xref: /openbmc/linux/fs/reiserfs/inode.c (revision 6dfcd296)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 			  unsigned from, unsigned to);
25 
26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 	/*
29 	 * We need blocks for transaction + (user+group) quota
30 	 * update (possibly delete)
31 	 */
32 	int jbegin_count =
33 	    JOURNAL_PER_BALANCE_CNT * 2 +
34 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
35 	struct reiserfs_transaction_handle th;
36 	int err;
37 
38 	if (!inode->i_nlink && !is_bad_inode(inode))
39 		dquot_initialize(inode);
40 
41 	truncate_inode_pages_final(&inode->i_data);
42 	if (inode->i_nlink)
43 		goto no_delete;
44 
45 	/*
46 	 * The = 0 happens when we abort creating a new inode
47 	 * for some reason like lack of space..
48 	 * also handles bad_inode case
49 	 */
50 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
51 
52 		reiserfs_delete_xattrs(inode);
53 
54 		reiserfs_write_lock(inode->i_sb);
55 
56 		if (journal_begin(&th, inode->i_sb, jbegin_count))
57 			goto out;
58 		reiserfs_update_inode_transaction(inode);
59 
60 		reiserfs_discard_prealloc(&th, inode);
61 
62 		err = reiserfs_delete_object(&th, inode);
63 
64 		/*
65 		 * Do quota update inside a transaction for journaled quotas.
66 		 * We must do that after delete_object so that quota updates
67 		 * go into the same transaction as stat data deletion
68 		 */
69 		if (!err) {
70 			int depth = reiserfs_write_unlock_nested(inode->i_sb);
71 			dquot_free_inode(inode);
72 			reiserfs_write_lock_nested(inode->i_sb, depth);
73 		}
74 
75 		if (journal_end(&th))
76 			goto out;
77 
78 		/*
79 		 * check return value from reiserfs_delete_object after
80 		 * ending the transaction
81 		 */
82 		if (err)
83 		    goto out;
84 
85 		/*
86 		 * all items of file are deleted, so we can remove
87 		 * "save" link
88 		 * we can't do anything about an error here
89 		 */
90 		remove_save_link(inode, 0 /* not truncate */);
91 out:
92 		reiserfs_write_unlock(inode->i_sb);
93 	} else {
94 		/* no object items are in the tree */
95 		;
96 	}
97 
98 	/* note this must go after the journal_end to prevent deadlock */
99 	clear_inode(inode);
100 
101 	dquot_drop(inode);
102 	inode->i_blocks = 0;
103 	return;
104 
105 no_delete:
106 	clear_inode(inode);
107 	dquot_drop(inode);
108 }
109 
110 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
111 			  __u32 objectid, loff_t offset, int type, int length)
112 {
113 	key->version = version;
114 
115 	key->on_disk_key.k_dir_id = dirid;
116 	key->on_disk_key.k_objectid = objectid;
117 	set_cpu_key_k_offset(key, offset);
118 	set_cpu_key_k_type(key, type);
119 	key->key_length = length;
120 }
121 
122 /*
123  * take base of inode_key (it comes from inode always) (dirid, objectid)
124  * and version from an inode, set offset and type of key
125  */
126 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
127 		  int type, int length)
128 {
129 	_make_cpu_key(key, get_inode_item_key_version(inode),
130 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
131 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
132 		      length);
133 }
134 
135 /* when key is 0, do not set version and short key */
136 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
137 			      int version,
138 			      loff_t offset, int type, int length,
139 			      int entry_count /*or ih_free_space */ )
140 {
141 	if (key) {
142 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
143 		ih->ih_key.k_objectid =
144 		    cpu_to_le32(key->on_disk_key.k_objectid);
145 	}
146 	put_ih_version(ih, version);
147 	set_le_ih_k_offset(ih, offset);
148 	set_le_ih_k_type(ih, type);
149 	put_ih_item_len(ih, length);
150 	/*    set_ih_free_space (ih, 0); */
151 	/*
152 	 * for directory items it is entry count, for directs and stat
153 	 * datas - 0xffff, for indirects - 0
154 	 */
155 	put_ih_entry_count(ih, entry_count);
156 }
157 
158 /*
159  * FIXME: we might cache recently accessed indirect item
160  * Ugh.  Not too eager for that....
161  * I cut the code until such time as I see a convincing argument (benchmark).
162  * I don't want a bloated inode struct..., and I don't like code complexity....
163  */
164 
165 /*
166  * cutting the code is fine, since it really isn't in use yet and is easy
167  * to add back in.  But, Vladimir has a really good idea here.  Think
168  * about what happens for reading a file.  For each page,
169  * The VFS layer calls reiserfs_readpage, who searches the tree to find
170  * an indirect item.  This indirect item has X number of pointers, where
171  * X is a big number if we've done the block allocation right.  But,
172  * we only use one or two of these pointers during each call to readpage,
173  * needlessly researching again later on.
174  *
175  * The size of the cache could be dynamic based on the size of the file.
176  *
177  * I'd also like to see us cache the location the stat data item, since
178  * we are needlessly researching for that frequently.
179  *
180  * --chris
181  */
182 
183 /*
184  * If this page has a file tail in it, and
185  * it was read in by get_block_create_0, the page data is valid,
186  * but tail is still sitting in a direct item, and we can't write to
187  * it.  So, look through this page, and check all the mapped buffers
188  * to make sure they have valid block numbers.  Any that don't need
189  * to be unmapped, so that __block_write_begin will correctly call
190  * reiserfs_get_block to convert the tail into an unformatted node
191  */
192 static inline void fix_tail_page_for_writing(struct page *page)
193 {
194 	struct buffer_head *head, *next, *bh;
195 
196 	if (page && page_has_buffers(page)) {
197 		head = page_buffers(page);
198 		bh = head;
199 		do {
200 			next = bh->b_this_page;
201 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
202 				reiserfs_unmap_buffer(bh);
203 			}
204 			bh = next;
205 		} while (bh != head);
206 	}
207 }
208 
209 /*
210  * reiserfs_get_block does not need to allocate a block only if it has been
211  * done already or non-hole position has been found in the indirect item
212  */
213 static inline int allocation_needed(int retval, b_blocknr_t allocated,
214 				    struct item_head *ih,
215 				    __le32 * item, int pos_in_item)
216 {
217 	if (allocated)
218 		return 0;
219 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
220 	    get_block_num(item, pos_in_item))
221 		return 0;
222 	return 1;
223 }
224 
225 static inline int indirect_item_found(int retval, struct item_head *ih)
226 {
227 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
228 }
229 
230 static inline void set_block_dev_mapped(struct buffer_head *bh,
231 					b_blocknr_t block, struct inode *inode)
232 {
233 	map_bh(bh, inode->i_sb, block);
234 }
235 
236 /*
237  * files which were created in the earlier version can not be longer,
238  * than 2 gb
239  */
240 static int file_capable(struct inode *inode, sector_t block)
241 {
242 	/* it is new file. */
243 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
244 	    /* old file, but 'block' is inside of 2gb */
245 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
246 		return 1;
247 
248 	return 0;
249 }
250 
251 static int restart_transaction(struct reiserfs_transaction_handle *th,
252 			       struct inode *inode, struct treepath *path)
253 {
254 	struct super_block *s = th->t_super;
255 	int err;
256 
257 	BUG_ON(!th->t_trans_id);
258 	BUG_ON(!th->t_refcount);
259 
260 	pathrelse(path);
261 
262 	/* we cannot restart while nested */
263 	if (th->t_refcount > 1) {
264 		return 0;
265 	}
266 	reiserfs_update_sd(th, inode);
267 	err = journal_end(th);
268 	if (!err) {
269 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
270 		if (!err)
271 			reiserfs_update_inode_transaction(inode);
272 	}
273 	return err;
274 }
275 
276 /*
277  * it is called by get_block when create == 0. Returns block number
278  * for 'block'-th logical block of file. When it hits direct item it
279  * returns 0 (being called from bmap) or read direct item into piece
280  * of page (bh_result)
281  * Please improve the english/clarity in the comment above, as it is
282  * hard to understand.
283  */
284 static int _get_block_create_0(struct inode *inode, sector_t block,
285 			       struct buffer_head *bh_result, int args)
286 {
287 	INITIALIZE_PATH(path);
288 	struct cpu_key key;
289 	struct buffer_head *bh;
290 	struct item_head *ih, tmp_ih;
291 	b_blocknr_t blocknr;
292 	char *p = NULL;
293 	int chars;
294 	int ret;
295 	int result;
296 	int done = 0;
297 	unsigned long offset;
298 
299 	/* prepare the key to look for the 'block'-th block of file */
300 	make_cpu_key(&key, inode,
301 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
302 		     3);
303 
304 	result = search_for_position_by_key(inode->i_sb, &key, &path);
305 	if (result != POSITION_FOUND) {
306 		pathrelse(&path);
307 		if (p)
308 			kunmap(bh_result->b_page);
309 		if (result == IO_ERROR)
310 			return -EIO;
311 		/*
312 		 * We do not return -ENOENT if there is a hole but page is
313 		 * uptodate, because it means that there is some MMAPED data
314 		 * associated with it that is yet to be written to disk.
315 		 */
316 		if ((args & GET_BLOCK_NO_HOLE)
317 		    && !PageUptodate(bh_result->b_page)) {
318 			return -ENOENT;
319 		}
320 		return 0;
321 	}
322 
323 	bh = get_last_bh(&path);
324 	ih = tp_item_head(&path);
325 	if (is_indirect_le_ih(ih)) {
326 		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
327 
328 		/*
329 		 * FIXME: here we could cache indirect item or part of it in
330 		 * the inode to avoid search_by_key in case of subsequent
331 		 * access to file
332 		 */
333 		blocknr = get_block_num(ind_item, path.pos_in_item);
334 		ret = 0;
335 		if (blocknr) {
336 			map_bh(bh_result, inode->i_sb, blocknr);
337 			if (path.pos_in_item ==
338 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
339 				set_buffer_boundary(bh_result);
340 			}
341 		} else
342 			/*
343 			 * We do not return -ENOENT if there is a hole but
344 			 * page is uptodate, because it means that there is
345 			 * some MMAPED data associated with it that is
346 			 * yet to be written to disk.
347 			 */
348 		if ((args & GET_BLOCK_NO_HOLE)
349 			    && !PageUptodate(bh_result->b_page)) {
350 			ret = -ENOENT;
351 		}
352 
353 		pathrelse(&path);
354 		if (p)
355 			kunmap(bh_result->b_page);
356 		return ret;
357 	}
358 	/* requested data are in direct item(s) */
359 	if (!(args & GET_BLOCK_READ_DIRECT)) {
360 		/*
361 		 * we are called by bmap. FIXME: we can not map block of file
362 		 * when it is stored in direct item(s)
363 		 */
364 		pathrelse(&path);
365 		if (p)
366 			kunmap(bh_result->b_page);
367 		return -ENOENT;
368 	}
369 
370 	/*
371 	 * if we've got a direct item, and the buffer or page was uptodate,
372 	 * we don't want to pull data off disk again.  skip to the
373 	 * end, where we map the buffer and return
374 	 */
375 	if (buffer_uptodate(bh_result)) {
376 		goto finished;
377 	} else
378 		/*
379 		 * grab_tail_page can trigger calls to reiserfs_get_block on
380 		 * up to date pages without any buffers.  If the page is up
381 		 * to date, we don't want read old data off disk.  Set the up
382 		 * to date bit on the buffer instead and jump to the end
383 		 */
384 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
385 		set_buffer_uptodate(bh_result);
386 		goto finished;
387 	}
388 	/* read file tail into part of page */
389 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
390 	copy_item_head(&tmp_ih, ih);
391 
392 	/*
393 	 * we only want to kmap if we are reading the tail into the page.
394 	 * this is not the common case, so we don't kmap until we are
395 	 * sure we need to.  But, this means the item might move if
396 	 * kmap schedules
397 	 */
398 	if (!p)
399 		p = (char *)kmap(bh_result->b_page);
400 
401 	p += offset;
402 	memset(p, 0, inode->i_sb->s_blocksize);
403 	do {
404 		if (!is_direct_le_ih(ih)) {
405 			BUG();
406 		}
407 		/*
408 		 * make sure we don't read more bytes than actually exist in
409 		 * the file.  This can happen in odd cases where i_size isn't
410 		 * correct, and when direct item padding results in a few
411 		 * extra bytes at the end of the direct item
412 		 */
413 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
414 			break;
415 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
416 			chars =
417 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
418 			    path.pos_in_item;
419 			done = 1;
420 		} else {
421 			chars = ih_item_len(ih) - path.pos_in_item;
422 		}
423 		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
424 
425 		if (done)
426 			break;
427 
428 		p += chars;
429 
430 		/*
431 		 * we done, if read direct item is not the last item of
432 		 * node FIXME: we could try to check right delimiting key
433 		 * to see whether direct item continues in the right
434 		 * neighbor or rely on i_size
435 		 */
436 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
437 			break;
438 
439 		/* update key to look for the next piece */
440 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
441 		result = search_for_position_by_key(inode->i_sb, &key, &path);
442 		if (result != POSITION_FOUND)
443 			/* i/o error most likely */
444 			break;
445 		bh = get_last_bh(&path);
446 		ih = tp_item_head(&path);
447 	} while (1);
448 
449 	flush_dcache_page(bh_result->b_page);
450 	kunmap(bh_result->b_page);
451 
452 finished:
453 	pathrelse(&path);
454 
455 	if (result == IO_ERROR)
456 		return -EIO;
457 
458 	/*
459 	 * this buffer has valid data, but isn't valid for io.  mapping it to
460 	 * block #0 tells the rest of reiserfs it just has a tail in it
461 	 */
462 	map_bh(bh_result, inode->i_sb, 0);
463 	set_buffer_uptodate(bh_result);
464 	return 0;
465 }
466 
467 /*
468  * this is called to create file map. So, _get_block_create_0 will not
469  * read direct item
470  */
471 static int reiserfs_bmap(struct inode *inode, sector_t block,
472 			 struct buffer_head *bh_result, int create)
473 {
474 	if (!file_capable(inode, block))
475 		return -EFBIG;
476 
477 	reiserfs_write_lock(inode->i_sb);
478 	/* do not read the direct item */
479 	_get_block_create_0(inode, block, bh_result, 0);
480 	reiserfs_write_unlock(inode->i_sb);
481 	return 0;
482 }
483 
484 /*
485  * special version of get_block that is only used by grab_tail_page right
486  * now.  It is sent to __block_write_begin, and when you try to get a
487  * block past the end of the file (or a block from a hole) it returns
488  * -ENOENT instead of a valid buffer.  __block_write_begin expects to
489  * be able to do i/o on the buffers returned, unless an error value
490  * is also returned.
491  *
492  * So, this allows __block_write_begin to be used for reading a single block
493  * in a page.  Where it does not produce a valid page for holes, or past the
494  * end of the file.  This turns out to be exactly what we need for reading
495  * tails for conversion.
496  *
497  * The point of the wrapper is forcing a certain value for create, even
498  * though the VFS layer is calling this function with create==1.  If you
499  * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
500  * don't use this function.
501 */
502 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
503 				       struct buffer_head *bh_result,
504 				       int create)
505 {
506 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
507 }
508 
509 /*
510  * This is special helper for reiserfs_get_block in case we are executing
511  * direct_IO request.
512  */
513 static int reiserfs_get_blocks_direct_io(struct inode *inode,
514 					 sector_t iblock,
515 					 struct buffer_head *bh_result,
516 					 int create)
517 {
518 	int ret;
519 
520 	bh_result->b_page = NULL;
521 
522 	/*
523 	 * We set the b_size before reiserfs_get_block call since it is
524 	 * referenced in convert_tail_for_hole() that may be called from
525 	 * reiserfs_get_block()
526 	 */
527 	bh_result->b_size = (1 << inode->i_blkbits);
528 
529 	ret = reiserfs_get_block(inode, iblock, bh_result,
530 				 create | GET_BLOCK_NO_DANGLE);
531 	if (ret)
532 		goto out;
533 
534 	/* don't allow direct io onto tail pages */
535 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
536 		/*
537 		 * make sure future calls to the direct io funcs for this
538 		 * offset in the file fail by unmapping the buffer
539 		 */
540 		clear_buffer_mapped(bh_result);
541 		ret = -EINVAL;
542 	}
543 
544 	/*
545 	 * Possible unpacked tail. Flush the data before pages have
546 	 * disappeared
547 	 */
548 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
549 		int err;
550 
551 		reiserfs_write_lock(inode->i_sb);
552 
553 		err = reiserfs_commit_for_inode(inode);
554 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
555 
556 		reiserfs_write_unlock(inode->i_sb);
557 
558 		if (err < 0)
559 			ret = err;
560 	}
561 out:
562 	return ret;
563 }
564 
565 /*
566  * helper function for when reiserfs_get_block is called for a hole
567  * but the file tail is still in a direct item
568  * bh_result is the buffer head for the hole
569  * tail_offset is the offset of the start of the tail in the file
570  *
571  * This calls prepare_write, which will start a new transaction
572  * you should not be in a transaction, or have any paths held when you
573  * call this.
574  */
575 static int convert_tail_for_hole(struct inode *inode,
576 				 struct buffer_head *bh_result,
577 				 loff_t tail_offset)
578 {
579 	unsigned long index;
580 	unsigned long tail_end;
581 	unsigned long tail_start;
582 	struct page *tail_page;
583 	struct page *hole_page = bh_result->b_page;
584 	int retval = 0;
585 
586 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
587 		return -EIO;
588 
589 	/* always try to read until the end of the block */
590 	tail_start = tail_offset & (PAGE_SIZE - 1);
591 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
592 
593 	index = tail_offset >> PAGE_SHIFT;
594 	/*
595 	 * hole_page can be zero in case of direct_io, we are sure
596 	 * that we cannot get here if we write with O_DIRECT into tail page
597 	 */
598 	if (!hole_page || index != hole_page->index) {
599 		tail_page = grab_cache_page(inode->i_mapping, index);
600 		retval = -ENOMEM;
601 		if (!tail_page) {
602 			goto out;
603 		}
604 	} else {
605 		tail_page = hole_page;
606 	}
607 
608 	/*
609 	 * we don't have to make sure the conversion did not happen while
610 	 * we were locking the page because anyone that could convert
611 	 * must first take i_mutex.
612 	 *
613 	 * We must fix the tail page for writing because it might have buffers
614 	 * that are mapped, but have a block number of 0.  This indicates tail
615 	 * data that has been read directly into the page, and
616 	 * __block_write_begin won't trigger a get_block in this case.
617 	 */
618 	fix_tail_page_for_writing(tail_page);
619 	retval = __reiserfs_write_begin(tail_page, tail_start,
620 				      tail_end - tail_start);
621 	if (retval)
622 		goto unlock;
623 
624 	/* tail conversion might change the data in the page */
625 	flush_dcache_page(tail_page);
626 
627 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
628 
629 unlock:
630 	if (tail_page != hole_page) {
631 		unlock_page(tail_page);
632 		put_page(tail_page);
633 	}
634 out:
635 	return retval;
636 }
637 
638 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
639 				  sector_t block,
640 				  struct inode *inode,
641 				  b_blocknr_t * allocated_block_nr,
642 				  struct treepath *path, int flags)
643 {
644 	BUG_ON(!th->t_trans_id);
645 
646 #ifdef REISERFS_PREALLOCATE
647 	if (!(flags & GET_BLOCK_NO_IMUX)) {
648 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
649 						  path, block);
650 	}
651 #endif
652 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
653 					 block);
654 }
655 
656 int reiserfs_get_block(struct inode *inode, sector_t block,
657 		       struct buffer_head *bh_result, int create)
658 {
659 	int repeat, retval = 0;
660 	/* b_blocknr_t is (unsigned) 32 bit int*/
661 	b_blocknr_t allocated_block_nr = 0;
662 	INITIALIZE_PATH(path);
663 	int pos_in_item;
664 	struct cpu_key key;
665 	struct buffer_head *bh, *unbh = NULL;
666 	struct item_head *ih, tmp_ih;
667 	__le32 *item;
668 	int done;
669 	int fs_gen;
670 	struct reiserfs_transaction_handle *th = NULL;
671 	/*
672 	 * space reserved in transaction batch:
673 	 * . 3 balancings in direct->indirect conversion
674 	 * . 1 block involved into reiserfs_update_sd()
675 	 * XXX in practically impossible worst case direct2indirect()
676 	 * can incur (much) more than 3 balancings.
677 	 * quota update for user, group
678 	 */
679 	int jbegin_count =
680 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
681 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
682 	int version;
683 	int dangle = 1;
684 	loff_t new_offset =
685 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
686 
687 	reiserfs_write_lock(inode->i_sb);
688 	version = get_inode_item_key_version(inode);
689 
690 	if (!file_capable(inode, block)) {
691 		reiserfs_write_unlock(inode->i_sb);
692 		return -EFBIG;
693 	}
694 
695 	/*
696 	 * if !create, we aren't changing the FS, so we don't need to
697 	 * log anything, so we don't need to start a transaction
698 	 */
699 	if (!(create & GET_BLOCK_CREATE)) {
700 		int ret;
701 		/* find number of block-th logical block of the file */
702 		ret = _get_block_create_0(inode, block, bh_result,
703 					  create | GET_BLOCK_READ_DIRECT);
704 		reiserfs_write_unlock(inode->i_sb);
705 		return ret;
706 	}
707 
708 	/*
709 	 * if we're already in a transaction, make sure to close
710 	 * any new transactions we start in this func
711 	 */
712 	if ((create & GET_BLOCK_NO_DANGLE) ||
713 	    reiserfs_transaction_running(inode->i_sb))
714 		dangle = 0;
715 
716 	/*
717 	 * If file is of such a size, that it might have a tail and
718 	 * tails are enabled  we should mark it as possibly needing
719 	 * tail packing on close
720 	 */
721 	if ((have_large_tails(inode->i_sb)
722 	     && inode->i_size < i_block_size(inode) * 4)
723 	    || (have_small_tails(inode->i_sb)
724 		&& inode->i_size < i_block_size(inode)))
725 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
726 
727 	/* set the key of the first byte in the 'block'-th block of file */
728 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
729 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
730 start_trans:
731 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
732 		if (!th) {
733 			retval = -ENOMEM;
734 			goto failure;
735 		}
736 		reiserfs_update_inode_transaction(inode);
737 	}
738 research:
739 
740 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
741 	if (retval == IO_ERROR) {
742 		retval = -EIO;
743 		goto failure;
744 	}
745 
746 	bh = get_last_bh(&path);
747 	ih = tp_item_head(&path);
748 	item = tp_item_body(&path);
749 	pos_in_item = path.pos_in_item;
750 
751 	fs_gen = get_generation(inode->i_sb);
752 	copy_item_head(&tmp_ih, ih);
753 
754 	if (allocation_needed
755 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
756 		/* we have to allocate block for the unformatted node */
757 		if (!th) {
758 			pathrelse(&path);
759 			goto start_trans;
760 		}
761 
762 		repeat =
763 		    _allocate_block(th, block, inode, &allocated_block_nr,
764 				    &path, create);
765 
766 		/*
767 		 * restart the transaction to give the journal a chance to free
768 		 * some blocks.  releases the path, so we have to go back to
769 		 * research if we succeed on the second try
770 		 */
771 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
772 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
773 			retval = restart_transaction(th, inode, &path);
774 			if (retval)
775 				goto failure;
776 			repeat =
777 			    _allocate_block(th, block, inode,
778 					    &allocated_block_nr, NULL, create);
779 
780 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
781 				goto research;
782 			}
783 			if (repeat == QUOTA_EXCEEDED)
784 				retval = -EDQUOT;
785 			else
786 				retval = -ENOSPC;
787 			goto failure;
788 		}
789 
790 		if (fs_changed(fs_gen, inode->i_sb)
791 		    && item_moved(&tmp_ih, &path)) {
792 			goto research;
793 		}
794 	}
795 
796 	if (indirect_item_found(retval, ih)) {
797 		b_blocknr_t unfm_ptr;
798 		/*
799 		 * 'block'-th block is in the file already (there is
800 		 * corresponding cell in some indirect item). But it may be
801 		 * zero unformatted node pointer (hole)
802 		 */
803 		unfm_ptr = get_block_num(item, pos_in_item);
804 		if (unfm_ptr == 0) {
805 			/* use allocated block to plug the hole */
806 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
807 			if (fs_changed(fs_gen, inode->i_sb)
808 			    && item_moved(&tmp_ih, &path)) {
809 				reiserfs_restore_prepared_buffer(inode->i_sb,
810 								 bh);
811 				goto research;
812 			}
813 			set_buffer_new(bh_result);
814 			if (buffer_dirty(bh_result)
815 			    && reiserfs_data_ordered(inode->i_sb))
816 				reiserfs_add_ordered_list(inode, bh_result);
817 			put_block_num(item, pos_in_item, allocated_block_nr);
818 			unfm_ptr = allocated_block_nr;
819 			journal_mark_dirty(th, bh);
820 			reiserfs_update_sd(th, inode);
821 		}
822 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
823 		pathrelse(&path);
824 		retval = 0;
825 		if (!dangle && th)
826 			retval = reiserfs_end_persistent_transaction(th);
827 
828 		reiserfs_write_unlock(inode->i_sb);
829 
830 		/*
831 		 * the item was found, so new blocks were not added to the file
832 		 * there is no need to make sure the inode is updated with this
833 		 * transaction
834 		 */
835 		return retval;
836 	}
837 
838 	if (!th) {
839 		pathrelse(&path);
840 		goto start_trans;
841 	}
842 
843 	/*
844 	 * desired position is not found or is in the direct item. We have
845 	 * to append file with holes up to 'block'-th block converting
846 	 * direct items to indirect one if necessary
847 	 */
848 	done = 0;
849 	do {
850 		if (is_statdata_le_ih(ih)) {
851 			__le32 unp = 0;
852 			struct cpu_key tmp_key;
853 
854 			/* indirect item has to be inserted */
855 			make_le_item_head(&tmp_ih, &key, version, 1,
856 					  TYPE_INDIRECT, UNFM_P_SIZE,
857 					  0 /* free_space */ );
858 
859 			/*
860 			 * we are going to add 'block'-th block to the file.
861 			 * Use allocated block for that
862 			 */
863 			if (cpu_key_k_offset(&key) == 1) {
864 				unp = cpu_to_le32(allocated_block_nr);
865 				set_block_dev_mapped(bh_result,
866 						     allocated_block_nr, inode);
867 				set_buffer_new(bh_result);
868 				done = 1;
869 			}
870 			tmp_key = key;	/* ;) */
871 			set_cpu_key_k_offset(&tmp_key, 1);
872 			PATH_LAST_POSITION(&path)++;
873 
874 			retval =
875 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
876 						 inode, (char *)&unp);
877 			if (retval) {
878 				reiserfs_free_block(th, inode,
879 						    allocated_block_nr, 1);
880 				/*
881 				 * retval == -ENOSPC, -EDQUOT or -EIO
882 				 * or -EEXIST
883 				 */
884 				goto failure;
885 			}
886 		} else if (is_direct_le_ih(ih)) {
887 			/* direct item has to be converted */
888 			loff_t tail_offset;
889 
890 			tail_offset =
891 			    ((le_ih_k_offset(ih) -
892 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
893 
894 			/*
895 			 * direct item we just found fits into block we have
896 			 * to map. Convert it into unformatted node: use
897 			 * bh_result for the conversion
898 			 */
899 			if (tail_offset == cpu_key_k_offset(&key)) {
900 				set_block_dev_mapped(bh_result,
901 						     allocated_block_nr, inode);
902 				unbh = bh_result;
903 				done = 1;
904 			} else {
905 				/*
906 				 * we have to pad file tail stored in direct
907 				 * item(s) up to block size and convert it
908 				 * to unformatted node. FIXME: this should
909 				 * also get into page cache
910 				 */
911 
912 				pathrelse(&path);
913 				/*
914 				 * ugly, but we can only end the transaction if
915 				 * we aren't nested
916 				 */
917 				BUG_ON(!th->t_refcount);
918 				if (th->t_refcount == 1) {
919 					retval =
920 					    reiserfs_end_persistent_transaction
921 					    (th);
922 					th = NULL;
923 					if (retval)
924 						goto failure;
925 				}
926 
927 				retval =
928 				    convert_tail_for_hole(inode, bh_result,
929 							  tail_offset);
930 				if (retval) {
931 					if (retval != -ENOSPC)
932 						reiserfs_error(inode->i_sb,
933 							"clm-6004",
934 							"convert tail failed "
935 							"inode %lu, error %d",
936 							inode->i_ino,
937 							retval);
938 					if (allocated_block_nr) {
939 						/*
940 						 * the bitmap, the super,
941 						 * and the stat data == 3
942 						 */
943 						if (!th)
944 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
945 						if (th)
946 							reiserfs_free_block(th,
947 									    inode,
948 									    allocated_block_nr,
949 									    1);
950 					}
951 					goto failure;
952 				}
953 				goto research;
954 			}
955 			retval =
956 			    direct2indirect(th, inode, &path, unbh,
957 					    tail_offset);
958 			if (retval) {
959 				reiserfs_unmap_buffer(unbh);
960 				reiserfs_free_block(th, inode,
961 						    allocated_block_nr, 1);
962 				goto failure;
963 			}
964 			/*
965 			 * it is important the set_buffer_uptodate is done
966 			 * after the direct2indirect.  The buffer might
967 			 * contain valid data newer than the data on disk
968 			 * (read by readpage, changed, and then sent here by
969 			 * writepage).  direct2indirect needs to know if unbh
970 			 * was already up to date, so it can decide if the
971 			 * data in unbh needs to be replaced with data from
972 			 * the disk
973 			 */
974 			set_buffer_uptodate(unbh);
975 
976 			/*
977 			 * unbh->b_page == NULL in case of DIRECT_IO request,
978 			 * this means buffer will disappear shortly, so it
979 			 * should not be added to
980 			 */
981 			if (unbh->b_page) {
982 				/*
983 				 * we've converted the tail, so we must
984 				 * flush unbh before the transaction commits
985 				 */
986 				reiserfs_add_tail_list(inode, unbh);
987 
988 				/*
989 				 * mark it dirty now to prevent commit_write
990 				 * from adding this buffer to the inode's
991 				 * dirty buffer list
992 				 */
993 				/*
994 				 * AKPM: changed __mark_buffer_dirty to
995 				 * mark_buffer_dirty().  It's still atomic,
996 				 * but it sets the page dirty too, which makes
997 				 * it eligible for writeback at any time by the
998 				 * VM (which was also the case with
999 				 * __mark_buffer_dirty())
1000 				 */
1001 				mark_buffer_dirty(unbh);
1002 			}
1003 		} else {
1004 			/*
1005 			 * append indirect item with holes if needed, when
1006 			 * appending pointer to 'block'-th block use block,
1007 			 * which is already allocated
1008 			 */
1009 			struct cpu_key tmp_key;
1010 			/*
1011 			 * We use this in case we need to allocate
1012 			 * only one block which is a fastpath
1013 			 */
1014 			unp_t unf_single = 0;
1015 			unp_t *un;
1016 			__u64 max_to_insert =
1017 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018 			    UNFM_P_SIZE;
1019 			__u64 blocks_needed;
1020 
1021 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022 			       "vs-804: invalid position for append");
1023 			/*
1024 			 * indirect item has to be appended,
1025 			 * set up key of that position
1026 			 * (key type is unimportant)
1027 			 */
1028 			make_cpu_key(&tmp_key, inode,
1029 				     le_key_k_offset(version,
1030 						     &ih->ih_key) +
1031 				     op_bytes_number(ih,
1032 						     inode->i_sb->s_blocksize),
1033 				     TYPE_INDIRECT, 3);
1034 
1035 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036 			       "green-805: invalid offset");
1037 			blocks_needed =
1038 			    1 +
1039 			    ((cpu_key_k_offset(&key) -
1040 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041 			     s_blocksize_bits);
1042 
1043 			if (blocks_needed == 1) {
1044 				un = &unf_single;
1045 			} else {
1046 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1047 				if (!un) {
1048 					un = &unf_single;
1049 					blocks_needed = 1;
1050 					max_to_insert = 0;
1051 				}
1052 			}
1053 			if (blocks_needed <= max_to_insert) {
1054 				/*
1055 				 * we are going to add target block to
1056 				 * the file. Use allocated block for that
1057 				 */
1058 				un[blocks_needed - 1] =
1059 				    cpu_to_le32(allocated_block_nr);
1060 				set_block_dev_mapped(bh_result,
1061 						     allocated_block_nr, inode);
1062 				set_buffer_new(bh_result);
1063 				done = 1;
1064 			} else {
1065 				/* paste hole to the indirect item */
1066 				/*
1067 				 * If kmalloc failed, max_to_insert becomes
1068 				 * zero and it means we only have space for
1069 				 * one block
1070 				 */
1071 				blocks_needed =
1072 				    max_to_insert ? max_to_insert : 1;
1073 			}
1074 			retval =
1075 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076 						     (char *)un,
1077 						     UNFM_P_SIZE *
1078 						     blocks_needed);
1079 
1080 			if (blocks_needed != 1)
1081 				kfree(un);
1082 
1083 			if (retval) {
1084 				reiserfs_free_block(th, inode,
1085 						    allocated_block_nr, 1);
1086 				goto failure;
1087 			}
1088 			if (!done) {
1089 				/*
1090 				 * We need to mark new file size in case
1091 				 * this function will be interrupted/aborted
1092 				 * later on. And we may do this only for
1093 				 * holes.
1094 				 */
1095 				inode->i_size +=
1096 				    inode->i_sb->s_blocksize * blocks_needed;
1097 			}
1098 		}
1099 
1100 		if (done == 1)
1101 			break;
1102 
1103 		/*
1104 		 * this loop could log more blocks than we had originally
1105 		 * asked for.  So, we have to allow the transaction to end
1106 		 * if it is too big or too full.  Update the inode so things
1107 		 * are consistent if we crash before the function returns
1108 		 * release the path so that anybody waiting on the path before
1109 		 * ending their transaction will be able to continue.
1110 		 */
1111 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112 			retval = restart_transaction(th, inode, &path);
1113 			if (retval)
1114 				goto failure;
1115 		}
1116 		/*
1117 		 * inserting indirect pointers for a hole can take a
1118 		 * long time.  reschedule if needed and also release the write
1119 		 * lock for others.
1120 		 */
1121 		reiserfs_cond_resched(inode->i_sb);
1122 
1123 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124 		if (retval == IO_ERROR) {
1125 			retval = -EIO;
1126 			goto failure;
1127 		}
1128 		if (retval == POSITION_FOUND) {
1129 			reiserfs_warning(inode->i_sb, "vs-825",
1130 					 "%K should not be found", &key);
1131 			retval = -EEXIST;
1132 			if (allocated_block_nr)
1133 				reiserfs_free_block(th, inode,
1134 						    allocated_block_nr, 1);
1135 			pathrelse(&path);
1136 			goto failure;
1137 		}
1138 		bh = get_last_bh(&path);
1139 		ih = tp_item_head(&path);
1140 		item = tp_item_body(&path);
1141 		pos_in_item = path.pos_in_item;
1142 	} while (1);
1143 
1144 	retval = 0;
1145 
1146 failure:
1147 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1148 		int err;
1149 		if (th->t_trans_id)
1150 			reiserfs_update_sd(th, inode);
1151 		err = reiserfs_end_persistent_transaction(th);
1152 		if (err)
1153 			retval = err;
1154 	}
1155 
1156 	reiserfs_write_unlock(inode->i_sb);
1157 	reiserfs_check_path(&path);
1158 	return retval;
1159 }
1160 
1161 static int
1162 reiserfs_readpages(struct file *file, struct address_space *mapping,
1163 		   struct list_head *pages, unsigned nr_pages)
1164 {
1165 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1166 }
1167 
1168 /*
1169  * Compute real number of used bytes by file
1170  * Following three functions can go away when we'll have enough space in
1171  * stat item
1172  */
1173 static int real_space_diff(struct inode *inode, int sd_size)
1174 {
1175 	int bytes;
1176 	loff_t blocksize = inode->i_sb->s_blocksize;
1177 
1178 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179 		return sd_size;
1180 
1181 	/*
1182 	 * End of file is also in full block with indirect reference, so round
1183 	 * up to the next block.
1184 	 *
1185 	 * there is just no way to know if the tail is actually packed
1186 	 * on the file, so we have to assume it isn't.  When we pack the
1187 	 * tail, we add 4 bytes to pretend there really is an unformatted
1188 	 * node pointer
1189 	 */
1190 	bytes =
1191 	    ((inode->i_size +
1192 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193 	    sd_size;
1194 	return bytes;
1195 }
1196 
1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198 					int sd_size)
1199 {
1200 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201 		return inode->i_size +
1202 		    (loff_t) (real_space_diff(inode, sd_size));
1203 	}
1204 	return ((loff_t) real_space_diff(inode, sd_size)) +
1205 	    (((loff_t) blocks) << 9);
1206 }
1207 
1208 /* Compute number of blocks used by file in ReiserFS counting */
1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210 {
1211 	loff_t bytes = inode_get_bytes(inode);
1212 	loff_t real_space = real_space_diff(inode, sd_size);
1213 
1214 	/* keeps fsck and non-quota versions of reiserfs happy */
1215 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216 		bytes += (loff_t) 511;
1217 	}
1218 
1219 	/*
1220 	 * files from before the quota patch might i_blocks such that
1221 	 * bytes < real_space.  Deal with that here to prevent it from
1222 	 * going negative.
1223 	 */
1224 	if (bytes < real_space)
1225 		return 0;
1226 	return (bytes - real_space) >> 9;
1227 }
1228 
1229 /*
1230  * BAD: new directories have stat data of new type and all other items
1231  * of old type. Version stored in the inode says about body items, so
1232  * in update_stat_data we can not rely on inode, but have to check
1233  * item version directly
1234  */
1235 
1236 /* called by read_locked_inode */
1237 static void init_inode(struct inode *inode, struct treepath *path)
1238 {
1239 	struct buffer_head *bh;
1240 	struct item_head *ih;
1241 	__u32 rdev;
1242 
1243 	bh = PATH_PLAST_BUFFER(path);
1244 	ih = tp_item_head(path);
1245 
1246 	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247 
1248 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249 	REISERFS_I(inode)->i_flags = 0;
1250 	REISERFS_I(inode)->i_prealloc_block = 0;
1251 	REISERFS_I(inode)->i_prealloc_count = 0;
1252 	REISERFS_I(inode)->i_trans_id = 0;
1253 	REISERFS_I(inode)->i_jl = NULL;
1254 	reiserfs_init_xattr_rwsem(inode);
1255 
1256 	if (stat_data_v1(ih)) {
1257 		struct stat_data_v1 *sd =
1258 		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259 		unsigned long blocks;
1260 
1261 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262 		set_inode_sd_version(inode, STAT_DATA_V1);
1263 		inode->i_mode = sd_v1_mode(sd);
1264 		set_nlink(inode, sd_v1_nlink(sd));
1265 		i_uid_write(inode, sd_v1_uid(sd));
1266 		i_gid_write(inode, sd_v1_gid(sd));
1267 		inode->i_size = sd_v1_size(sd);
1268 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271 		inode->i_atime.tv_nsec = 0;
1272 		inode->i_ctime.tv_nsec = 0;
1273 		inode->i_mtime.tv_nsec = 0;
1274 
1275 		inode->i_blocks = sd_v1_blocks(sd);
1276 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277 		blocks = (inode->i_size + 511) >> 9;
1278 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279 
1280 		/*
1281 		 * there was a bug in <=3.5.23 when i_blocks could take
1282 		 * negative values. Starting from 3.5.17 this value could
1283 		 * even be stored in stat data. For such files we set
1284 		 * i_blocks based on file size. Just 2 notes: this can be
1285 		 * wrong for sparse files. On-disk value will be only
1286 		 * updated if file's inode will ever change
1287 		 */
1288 		if (inode->i_blocks > blocks) {
1289 			inode->i_blocks = blocks;
1290 		}
1291 
1292 		rdev = sd_v1_rdev(sd);
1293 		REISERFS_I(inode)->i_first_direct_byte =
1294 		    sd_v1_first_direct_byte(sd);
1295 
1296 		/*
1297 		 * an early bug in the quota code can give us an odd
1298 		 * number for the block count.  This is incorrect, fix it here.
1299 		 */
1300 		if (inode->i_blocks & 1) {
1301 			inode->i_blocks++;
1302 		}
1303 		inode_set_bytes(inode,
1304 				to_real_used_space(inode, inode->i_blocks,
1305 						   SD_V1_SIZE));
1306 		/*
1307 		 * nopack is initially zero for v1 objects. For v2 objects,
1308 		 * nopack is initialised from sd_attrs
1309 		 */
1310 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311 	} else {
1312 		/*
1313 		 * new stat data found, but object may have old items
1314 		 * (directories and symlinks)
1315 		 */
1316 		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317 
1318 		inode->i_mode = sd_v2_mode(sd);
1319 		set_nlink(inode, sd_v2_nlink(sd));
1320 		i_uid_write(inode, sd_v2_uid(sd));
1321 		inode->i_size = sd_v2_size(sd);
1322 		i_gid_write(inode, sd_v2_gid(sd));
1323 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326 		inode->i_ctime.tv_nsec = 0;
1327 		inode->i_mtime.tv_nsec = 0;
1328 		inode->i_atime.tv_nsec = 0;
1329 		inode->i_blocks = sd_v2_blocks(sd);
1330 		rdev = sd_v2_rdev(sd);
1331 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332 			inode->i_generation =
1333 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334 		else
1335 			inode->i_generation = sd_v2_generation(sd);
1336 
1337 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339 		else
1340 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341 		REISERFS_I(inode)->i_first_direct_byte = 0;
1342 		set_inode_sd_version(inode, STAT_DATA_V2);
1343 		inode_set_bytes(inode,
1344 				to_real_used_space(inode, inode->i_blocks,
1345 						   SD_V2_SIZE));
1346 		/*
1347 		 * read persistent inode attributes from sd and initialise
1348 		 * generic inode flags from them
1349 		 */
1350 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352 	}
1353 
1354 	pathrelse(path);
1355 	if (S_ISREG(inode->i_mode)) {
1356 		inode->i_op = &reiserfs_file_inode_operations;
1357 		inode->i_fop = &reiserfs_file_operations;
1358 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359 	} else if (S_ISDIR(inode->i_mode)) {
1360 		inode->i_op = &reiserfs_dir_inode_operations;
1361 		inode->i_fop = &reiserfs_dir_operations;
1362 	} else if (S_ISLNK(inode->i_mode)) {
1363 		inode->i_op = &reiserfs_symlink_inode_operations;
1364 		inode_nohighmem(inode);
1365 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366 	} else {
1367 		inode->i_blocks = 0;
1368 		inode->i_op = &reiserfs_special_inode_operations;
1369 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370 	}
1371 }
1372 
1373 /* update new stat data with inode fields */
1374 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375 {
1376 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1377 	__u16 flags;
1378 
1379 	set_sd_v2_mode(sd_v2, inode->i_mode);
1380 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382 	set_sd_v2_size(sd_v2, size);
1383 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390 	else
1391 		set_sd_v2_generation(sd_v2, inode->i_generation);
1392 	flags = REISERFS_I(inode)->i_attrs;
1393 	i_attrs_to_sd_attrs(inode, &flags);
1394 	set_sd_v2_attrs(sd_v2, flags);
1395 }
1396 
1397 /* used to copy inode's fields to old stat data */
1398 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1399 {
1400 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1401 
1402 	set_sd_v1_mode(sd_v1, inode->i_mode);
1403 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1404 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1405 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1406 	set_sd_v1_size(sd_v1, size);
1407 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1408 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1409 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1410 
1411 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1412 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1413 	else
1414 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1415 
1416 	/* Sigh. i_first_direct_byte is back */
1417 	set_sd_v1_first_direct_byte(sd_v1,
1418 				    REISERFS_I(inode)->i_first_direct_byte);
1419 }
1420 
1421 /*
1422  * NOTE, you must prepare the buffer head before sending it here,
1423  * and then log it after the call
1424  */
1425 static void update_stat_data(struct treepath *path, struct inode *inode,
1426 			     loff_t size)
1427 {
1428 	struct buffer_head *bh;
1429 	struct item_head *ih;
1430 
1431 	bh = PATH_PLAST_BUFFER(path);
1432 	ih = tp_item_head(path);
1433 
1434 	if (!is_statdata_le_ih(ih))
1435 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1436 			       INODE_PKEY(inode), ih);
1437 
1438 	/* path points to old stat data */
1439 	if (stat_data_v1(ih)) {
1440 		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1441 	} else {
1442 		inode2sd(ih_item_body(bh, ih), inode, size);
1443 	}
1444 
1445 	return;
1446 }
1447 
1448 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1449 			     struct inode *inode, loff_t size)
1450 {
1451 	struct cpu_key key;
1452 	INITIALIZE_PATH(path);
1453 	struct buffer_head *bh;
1454 	int fs_gen;
1455 	struct item_head *ih, tmp_ih;
1456 	int retval;
1457 
1458 	BUG_ON(!th->t_trans_id);
1459 
1460 	/* key type is unimportant */
1461 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1462 
1463 	for (;;) {
1464 		int pos;
1465 		/* look for the object's stat data */
1466 		retval = search_item(inode->i_sb, &key, &path);
1467 		if (retval == IO_ERROR) {
1468 			reiserfs_error(inode->i_sb, "vs-13050",
1469 				       "i/o failure occurred trying to "
1470 				       "update %K stat data", &key);
1471 			return;
1472 		}
1473 		if (retval == ITEM_NOT_FOUND) {
1474 			pos = PATH_LAST_POSITION(&path);
1475 			pathrelse(&path);
1476 			if (inode->i_nlink == 0) {
1477 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1478 				return;
1479 			}
1480 			reiserfs_warning(inode->i_sb, "vs-13060",
1481 					 "stat data of object %k (nlink == %d) "
1482 					 "not found (pos %d)",
1483 					 INODE_PKEY(inode), inode->i_nlink,
1484 					 pos);
1485 			reiserfs_check_path(&path);
1486 			return;
1487 		}
1488 
1489 		/*
1490 		 * sigh, prepare_for_journal might schedule.  When it
1491 		 * schedules the FS might change.  We have to detect that,
1492 		 * and loop back to the search if the stat data item has moved
1493 		 */
1494 		bh = get_last_bh(&path);
1495 		ih = tp_item_head(&path);
1496 		copy_item_head(&tmp_ih, ih);
1497 		fs_gen = get_generation(inode->i_sb);
1498 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1499 
1500 		/* Stat_data item has been moved after scheduling. */
1501 		if (fs_changed(fs_gen, inode->i_sb)
1502 		    && item_moved(&tmp_ih, &path)) {
1503 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1504 			continue;
1505 		}
1506 		break;
1507 	}
1508 	update_stat_data(&path, inode, size);
1509 	journal_mark_dirty(th, bh);
1510 	pathrelse(&path);
1511 	return;
1512 }
1513 
1514 /*
1515  * reiserfs_read_locked_inode is called to read the inode off disk, and it
1516  * does a make_bad_inode when things go wrong.  But, we need to make sure
1517  * and clear the key in the private portion of the inode, otherwise a
1518  * corresponding iput might try to delete whatever object the inode last
1519  * represented.
1520  */
1521 static void reiserfs_make_bad_inode(struct inode *inode)
1522 {
1523 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1524 	make_bad_inode(inode);
1525 }
1526 
1527 /*
1528  * initially this function was derived from minix or ext2's analog and
1529  * evolved as the prototype did
1530  */
1531 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1532 {
1533 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1534 	inode->i_ino = args->objectid;
1535 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1536 	return 0;
1537 }
1538 
1539 /*
1540  * looks for stat data in the tree, and fills up the fields of in-core
1541  * inode stat data fields
1542  */
1543 void reiserfs_read_locked_inode(struct inode *inode,
1544 				struct reiserfs_iget_args *args)
1545 {
1546 	INITIALIZE_PATH(path_to_sd);
1547 	struct cpu_key key;
1548 	unsigned long dirino;
1549 	int retval;
1550 
1551 	dirino = args->dirid;
1552 
1553 	/*
1554 	 * set version 1, version 2 could be used too, because stat data
1555 	 * key is the same in both versions
1556 	 */
1557 	key.version = KEY_FORMAT_3_5;
1558 	key.on_disk_key.k_dir_id = dirino;
1559 	key.on_disk_key.k_objectid = inode->i_ino;
1560 	key.on_disk_key.k_offset = 0;
1561 	key.on_disk_key.k_type = 0;
1562 
1563 	/* look for the object's stat data */
1564 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1565 	if (retval == IO_ERROR) {
1566 		reiserfs_error(inode->i_sb, "vs-13070",
1567 			       "i/o failure occurred trying to find "
1568 			       "stat data of %K", &key);
1569 		reiserfs_make_bad_inode(inode);
1570 		return;
1571 	}
1572 
1573 	/* a stale NFS handle can trigger this without it being an error */
1574 	if (retval != ITEM_FOUND) {
1575 		pathrelse(&path_to_sd);
1576 		reiserfs_make_bad_inode(inode);
1577 		clear_nlink(inode);
1578 		return;
1579 	}
1580 
1581 	init_inode(inode, &path_to_sd);
1582 
1583 	/*
1584 	 * It is possible that knfsd is trying to access inode of a file
1585 	 * that is being removed from the disk by some other thread. As we
1586 	 * update sd on unlink all that is required is to check for nlink
1587 	 * here. This bug was first found by Sizif when debugging
1588 	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1589 	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1590 
1591 	 * More logical fix would require changes in fs/inode.c:iput() to
1592 	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1593 	 * in iget() to return NULL if I_FREEING inode is found in
1594 	 * hash-table.
1595 	 */
1596 
1597 	/*
1598 	 * Currently there is one place where it's ok to meet inode with
1599 	 * nlink==0: processing of open-unlinked and half-truncated files
1600 	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1601 	 */
1602 	if ((inode->i_nlink == 0) &&
1603 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1604 		reiserfs_warning(inode->i_sb, "vs-13075",
1605 				 "dead inode read from disk %K. "
1606 				 "This is likely to be race with knfsd. Ignore",
1607 				 &key);
1608 		reiserfs_make_bad_inode(inode);
1609 	}
1610 
1611 	/* init inode should be relsing */
1612 	reiserfs_check_path(&path_to_sd);
1613 
1614 	/*
1615 	 * Stat data v1 doesn't support ACLs.
1616 	 */
1617 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1618 		cache_no_acl(inode);
1619 }
1620 
1621 /*
1622  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1623  *
1624  * @inode:    inode from hash table to check
1625  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1626  *
1627  * This function is called by iget5_locked() to distinguish reiserfs inodes
1628  * having the same inode numbers. Such inodes can only exist due to some
1629  * error condition. One of them should be bad. Inodes with identical
1630  * inode numbers (objectids) are distinguished by parent directory ids.
1631  *
1632  */
1633 int reiserfs_find_actor(struct inode *inode, void *opaque)
1634 {
1635 	struct reiserfs_iget_args *args;
1636 
1637 	args = opaque;
1638 	/* args is already in CPU order */
1639 	return (inode->i_ino == args->objectid) &&
1640 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1641 }
1642 
1643 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1644 {
1645 	struct inode *inode;
1646 	struct reiserfs_iget_args args;
1647 	int depth;
1648 
1649 	args.objectid = key->on_disk_key.k_objectid;
1650 	args.dirid = key->on_disk_key.k_dir_id;
1651 	depth = reiserfs_write_unlock_nested(s);
1652 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1653 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1654 			     (void *)(&args));
1655 	reiserfs_write_lock_nested(s, depth);
1656 	if (!inode)
1657 		return ERR_PTR(-ENOMEM);
1658 
1659 	if (inode->i_state & I_NEW) {
1660 		reiserfs_read_locked_inode(inode, &args);
1661 		unlock_new_inode(inode);
1662 	}
1663 
1664 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1665 		/* either due to i/o error or a stale NFS handle */
1666 		iput(inode);
1667 		inode = NULL;
1668 	}
1669 	return inode;
1670 }
1671 
1672 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1673 	u32 objectid, u32 dir_id, u32 generation)
1674 
1675 {
1676 	struct cpu_key key;
1677 	struct inode *inode;
1678 
1679 	key.on_disk_key.k_objectid = objectid;
1680 	key.on_disk_key.k_dir_id = dir_id;
1681 	reiserfs_write_lock(sb);
1682 	inode = reiserfs_iget(sb, &key);
1683 	if (inode && !IS_ERR(inode) && generation != 0 &&
1684 	    generation != inode->i_generation) {
1685 		iput(inode);
1686 		inode = NULL;
1687 	}
1688 	reiserfs_write_unlock(sb);
1689 
1690 	return d_obtain_alias(inode);
1691 }
1692 
1693 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1694 		int fh_len, int fh_type)
1695 {
1696 	/*
1697 	 * fhtype happens to reflect the number of u32s encoded.
1698 	 * due to a bug in earlier code, fhtype might indicate there
1699 	 * are more u32s then actually fitted.
1700 	 * so if fhtype seems to be more than len, reduce fhtype.
1701 	 * Valid types are:
1702 	 *   2 - objectid + dir_id - legacy support
1703 	 *   3 - objectid + dir_id + generation
1704 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1705 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1706 	 *   6 - as above plus generation of directory
1707 	 * 6 does not fit in NFSv2 handles
1708 	 */
1709 	if (fh_type > fh_len) {
1710 		if (fh_type != 6 || fh_len != 5)
1711 			reiserfs_warning(sb, "reiserfs-13077",
1712 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1713 				fh_type, fh_len);
1714 		fh_type = fh_len;
1715 	}
1716 	if (fh_len < 2)
1717 		return NULL;
1718 
1719 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1720 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1721 }
1722 
1723 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1724 		int fh_len, int fh_type)
1725 {
1726 	if (fh_type > fh_len)
1727 		fh_type = fh_len;
1728 	if (fh_type < 4)
1729 		return NULL;
1730 
1731 	return reiserfs_get_dentry(sb,
1732 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1733 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1734 		(fh_type == 6) ? fid->raw[5] : 0);
1735 }
1736 
1737 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1738 		       struct inode *parent)
1739 {
1740 	int maxlen = *lenp;
1741 
1742 	if (parent && (maxlen < 5)) {
1743 		*lenp = 5;
1744 		return FILEID_INVALID;
1745 	} else if (maxlen < 3) {
1746 		*lenp = 3;
1747 		return FILEID_INVALID;
1748 	}
1749 
1750 	data[0] = inode->i_ino;
1751 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1752 	data[2] = inode->i_generation;
1753 	*lenp = 3;
1754 	if (parent) {
1755 		data[3] = parent->i_ino;
1756 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1757 		*lenp = 5;
1758 		if (maxlen >= 6) {
1759 			data[5] = parent->i_generation;
1760 			*lenp = 6;
1761 		}
1762 	}
1763 	return *lenp;
1764 }
1765 
1766 /*
1767  * looks for stat data, then copies fields to it, marks the buffer
1768  * containing stat data as dirty
1769  */
1770 /*
1771  * reiserfs inodes are never really dirty, since the dirty inode call
1772  * always logs them.  This call allows the VFS inode marking routines
1773  * to properly mark inodes for datasync and such, but only actually
1774  * does something when called for a synchronous update.
1775  */
1776 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1777 {
1778 	struct reiserfs_transaction_handle th;
1779 	int jbegin_count = 1;
1780 
1781 	if (inode->i_sb->s_flags & MS_RDONLY)
1782 		return -EROFS;
1783 	/*
1784 	 * memory pressure can sometimes initiate write_inode calls with
1785 	 * sync == 1,
1786 	 * these cases are just when the system needs ram, not when the
1787 	 * inode needs to reach disk for safety, and they can safely be
1788 	 * ignored because the altered inode has already been logged.
1789 	 */
1790 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1791 		reiserfs_write_lock(inode->i_sb);
1792 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1793 			reiserfs_update_sd(&th, inode);
1794 			journal_end_sync(&th);
1795 		}
1796 		reiserfs_write_unlock(inode->i_sb);
1797 	}
1798 	return 0;
1799 }
1800 
1801 /*
1802  * stat data of new object is inserted already, this inserts the item
1803  * containing "." and ".." entries
1804  */
1805 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1806 				  struct inode *inode,
1807 				  struct item_head *ih, struct treepath *path,
1808 				  struct inode *dir)
1809 {
1810 	struct super_block *sb = th->t_super;
1811 	char empty_dir[EMPTY_DIR_SIZE];
1812 	char *body = empty_dir;
1813 	struct cpu_key key;
1814 	int retval;
1815 
1816 	BUG_ON(!th->t_trans_id);
1817 
1818 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1819 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1820 		      TYPE_DIRENTRY, 3 /*key length */ );
1821 
1822 	/*
1823 	 * compose item head for new item. Directories consist of items of
1824 	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1825 	 * is done by reiserfs_new_inode
1826 	 */
1827 	if (old_format_only(sb)) {
1828 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1829 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1830 
1831 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1832 				       ih->ih_key.k_objectid,
1833 				       INODE_PKEY(dir)->k_dir_id,
1834 				       INODE_PKEY(dir)->k_objectid);
1835 	} else {
1836 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1837 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1838 
1839 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1840 				    ih->ih_key.k_objectid,
1841 				    INODE_PKEY(dir)->k_dir_id,
1842 				    INODE_PKEY(dir)->k_objectid);
1843 	}
1844 
1845 	/* look for place in the tree for new item */
1846 	retval = search_item(sb, &key, path);
1847 	if (retval == IO_ERROR) {
1848 		reiserfs_error(sb, "vs-13080",
1849 			       "i/o failure occurred creating new directory");
1850 		return -EIO;
1851 	}
1852 	if (retval == ITEM_FOUND) {
1853 		pathrelse(path);
1854 		reiserfs_warning(sb, "vs-13070",
1855 				 "object with this key exists (%k)",
1856 				 &(ih->ih_key));
1857 		return -EEXIST;
1858 	}
1859 
1860 	/* insert item, that is empty directory item */
1861 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1862 }
1863 
1864 /*
1865  * stat data of object has been inserted, this inserts the item
1866  * containing the body of symlink
1867  */
1868 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1869 				struct inode *inode,
1870 				struct item_head *ih,
1871 				struct treepath *path, const char *symname,
1872 				int item_len)
1873 {
1874 	struct super_block *sb = th->t_super;
1875 	struct cpu_key key;
1876 	int retval;
1877 
1878 	BUG_ON(!th->t_trans_id);
1879 
1880 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1881 		      le32_to_cpu(ih->ih_key.k_dir_id),
1882 		      le32_to_cpu(ih->ih_key.k_objectid),
1883 		      1, TYPE_DIRECT, 3 /*key length */ );
1884 
1885 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1886 			  0 /*free_space */ );
1887 
1888 	/* look for place in the tree for new item */
1889 	retval = search_item(sb, &key, path);
1890 	if (retval == IO_ERROR) {
1891 		reiserfs_error(sb, "vs-13080",
1892 			       "i/o failure occurred creating new symlink");
1893 		return -EIO;
1894 	}
1895 	if (retval == ITEM_FOUND) {
1896 		pathrelse(path);
1897 		reiserfs_warning(sb, "vs-13080",
1898 				 "object with this key exists (%k)",
1899 				 &(ih->ih_key));
1900 		return -EEXIST;
1901 	}
1902 
1903 	/* insert item, that is body of symlink */
1904 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1905 }
1906 
1907 /*
1908  * inserts the stat data into the tree, and then calls
1909  * reiserfs_new_directory (to insert ".", ".." item if new object is
1910  * directory) or reiserfs_new_symlink (to insert symlink body if new
1911  * object is symlink) or nothing (if new object is regular file)
1912 
1913  * NOTE! uid and gid must already be set in the inode.  If we return
1914  * non-zero due to an error, we have to drop the quota previously allocated
1915  * for the fresh inode.  This can only be done outside a transaction, so
1916  * if we return non-zero, we also end the transaction.
1917  *
1918  * @th: active transaction handle
1919  * @dir: parent directory for new inode
1920  * @mode: mode of new inode
1921  * @symname: symlink contents if inode is symlink
1922  * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1923  *         symlinks
1924  * @inode: inode to be filled
1925  * @security: optional security context to associate with this inode
1926  */
1927 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1928 		       struct inode *dir, umode_t mode, const char *symname,
1929 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1930 		          strlen (symname) for symlinks) */
1931 		       loff_t i_size, struct dentry *dentry,
1932 		       struct inode *inode,
1933 		       struct reiserfs_security_handle *security)
1934 {
1935 	struct super_block *sb = dir->i_sb;
1936 	struct reiserfs_iget_args args;
1937 	INITIALIZE_PATH(path_to_key);
1938 	struct cpu_key key;
1939 	struct item_head ih;
1940 	struct stat_data sd;
1941 	int retval;
1942 	int err;
1943 	int depth;
1944 
1945 	BUG_ON(!th->t_trans_id);
1946 
1947 	depth = reiserfs_write_unlock_nested(sb);
1948 	err = dquot_alloc_inode(inode);
1949 	reiserfs_write_lock_nested(sb, depth);
1950 	if (err)
1951 		goto out_end_trans;
1952 	if (!dir->i_nlink) {
1953 		err = -EPERM;
1954 		goto out_bad_inode;
1955 	}
1956 
1957 	/* item head of new item */
1958 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1959 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1960 	if (!ih.ih_key.k_objectid) {
1961 		err = -ENOMEM;
1962 		goto out_bad_inode;
1963 	}
1964 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1965 	if (old_format_only(sb))
1966 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1967 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1968 	else
1969 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1970 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1971 	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1972 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1973 
1974 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1975 	err = insert_inode_locked4(inode, args.objectid,
1976 			     reiserfs_find_actor, &args);
1977 	reiserfs_write_lock_nested(inode->i_sb, depth);
1978 	if (err) {
1979 		err = -EINVAL;
1980 		goto out_bad_inode;
1981 	}
1982 
1983 	if (old_format_only(sb))
1984 		/*
1985 		 * not a perfect generation count, as object ids can be reused,
1986 		 * but this is as good as reiserfs can do right now.
1987 		 * note that the private part of inode isn't filled in yet,
1988 		 * we have to use the directory.
1989 		 */
1990 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1991 	else
1992 #if defined( USE_INODE_GENERATION_COUNTER )
1993 		inode->i_generation =
1994 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1995 #else
1996 		inode->i_generation = ++event;
1997 #endif
1998 
1999 	/* fill stat data */
2000 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
2001 
2002 	/* uid and gid must already be set by the caller for quota init */
2003 
2004 	/* symlink cannot be immutable or append only, right? */
2005 	if (S_ISLNK(inode->i_mode))
2006 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2007 
2008 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2009 	inode->i_size = i_size;
2010 	inode->i_blocks = 0;
2011 	inode->i_bytes = 0;
2012 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2013 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2014 
2015 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2016 	REISERFS_I(inode)->i_flags = 0;
2017 	REISERFS_I(inode)->i_prealloc_block = 0;
2018 	REISERFS_I(inode)->i_prealloc_count = 0;
2019 	REISERFS_I(inode)->i_trans_id = 0;
2020 	REISERFS_I(inode)->i_jl = NULL;
2021 	REISERFS_I(inode)->i_attrs =
2022 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2023 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2024 	reiserfs_init_xattr_rwsem(inode);
2025 
2026 	/* key to search for correct place for new stat data */
2027 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2028 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2029 		      TYPE_STAT_DATA, 3 /*key length */ );
2030 
2031 	/* find proper place for inserting of stat data */
2032 	retval = search_item(sb, &key, &path_to_key);
2033 	if (retval == IO_ERROR) {
2034 		err = -EIO;
2035 		goto out_bad_inode;
2036 	}
2037 	if (retval == ITEM_FOUND) {
2038 		pathrelse(&path_to_key);
2039 		err = -EEXIST;
2040 		goto out_bad_inode;
2041 	}
2042 	if (old_format_only(sb)) {
2043 		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2044 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2045 			pathrelse(&path_to_key);
2046 			err = -EINVAL;
2047 			goto out_bad_inode;
2048 		}
2049 		inode2sd_v1(&sd, inode, inode->i_size);
2050 	} else {
2051 		inode2sd(&sd, inode, inode->i_size);
2052 	}
2053 	/*
2054 	 * store in in-core inode the key of stat data and version all
2055 	 * object items will have (directory items will have old offset
2056 	 * format, other new objects will consist of new items)
2057 	 */
2058 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2059 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2060 	else
2061 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2062 	if (old_format_only(sb))
2063 		set_inode_sd_version(inode, STAT_DATA_V1);
2064 	else
2065 		set_inode_sd_version(inode, STAT_DATA_V2);
2066 
2067 	/* insert the stat data into the tree */
2068 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2069 	if (REISERFS_I(dir)->new_packing_locality)
2070 		th->displace_new_blocks = 1;
2071 #endif
2072 	retval =
2073 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2074 				 (char *)(&sd));
2075 	if (retval) {
2076 		err = retval;
2077 		reiserfs_check_path(&path_to_key);
2078 		goto out_bad_inode;
2079 	}
2080 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2081 	if (!th->displace_new_blocks)
2082 		REISERFS_I(dir)->new_packing_locality = 0;
2083 #endif
2084 	if (S_ISDIR(mode)) {
2085 		/* insert item with "." and ".." */
2086 		retval =
2087 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2088 	}
2089 
2090 	if (S_ISLNK(mode)) {
2091 		/* insert body of symlink */
2092 		if (!old_format_only(sb))
2093 			i_size = ROUND_UP(i_size);
2094 		retval =
2095 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2096 					 i_size);
2097 	}
2098 	if (retval) {
2099 		err = retval;
2100 		reiserfs_check_path(&path_to_key);
2101 		journal_end(th);
2102 		goto out_inserted_sd;
2103 	}
2104 
2105 	if (reiserfs_posixacl(inode->i_sb)) {
2106 		reiserfs_write_unlock(inode->i_sb);
2107 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2108 		reiserfs_write_lock(inode->i_sb);
2109 		if (retval) {
2110 			err = retval;
2111 			reiserfs_check_path(&path_to_key);
2112 			journal_end(th);
2113 			goto out_inserted_sd;
2114 		}
2115 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
2116 		reiserfs_warning(inode->i_sb, "jdm-13090",
2117 				 "ACLs aren't enabled in the fs, "
2118 				 "but vfs thinks they are!");
2119 	} else if (IS_PRIVATE(dir))
2120 		inode->i_flags |= S_PRIVATE;
2121 
2122 	if (security->name) {
2123 		reiserfs_write_unlock(inode->i_sb);
2124 		retval = reiserfs_security_write(th, inode, security);
2125 		reiserfs_write_lock(inode->i_sb);
2126 		if (retval) {
2127 			err = retval;
2128 			reiserfs_check_path(&path_to_key);
2129 			retval = journal_end(th);
2130 			if (retval)
2131 				err = retval;
2132 			goto out_inserted_sd;
2133 		}
2134 	}
2135 
2136 	reiserfs_update_sd(th, inode);
2137 	reiserfs_check_path(&path_to_key);
2138 
2139 	return 0;
2140 
2141 out_bad_inode:
2142 	/* Invalidate the object, nothing was inserted yet */
2143 	INODE_PKEY(inode)->k_objectid = 0;
2144 
2145 	/* Quota change must be inside a transaction for journaling */
2146 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2147 	dquot_free_inode(inode);
2148 	reiserfs_write_lock_nested(inode->i_sb, depth);
2149 
2150 out_end_trans:
2151 	journal_end(th);
2152 	/*
2153 	 * Drop can be outside and it needs more credits so it's better
2154 	 * to have it outside
2155 	 */
2156 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2157 	dquot_drop(inode);
2158 	reiserfs_write_lock_nested(inode->i_sb, depth);
2159 	inode->i_flags |= S_NOQUOTA;
2160 	make_bad_inode(inode);
2161 
2162 out_inserted_sd:
2163 	clear_nlink(inode);
2164 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2165 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2166 	iput(inode);
2167 	return err;
2168 }
2169 
2170 /*
2171  * finds the tail page in the page cache,
2172  * reads the last block in.
2173  *
2174  * On success, page_result is set to a locked, pinned page, and bh_result
2175  * is set to an up to date buffer for the last block in the file.  returns 0.
2176  *
2177  * tail conversion is not done, so bh_result might not be valid for writing
2178  * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2179  * trying to write the block.
2180  *
2181  * on failure, nonzero is returned, page_result and bh_result are untouched.
2182  */
2183 static int grab_tail_page(struct inode *inode,
2184 			  struct page **page_result,
2185 			  struct buffer_head **bh_result)
2186 {
2187 
2188 	/*
2189 	 * we want the page with the last byte in the file,
2190 	 * not the page that will hold the next byte for appending
2191 	 */
2192 	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2193 	unsigned long pos = 0;
2194 	unsigned long start = 0;
2195 	unsigned long blocksize = inode->i_sb->s_blocksize;
2196 	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2197 	struct buffer_head *bh;
2198 	struct buffer_head *head;
2199 	struct page *page;
2200 	int error;
2201 
2202 	/*
2203 	 * we know that we are only called with inode->i_size > 0.
2204 	 * we also know that a file tail can never be as big as a block
2205 	 * If i_size % blocksize == 0, our file is currently block aligned
2206 	 * and it won't need converting or zeroing after a truncate.
2207 	 */
2208 	if ((offset & (blocksize - 1)) == 0) {
2209 		return -ENOENT;
2210 	}
2211 	page = grab_cache_page(inode->i_mapping, index);
2212 	error = -ENOMEM;
2213 	if (!page) {
2214 		goto out;
2215 	}
2216 	/* start within the page of the last block in the file */
2217 	start = (offset / blocksize) * blocksize;
2218 
2219 	error = __block_write_begin(page, start, offset - start,
2220 				    reiserfs_get_block_create_0);
2221 	if (error)
2222 		goto unlock;
2223 
2224 	head = page_buffers(page);
2225 	bh = head;
2226 	do {
2227 		if (pos >= start) {
2228 			break;
2229 		}
2230 		bh = bh->b_this_page;
2231 		pos += blocksize;
2232 	} while (bh != head);
2233 
2234 	if (!buffer_uptodate(bh)) {
2235 		/*
2236 		 * note, this should never happen, prepare_write should be
2237 		 * taking care of this for us.  If the buffer isn't up to
2238 		 * date, I've screwed up the code to find the buffer, or the
2239 		 * code to call prepare_write
2240 		 */
2241 		reiserfs_error(inode->i_sb, "clm-6000",
2242 			       "error reading block %lu", bh->b_blocknr);
2243 		error = -EIO;
2244 		goto unlock;
2245 	}
2246 	*bh_result = bh;
2247 	*page_result = page;
2248 
2249 out:
2250 	return error;
2251 
2252 unlock:
2253 	unlock_page(page);
2254 	put_page(page);
2255 	return error;
2256 }
2257 
2258 /*
2259  * vfs version of truncate file.  Must NOT be called with
2260  * a transaction already started.
2261  *
2262  * some code taken from block_truncate_page
2263  */
2264 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2265 {
2266 	struct reiserfs_transaction_handle th;
2267 	/* we want the offset for the first byte after the end of the file */
2268 	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2269 	unsigned blocksize = inode->i_sb->s_blocksize;
2270 	unsigned length;
2271 	struct page *page = NULL;
2272 	int error;
2273 	struct buffer_head *bh = NULL;
2274 	int err2;
2275 
2276 	reiserfs_write_lock(inode->i_sb);
2277 
2278 	if (inode->i_size > 0) {
2279 		error = grab_tail_page(inode, &page, &bh);
2280 		if (error) {
2281 			/*
2282 			 * -ENOENT means we truncated past the end of the
2283 			 * file, and get_block_create_0 could not find a
2284 			 * block to read in, which is ok.
2285 			 */
2286 			if (error != -ENOENT)
2287 				reiserfs_error(inode->i_sb, "clm-6001",
2288 					       "grab_tail_page failed %d",
2289 					       error);
2290 			page = NULL;
2291 			bh = NULL;
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * so, if page != NULL, we have a buffer head for the offset at
2297 	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2298 	 * then we have an unformatted node.  Otherwise, we have a direct item,
2299 	 * and no zeroing is required on disk.  We zero after the truncate,
2300 	 * because the truncate might pack the item anyway
2301 	 * (it will unmap bh if it packs).
2302 	 *
2303 	 * it is enough to reserve space in transaction for 2 balancings:
2304 	 * one for "save" link adding and another for the first
2305 	 * cut_from_item. 1 is for update_sd
2306 	 */
2307 	error = journal_begin(&th, inode->i_sb,
2308 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2309 	if (error)
2310 		goto out;
2311 	reiserfs_update_inode_transaction(inode);
2312 	if (update_timestamps)
2313 		/*
2314 		 * we are doing real truncate: if the system crashes
2315 		 * before the last transaction of truncating gets committed
2316 		 * - on reboot the file either appears truncated properly
2317 		 * or not truncated at all
2318 		 */
2319 		add_save_link(&th, inode, 1);
2320 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2321 	error = journal_end(&th);
2322 	if (error)
2323 		goto out;
2324 
2325 	/* check reiserfs_do_truncate after ending the transaction */
2326 	if (err2) {
2327 		error = err2;
2328   		goto out;
2329 	}
2330 
2331 	if (update_timestamps) {
2332 		error = remove_save_link(inode, 1 /* truncate */);
2333 		if (error)
2334 			goto out;
2335 	}
2336 
2337 	if (page) {
2338 		length = offset & (blocksize - 1);
2339 		/* if we are not on a block boundary */
2340 		if (length) {
2341 			length = blocksize - length;
2342 			zero_user(page, offset, length);
2343 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2344 				mark_buffer_dirty(bh);
2345 			}
2346 		}
2347 		unlock_page(page);
2348 		put_page(page);
2349 	}
2350 
2351 	reiserfs_write_unlock(inode->i_sb);
2352 
2353 	return 0;
2354 out:
2355 	if (page) {
2356 		unlock_page(page);
2357 		put_page(page);
2358 	}
2359 
2360 	reiserfs_write_unlock(inode->i_sb);
2361 
2362 	return error;
2363 }
2364 
2365 static int map_block_for_writepage(struct inode *inode,
2366 				   struct buffer_head *bh_result,
2367 				   unsigned long block)
2368 {
2369 	struct reiserfs_transaction_handle th;
2370 	int fs_gen;
2371 	struct item_head tmp_ih;
2372 	struct item_head *ih;
2373 	struct buffer_head *bh;
2374 	__le32 *item;
2375 	struct cpu_key key;
2376 	INITIALIZE_PATH(path);
2377 	int pos_in_item;
2378 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2379 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2380 	int retval;
2381 	int use_get_block = 0;
2382 	int bytes_copied = 0;
2383 	int copy_size;
2384 	int trans_running = 0;
2385 
2386 	/*
2387 	 * catch places below that try to log something without
2388 	 * starting a trans
2389 	 */
2390 	th.t_trans_id = 0;
2391 
2392 	if (!buffer_uptodate(bh_result)) {
2393 		return -EIO;
2394 	}
2395 
2396 	kmap(bh_result->b_page);
2397 start_over:
2398 	reiserfs_write_lock(inode->i_sb);
2399 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2400 
2401 research:
2402 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2403 	if (retval != POSITION_FOUND) {
2404 		use_get_block = 1;
2405 		goto out;
2406 	}
2407 
2408 	bh = get_last_bh(&path);
2409 	ih = tp_item_head(&path);
2410 	item = tp_item_body(&path);
2411 	pos_in_item = path.pos_in_item;
2412 
2413 	/* we've found an unformatted node */
2414 	if (indirect_item_found(retval, ih)) {
2415 		if (bytes_copied > 0) {
2416 			reiserfs_warning(inode->i_sb, "clm-6002",
2417 					 "bytes_copied %d", bytes_copied);
2418 		}
2419 		if (!get_block_num(item, pos_in_item)) {
2420 			/* crap, we are writing to a hole */
2421 			use_get_block = 1;
2422 			goto out;
2423 		}
2424 		set_block_dev_mapped(bh_result,
2425 				     get_block_num(item, pos_in_item), inode);
2426 	} else if (is_direct_le_ih(ih)) {
2427 		char *p;
2428 		p = page_address(bh_result->b_page);
2429 		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2430 		copy_size = ih_item_len(ih) - pos_in_item;
2431 
2432 		fs_gen = get_generation(inode->i_sb);
2433 		copy_item_head(&tmp_ih, ih);
2434 
2435 		if (!trans_running) {
2436 			/* vs-3050 is gone, no need to drop the path */
2437 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2438 			if (retval)
2439 				goto out;
2440 			reiserfs_update_inode_transaction(inode);
2441 			trans_running = 1;
2442 			if (fs_changed(fs_gen, inode->i_sb)
2443 			    && item_moved(&tmp_ih, &path)) {
2444 				reiserfs_restore_prepared_buffer(inode->i_sb,
2445 								 bh);
2446 				goto research;
2447 			}
2448 		}
2449 
2450 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2451 
2452 		if (fs_changed(fs_gen, inode->i_sb)
2453 		    && item_moved(&tmp_ih, &path)) {
2454 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2455 			goto research;
2456 		}
2457 
2458 		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2459 		       copy_size);
2460 
2461 		journal_mark_dirty(&th, bh);
2462 		bytes_copied += copy_size;
2463 		set_block_dev_mapped(bh_result, 0, inode);
2464 
2465 		/* are there still bytes left? */
2466 		if (bytes_copied < bh_result->b_size &&
2467 		    (byte_offset + bytes_copied) < inode->i_size) {
2468 			set_cpu_key_k_offset(&key,
2469 					     cpu_key_k_offset(&key) +
2470 					     copy_size);
2471 			goto research;
2472 		}
2473 	} else {
2474 		reiserfs_warning(inode->i_sb, "clm-6003",
2475 				 "bad item inode %lu", inode->i_ino);
2476 		retval = -EIO;
2477 		goto out;
2478 	}
2479 	retval = 0;
2480 
2481 out:
2482 	pathrelse(&path);
2483 	if (trans_running) {
2484 		int err = journal_end(&th);
2485 		if (err)
2486 			retval = err;
2487 		trans_running = 0;
2488 	}
2489 	reiserfs_write_unlock(inode->i_sb);
2490 
2491 	/* this is where we fill in holes in the file. */
2492 	if (use_get_block) {
2493 		retval = reiserfs_get_block(inode, block, bh_result,
2494 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2495 					    | GET_BLOCK_NO_DANGLE);
2496 		if (!retval) {
2497 			if (!buffer_mapped(bh_result)
2498 			    || bh_result->b_blocknr == 0) {
2499 				/* get_block failed to find a mapped unformatted node. */
2500 				use_get_block = 0;
2501 				goto start_over;
2502 			}
2503 		}
2504 	}
2505 	kunmap(bh_result->b_page);
2506 
2507 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2508 		/*
2509 		 * we've copied data from the page into the direct item, so the
2510 		 * buffer in the page is now clean, mark it to reflect that.
2511 		 */
2512 		lock_buffer(bh_result);
2513 		clear_buffer_dirty(bh_result);
2514 		unlock_buffer(bh_result);
2515 	}
2516 	return retval;
2517 }
2518 
2519 /*
2520  * mason@suse.com: updated in 2.5.54 to follow the same general io
2521  * start/recovery path as __block_write_full_page, along with special
2522  * code to handle reiserfs tails.
2523  */
2524 static int reiserfs_write_full_page(struct page *page,
2525 				    struct writeback_control *wbc)
2526 {
2527 	struct inode *inode = page->mapping->host;
2528 	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2529 	int error = 0;
2530 	unsigned long block;
2531 	sector_t last_block;
2532 	struct buffer_head *head, *bh;
2533 	int partial = 0;
2534 	int nr = 0;
2535 	int checked = PageChecked(page);
2536 	struct reiserfs_transaction_handle th;
2537 	struct super_block *s = inode->i_sb;
2538 	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2539 	th.t_trans_id = 0;
2540 
2541 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2542 	if (checked && (current->flags & PF_MEMALLOC)) {
2543 		redirty_page_for_writepage(wbc, page);
2544 		unlock_page(page);
2545 		return 0;
2546 	}
2547 
2548 	/*
2549 	 * The page dirty bit is cleared before writepage is called, which
2550 	 * means we have to tell create_empty_buffers to make dirty buffers
2551 	 * The page really should be up to date at this point, so tossing
2552 	 * in the BH_Uptodate is just a sanity check.
2553 	 */
2554 	if (!page_has_buffers(page)) {
2555 		create_empty_buffers(page, s->s_blocksize,
2556 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2557 	}
2558 	head = page_buffers(page);
2559 
2560 	/*
2561 	 * last page in the file, zero out any contents past the
2562 	 * last byte in the file
2563 	 */
2564 	if (page->index >= end_index) {
2565 		unsigned last_offset;
2566 
2567 		last_offset = inode->i_size & (PAGE_SIZE - 1);
2568 		/* no file contents in this page */
2569 		if (page->index >= end_index + 1 || !last_offset) {
2570 			unlock_page(page);
2571 			return 0;
2572 		}
2573 		zero_user_segment(page, last_offset, PAGE_SIZE);
2574 	}
2575 	bh = head;
2576 	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2577 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2578 	/* first map all the buffers, logging any direct items we find */
2579 	do {
2580 		if (block > last_block) {
2581 			/*
2582 			 * This can happen when the block size is less than
2583 			 * the page size.  The corresponding bytes in the page
2584 			 * were zero filled above
2585 			 */
2586 			clear_buffer_dirty(bh);
2587 			set_buffer_uptodate(bh);
2588 		} else if ((checked || buffer_dirty(bh)) &&
2589 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2590 						       && bh->b_blocknr ==
2591 						       0))) {
2592 			/*
2593 			 * not mapped yet, or it points to a direct item, search
2594 			 * the btree for the mapping info, and log any direct
2595 			 * items found
2596 			 */
2597 			if ((error = map_block_for_writepage(inode, bh, block))) {
2598 				goto fail;
2599 			}
2600 		}
2601 		bh = bh->b_this_page;
2602 		block++;
2603 	} while (bh != head);
2604 
2605 	/*
2606 	 * we start the transaction after map_block_for_writepage,
2607 	 * because it can create holes in the file (an unbounded operation).
2608 	 * starting it here, we can make a reliable estimate for how many
2609 	 * blocks we're going to log
2610 	 */
2611 	if (checked) {
2612 		ClearPageChecked(page);
2613 		reiserfs_write_lock(s);
2614 		error = journal_begin(&th, s, bh_per_page + 1);
2615 		if (error) {
2616 			reiserfs_write_unlock(s);
2617 			goto fail;
2618 		}
2619 		reiserfs_update_inode_transaction(inode);
2620 	}
2621 	/* now go through and lock any dirty buffers on the page */
2622 	do {
2623 		get_bh(bh);
2624 		if (!buffer_mapped(bh))
2625 			continue;
2626 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2627 			continue;
2628 
2629 		if (checked) {
2630 			reiserfs_prepare_for_journal(s, bh, 1);
2631 			journal_mark_dirty(&th, bh);
2632 			continue;
2633 		}
2634 		/*
2635 		 * from this point on, we know the buffer is mapped to a
2636 		 * real block and not a direct item
2637 		 */
2638 		if (wbc->sync_mode != WB_SYNC_NONE) {
2639 			lock_buffer(bh);
2640 		} else {
2641 			if (!trylock_buffer(bh)) {
2642 				redirty_page_for_writepage(wbc, page);
2643 				continue;
2644 			}
2645 		}
2646 		if (test_clear_buffer_dirty(bh)) {
2647 			mark_buffer_async_write(bh);
2648 		} else {
2649 			unlock_buffer(bh);
2650 		}
2651 	} while ((bh = bh->b_this_page) != head);
2652 
2653 	if (checked) {
2654 		error = journal_end(&th);
2655 		reiserfs_write_unlock(s);
2656 		if (error)
2657 			goto fail;
2658 	}
2659 	BUG_ON(PageWriteback(page));
2660 	set_page_writeback(page);
2661 	unlock_page(page);
2662 
2663 	/*
2664 	 * since any buffer might be the only dirty buffer on the page,
2665 	 * the first submit_bh can bring the page out of writeback.
2666 	 * be careful with the buffers.
2667 	 */
2668 	do {
2669 		struct buffer_head *next = bh->b_this_page;
2670 		if (buffer_async_write(bh)) {
2671 			submit_bh(REQ_OP_WRITE, 0, bh);
2672 			nr++;
2673 		}
2674 		put_bh(bh);
2675 		bh = next;
2676 	} while (bh != head);
2677 
2678 	error = 0;
2679 done:
2680 	if (nr == 0) {
2681 		/*
2682 		 * if this page only had a direct item, it is very possible for
2683 		 * no io to be required without there being an error.  Or,
2684 		 * someone else could have locked them and sent them down the
2685 		 * pipe without locking the page
2686 		 */
2687 		bh = head;
2688 		do {
2689 			if (!buffer_uptodate(bh)) {
2690 				partial = 1;
2691 				break;
2692 			}
2693 			bh = bh->b_this_page;
2694 		} while (bh != head);
2695 		if (!partial)
2696 			SetPageUptodate(page);
2697 		end_page_writeback(page);
2698 	}
2699 	return error;
2700 
2701 fail:
2702 	/*
2703 	 * catches various errors, we need to make sure any valid dirty blocks
2704 	 * get to the media.  The page is currently locked and not marked for
2705 	 * writeback
2706 	 */
2707 	ClearPageUptodate(page);
2708 	bh = head;
2709 	do {
2710 		get_bh(bh);
2711 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2712 			lock_buffer(bh);
2713 			mark_buffer_async_write(bh);
2714 		} else {
2715 			/*
2716 			 * clear any dirty bits that might have come from
2717 			 * getting attached to a dirty page
2718 			 */
2719 			clear_buffer_dirty(bh);
2720 		}
2721 		bh = bh->b_this_page;
2722 	} while (bh != head);
2723 	SetPageError(page);
2724 	BUG_ON(PageWriteback(page));
2725 	set_page_writeback(page);
2726 	unlock_page(page);
2727 	do {
2728 		struct buffer_head *next = bh->b_this_page;
2729 		if (buffer_async_write(bh)) {
2730 			clear_buffer_dirty(bh);
2731 			submit_bh(REQ_OP_WRITE, 0, bh);
2732 			nr++;
2733 		}
2734 		put_bh(bh);
2735 		bh = next;
2736 	} while (bh != head);
2737 	goto done;
2738 }
2739 
2740 static int reiserfs_readpage(struct file *f, struct page *page)
2741 {
2742 	return block_read_full_page(page, reiserfs_get_block);
2743 }
2744 
2745 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2746 {
2747 	struct inode *inode = page->mapping->host;
2748 	reiserfs_wait_on_write_block(inode->i_sb);
2749 	return reiserfs_write_full_page(page, wbc);
2750 }
2751 
2752 static void reiserfs_truncate_failed_write(struct inode *inode)
2753 {
2754 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2755 	reiserfs_truncate_file(inode, 0);
2756 }
2757 
2758 static int reiserfs_write_begin(struct file *file,
2759 				struct address_space *mapping,
2760 				loff_t pos, unsigned len, unsigned flags,
2761 				struct page **pagep, void **fsdata)
2762 {
2763 	struct inode *inode;
2764 	struct page *page;
2765 	pgoff_t index;
2766 	int ret;
2767 	int old_ref = 0;
2768 
2769  	inode = mapping->host;
2770 	*fsdata = NULL;
2771  	if (flags & AOP_FLAG_CONT_EXPAND &&
2772  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2773  		pos ++;
2774 		*fsdata = (void *)(unsigned long)flags;
2775 	}
2776 
2777 	index = pos >> PAGE_SHIFT;
2778 	page = grab_cache_page_write_begin(mapping, index, flags);
2779 	if (!page)
2780 		return -ENOMEM;
2781 	*pagep = page;
2782 
2783 	reiserfs_wait_on_write_block(inode->i_sb);
2784 	fix_tail_page_for_writing(page);
2785 	if (reiserfs_transaction_running(inode->i_sb)) {
2786 		struct reiserfs_transaction_handle *th;
2787 		th = (struct reiserfs_transaction_handle *)current->
2788 		    journal_info;
2789 		BUG_ON(!th->t_refcount);
2790 		BUG_ON(!th->t_trans_id);
2791 		old_ref = th->t_refcount;
2792 		th->t_refcount++;
2793 	}
2794 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2795 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2796 		struct reiserfs_transaction_handle *th = current->journal_info;
2797 		/*
2798 		 * this gets a little ugly.  If reiserfs_get_block returned an
2799 		 * error and left a transacstion running, we've got to close
2800 		 * it, and we've got to free handle if it was a persistent
2801 		 * transaction.
2802 		 *
2803 		 * But, if we had nested into an existing transaction, we need
2804 		 * to just drop the ref count on the handle.
2805 		 *
2806 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2807 		 * and it was a persistent trans.  Otherwise, it was nested
2808 		 * above.
2809 		 */
2810 		if (th->t_refcount > old_ref) {
2811 			if (old_ref)
2812 				th->t_refcount--;
2813 			else {
2814 				int err;
2815 				reiserfs_write_lock(inode->i_sb);
2816 				err = reiserfs_end_persistent_transaction(th);
2817 				reiserfs_write_unlock(inode->i_sb);
2818 				if (err)
2819 					ret = err;
2820 			}
2821 		}
2822 	}
2823 	if (ret) {
2824 		unlock_page(page);
2825 		put_page(page);
2826 		/* Truncate allocated blocks */
2827 		reiserfs_truncate_failed_write(inode);
2828 	}
2829 	return ret;
2830 }
2831 
2832 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2833 {
2834 	struct inode *inode = page->mapping->host;
2835 	int ret;
2836 	int old_ref = 0;
2837 	int depth;
2838 
2839 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2840 	reiserfs_wait_on_write_block(inode->i_sb);
2841 	reiserfs_write_lock_nested(inode->i_sb, depth);
2842 
2843 	fix_tail_page_for_writing(page);
2844 	if (reiserfs_transaction_running(inode->i_sb)) {
2845 		struct reiserfs_transaction_handle *th;
2846 		th = (struct reiserfs_transaction_handle *)current->
2847 		    journal_info;
2848 		BUG_ON(!th->t_refcount);
2849 		BUG_ON(!th->t_trans_id);
2850 		old_ref = th->t_refcount;
2851 		th->t_refcount++;
2852 	}
2853 
2854 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2855 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2856 		struct reiserfs_transaction_handle *th = current->journal_info;
2857 		/*
2858 		 * this gets a little ugly.  If reiserfs_get_block returned an
2859 		 * error and left a transacstion running, we've got to close
2860 		 * it, and we've got to free handle if it was a persistent
2861 		 * transaction.
2862 		 *
2863 		 * But, if we had nested into an existing transaction, we need
2864 		 * to just drop the ref count on the handle.
2865 		 *
2866 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2867 		 * and it was a persistent trans.  Otherwise, it was nested
2868 		 * above.
2869 		 */
2870 		if (th->t_refcount > old_ref) {
2871 			if (old_ref)
2872 				th->t_refcount--;
2873 			else {
2874 				int err;
2875 				reiserfs_write_lock(inode->i_sb);
2876 				err = reiserfs_end_persistent_transaction(th);
2877 				reiserfs_write_unlock(inode->i_sb);
2878 				if (err)
2879 					ret = err;
2880 			}
2881 		}
2882 	}
2883 	return ret;
2884 
2885 }
2886 
2887 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2888 {
2889 	return generic_block_bmap(as, block, reiserfs_bmap);
2890 }
2891 
2892 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2893 			      loff_t pos, unsigned len, unsigned copied,
2894 			      struct page *page, void *fsdata)
2895 {
2896 	struct inode *inode = page->mapping->host;
2897 	int ret = 0;
2898 	int update_sd = 0;
2899 	struct reiserfs_transaction_handle *th;
2900 	unsigned start;
2901 	bool locked = false;
2902 
2903 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2904 		pos ++;
2905 
2906 	reiserfs_wait_on_write_block(inode->i_sb);
2907 	if (reiserfs_transaction_running(inode->i_sb))
2908 		th = current->journal_info;
2909 	else
2910 		th = NULL;
2911 
2912 	start = pos & (PAGE_SIZE - 1);
2913 	if (unlikely(copied < len)) {
2914 		if (!PageUptodate(page))
2915 			copied = 0;
2916 
2917 		page_zero_new_buffers(page, start + copied, start + len);
2918 	}
2919 	flush_dcache_page(page);
2920 
2921 	reiserfs_commit_page(inode, page, start, start + copied);
2922 
2923 	/*
2924 	 * generic_commit_write does this for us, but does not update the
2925 	 * transaction tracking stuff when the size changes.  So, we have
2926 	 * to do the i_size updates here.
2927 	 */
2928 	if (pos + copied > inode->i_size) {
2929 		struct reiserfs_transaction_handle myth;
2930 		reiserfs_write_lock(inode->i_sb);
2931 		locked = true;
2932 		/*
2933 		 * If the file have grown beyond the border where it
2934 		 * can have a tail, unmark it as needing a tail
2935 		 * packing
2936 		 */
2937 		if ((have_large_tails(inode->i_sb)
2938 		     && inode->i_size > i_block_size(inode) * 4)
2939 		    || (have_small_tails(inode->i_sb)
2940 			&& inode->i_size > i_block_size(inode)))
2941 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2942 
2943 		ret = journal_begin(&myth, inode->i_sb, 1);
2944 		if (ret)
2945 			goto journal_error;
2946 
2947 		reiserfs_update_inode_transaction(inode);
2948 		inode->i_size = pos + copied;
2949 		/*
2950 		 * this will just nest into our transaction.  It's important
2951 		 * to use mark_inode_dirty so the inode gets pushed around on
2952 		 * the dirty lists, and so that O_SYNC works as expected
2953 		 */
2954 		mark_inode_dirty(inode);
2955 		reiserfs_update_sd(&myth, inode);
2956 		update_sd = 1;
2957 		ret = journal_end(&myth);
2958 		if (ret)
2959 			goto journal_error;
2960 	}
2961 	if (th) {
2962 		if (!locked) {
2963 			reiserfs_write_lock(inode->i_sb);
2964 			locked = true;
2965 		}
2966 		if (!update_sd)
2967 			mark_inode_dirty(inode);
2968 		ret = reiserfs_end_persistent_transaction(th);
2969 		if (ret)
2970 			goto out;
2971 	}
2972 
2973 out:
2974 	if (locked)
2975 		reiserfs_write_unlock(inode->i_sb);
2976 	unlock_page(page);
2977 	put_page(page);
2978 
2979 	if (pos + len > inode->i_size)
2980 		reiserfs_truncate_failed_write(inode);
2981 
2982 	return ret == 0 ? copied : ret;
2983 
2984 journal_error:
2985 	reiserfs_write_unlock(inode->i_sb);
2986 	locked = false;
2987 	if (th) {
2988 		if (!update_sd)
2989 			reiserfs_update_sd(th, inode);
2990 		ret = reiserfs_end_persistent_transaction(th);
2991 	}
2992 	goto out;
2993 }
2994 
2995 int reiserfs_commit_write(struct file *f, struct page *page,
2996 			  unsigned from, unsigned to)
2997 {
2998 	struct inode *inode = page->mapping->host;
2999 	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
3000 	int ret = 0;
3001 	int update_sd = 0;
3002 	struct reiserfs_transaction_handle *th = NULL;
3003 	int depth;
3004 
3005 	depth = reiserfs_write_unlock_nested(inode->i_sb);
3006 	reiserfs_wait_on_write_block(inode->i_sb);
3007 	reiserfs_write_lock_nested(inode->i_sb, depth);
3008 
3009 	if (reiserfs_transaction_running(inode->i_sb)) {
3010 		th = current->journal_info;
3011 	}
3012 	reiserfs_commit_page(inode, page, from, to);
3013 
3014 	/*
3015 	 * generic_commit_write does this for us, but does not update the
3016 	 * transaction tracking stuff when the size changes.  So, we have
3017 	 * to do the i_size updates here.
3018 	 */
3019 	if (pos > inode->i_size) {
3020 		struct reiserfs_transaction_handle myth;
3021 		/*
3022 		 * If the file have grown beyond the border where it
3023 		 * can have a tail, unmark it as needing a tail
3024 		 * packing
3025 		 */
3026 		if ((have_large_tails(inode->i_sb)
3027 		     && inode->i_size > i_block_size(inode) * 4)
3028 		    || (have_small_tails(inode->i_sb)
3029 			&& inode->i_size > i_block_size(inode)))
3030 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3031 
3032 		ret = journal_begin(&myth, inode->i_sb, 1);
3033 		if (ret)
3034 			goto journal_error;
3035 
3036 		reiserfs_update_inode_transaction(inode);
3037 		inode->i_size = pos;
3038 		/*
3039 		 * this will just nest into our transaction.  It's important
3040 		 * to use mark_inode_dirty so the inode gets pushed around
3041 		 * on the dirty lists, and so that O_SYNC works as expected
3042 		 */
3043 		mark_inode_dirty(inode);
3044 		reiserfs_update_sd(&myth, inode);
3045 		update_sd = 1;
3046 		ret = journal_end(&myth);
3047 		if (ret)
3048 			goto journal_error;
3049 	}
3050 	if (th) {
3051 		if (!update_sd)
3052 			mark_inode_dirty(inode);
3053 		ret = reiserfs_end_persistent_transaction(th);
3054 		if (ret)
3055 			goto out;
3056 	}
3057 
3058 out:
3059 	return ret;
3060 
3061 journal_error:
3062 	if (th) {
3063 		if (!update_sd)
3064 			reiserfs_update_sd(th, inode);
3065 		ret = reiserfs_end_persistent_transaction(th);
3066 	}
3067 
3068 	return ret;
3069 }
3070 
3071 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3072 {
3073 	if (reiserfs_attrs(inode->i_sb)) {
3074 		if (sd_attrs & REISERFS_SYNC_FL)
3075 			inode->i_flags |= S_SYNC;
3076 		else
3077 			inode->i_flags &= ~S_SYNC;
3078 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3079 			inode->i_flags |= S_IMMUTABLE;
3080 		else
3081 			inode->i_flags &= ~S_IMMUTABLE;
3082 		if (sd_attrs & REISERFS_APPEND_FL)
3083 			inode->i_flags |= S_APPEND;
3084 		else
3085 			inode->i_flags &= ~S_APPEND;
3086 		if (sd_attrs & REISERFS_NOATIME_FL)
3087 			inode->i_flags |= S_NOATIME;
3088 		else
3089 			inode->i_flags &= ~S_NOATIME;
3090 		if (sd_attrs & REISERFS_NOTAIL_FL)
3091 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3092 		else
3093 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3094 	}
3095 }
3096 
3097 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3098 {
3099 	if (reiserfs_attrs(inode->i_sb)) {
3100 		if (inode->i_flags & S_IMMUTABLE)
3101 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
3102 		else
3103 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3104 		if (inode->i_flags & S_SYNC)
3105 			*sd_attrs |= REISERFS_SYNC_FL;
3106 		else
3107 			*sd_attrs &= ~REISERFS_SYNC_FL;
3108 		if (inode->i_flags & S_NOATIME)
3109 			*sd_attrs |= REISERFS_NOATIME_FL;
3110 		else
3111 			*sd_attrs &= ~REISERFS_NOATIME_FL;
3112 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3113 			*sd_attrs |= REISERFS_NOTAIL_FL;
3114 		else
3115 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
3116 	}
3117 }
3118 
3119 /*
3120  * decide if this buffer needs to stay around for data logging or ordered
3121  * write purposes
3122  */
3123 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3124 {
3125 	int ret = 1;
3126 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3127 
3128 	lock_buffer(bh);
3129 	spin_lock(&j->j_dirty_buffers_lock);
3130 	if (!buffer_mapped(bh)) {
3131 		goto free_jh;
3132 	}
3133 	/*
3134 	 * the page is locked, and the only places that log a data buffer
3135 	 * also lock the page.
3136 	 */
3137 	if (reiserfs_file_data_log(inode)) {
3138 		/*
3139 		 * very conservative, leave the buffer pinned if
3140 		 * anyone might need it.
3141 		 */
3142 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3143 			ret = 0;
3144 		}
3145 	} else  if (buffer_dirty(bh)) {
3146 		struct reiserfs_journal_list *jl;
3147 		struct reiserfs_jh *jh = bh->b_private;
3148 
3149 		/*
3150 		 * why is this safe?
3151 		 * reiserfs_setattr updates i_size in the on disk
3152 		 * stat data before allowing vmtruncate to be called.
3153 		 *
3154 		 * If buffer was put onto the ordered list for this
3155 		 * transaction, we know for sure either this transaction
3156 		 * or an older one already has updated i_size on disk,
3157 		 * and this ordered data won't be referenced in the file
3158 		 * if we crash.
3159 		 *
3160 		 * if the buffer was put onto the ordered list for an older
3161 		 * transaction, we need to leave it around
3162 		 */
3163 		if (jh && (jl = jh->jl)
3164 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3165 			ret = 0;
3166 	}
3167 free_jh:
3168 	if (ret && bh->b_private) {
3169 		reiserfs_free_jh(bh);
3170 	}
3171 	spin_unlock(&j->j_dirty_buffers_lock);
3172 	unlock_buffer(bh);
3173 	return ret;
3174 }
3175 
3176 /* clm -- taken from fs/buffer.c:block_invalidate_page */
3177 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3178 				    unsigned int length)
3179 {
3180 	struct buffer_head *head, *bh, *next;
3181 	struct inode *inode = page->mapping->host;
3182 	unsigned int curr_off = 0;
3183 	unsigned int stop = offset + length;
3184 	int partial_page = (offset || length < PAGE_SIZE);
3185 	int ret = 1;
3186 
3187 	BUG_ON(!PageLocked(page));
3188 
3189 	if (!partial_page)
3190 		ClearPageChecked(page);
3191 
3192 	if (!page_has_buffers(page))
3193 		goto out;
3194 
3195 	head = page_buffers(page);
3196 	bh = head;
3197 	do {
3198 		unsigned int next_off = curr_off + bh->b_size;
3199 		next = bh->b_this_page;
3200 
3201 		if (next_off > stop)
3202 			goto out;
3203 
3204 		/*
3205 		 * is this block fully invalidated?
3206 		 */
3207 		if (offset <= curr_off) {
3208 			if (invalidatepage_can_drop(inode, bh))
3209 				reiserfs_unmap_buffer(bh);
3210 			else
3211 				ret = 0;
3212 		}
3213 		curr_off = next_off;
3214 		bh = next;
3215 	} while (bh != head);
3216 
3217 	/*
3218 	 * We release buffers only if the entire page is being invalidated.
3219 	 * The get_block cached value has been unconditionally invalidated,
3220 	 * so real IO is not possible anymore.
3221 	 */
3222 	if (!partial_page && ret) {
3223 		ret = try_to_release_page(page, 0);
3224 		/* maybe should BUG_ON(!ret); - neilb */
3225 	}
3226 out:
3227 	return;
3228 }
3229 
3230 static int reiserfs_set_page_dirty(struct page *page)
3231 {
3232 	struct inode *inode = page->mapping->host;
3233 	if (reiserfs_file_data_log(inode)) {
3234 		SetPageChecked(page);
3235 		return __set_page_dirty_nobuffers(page);
3236 	}
3237 	return __set_page_dirty_buffers(page);
3238 }
3239 
3240 /*
3241  * Returns 1 if the page's buffers were dropped.  The page is locked.
3242  *
3243  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3244  * in the buffers at page_buffers(page).
3245  *
3246  * even in -o notail mode, we can't be sure an old mount without -o notail
3247  * didn't create files with tails.
3248  */
3249 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3250 {
3251 	struct inode *inode = page->mapping->host;
3252 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3253 	struct buffer_head *head;
3254 	struct buffer_head *bh;
3255 	int ret = 1;
3256 
3257 	WARN_ON(PageChecked(page));
3258 	spin_lock(&j->j_dirty_buffers_lock);
3259 	head = page_buffers(page);
3260 	bh = head;
3261 	do {
3262 		if (bh->b_private) {
3263 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3264 				reiserfs_free_jh(bh);
3265 			} else {
3266 				ret = 0;
3267 				break;
3268 			}
3269 		}
3270 		bh = bh->b_this_page;
3271 	} while (bh != head);
3272 	if (ret)
3273 		ret = try_to_free_buffers(page);
3274 	spin_unlock(&j->j_dirty_buffers_lock);
3275 	return ret;
3276 }
3277 
3278 /*
3279  * We thank Mingming Cao for helping us understand in great detail what
3280  * to do in this section of the code.
3281  */
3282 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3283 {
3284 	struct file *file = iocb->ki_filp;
3285 	struct inode *inode = file->f_mapping->host;
3286 	size_t count = iov_iter_count(iter);
3287 	ssize_t ret;
3288 
3289 	ret = blockdev_direct_IO(iocb, inode, iter,
3290 				 reiserfs_get_blocks_direct_io);
3291 
3292 	/*
3293 	 * In case of error extending write may have instantiated a few
3294 	 * blocks outside i_size. Trim these off again.
3295 	 */
3296 	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3297 		loff_t isize = i_size_read(inode);
3298 		loff_t end = iocb->ki_pos + count;
3299 
3300 		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3301 			truncate_setsize(inode, isize);
3302 			reiserfs_vfs_truncate_file(inode);
3303 		}
3304 	}
3305 
3306 	return ret;
3307 }
3308 
3309 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3310 {
3311 	struct inode *inode = d_inode(dentry);
3312 	unsigned int ia_valid;
3313 	int error;
3314 
3315 	error = setattr_prepare(dentry, attr);
3316 	if (error)
3317 		return error;
3318 
3319 	/* must be turned off for recursive notify_change calls */
3320 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3321 
3322 	if (is_quota_modification(inode, attr)) {
3323 		error = dquot_initialize(inode);
3324 		if (error)
3325 			return error;
3326 	}
3327 	reiserfs_write_lock(inode->i_sb);
3328 	if (attr->ia_valid & ATTR_SIZE) {
3329 		/*
3330 		 * version 2 items will be caught by the s_maxbytes check
3331 		 * done for us in vmtruncate
3332 		 */
3333 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3334 		    attr->ia_size > MAX_NON_LFS) {
3335 			reiserfs_write_unlock(inode->i_sb);
3336 			error = -EFBIG;
3337 			goto out;
3338 		}
3339 
3340 		inode_dio_wait(inode);
3341 
3342 		/* fill in hole pointers in the expanding truncate case. */
3343 		if (attr->ia_size > inode->i_size) {
3344 			error = generic_cont_expand_simple(inode, attr->ia_size);
3345 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3346 				int err;
3347 				struct reiserfs_transaction_handle th;
3348 				/* we're changing at most 2 bitmaps, inode + super */
3349 				err = journal_begin(&th, inode->i_sb, 4);
3350 				if (!err) {
3351 					reiserfs_discard_prealloc(&th, inode);
3352 					err = journal_end(&th);
3353 				}
3354 				if (err)
3355 					error = err;
3356 			}
3357 			if (error) {
3358 				reiserfs_write_unlock(inode->i_sb);
3359 				goto out;
3360 			}
3361 			/*
3362 			 * file size is changed, ctime and mtime are
3363 			 * to be updated
3364 			 */
3365 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3366 		}
3367 	}
3368 	reiserfs_write_unlock(inode->i_sb);
3369 
3370 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3371 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3372 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3373 		/* stat data of format v3.5 has 16 bit uid and gid */
3374 		error = -EINVAL;
3375 		goto out;
3376 	}
3377 
3378 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3379 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3380 		struct reiserfs_transaction_handle th;
3381 		int jbegin_count =
3382 		    2 *
3383 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3384 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3385 		    2;
3386 
3387 		error = reiserfs_chown_xattrs(inode, attr);
3388 
3389 		if (error)
3390 			return error;
3391 
3392 		/*
3393 		 * (user+group)*(old+new) structure - we count quota
3394 		 * info and , inode write (sb, inode)
3395 		 */
3396 		reiserfs_write_lock(inode->i_sb);
3397 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3398 		reiserfs_write_unlock(inode->i_sb);
3399 		if (error)
3400 			goto out;
3401 		error = dquot_transfer(inode, attr);
3402 		reiserfs_write_lock(inode->i_sb);
3403 		if (error) {
3404 			journal_end(&th);
3405 			reiserfs_write_unlock(inode->i_sb);
3406 			goto out;
3407 		}
3408 
3409 		/*
3410 		 * Update corresponding info in inode so that everything
3411 		 * is in one transaction
3412 		 */
3413 		if (attr->ia_valid & ATTR_UID)
3414 			inode->i_uid = attr->ia_uid;
3415 		if (attr->ia_valid & ATTR_GID)
3416 			inode->i_gid = attr->ia_gid;
3417 		mark_inode_dirty(inode);
3418 		error = journal_end(&th);
3419 		reiserfs_write_unlock(inode->i_sb);
3420 		if (error)
3421 			goto out;
3422 	}
3423 
3424 	if ((attr->ia_valid & ATTR_SIZE) &&
3425 	    attr->ia_size != i_size_read(inode)) {
3426 		error = inode_newsize_ok(inode, attr->ia_size);
3427 		if (!error) {
3428 			/*
3429 			 * Could race against reiserfs_file_release
3430 			 * if called from NFS, so take tailpack mutex.
3431 			 */
3432 			mutex_lock(&REISERFS_I(inode)->tailpack);
3433 			truncate_setsize(inode, attr->ia_size);
3434 			reiserfs_truncate_file(inode, 1);
3435 			mutex_unlock(&REISERFS_I(inode)->tailpack);
3436 		}
3437 	}
3438 
3439 	if (!error) {
3440 		setattr_copy(inode, attr);
3441 		mark_inode_dirty(inode);
3442 	}
3443 
3444 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3445 		if (attr->ia_valid & ATTR_MODE)
3446 			error = reiserfs_acl_chmod(inode);
3447 	}
3448 
3449 out:
3450 	return error;
3451 }
3452 
3453 const struct address_space_operations reiserfs_address_space_operations = {
3454 	.writepage = reiserfs_writepage,
3455 	.readpage = reiserfs_readpage,
3456 	.readpages = reiserfs_readpages,
3457 	.releasepage = reiserfs_releasepage,
3458 	.invalidatepage = reiserfs_invalidatepage,
3459 	.write_begin = reiserfs_write_begin,
3460 	.write_end = reiserfs_write_end,
3461 	.bmap = reiserfs_aop_bmap,
3462 	.direct_IO = reiserfs_direct_IO,
3463 	.set_page_dirty = reiserfs_set_page_dirty,
3464 };
3465