 */ 1173 static int real_space_diff(struct inode *inode, int sd_size) 1174 { 1175 int bytes; 1176 loff_t blocksize = inode->i_sb->s_blocksize; 1177 1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1179 return sd_size; 1180 1181 /* 1182 * End of file is also in full block with indirect reference, so round 1183 * up to the next block. 1184 * 1185 * there is just no way to know if the tail is actually packed 1186 * on the file, so we have to assume it isn't. When we pack the 1187 * tail, we add 4 bytes to pretend there really is an unformatted 1188 * node pointer 1189 */ 1190 bytes = 1191 ((inode->i_size + 1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1193 sd_size; 1194 return bytes; 1195 } 1196 1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1198 int sd_size) 1199 { 1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1201 return inode->i_size + 1202 (loff_t) (real_space_diff(inode, sd_size)); 1203 } 1204 return ((loff_t) real_space_diff(inode, sd_size)) + 1205 (((loff_t) blocks) << 9); 1206 } 1207 1208 /* Compute number of blocks used by file in ReiserFS counting */ 1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1210 { 1211 loff_t bytes = inode_get_bytes(inode); 1212 loff_t real_space = real_space_diff(inode, sd_size); 1213 1214 /* keeps fsck and non-quota versions of reiserfs happy */ 1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1216 bytes += (loff_t) 511; 1217 } 1218 1219 /* 1220 * files from before the quota patch might i_blocks such that 1221 * bytes < real_space. Deal with that here to prevent it from 1222 * going negative. 1223 */ 1224 if (bytes < real_space) 1225 return 0; 1226 return (bytes - real_space) >> 9; 1227 } 1228 1229 /* 1230 * BAD: new directories have stat data of new type and all other items 1231 * of old type. Version stored in the inode says about body items, so 1232 * in update_stat_data we can not rely on inode, but have to check 1233 * item version directly 1234 */ 1235 1236 /* called by read_locked_inode */ 1237 static void init_inode(struct inode *inode, struct treepath *path) 1238 { 1239 struct buffer_head *bh; 1240 struct item_head *ih; 1241 __u32 rdev; 1242 1243 bh = PATH_PLAST_BUFFER(path); 1244 ih = tp_item_head(path); 1245 1246 copy_key(INODE_PKEY(inode), &ih->ih_key); 1247 1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1249 REISERFS_I(inode)->i_flags = 0; 1250 REISERFS_I(inode)->i_prealloc_block = 0; 1251 REISERFS_I(inode)->i_prealloc_count = 0; 1252 REISERFS_I(inode)->i_trans_id = 0; 1253 REISERFS_I(inode)->i_jl = NULL; 1254 reiserfs_init_xattr_rwsem(inode); 1255 1256 if (stat_data_v1(ih)) { 1257 struct stat_data_v1 *sd = 1258 (struct stat_data_v1 *)ih_item_body(bh, ih); 1259 unsigned long blocks; 1260 1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1262 set_inode_sd_version(inode, STAT_DATA_V1); 1263 inode->i_mode = sd_v1_mode(sd); 1264 set_nlink(inode, sd_v1_nlink(sd)); 1265 i_uid_write(inode, sd_v1_uid(sd)); 1266 i_gid_write(inode, sd_v1_gid(sd)); 1267 inode->i_size = sd_v1_size(sd); 1268 inode->i_atime.tv_sec = sd_v1_atime(sd); 1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1271 inode->i_atime.tv_nsec = 0; 1272 inode->i_ctime.tv_nsec = 0; 1273 inode->i_mtime.tv_nsec = 0; 1274 1275 inode->i_blocks = sd_v1_blocks(sd); 1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1277 blocks = (inode->i_size + 511) >> 9; 1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1279 1280 /* 1281 * there was a bug in <=3.5.23 when i_blocks could take 1282 * negative values. Starting from 3.5.17 this value could 1283 * even be stored in stat data. For such files we set 1284 * i_blocks based on file size. Just 2 notes: this can be 1285 * wrong for sparse files. On-disk value will be only 1286 * updated if file's inode will ever change 1287 */ 1288 if (inode->i_blocks > blocks) { 1289 inode->i_blocks = blocks; 1290 } 1291 1292 rdev = sd_v1_rdev(sd); 1293 REISERFS_I(inode)->i_first_direct_byte = 1294 sd_v1_first_direct_byte(sd); 1295 1296 /* 1297 * an early bug in the quota code can give us an odd 1298 * number for the block count. This is incorrect, fix it here. 1299 */ 1300 if (inode->i_blocks & 1) { 1301 inode->i_blocks++; 1302 } 1303 inode_set_bytes(inode, 1304 to_real_used_space(inode, inode->i_blocks, 1305 SD_V1_SIZE)); 1306 /* 1307 * nopack is initially zero for v1 objects. For v2 objects, 1308 * nopack is initialised from sd_attrs 1309 */ 1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1311 } else { 1312 /* 1313 * new stat data found, but object may have old items 1314 * (directories and symlinks) 1315 */ 1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1317 1318 inode->i_mode = sd_v2_mode(sd); 1319 set_nlink(inode, sd_v2_nlink(sd)); 1320 i_uid_write(inode, sd_v2_uid(sd)); 1321 inode->i_size = sd_v2_size(sd); 1322 i_gid_write(inode, sd_v2_gid(sd)); 1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1324 inode->i_atime.tv_sec = sd_v2_atime(sd); 1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1326 inode->i_ctime.tv_nsec = 0; 1327 inode->i_mtime.tv_nsec = 0; 1328 inode->i_atime.tv_nsec = 0; 1329 inode->i_blocks = sd_v2_blocks(sd); 1330 rdev = sd_v2_rdev(sd); 1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1332 inode->i_generation = 1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1334 else 1335 inode->i_generation = sd_v2_generation(sd); 1336 1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1339 else 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1341 REISERFS_I(inode)->i_first_direct_byte = 0; 1342 set_inode_sd_version(inode, STAT_DATA_V2); 1343 inode_set_bytes(inode, 1344 to_real_used_space(inode, inode->i_blocks, 1345 SD_V2_SIZE)); 1346 /* 1347 * read persistent inode attributes from sd and initialise 1348 * generic inode flags from them 1349 */ 1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1352 } 1353 1354 pathrelse(path); 1355 if (S_ISREG(inode->i_mode)) { 1356 inode->i_op = &reiserfs_file_inode_operations; 1357 inode->i_fop = &reiserfs_file_operations; 1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1359 } else if (S_ISDIR(inode->i_mode)) { 1360 inode->i_op = &reiserfs_dir_inode_operations; 1361 inode->i_fop = &reiserfs_dir_operations; 1362 } else if (S_ISLNK(inode->i_mode)) { 1363 inode->i_op = &reiserfs_symlink_inode_operations; 1364 inode_nohighmem(inode); 1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1366 } else { 1367 inode->i_blocks = 0; 1368 inode->i_op = &reiserfs_special_inode_operations; 1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1370 } 1371 } 1372 1373 /* update new stat data with inode fields */ 1374 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1375 { 1376 struct stat_data *sd_v2 = (struct stat_data *)sd; 1377 __u16 flags; 1378 1379 set_sd_v2_mode(sd_v2, inode->i_mode); 1380 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1381 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1382 set_sd_v2_size(sd_v2, size); 1383 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1384 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1385 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1386 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1387 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1388 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1389 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1390 else 1391 set_sd_v2_generation(sd_v2, inode->i_generation); 1392 flags = REISERFS_I(inode)->i_attrs; 1393 i_attrs_to_sd_attrs(inode, &flags); 1394 set_sd_v2_attrs(sd_v2, flags); 1395 } 1396 1397 /* used to copy inode's fields to old stat data */ 1398 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1399 { 1400 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1401 1402 set_sd_v1_mode(sd_v1, inode->i_mode); 1403 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1404 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1405 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1406 set_sd_v1_size(sd_v1, size); 1407 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1408 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1409 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1410 1411 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1412 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1413 else 1414 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1415 1416 /* Sigh. i_first_direct_byte is back */ 1417 set_sd_v1_first_direct_byte(sd_v1, 1418 REISERFS_I(inode)->i_first_direct_byte); 1419 } 1420 1421 /* 1422 * NOTE, you must prepare the buffer head before sending it here, 1423 * and then log it after the call 1424 */ 1425 static void update_stat_data(struct treepath *path, struct inode *inode, 1426 loff_t size) 1427 { 1428 struct buffer_head *bh; 1429 struct item_head *ih; 1430 1431 bh = PATH_PLAST_BUFFER(path); 1432 ih = tp_item_head(path); 1433 1434 if (!is_statdata_le_ih(ih)) 1435 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1436 INODE_PKEY(inode), ih); 1437 1438 /* path points to old stat data */ 1439 if (stat_data_v1(ih)) { 1440 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1441 } else { 1442 inode2sd(ih_item_body(bh, ih), inode, size); 1443 } 1444 1445 return; 1446 } 1447 1448 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1449 struct inode *inode, loff_t size) 1450 { 1451 struct cpu_key key; 1452 INITIALIZE_PATH(path); 1453 struct buffer_head *bh; 1454 int fs_gen; 1455 struct item_head *ih, tmp_ih; 1456 int retval; 1457 1458 BUG_ON(!th->t_trans_id); 1459 1460 /* key type is unimportant */ 1461 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1462 1463 for (;;) { 1464 int pos; 1465 /* look for the object's stat data */ 1466 retval = search_item(inode->i_sb, &key, &path); 1467 if (retval == IO_ERROR) { 1468 reiserfs_error(inode->i_sb, "vs-13050", 1469 "i/o failure occurred trying to " 1470 "update %K stat data", &key); 1471 return; 1472 } 1473 if (retval == ITEM_NOT_FOUND) { 1474 pos = PATH_LAST_POSITION(&path); 1475 pathrelse(&path); 1476 if (inode->i_nlink == 0) { 1477 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1478 return; 1479 } 1480 reiserfs_warning(inode->i_sb, "vs-13060", 1481 "stat data of object %k (nlink == %d) " 1482 "not found (pos %d)", 1483 INODE_PKEY(inode), inode->i_nlink, 1484 pos); 1485 reiserfs_check_path(&path); 1486 return; 1487 } 1488 1489 /* 1490 * sigh, prepare_for_journal might schedule. When it 1491 * schedules the FS might change. We have to detect that, 1492 * and loop back to the search if the stat data item has moved 1493 */ 1494 bh = get_last_bh(&path); 1495 ih = tp_item_head(&path); 1496 copy_item_head(&tmp_ih, ih); 1497 fs_gen = get_generation(inode->i_sb); 1498 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1499 1500 /* Stat_data item has been moved after scheduling. */ 1501 if (fs_changed(fs_gen, inode->i_sb) 1502 && item_moved(&tmp_ih, &path)) { 1503 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1504 continue; 1505 } 1506 break; 1507 } 1508 update_stat_data(&path, inode, size); 1509 journal_mark_dirty(th, bh); 1510 pathrelse(&path); 1511 return; 1512 } 1513 1514 /* 1515 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1516 * does a make_bad_inode when things go wrong. But, we need to make sure 1517 * and clear the key in the private portion of the inode, otherwise a 1518 * corresponding iput might try to delete whatever object the inode last 1519 * represented. 1520 */ 1521 static void reiserfs_make_bad_inode(struct inode *inode) 1522 { 1523 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1524 make_bad_inode(inode); 1525 } 1526 1527 /* 1528 * initially this function was derived from minix or ext2's analog and 1529 * evolved as the prototype did 1530 */ 1531 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1532 { 1533 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1534 inode->i_ino = args->objectid; 1535 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1536 return 0; 1537 } 1538 1539 /* 1540 * looks for stat data in the tree, and fills up the fields of in-core 1541 * inode stat data fields 1542 */ 1543 void reiserfs_read_locked_inode(struct inode *inode, 1544 struct reiserfs_iget_args *args) 1545 { 1546 INITIALIZE_PATH(path_to_sd); 1547 struct cpu_key key; 1548 unsigned long dirino; 1549 int retval; 1550 1551 dirino = args->dirid; 1552 1553 /* 1554 * set version 1, version 2 could be used too, because stat data 1555 * key is the same in both versions 1556 */ 1557 key.version = KEY_FORMAT_3_5; 1558 key.on_disk_key.k_dir_id = dirino; 1559 key.on_disk_key.k_objectid = inode->i_ino; 1560 key.on_disk_key.k_offset = 0; 1561 key.on_disk_key.k_type = 0; 1562 1563 /* look for the object's stat data */ 1564 retval = search_item(inode->i_sb, &key, &path_to_sd); 1565 if (retval == IO_ERROR) { 1566 reiserfs_error(inode->i_sb, "vs-13070", 1567 "i/o failure occurred trying to find " 1568 "stat data of %K", &key); 1569 reiserfs_make_bad_inode(inode); 1570 return; 1571 } 1572 1573 /* a stale NFS handle can trigger this without it being an error */ 1574 if (retval != ITEM_FOUND) { 1575 pathrelse(&path_to_sd); 1576 reiserfs_make_bad_inode(inode); 1577 clear_nlink(inode); 1578 return; 1579 } 1580 1581 init_inode(inode, &path_to_sd); 1582 1583 /* 1584 * It is possible that knfsd is trying to access inode of a file 1585 * that is being removed from the disk by some other thread. As we 1586 * update sd on unlink all that is required is to check for nlink 1587 * here. This bug was first found by Sizif when debugging 1588 * SquidNG/Butterfly, forgotten, and found again after Philippe 1589 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1590 1591 * More logical fix would require changes in fs/inode.c:iput() to 1592 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1593 * in iget() to return NULL if I_FREEING inode is found in 1594 * hash-table. 1595 */ 1596 1597 /* 1598 * Currently there is one place where it's ok to meet inode with 1599 * nlink==0: processing of open-unlinked and half-truncated files 1600 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1601 */ 1602 if ((inode->i_nlink == 0) && 1603 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1604 reiserfs_warning(inode->i_sb, "vs-13075", 1605 "dead inode read from disk %K. " 1606 "This is likely to be race with knfsd. Ignore", 1607 &key); 1608 reiserfs_make_bad_inode(inode); 1609 } 1610 1611 /* init inode should be relsing */ 1612 reiserfs_check_path(&path_to_sd); 1613 1614 /* 1615 * Stat data v1 doesn't support ACLs. 1616 */ 1617 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1618 cache_no_acl(inode); 1619 } 1620 1621 /* 1622 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1623 * 1624 * @inode: inode from hash table to check 1625 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1626 * 1627 * This function is called by iget5_locked() to distinguish reiserfs inodes 1628 * having the same inode numbers. Such inodes can only exist due to some 1629 * error condition. One of them should be bad. Inodes with identical 1630 * inode numbers (objectids) are distinguished by parent directory ids. 1631 * 1632 */ 1633 int reiserfs_find_actor(struct inode *inode, void *opaque) 1634 { 1635 struct reiserfs_iget_args *args; 1636 1637 args = opaque; 1638 /* args is already in CPU order */ 1639 return (inode->i_ino == args->objectid) && 1640 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1641 } 1642 1643 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1644 { 1645 struct inode *inode; 1646 struct reiserfs_iget_args args; 1647 int depth; 1648 1649 args.objectid = key->on_disk_key.k_objectid; 1650 args.dirid = key->on_disk_key.k_dir_id; 1651 depth = reiserfs_write_unlock_nested(s); 1652 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1653 reiserfs_find_actor, reiserfs_init_locked_inode, 1654 (void *)(&args)); 1655 reiserfs_write_lock_nested(s, depth); 1656 if (!inode) 1657 return ERR_PTR(-ENOMEM); 1658 1659 if (inode->i_state & I_NEW) { 1660 reiserfs_read_locked_inode(inode, &args); 1661 unlock_new_inode(inode); 1662 } 1663 1664 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1665 /* either due to i/o error or a stale NFS handle */ 1666 iput(inode); 1667 inode = NULL; 1668 } 1669 return inode; 1670 } 1671 1672 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1673 u32 objectid, u32 dir_id, u32 generation) 1674 1675 { 1676 struct cpu_key key; 1677 struct inode *inode; 1678 1679 key.on_disk_key.k_objectid = objectid; 1680 key.on_disk_key.k_dir_id = dir_id; 1681 reiserfs_write_lock(sb); 1682 inode = reiserfs_iget(sb, &key); 1683 if (inode && !IS_ERR(inode) && generation != 0 && 1684 generation != inode->i_generation) { 1685 iput(inode); 1686 inode = NULL; 1687 } 1688 reiserfs_write_unlock(sb); 1689 1690 return d_obtain_alias(inode); 1691 } 1692 1693 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1694 int fh_len, int fh_type) 1695 { 1696 /* 1697 * fhtype happens to reflect the number of u32s encoded. 1698 * due to a bug in earlier code, fhtype might indicate there 1699 * are more u32s then actually fitted. 1700 * so if fhtype seems to be more than len, reduce fhtype. 1701 * Valid types are: 1702 * 2 - objectid + dir_id - legacy support 1703 * 3 - objectid + dir_id + generation 1704 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1705 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1706 * 6 - as above plus generation of directory 1707 * 6 does not fit in NFSv2 handles 1708 */ 1709 if (fh_type > fh_len) { 1710 if (fh_type != 6 || fh_len != 5) 1711 reiserfs_warning(sb, "reiserfs-13077", 1712 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1713 fh_type, fh_len); 1714 fh_type = fh_len; 1715 } 1716 if (fh_len < 2) 1717 return NULL; 1718 1719 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1720 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1721 } 1722 1723 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1724 int fh_len, int fh_type) 1725 { 1726 if (fh_type > fh_len) 1727 fh_type = fh_len; 1728 if (fh_type < 4) 1729 return NULL; 1730 1731 return reiserfs_get_dentry(sb, 1732 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1733 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1734 (fh_type == 6) ? fid->raw[5] : 0); 1735 } 1736 1737 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1738 struct inode *parent) 1739 { 1740 int maxlen = *lenp; 1741 1742 if (parent && (maxlen < 5)) { 1743 *lenp = 5; 1744 return FILEID_INVALID; 1745 } else if (maxlen < 3) { 1746 *lenp = 3; 1747 return FILEID_INVALID; 1748 } 1749 1750 data[0] = inode->i_ino; 1751 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1752 data[2] = inode->i_generation; 1753 *lenp = 3; 1754 if (parent) { 1755 data[3] = parent->i_ino; 1756 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1757 *lenp = 5; 1758 if (maxlen >= 6) { 1759 data[5] = parent->i_generation; 1760 *lenp = 6; 1761 } 1762 } 1763 return *lenp; 1764 } 1765 1766 /* 1767 * looks for stat data, then copies fields to it, marks the buffer 1768 * containing stat data as dirty 1769 */ 1770 /* 1771 * reiserfs inodes are never really dirty, since the dirty inode call 1772 * always logs them. This call allows the VFS inode marking routines 1773 * to properly mark inodes for datasync and such, but only actually 1774 * does something when called for a synchronous update. 1775 */ 1776 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1777 { 1778 struct reiserfs_transaction_handle th; 1779 int jbegin_count = 1; 1780 1781 if (inode->i_sb->s_flags & MS_RDONLY) 1782 return -EROFS; 1783 /* 1784 * memory pressure can sometimes initiate write_inode calls with 1785 * sync == 1, 1786 * these cases are just when the system needs ram, not when the 1787 * inode needs to reach disk for safety, and they can safely be 1788 * ignored because the altered inode has already been logged. 1789 */ 1790 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1791 reiserfs_write_lock(inode->i_sb); 1792 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1793 reiserfs_update_sd(&th, inode); 1794 journal_end_sync(&th); 1795 } 1796 reiserfs_write_unlock(inode->i_sb); 1797 } 1798 return 0; 1799 } 1800 1801 /* 1802 * stat data of new object is inserted already, this inserts the item 1803 * containing "." and ".." entries 1804 */ 1805 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1806 struct inode *inode, 1807 struct item_head *ih, struct treepath *path, 1808 struct inode *dir) 1809 { 1810 struct super_block *sb = th->t_super; 1811 char empty_dir[EMPTY_DIR_SIZE]; 1812 char *body = empty_dir; 1813 struct cpu_key key; 1814 int retval; 1815 1816 BUG_ON(!th->t_trans_id); 1817 1818 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1819 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1820 TYPE_DIRENTRY, 3 /*key length */ ); 1821 1822 /* 1823 * compose item head for new item. Directories consist of items of 1824 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1825 * is done by reiserfs_new_inode 1826 */ 1827 if (old_format_only(sb)) { 1828 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1829 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1830 1831 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1832 ih->ih_key.k_objectid, 1833 INODE_PKEY(dir)->k_dir_id, 1834 INODE_PKEY(dir)->k_objectid); 1835 } else { 1836 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1837 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1838 1839 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1840 ih->ih_key.k_objectid, 1841 INODE_PKEY(dir)->k_dir_id, 1842 INODE_PKEY(dir)->k_objectid); 1843 } 1844 1845 /* look for place in the tree for new item */ 1846 retval = search_item(sb, &key, path); 1847 if (retval == IO_ERROR) { 1848 reiserfs_error(sb, "vs-13080", 1849 "i/o failure occurred creating new directory"); 1850 return -EIO; 1851 } 1852 if (retval == ITEM_FOUND) { 1853 pathrelse(path); 1854 reiserfs_warning(sb, "vs-13070", 1855 "object with this key exists (%k)", 1856 &(ih->ih_key)); 1857 return -EEXIST; 1858 } 1859 1860 /* insert item, that is empty directory item */ 1861 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1862 } 1863 1864 /* 1865 * stat data of object has been inserted, this inserts the item 1866 * containing the body of symlink 1867 */ 1868 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1869 struct inode *inode, 1870 struct item_head *ih, 1871 struct treepath *path, const char *symname, 1872 int item_len) 1873 { 1874 struct super_block *sb = th->t_super; 1875 struct cpu_key key; 1876 int retval; 1877 1878 BUG_ON(!th->t_trans_id); 1879 1880 _make_cpu_key(&key, KEY_FORMAT_3_5, 1881 le32_to_cpu(ih->ih_key.k_dir_id), 1882 le32_to_cpu(ih->ih_key.k_objectid), 1883 1, TYPE_DIRECT, 3 /*key length */ ); 1884 1885 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1886 0 /*free_space */ ); 1887 1888 /* look for place in the tree for new item */ 1889 retval = search_item(sb, &key, path); 1890 if (retval == IO_ERROR) { 1891 reiserfs_error(sb, "vs-13080", 1892 "i/o failure occurred creating new symlink"); 1893 return -EIO; 1894 } 1895 if (retval == ITEM_FOUND) { 1896 pathrelse(path); 1897 reiserfs_warning(sb, "vs-13080", 1898 "object with this key exists (%k)", 1899 &(ih->ih_key)); 1900 return -EEXIST; 1901 } 1902 1903 /* insert item, that is body of symlink */ 1904 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1905 } 1906 1907 /* 1908 * inserts the stat data into the tree, and then calls 1909 * reiserfs_new_directory (to insert ".", ".." item if new object is 1910 * directory) or reiserfs_new_symlink (to insert symlink body if new 1911 * object is symlink) or nothing (if new object is regular file) 1912 1913 * NOTE! uid and gid must already be set in the inode. If we return 1914 * non-zero due to an error, we have to drop the quota previously allocated 1915 * for the fresh inode. This can only be done outside a transaction, so 1916 * if we return non-zero, we also end the transaction. 1917 * 1918 * @th: active transaction handle 1919 * @dir: parent directory for new inode 1920 * @mode: mode of new inode 1921 * @symname: symlink contents if inode is symlink 1922 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1923 * symlinks 1924 * @inode: inode to be filled 1925 * @security: optional security context to associate with this inode 1926 */ 1927 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1928 struct inode *dir, umode_t mode, const char *symname, 1929 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1930 strlen (symname) for symlinks) */ 1931 loff_t i_size, struct dentry *dentry, 1932 struct inode *inode, 1933 struct reiserfs_security_handle *security) 1934 { 1935 struct super_block *sb = dir->i_sb; 1936 struct reiserfs_iget_args args; 1937 INITIALIZE_PATH(path_to_key); 1938 struct cpu_key key; 1939 struct item_head ih; 1940 struct stat_data sd; 1941 int retval; 1942 int err; 1943 int depth; 1944 1945 BUG_ON(!th->t_trans_id); 1946 1947 depth = reiserfs_write_unlock_nested(sb); 1948 err = dquot_alloc_inode(inode); 1949 reiserfs_write_lock_nested(sb, depth); 1950 if (err) 1951 goto out_end_trans; 1952 if (!dir->i_nlink) { 1953 err = -EPERM; 1954 goto out_bad_inode; 1955 } 1956 1957 /* item head of new item */ 1958 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1959 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1960 if (!ih.ih_key.k_objectid) { 1961 err = -ENOMEM; 1962 goto out_bad_inode; 1963 } 1964 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1965 if (old_format_only(sb)) 1966 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1967 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1968 else 1969 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1970 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1971 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1972 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1973 1974 depth = reiserfs_write_unlock_nested(inode->i_sb); 1975 err = insert_inode_locked4(inode, args.objectid, 1976 reiserfs_find_actor, &args); 1977 reiserfs_write_lock_nested(inode->i_sb, depth); 1978 if (err) { 1979 err = -EINVAL; 1980 goto out_bad_inode; 1981 } 1982 1983 if (old_format_only(sb)) 1984 /* 1985 * not a perfect generation count, as object ids can be reused, 1986 * but this is as good as reiserfs can do right now. 1987 * note that the private part of inode isn't filled in yet, 1988 * we have to use the directory. 1989 */ 1990 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1991 else 1992 #if defined( USE_INODE_GENERATION_COUNTER ) 1993 inode->i_generation = 1994 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1995 #else 1996 inode->i_generation = ++event; 1997 #endif 1998 1999 /* fill stat data */ 2000 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 2001 2002 /* uid and gid must already be set by the caller for quota init */ 2003 2004 /* symlink cannot be immutable or append only, right? */ 2005 if (S_ISLNK(inode->i_mode)) 2006 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 2007 2008 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2009 inode->i_size = i_size; 2010 inode->i_blocks = 0; 2011 inode->i_bytes = 0; 2012 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2013 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2014 2015 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2016 REISERFS_I(inode)->i_flags = 0; 2017 REISERFS_I(inode)->i_prealloc_block = 0; 2018 REISERFS_I(inode)->i_prealloc_count = 0; 2019 REISERFS_I(inode)->i_trans_id = 0; 2020 REISERFS_I(inode)->i_jl = NULL; 2021 REISERFS_I(inode)->i_attrs = 2022 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2023 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2024 reiserfs_init_xattr_rwsem(inode); 2025 2026 /* key to search for correct place for new stat data */ 2027 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2028 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2029 TYPE_STAT_DATA, 3 /*key length */ ); 2030 2031 /* find proper place for inserting of stat data */ 2032 retval = search_item(sb, &key, &path_to_key); 2033 if (retval == IO_ERROR) { 2034 err = -EIO; 2035 goto out_bad_inode; 2036 } 2037 if (retval == ITEM_FOUND) { 2038 pathrelse(&path_to_key); 2039 err = -EEXIST; 2040 goto out_bad_inode; 2041 } 2042 if (old_format_only(sb)) { 2043 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2044 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2045 pathrelse(&path_to_key); 2046 err = -EINVAL; 2047 goto out_bad_inode; 2048 } 2049 inode2sd_v1(&sd, inode, inode->i_size); 2050 } else { 2051 inode2sd(&sd, inode, inode->i_size); 2052 } 2053 /* 2054 * store in in-core inode the key of stat data and version all 2055 * object items will have (directory items will have old offset 2056 * format, other new objects will consist of new items) 2057 */ 2058 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2059 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2060 else 2061 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2062 if (old_format_only(sb)) 2063 set_inode_sd_version(inode, STAT_DATA_V1); 2064 else 2065 set_inode_sd_version(inode, STAT_DATA_V2); 2066 2067 /* insert the stat data into the tree */ 2068 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2069 if (REISERFS_I(dir)->new_packing_locality) 2070 th->displace_new_blocks = 1; 2071 #endif 2072 retval = 2073 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2074 (char *)(&sd)); 2075 if (retval) { 2076 err = retval; 2077 reiserfs_check_path(&path_to_key); 2078 goto out_bad_inode; 2079 } 2080 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2081 if (!th->displace_new_blocks) 2082 REISERFS_I(dir)->new_packing_locality = 0; 2083 #endif 2084 if (S_ISDIR(mode)) { 2085 /* insert item with "." and ".." */ 2086 retval = 2087 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2088 } 2089 2090 if (S_ISLNK(mode)) { 2091 /* insert body of symlink */ 2092 if (!old_format_only(sb)) 2093 i_size = ROUND_UP(i_size); 2094 retval = 2095 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2096 i_size); 2097 } 2098 if (retval) { 2099 err = retval; 2100 reiserfs_check_path(&path_to_key); 2101 journal_end(th); 2102 goto out_inserted_sd; 2103 } 2104 2105 if (reiserfs_posixacl(inode->i_sb)) { 2106 reiserfs_write_unlock(inode->i_sb); 2107 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2108 reiserfs_write_lock(inode->i_sb); 2109 if (retval) { 2110 err = retval; 2111 reiserfs_check_path(&path_to_key); 2112 journal_end(th); 2113 goto out_inserted_sd; 2114 } 2115 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 2116 reiserfs_warning(inode->i_sb, "jdm-13090", 2117 "ACLs aren't enabled in the fs, " 2118 "but vfs thinks they are!"); 2119 } else if (IS_PRIVATE(dir)) 2120 inode->i_flags |= S_PRIVATE; 2121 2122 if (security->name) { 2123 reiserfs_write_unlock(inode->i_sb); 2124 retval = reiserfs_security_write(th, inode, security); 2125 reiserfs_write_lock(inode->i_sb); 2126 if (retval) { 2127 err = retval; 2128 reiserfs_check_path(&path_to_key); 2129 retval = journal_end(th); 2130 if (retval) 2131 err = retval; 2132 goto out_inserted_sd; 2133 } 2134 } 2135 2136 reiserfs_update_sd(th, inode); 2137 reiserfs_check_path(&path_to_key); 2138 2139 return 0; 2140 2141 out_bad_inode: 2142 /* Invalidate the object, nothing was inserted yet */ 2143 INODE_PKEY(inode)->k_objectid = 0; 2144 2145 /* Quota change must be inside a transaction for journaling */ 2146 depth = reiserfs_write_unlock_nested(inode->i_sb); 2147 dquot_free_inode(inode); 2148 reiserfs_write_lock_nested(inode->i_sb, depth); 2149 2150 out_end_trans: 2151 journal_end(th); 2152 /* 2153 * Drop can be outside and it needs more credits so it's better 2154 * to have it outside 2155 */ 2156 depth = reiserfs_write_unlock_nested(inode->i_sb); 2157 dquot_drop(inode); 2158 reiserfs_write_lock_nested(inode->i_sb, depth); 2159 inode->i_flags |= S_NOQUOTA; 2160 make_bad_inode(inode); 2161 2162 out_inserted_sd: 2163 clear_nlink(inode); 2164 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2165 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */ 2166 iput(inode); 2167 return err; 2168 } 2169 2170 /* 2171 * finds the tail page in the page cache, 2172 * reads the last block in. 2173 * 2174 * On success, page_result is set to a locked, pinned page, and bh_result 2175 * is set to an up to date buffer for the last block in the file. returns 0. 2176 * 2177 * tail conversion is not done, so bh_result might not be valid for writing 2178 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2179 * trying to write the block. 2180 * 2181 * on failure, nonzero is returned, page_result and bh_result are untouched. 2182 */ 2183 static int grab_tail_page(struct inode *inode, 2184 struct page **page_result, 2185 struct buffer_head **bh_result) 2186 { 2187 2188 /* 2189 * we want the page with the last byte in the file, 2190 * not the page that will hold the next byte for appending 2191 */ 2192 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2193 unsigned long pos = 0; 2194 unsigned long start = 0; 2195 unsigned long blocksize = inode->i_sb->s_blocksize; 2196 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2197 struct buffer_head *bh; 2198 struct buffer_head *head; 2199 struct page *page; 2200 int error; 2201 2202 /* 2203 * we know that we are only called with inode->i_size > 0. 2204 * we also know that a file tail can never be as big as a block 2205 * If i_size % blocksize == 0, our file is currently block aligned 2206 * and it won't need converting or zeroing after a truncate. 2207 */ 2208 if ((offset & (blocksize - 1)) == 0) { 2209 return -ENOENT; 2210 } 2211 page = grab_cache_page(inode->i_mapping, index); 2212 error = -ENOMEM; 2213 if (!page) { 2214 goto out; 2215 } 2216 /* start within the page of the last block in the file */ 2217 start = (offset / blocksize) * blocksize; 2218 2219 error = __block_write_begin(page, start, offset - start, 2220 reiserfs_get_block_create_0); 2221 if (error) 2222 goto unlock; 2223 2224 head = page_buffers(page); 2225 bh = head; 2226 do { 2227 if (pos >= start) { 2228 break; 2229 } 2230 bh = bh->b_this_page; 2231 pos += blocksize; 2232 } while (bh != head); 2233 2234 if (!buffer_uptodate(bh)) { 2235 /* 2236 * note, this should never happen, prepare_write should be 2237 * taking care of this for us. If the buffer isn't up to 2238 * date, I've screwed up the code to find the buffer, or the 2239 * code to call prepare_write 2240 */ 2241 reiserfs_error(inode->i_sb, "clm-6000", 2242 "error reading block %lu", bh->b_blocknr); 2243 error = -EIO; 2244 goto unlock; 2245 } 2246 *bh_result = bh; 2247 *page_result = page; 2248 2249 out: 2250 return error; 2251 2252 unlock: 2253 unlock_page(page); 2254 put_page(page); 2255 return error; 2256 } 2257 2258 /* 2259 * vfs version of truncate file. Must NOT be called with 2260 * a transaction already started. 2261 * 2262 * some code taken from block_truncate_page 2263 */ 2264 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2265 { 2266 struct reiserfs_transaction_handle th; 2267 /* we want the offset for the first byte after the end of the file */ 2268 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2269 unsigned blocksize = inode->i_sb->s_blocksize; 2270 unsigned length; 2271 struct page *page = NULL; 2272 int error; 2273 struct buffer_head *bh = NULL; 2274 int err2; 2275 2276 reiserfs_write_lock(inode->i_sb); 2277 2278 if (inode->i_size > 0) { 2279 error = grab_tail_page(inode, &page, &bh); 2280 if (error) { 2281 /* 2282 * -ENOENT means we truncated past the end of the 2283 * file, and get_block_create_0 could not find a 2284 * block to read in, which is ok. 2285 */ 2286 if (error != -ENOENT) 2287 reiserfs_error(inode->i_sb, "clm-6001", 2288 "grab_tail_page failed %d", 2289 error); 2290 page = NULL; 2291 bh = NULL; 2292 } 2293 } 2294 2295 /* 2296 * so, if page != NULL, we have a buffer head for the offset at 2297 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2298 * then we have an unformatted node. Otherwise, we have a direct item, 2299 * and no zeroing is required on disk. We zero after the truncate, 2300 * because the truncate might pack the item anyway 2301 * (it will unmap bh if it packs). 2302 * 2303 * it is enough to reserve space in transaction for 2 balancings: 2304 * one for "save" link adding and another for the first 2305 * cut_from_item. 1 is for update_sd 2306 */ 2307 error = journal_begin(&th, inode->i_sb, 2308 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2309 if (error) 2310 goto out; 2311 reiserfs_update_inode_transaction(inode); 2312 if (update_timestamps) 2313 /* 2314 * we are doing real truncate: if the system crashes 2315 * before the last transaction of truncating gets committed 2316 * - on reboot the file either appears truncated properly 2317 * or not truncated at all 2318 */ 2319 add_save_link(&th, inode, 1); 2320 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2321 error = journal_end(&th); 2322 if (error) 2323 goto out; 2324 2325 /* check reiserfs_do_truncate after ending the transaction */ 2326 if (err2) { 2327 error = err2; 2328 goto out; 2329 } 2330 2331 if (update_timestamps) { 2332 error = remove_save_link(inode, 1 /* truncate */); 2333 if (error) 2334 goto out; 2335 } 2336 2337 if (page) { 2338 length = offset & (blocksize - 1); 2339 /* if we are not on a block boundary */ 2340 if (length) { 2341 length = blocksize - length; 2342 zero_user(page, offset, length); 2343 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2344 mark_buffer_dirty(bh); 2345 } 2346 } 2347 unlock_page(page); 2348 put_page(page); 2349 } 2350 2351 reiserfs_write_unlock(inode->i_sb); 2352 2353 return 0; 2354 out: 2355 if (page) { 2356 unlock_page(page); 2357 put_page(page); 2358 } 2359 2360 reiserfs_write_unlock(inode->i_sb); 2361 2362 return error; 2363 } 2364 2365 static int map_block_for_writepage(struct inode *inode, 2366 struct buffer_head *bh_result, 2367 unsigned long block) 2368 { 2369 struct reiserfs_transaction_handle th; 2370 int fs_gen; 2371 struct item_head tmp_ih; 2372 struct item_head *ih; 2373 struct buffer_head *bh; 2374 __le32 *item; 2375 struct cpu_key key; 2376 INITIALIZE_PATH(path); 2377 int pos_in_item; 2378 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2379 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2380 int retval; 2381 int use_get_block = 0; 2382 int bytes_copied = 0; 2383 int copy_size; 2384 int trans_running = 0; 2385 2386 /* 2387 * catch places below that try to log something without 2388 * starting a trans 2389 */ 2390 th.t_trans_id = 0; 2391 2392 if (!buffer_uptodate(bh_result)) { 2393 return -EIO; 2394 } 2395 2396 kmap(bh_result->b_page); 2397 start_over: 2398 reiserfs_write_lock(inode->i_sb); 2399 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2400 2401 research: 2402 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2403 if (retval != POSITION_FOUND) { 2404 use_get_block = 1; 2405 goto out; 2406 } 2407 2408 bh = get_last_bh(&path); 2409 ih = tp_item_head(&path); 2410 item = tp_item_body(&path); 2411 pos_in_item = path.pos_in_item; 2412 2413 /* we've found an unformatted node */ 2414 if (indirect_item_found(retval, ih)) { 2415 if (bytes_copied > 0) { 2416 reiserfs_warning(inode->i_sb, "clm-6002", 2417 "bytes_copied %d", bytes_copied); 2418 } 2419 if (!get_block_num(item, pos_in_item)) { 2420 /* crap, we are writing to a hole */ 2421 use_get_block = 1; 2422 goto out; 2423 } 2424 set_block_dev_mapped(bh_result, 2425 get_block_num(item, pos_in_item), inode); 2426 } else if (is_direct_le_ih(ih)) { 2427 char *p; 2428 p = page_address(bh_result->b_page); 2429 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2430 copy_size = ih_item_len(ih) - pos_in_item; 2431 2432 fs_gen = get_generation(inode->i_sb); 2433 copy_item_head(&tmp_ih, ih); 2434 2435 if (!trans_running) { 2436 /* vs-3050 is gone, no need to drop the path */ 2437 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2438 if (retval) 2439 goto out; 2440 reiserfs_update_inode_transaction(inode); 2441 trans_running = 1; 2442 if (fs_changed(fs_gen, inode->i_sb) 2443 && item_moved(&tmp_ih, &path)) { 2444 reiserfs_restore_prepared_buffer(inode->i_sb, 2445 bh); 2446 goto research; 2447 } 2448 } 2449 2450 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2451 2452 if (fs_changed(fs_gen, inode->i_sb) 2453 && item_moved(&tmp_ih, &path)) { 2454 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2455 goto research; 2456 } 2457 2458 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2459 copy_size); 2460 2461 journal_mark_dirty(&th, bh); 2462 bytes_copied += copy_size; 2463 set_block_dev_mapped(bh_result, 0, inode); 2464 2465 /* are there still bytes left? */ 2466 if (bytes_copied < bh_result->b_size && 2467 (byte_offset + bytes_copied) < inode->i_size) { 2468 set_cpu_key_k_offset(&key, 2469 cpu_key_k_offset(&key) + 2470 copy_size); 2471 goto research; 2472 } 2473 } else { 2474 reiserfs_warning(inode->i_sb, "clm-6003", 2475 "bad item inode %lu", inode->i_ino); 2476 retval = -EIO; 2477 goto out; 2478 } 2479 retval = 0; 2480 2481 out: 2482 pathrelse(&path); 2483 if (trans_running) { 2484 int err = journal_end(&th); 2485 if (err) 2486 retval = err; 2487 trans_running = 0; 2488 } 2489 reiserfs_write_unlock(inode->i_sb); 2490 2491 /* this is where we fill in holes in the file. */ 2492 if (use_get_block) { 2493 retval = reiserfs_get_block(inode, block, bh_result, 2494 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2495 | GET_BLOCK_NO_DANGLE); 2496 if (!retval) { 2497 if (!buffer_mapped(bh_result) 2498 || bh_result->b_blocknr == 0) { 2499 /* get_block failed to find a mapped unformatted node. */ 2500 use_get_block = 0; 2501 goto start_over; 2502 } 2503 } 2504 } 2505 kunmap(bh_result->b_page); 2506 2507 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2508 /* 2509 * we've copied data from the page into the direct item, so the 2510 * buffer in the page is now clean, mark it to reflect that. 2511 */ 2512 lock_buffer(bh_result); 2513 clear_buffer_dirty(bh_result); 2514 unlock_buffer(bh_result); 2515 } 2516 return retval; 2517 } 2518 2519 /* 2520 * mason@suse.com: updated in 2.5.54 to follow the same general io 2521 * start/recovery path as __block_write_full_page, along with special 2522 * code to handle reiserfs tails. 2523 */ 2524 static int reiserfs_write_full_page(struct page *page, 2525 struct writeback_control *wbc) 2526 { 2527 struct inode *inode = page->mapping->host; 2528 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2529 int error = 0; 2530 unsigned long block; 2531 sector_t last_block; 2532 struct buffer_head *head, *bh; 2533 int partial = 0; 2534 int nr = 0; 2535 int checked = PageChecked(page); 2536 struct reiserfs_transaction_handle th; 2537 struct super_block *s = inode->i_sb; 2538 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2539 th.t_trans_id = 0; 2540 2541 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2542 if (checked && (current->flags & PF_MEMALLOC)) { 2543 redirty_page_for_writepage(wbc, page); 2544 unlock_page(page); 2545 return 0; 2546 } 2547 2548 /* 2549 * The page dirty bit is cleared before writepage is called, which 2550 * means we have to tell create_empty_buffers to make dirty buffers 2551 * The page really should be up to date at this point, so tossing 2552 * in the BH_Uptodate is just a sanity check. 2553 */ 2554 if (!page_has_buffers(page)) { 2555 create_empty_buffers(page, s->s_blocksize, 2556 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2557 } 2558 head = page_buffers(page); 2559 2560 /* 2561 * last page in the file, zero out any contents past the 2562 * last byte in the file 2563 */ 2564 if (page->index >= end_index) { 2565 unsigned last_offset; 2566 2567 last_offset = inode->i_size & (PAGE_SIZE - 1); 2568 /* no file contents in this page */ 2569 if (page->index >= end_index + 1 || !last_offset) { 2570 unlock_page(page); 2571 return 0; 2572 } 2573 zero_user_segment(page, last_offset, PAGE_SIZE); 2574 } 2575 bh = head; 2576 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2577 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2578 /* first map all the buffers, logging any direct items we find */ 2579 do { 2580 if (block > last_block) { 2581 /* 2582 * This can happen when the block size is less than 2583 * the page size. The corresponding bytes in the page 2584 * were zero filled above 2585 */ 2586 clear_buffer_dirty(bh); 2587 set_buffer_uptodate(bh); 2588 } else if ((checked || buffer_dirty(bh)) && 2589 (!buffer_mapped(bh) || (buffer_mapped(bh) 2590 && bh->b_blocknr == 2591 0))) { 2592 /* 2593 * not mapped yet, or it points to a direct item, search 2594 * the btree for the mapping info, and log any direct 2595 * items found 2596 */ 2597 if ((error = map_block_for_writepage(inode, bh, block))) { 2598 goto fail; 2599 } 2600 } 2601 bh = bh->b_this_page; 2602 block++; 2603 } while (bh != head); 2604 2605 /* 2606 * we start the transaction after map_block_for_writepage, 2607 * because it can create holes in the file (an unbounded operation). 2608 * starting it here, we can make a reliable estimate for how many 2609 * blocks we're going to log 2610 */ 2611 if (checked) { 2612 ClearPageChecked(page); 2613 reiserfs_write_lock(s); 2614 error = journal_begin(&th, s, bh_per_page + 1); 2615 if (error) { 2616 reiserfs_write_unlock(s); 2617 goto fail; 2618 } 2619 reiserfs_update_inode_transaction(inode); 2620 } 2621 /* now go through and lock any dirty buffers on the page */ 2622 do { 2623 get_bh(bh); 2624 if (!buffer_mapped(bh)) 2625 continue; 2626 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2627 continue; 2628 2629 if (checked) { 2630 reiserfs_prepare_for_journal(s, bh, 1); 2631 journal_mark_dirty(&th, bh); 2632 continue; 2633 } 2634 /* 2635 * from this point on, we know the buffer is mapped to a 2636 * real block and not a direct item 2637 */ 2638 if (wbc->sync_mode != WB_SYNC_NONE) { 2639 lock_buffer(bh); 2640 } else { 2641 if (!trylock_buffer(bh)) { 2642 redirty_page_for_writepage(wbc, page); 2643 continue; 2644 } 2645 } 2646 if (test_clear_buffer_dirty(bh)) { 2647 mark_buffer_async_write(bh); 2648 } else { 2649 unlock_buffer(bh); 2650 } 2651 } while ((bh = bh->b_this_page) != head); 2652 2653 if (checked) { 2654 error = journal_end(&th); 2655 reiserfs_write_unlock(s); 2656 if (error) 2657 goto fail; 2658 } 2659 BUG_ON(PageWriteback(page)); 2660 set_page_writeback(page); 2661 unlock_page(page); 2662 2663 /* 2664 * since any buffer might be the only dirty buffer on the page, 2665 * the first submit_bh can bring the page out of writeback. 2666 * be careful with the buffers. 2667 */ 2668 do { 2669 struct buffer_head *next = bh->b_this_page; 2670 if (buffer_async_write(bh)) { 2671 submit_bh(REQ_OP_WRITE, 0, bh); 2672 nr++; 2673 } 2674 put_bh(bh); 2675 bh = next; 2676 } while (bh != head); 2677 2678 error = 0; 2679 done: 2680 if (nr == 0) { 2681 /* 2682 * if this page only had a direct item, it is very possible for 2683 * no io to be required without there being an error. Or, 2684 * someone else could have locked them and sent them down the 2685 * pipe without locking the page 2686 */ 2687 bh = head; 2688 do { 2689 if (!buffer_uptodate(bh)) { 2690 partial = 1; 2691 break; 2692 } 2693 bh = bh->b_this_page; 2694 } while (bh != head); 2695 if (!partial) 2696 SetPageUptodate(page); 2697 end_page_writeback(page); 2698 } 2699 return error; 2700 2701 fail: 2702 /* 2703 * catches various errors, we need to make sure any valid dirty blocks 2704 * get to the media. The page is currently locked and not marked for 2705 * writeback 2706 */ 2707 ClearPageUptodate(page); 2708 bh = head; 2709 do { 2710 get_bh(bh); 2711 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2712 lock_buffer(bh); 2713 mark_buffer_async_write(bh); 2714 } else { 2715 /* 2716 * clear any dirty bits that might have come from 2717 * getting attached to a dirty page 2718 */ 2719 clear_buffer_dirty(bh); 2720 } 2721 bh = bh->b_this_page; 2722 } while (bh != head); 2723 SetPageError(page); 2724 BUG_ON(PageWriteback(page)); 2725 set_page_writeback(page); 2726 unlock_page(page); 2727 do { 2728 struct buffer_head *next = bh->b_this_page; 2729 if (buffer_async_write(bh)) { 2730 clear_buffer_dirty(bh); 2731 submit_bh(REQ_OP_WRITE, 0, bh); 2732 nr++; 2733 } 2734 put_bh(bh); 2735 bh = next; 2736 } while (bh != head); 2737 goto done; 2738 } 2739 2740 static int reiserfs_readpage(struct file *f, struct page *page) 2741 { 2742 return block_read_full_page(page, reiserfs_get_block); 2743 } 2744 2745 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2746 { 2747 struct inode *inode = page->mapping->host; 2748 reiserfs_wait_on_write_block(inode->i_sb); 2749 return reiserfs_write_full_page(page, wbc); 2750 } 2751 2752 static void reiserfs_truncate_failed_write(struct inode *inode) 2753 { 2754 truncate_inode_pages(inode->i_mapping, inode->i_size); 2755 reiserfs_truncate_file(inode, 0); 2756 } 2757 2758 static int reiserfs_write_begin(struct file *file, 2759 struct address_space *mapping, 2760 loff_t pos, unsigned len, unsigned flags, 2761 struct page **pagep, void **fsdata) 2762 { 2763 struct inode *inode; 2764 struct page *page; 2765 pgoff_t index; 2766 int ret; 2767 int old_ref = 0; 2768 2769 inode = mapping->host; 2770 *fsdata = NULL; 2771 if (flags & AOP_FLAG_CONT_EXPAND && 2772 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2773 pos ++; 2774 *fsdata = (void *)(unsigned long)flags; 2775 } 2776 2777 index = pos >> PAGE_SHIFT; 2778 page = grab_cache_page_write_begin(mapping, index, flags); 2779 if (!page) 2780 return -ENOMEM; 2781 *pagep = page; 2782 2783 reiserfs_wait_on_write_block(inode->i_sb); 2784 fix_tail_page_for_writing(page); 2785 if (reiserfs_transaction_running(inode->i_sb)) { 2786 struct reiserfs_transaction_handle *th; 2787 th = (struct reiserfs_transaction_handle *)current-> 2788 journal_info; 2789 BUG_ON(!th->t_refcount); 2790 BUG_ON(!th->t_trans_id); 2791 old_ref = th->t_refcount; 2792 th->t_refcount++; 2793 } 2794 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2795 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2796 struct reiserfs_transaction_handle *th = current->journal_info; 2797 /* 2798 * this gets a little ugly. If reiserfs_get_block returned an 2799 * error and left a transacstion running, we've got to close 2800 * it, and we've got to free handle if it was a persistent 2801 * transaction. 2802 * 2803 * But, if we had nested into an existing transaction, we need 2804 * to just drop the ref count on the handle. 2805 * 2806 * If old_ref == 0, the transaction is from reiserfs_get_block, 2807 * and it was a persistent trans. Otherwise, it was nested 2808 * above. 2809 */ 2810 if (th->t_refcount > old_ref) { 2811 if (old_ref) 2812 th->t_refcount--; 2813 else { 2814 int err; 2815 reiserfs_write_lock(inode->i_sb); 2816 err = reiserfs_end_persistent_transaction(th); 2817 reiserfs_write_unlock(inode->i_sb); 2818 if (err) 2819 ret = err; 2820 } 2821 } 2822 } 2823 if (ret) { 2824 unlock_page(page); 2825 put_page(page); 2826 /* Truncate allocated blocks */ 2827 reiserfs_truncate_failed_write(inode); 2828 } 2829 return ret; 2830 } 2831 2832 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2833 { 2834 struct inode *inode = page->mapping->host; 2835 int ret; 2836 int old_ref = 0; 2837 int depth; 2838 2839 depth = reiserfs_write_unlock_nested(inode->i_sb); 2840 reiserfs_wait_on_write_block(inode->i_sb); 2841 reiserfs_write_lock_nested(inode->i_sb, depth); 2842 2843 fix_tail_page_for_writing(page); 2844 if (reiserfs_transaction_running(inode->i_sb)) { 2845 struct reiserfs_transaction_handle *th; 2846 th = (struct reiserfs_transaction_handle *)current-> 2847 journal_info; 2848 BUG_ON(!th->t_refcount); 2849 BUG_ON(!th->t_trans_id); 2850 old_ref = th->t_refcount; 2851 th->t_refcount++; 2852 } 2853 2854 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2855 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2856 struct reiserfs_transaction_handle *th = current->journal_info; 2857 /* 2858 * this gets a little ugly. If reiserfs_get_block returned an 2859 * error and left a transacstion running, we've got to close 2860 * it, and we've got to free handle if it was a persistent 2861 * transaction. 2862 * 2863 * But, if we had nested into an existing transaction, we need 2864 * to just drop the ref count on the handle. 2865 * 2866 * If old_ref == 0, the transaction is from reiserfs_get_block, 2867 * and it was a persistent trans. Otherwise, it was nested 2868 * above. 2869 */ 2870 if (th->t_refcount > old_ref) { 2871 if (old_ref) 2872 th->t_refcount--; 2873 else { 2874 int err; 2875 reiserfs_write_lock(inode->i_sb); 2876 err = reiserfs_end_persistent_transaction(th); 2877 reiserfs_write_unlock(inode->i_sb); 2878 if (err) 2879 ret = err; 2880 } 2881 } 2882 } 2883 return ret; 2884 2885 } 2886 2887 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2888 { 2889 return generic_block_bmap(as, block, reiserfs_bmap); 2890 } 2891 2892 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2893 loff_t pos, unsigned len, unsigned copied, 2894 struct page *page, void *fsdata) 2895 { 2896 struct inode *inode = page->mapping->host; 2897 int ret = 0; 2898 int update_sd = 0; 2899 struct reiserfs_transaction_handle *th; 2900 unsigned start; 2901 bool locked = false; 2902 2903 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2904 pos ++; 2905 2906 reiserfs_wait_on_write_block(inode->i_sb); 2907 if (reiserfs_transaction_running(inode->i_sb)) 2908 th = current->journal_info; 2909 else 2910 th = NULL; 2911 2912 start = pos & (PAGE_SIZE - 1); 2913 if (unlikely(copied < len)) { 2914 if (!PageUptodate(page)) 2915 copied = 0; 2916 2917 page_zero_new_buffers(page, start + copied, start + len); 2918 } 2919 flush_dcache_page(page); 2920 2921 reiserfs_commit_page(inode, page, start, start + copied); 2922 2923 /* 2924 * generic_commit_write does this for us, but does not update the 2925 * transaction tracking stuff when the size changes. So, we have 2926 * to do the i_size updates here. 2927 */ 2928 if (pos + copied > inode->i_size) { 2929 struct reiserfs_transaction_handle myth; 2930 reiserfs_write_lock(inode->i_sb); 2931 locked = true; 2932 /* 2933 * If the file have grown beyond the border where it 2934 * can have a tail, unmark it as needing a tail 2935 * packing 2936 */ 2937 if ((have_large_tails(inode->i_sb) 2938 && inode->i_size > i_block_size(inode) * 4) 2939 || (have_small_tails(inode->i_sb) 2940 && inode->i_size > i_block_size(inode))) 2941 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2942 2943 ret = journal_begin(&myth, inode->i_sb, 1); 2944 if (ret) 2945 goto journal_error; 2946 2947 reiserfs_update_inode_transaction(inode); 2948 inode->i_size = pos + copied; 2949 /* 2950 * this will just nest into our transaction. It's important 2951 * to use mark_inode_dirty so the inode gets pushed around on 2952 * the dirty lists, and so that O_SYNC works as expected 2953 */ 2954 mark_inode_dirty(inode); 2955 reiserfs_update_sd(&myth, inode); 2956 update_sd = 1; 2957 ret = journal_end(&myth); 2958 if (ret) 2959 goto journal_error; 2960 } 2961 if (th) { 2962 if (!locked) { 2963 reiserfs_write_lock(inode->i_sb); 2964 locked = true; 2965 } 2966 if (!update_sd) 2967 mark_inode_dirty(inode); 2968 ret = reiserfs_end_persistent_transaction(th); 2969 if (ret) 2970 goto out; 2971 } 2972 2973 out: 2974 if (locked) 2975 reiserfs_write_unlock(inode->i_sb); 2976 unlock_page(page); 2977 put_page(page); 2978 2979 if (pos + len > inode->i_size) 2980 reiserfs_truncate_failed_write(inode); 2981 2982 return ret == 0 ? copied : ret; 2983 2984 journal_error: 2985 reiserfs_write_unlock(inode->i_sb); 2986 locked = false; 2987 if (th) { 2988 if (!update_sd) 2989 reiserfs_update_sd(th, inode); 2990 ret = reiserfs_end_persistent_transaction(th); 2991 } 2992 goto out; 2993 } 2994 2995 int reiserfs_commit_write(struct file *f, struct page *page, 2996 unsigned from, unsigned to) 2997 { 2998 struct inode *inode = page->mapping->host; 2999 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 3000 int ret = 0; 3001 int update_sd = 0; 3002 struct reiserfs_transaction_handle *th = NULL; 3003 int depth; 3004 3005 depth = reiserfs_write_unlock_nested(inode->i_sb); 3006 reiserfs_wait_on_write_block(inode->i_sb); 3007 reiserfs_write_lock_nested(inode->i_sb, depth); 3008 3009 if (reiserfs_transaction_running(inode->i_sb)) { 3010 th = current->journal_info; 3011 } 3012 reiserfs_commit_page(inode, page, from, to); 3013 3014 /* 3015 * generic_commit_write does this for us, but does not update the 3016 * transaction tracking stuff when the size changes. So, we have 3017 * to do the i_size updates here. 3018 */ 3019 if (pos > inode->i_size) { 3020 struct reiserfs_transaction_handle myth; 3021 /* 3022 * If the file have grown beyond the border where it 3023 * can have a tail, unmark it as needing a tail 3024 * packing 3025 */ 3026 if ((have_large_tails(inode->i_sb) 3027 && inode->i_size > i_block_size(inode) * 4) 3028 || (have_small_tails(inode->i_sb) 3029 && inode->i_size > i_block_size(inode))) 3030 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3031 3032 ret = journal_begin(&myth, inode->i_sb, 1); 3033 if (ret) 3034 goto journal_error; 3035 3036 reiserfs_update_inode_transaction(inode); 3037 inode->i_size = pos; 3038 /* 3039 * this will just nest into our transaction. It's important 3040 * to use mark_inode_dirty so the inode gets pushed around 3041 * on the dirty lists, and so that O_SYNC works as expected 3042 */ 3043 mark_inode_dirty(inode); 3044 reiserfs_update_sd(&myth, inode); 3045 update_sd = 1; 3046 ret = journal_end(&myth); 3047 if (ret) 3048 goto journal_error; 3049 } 3050 if (th) { 3051 if (!update_sd) 3052 mark_inode_dirty(inode); 3053 ret = reiserfs_end_persistent_transaction(th); 3054 if (ret) 3055 goto out; 3056 } 3057 3058 out: 3059 return ret; 3060 3061 journal_error: 3062 if (th) { 3063 if (!update_sd) 3064 reiserfs_update_sd(th, inode); 3065 ret = reiserfs_end_persistent_transaction(th); 3066 } 3067 3068 return ret; 3069 } 3070 3071 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3072 { 3073 if (reiserfs_attrs(inode->i_sb)) { 3074 if (sd_attrs & REISERFS_SYNC_FL) 3075 inode->i_flags |= S_SYNC; 3076 else 3077 inode->i_flags &= ~S_SYNC; 3078 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3079 inode->i_flags |= S_IMMUTABLE; 3080 else 3081 inode->i_flags &= ~S_IMMUTABLE; 3082 if (sd_attrs & REISERFS_APPEND_FL) 3083 inode->i_flags |= S_APPEND; 3084 else 3085 inode->i_flags &= ~S_APPEND; 3086 if (sd_attrs & REISERFS_NOATIME_FL) 3087 inode->i_flags |= S_NOATIME; 3088 else 3089 inode->i_flags &= ~S_NOATIME; 3090 if (sd_attrs & REISERFS_NOTAIL_FL) 3091 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3092 else 3093 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3094 } 3095 } 3096 3097 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 3098 { 3099 if (reiserfs_attrs(inode->i_sb)) { 3100 if (inode->i_flags & S_IMMUTABLE) 3101 *sd_attrs |= REISERFS_IMMUTABLE_FL; 3102 else 3103 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 3104 if (inode->i_flags & S_SYNC) 3105 *sd_attrs |= REISERFS_SYNC_FL; 3106 else 3107 *sd_attrs &= ~REISERFS_SYNC_FL; 3108 if (inode->i_flags & S_NOATIME) 3109 *sd_attrs |= REISERFS_NOATIME_FL; 3110 else 3111 *sd_attrs &= ~REISERFS_NOATIME_FL; 3112 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 3113 *sd_attrs |= REISERFS_NOTAIL_FL; 3114 else 3115 *sd_attrs &= ~REISERFS_NOTAIL_FL; 3116 } 3117 } 3118 3119 /* 3120 * decide if this buffer needs to stay around for data logging or ordered 3121 * write purposes 3122 */ 3123 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3124 { 3125 int ret = 1; 3126 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3127 3128 lock_buffer(bh); 3129 spin_lock(&j->j_dirty_buffers_lock); 3130 if (!buffer_mapped(bh)) { 3131 goto free_jh; 3132 } 3133 /* 3134 * the page is locked, and the only places that log a data buffer 3135 * also lock the page. 3136 */ 3137 if (reiserfs_file_data_log(inode)) { 3138 /* 3139 * very conservative, leave the buffer pinned if 3140 * anyone might need it. 3141 */ 3142 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3143 ret = 0; 3144 } 3145 } else if (buffer_dirty(bh)) { 3146 struct reiserfs_journal_list *jl; 3147 struct reiserfs_jh *jh = bh->b_private; 3148 3149 /* 3150 * why is this safe? 3151 * reiserfs_setattr updates i_size in the on disk 3152 * stat data before allowing vmtruncate to be called. 3153 * 3154 * If buffer was put onto the ordered list for this 3155 * transaction, we know for sure either this transaction 3156 * or an older one already has updated i_size on disk, 3157 * and this ordered data won't be referenced in the file 3158 * if we crash. 3159 * 3160 * if the buffer was put onto the ordered list for an older 3161 * transaction, we need to leave it around 3162 */ 3163 if (jh && (jl = jh->jl) 3164 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3165 ret = 0; 3166 } 3167 free_jh: 3168 if (ret && bh->b_private) { 3169 reiserfs_free_jh(bh); 3170 } 3171 spin_unlock(&j->j_dirty_buffers_lock); 3172 unlock_buffer(bh); 3173 return ret; 3174 } 3175 3176 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 3177 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3178 unsigned int length) 3179 { 3180 struct buffer_head *head, *bh, *next; 3181 struct inode *inode = page->mapping->host; 3182 unsigned int curr_off = 0; 3183 unsigned int stop = offset + length; 3184 int partial_page = (offset || length < PAGE_SIZE); 3185 int ret = 1; 3186 3187 BUG_ON(!PageLocked(page)); 3188 3189 if (!partial_page) 3190 ClearPageChecked(page); 3191 3192 if (!page_has_buffers(page)) 3193 goto out; 3194 3195 head = page_buffers(page); 3196 bh = head; 3197 do { 3198 unsigned int next_off = curr_off + bh->b_size; 3199 next = bh->b_this_page; 3200 3201 if (next_off > stop) 3202 goto out; 3203 3204 /* 3205 * is this block fully invalidated? 3206 */ 3207 if (offset <= curr_off) { 3208 if (invalidatepage_can_drop(inode, bh)) 3209 reiserfs_unmap_buffer(bh); 3210 else 3211 ret = 0; 3212 } 3213 curr_off = next_off; 3214 bh = next; 3215 } while (bh != head); 3216 3217 /* 3218 * We release buffers only if the entire page is being invalidated. 3219 * The get_block cached value has been unconditionally invalidated, 3220 * so real IO is not possible anymore. 3221 */ 3222 if (!partial_page && ret) { 3223 ret = try_to_release_page(page, 0); 3224 /* maybe should BUG_ON(!ret); - neilb */ 3225 } 3226 out: 3227 return; 3228 } 3229 3230 static int reiserfs_set_page_dirty(struct page *page) 3231 { 3232 struct inode *inode = page->mapping->host; 3233 if (reiserfs_file_data_log(inode)) { 3234 SetPageChecked(page); 3235 return __set_page_dirty_nobuffers(page); 3236 } 3237 return __set_page_dirty_buffers(page); 3238 } 3239 3240 /* 3241 * Returns 1 if the page's buffers were dropped. The page is locked. 3242 * 3243 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3244 * in the buffers at page_buffers(page). 3245 * 3246 * even in -o notail mode, we can't be sure an old mount without -o notail 3247 * didn't create files with tails. 3248 */ 3249 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3250 { 3251 struct inode *inode = page->mapping->host; 3252 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3253 struct buffer_head *head; 3254 struct buffer_head *bh; 3255 int ret = 1; 3256 3257 WARN_ON(PageChecked(page)); 3258 spin_lock(&j->j_dirty_buffers_lock); 3259 head = page_buffers(page); 3260 bh = head; 3261 do { 3262 if (bh->b_private) { 3263 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3264 reiserfs_free_jh(bh); 3265 } else { 3266 ret = 0; 3267 break; 3268 } 3269 } 3270 bh = bh->b_this_page; 3271 } while (bh != head); 3272 if (ret) 3273 ret = try_to_free_buffers(page); 3274 spin_unlock(&j->j_dirty_buffers_lock); 3275 return ret; 3276 } 3277 3278 /* 3279 * We thank Mingming Cao for helping us understand in great detail what 3280 * to do in this section of the code. 3281 */ 3282 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3283 { 3284 struct file *file = iocb->ki_filp; 3285 struct inode *inode = file->f_mapping->host; 3286 size_t count = iov_iter_count(iter); 3287 ssize_t ret; 3288 3289 ret = blockdev_direct_IO(iocb, inode, iter, 3290 reiserfs_get_blocks_direct_io); 3291 3292 /* 3293 * In case of error extending write may have instantiated a few 3294 * blocks outside i_size. Trim these off again. 3295 */ 3296 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3297 loff_t isize = i_size_read(inode); 3298 loff_t end = iocb->ki_pos + count; 3299 3300 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3301 truncate_setsize(inode, isize); 3302 reiserfs_vfs_truncate_file(inode); 3303 } 3304 } 3305 3306 return ret; 3307 } 3308 3309 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3310 { 3311 struct inode *inode = d_inode(dentry); 3312 unsigned int ia_valid; 3313 int error; 3314 3315 error = setattr_prepare(dentry, attr); 3316 if (error) 3317 return error; 3318 3319 /* must be turned off for recursive notify_change calls */ 3320 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3321 3322 if (is_quota_modification(inode, attr)) { 3323 error = dquot_initialize(inode); 3324 if (error) 3325 return error; 3326 } 3327 reiserfs_write_lock(inode->i_sb); 3328 if (attr->ia_valid & ATTR_SIZE) { 3329 /* 3330 * version 2 items will be caught by the s_maxbytes check 3331 * done for us in vmtruncate 3332 */ 3333 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3334 attr->ia_size > MAX_NON_LFS) { 3335 reiserfs_write_unlock(inode->i_sb); 3336 error = -EFBIG; 3337 goto out; 3338 } 3339 3340 inode_dio_wait(inode); 3341 3342 /* fill in hole pointers in the expanding truncate case. */ 3343 if (attr->ia_size > inode->i_size) { 3344 error = generic_cont_expand_simple(inode, attr->ia_size); 3345 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3346 int err; 3347 struct reiserfs_transaction_handle th; 3348 /* we're changing at most 2 bitmaps, inode + super */ 3349 err = journal_begin(&th, inode->i_sb, 4); 3350 if (!err) { 3351 reiserfs_discard_prealloc(&th, inode); 3352 err = journal_end(&th); 3353 } 3354 if (err) 3355 error = err; 3356 } 3357 if (error) { 3358 reiserfs_write_unlock(inode->i_sb); 3359 goto out; 3360 } 3361 /* 3362 * file size is changed, ctime and mtime are 3363 * to be updated 3364 */ 3365 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3366 } 3367 } 3368 reiserfs_write_unlock(inode->i_sb); 3369 3370 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3371 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3372 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3373 /* stat data of format v3.5 has 16 bit uid and gid */ 3374 error = -EINVAL; 3375 goto out; 3376 } 3377 3378 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3379 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3380 struct reiserfs_transaction_handle th; 3381 int jbegin_count = 3382 2 * 3383 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3384 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3385 2; 3386 3387 error = reiserfs_chown_xattrs(inode, attr); 3388 3389 if (error) 3390 return error; 3391 3392 /* 3393 * (user+group)*(old+new) structure - we count quota 3394 * info and , inode write (sb, inode) 3395 */ 3396 reiserfs_write_lock(inode->i_sb); 3397 error = journal_begin(&th, inode->i_sb, jbegin_count); 3398 reiserfs_write_unlock(inode->i_sb); 3399 if (error) 3400 goto out; 3401 error = dquot_transfer(inode, attr); 3402 reiserfs_write_lock(inode->i_sb); 3403 if (error) { 3404 journal_end(&th); 3405 reiserfs_write_unlock(inode->i_sb); 3406 goto out; 3407 } 3408 3409 /* 3410 * Update corresponding info in inode so that everything 3411 * is in one transaction 3412 */ 3413 if (attr->ia_valid & ATTR_UID) 3414 inode->i_uid = attr->ia_uid; 3415 if (attr->ia_valid & ATTR_GID) 3416 inode->i_gid = attr->ia_gid; 3417 mark_inode_dirty(inode); 3418 error = journal_end(&th); 3419 reiserfs_write_unlock(inode->i_sb); 3420 if (error) 3421 goto out; 3422 } 3423 3424 if ((attr->ia_valid & ATTR_SIZE) && 3425 attr->ia_size != i_size_read(inode)) { 3426 error = inode_newsize_ok(inode, attr->ia_size); 3427 if (!error) { 3428 /* 3429 * Could race against reiserfs_file_release 3430 * if called from NFS, so take tailpack mutex. 3431 */ 3432 mutex_lock(&REISERFS_I(inode)->tailpack); 3433 truncate_setsize(inode, attr->ia_size); 3434 reiserfs_truncate_file(inode, 1); 3435 mutex_unlock(&REISERFS_I(inode)->tailpack); 3436 } 3437 } 3438 3439 if (!error) { 3440 setattr_copy(inode, attr); 3441 mark_inode_dirty(inode); 3442 } 3443 3444 if (!error && reiserfs_posixacl(inode->i_sb)) { 3445 if (attr->ia_valid & ATTR_MODE) 3446 error = reiserfs_acl_chmod(inode); 3447 } 3448 3449 out: 3450 return error; 3451 } 3452 3453 const struct address_space_operations reiserfs_address_space_operations = { 3454 .writepage = reiserfs_writepage, 3455 .readpage = reiserfs_readpage, 3456 .readpages = reiserfs_readpages, 3457 .releasepage = reiserfs_releasepage, 3458 .invalidatepage = reiserfs_invalidatepage, 3459 .write_begin = reiserfs_write_begin, 3460 .write_end = reiserfs_write_end, 3461 .bmap = reiserfs_aop_bmap, 3462 .direct_IO = reiserfs_direct_IO, 3463 .set_page_dirty = reiserfs_set_page_dirty, 3464 }; 3465