1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_xattr.h> 10 #include <linux/smp_lock.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <asm/uaccess.h> 14 #include <asm/unaligned.h> 15 #include <linux/buffer_head.h> 16 #include <linux/mpage.h> 17 #include <linux/writeback.h> 18 #include <linux/quotaops.h> 19 20 static int reiserfs_commit_write(struct file *f, struct page *page, 21 unsigned from, unsigned to); 22 static int reiserfs_prepare_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 25 void reiserfs_delete_inode(struct inode *inode) 26 { 27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 28 int jbegin_count = 29 JOURNAL_PER_BALANCE_CNT * 2 + 30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 31 struct reiserfs_transaction_handle th; 32 int err; 33 34 truncate_inode_pages(&inode->i_data, 0); 35 36 reiserfs_write_lock(inode->i_sb); 37 38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 40 reiserfs_delete_xattrs(inode); 41 42 if (journal_begin(&th, inode->i_sb, jbegin_count)) 43 goto out; 44 reiserfs_update_inode_transaction(inode); 45 46 err = reiserfs_delete_object(&th, inode); 47 48 /* Do quota update inside a transaction for journaled quotas. We must do that 49 * after delete_object so that quota updates go into the same transaction as 50 * stat data deletion */ 51 if (!err) 52 DQUOT_FREE_INODE(inode); 53 54 if (journal_end(&th, inode->i_sb, jbegin_count)) 55 goto out; 56 57 /* check return value from reiserfs_delete_object after 58 * ending the transaction 59 */ 60 if (err) 61 goto out; 62 63 /* all items of file are deleted, so we can remove "save" link */ 64 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 65 * about an error here */ 66 } else { 67 /* no object items are in the tree */ 68 ; 69 } 70 out: 71 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 72 inode->i_blocks = 0; 73 reiserfs_write_unlock(inode->i_sb); 74 } 75 76 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 77 __u32 objectid, loff_t offset, int type, int length) 78 { 79 key->version = version; 80 81 key->on_disk_key.k_dir_id = dirid; 82 key->on_disk_key.k_objectid = objectid; 83 set_cpu_key_k_offset(key, offset); 84 set_cpu_key_k_type(key, type); 85 key->key_length = length; 86 } 87 88 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 89 offset and type of key */ 90 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 91 int type, int length) 92 { 93 _make_cpu_key(key, get_inode_item_key_version(inode), 94 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 95 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 96 length); 97 } 98 99 // 100 // when key is 0, do not set version and short key 101 // 102 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 103 int version, 104 loff_t offset, int type, int length, 105 int entry_count /*or ih_free_space */ ) 106 { 107 if (key) { 108 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 109 ih->ih_key.k_objectid = 110 cpu_to_le32(key->on_disk_key.k_objectid); 111 } 112 put_ih_version(ih, version); 113 set_le_ih_k_offset(ih, offset); 114 set_le_ih_k_type(ih, type); 115 put_ih_item_len(ih, length); 116 /* set_ih_free_space (ih, 0); */ 117 // for directory items it is entry count, for directs and stat 118 // datas - 0xffff, for indirects - 0 119 put_ih_entry_count(ih, entry_count); 120 } 121 122 // 123 // FIXME: we might cache recently accessed indirect item 124 125 // Ugh. Not too eager for that.... 126 // I cut the code until such time as I see a convincing argument (benchmark). 127 // I don't want a bloated inode struct..., and I don't like code complexity.... 128 129 /* cutting the code is fine, since it really isn't in use yet and is easy 130 ** to add back in. But, Vladimir has a really good idea here. Think 131 ** about what happens for reading a file. For each page, 132 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 133 ** an indirect item. This indirect item has X number of pointers, where 134 ** X is a big number if we've done the block allocation right. But, 135 ** we only use one or two of these pointers during each call to readpage, 136 ** needlessly researching again later on. 137 ** 138 ** The size of the cache could be dynamic based on the size of the file. 139 ** 140 ** I'd also like to see us cache the location the stat data item, since 141 ** we are needlessly researching for that frequently. 142 ** 143 ** --chris 144 */ 145 146 /* If this page has a file tail in it, and 147 ** it was read in by get_block_create_0, the page data is valid, 148 ** but tail is still sitting in a direct item, and we can't write to 149 ** it. So, look through this page, and check all the mapped buffers 150 ** to make sure they have valid block numbers. Any that don't need 151 ** to be unmapped, so that block_prepare_write will correctly call 152 ** reiserfs_get_block to convert the tail into an unformatted node 153 */ 154 static inline void fix_tail_page_for_writing(struct page *page) 155 { 156 struct buffer_head *head, *next, *bh; 157 158 if (page && page_has_buffers(page)) { 159 head = page_buffers(page); 160 bh = head; 161 do { 162 next = bh->b_this_page; 163 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 164 reiserfs_unmap_buffer(bh); 165 } 166 bh = next; 167 } while (bh != head); 168 } 169 } 170 171 /* reiserfs_get_block does not need to allocate a block only if it has been 172 done already or non-hole position has been found in the indirect item */ 173 static inline int allocation_needed(int retval, b_blocknr_t allocated, 174 struct item_head *ih, 175 __le32 * item, int pos_in_item) 176 { 177 if (allocated) 178 return 0; 179 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 180 get_block_num(item, pos_in_item)) 181 return 0; 182 return 1; 183 } 184 185 static inline int indirect_item_found(int retval, struct item_head *ih) 186 { 187 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 188 } 189 190 static inline void set_block_dev_mapped(struct buffer_head *bh, 191 b_blocknr_t block, struct inode *inode) 192 { 193 map_bh(bh, inode->i_sb, block); 194 } 195 196 // 197 // files which were created in the earlier version can not be longer, 198 // than 2 gb 199 // 200 static int file_capable(struct inode *inode, long block) 201 { 202 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 203 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 204 return 1; 205 206 return 0; 207 } 208 209 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th, 210 struct inode *inode, struct treepath *path) 211 { 212 struct super_block *s = th->t_super; 213 int len = th->t_blocks_allocated; 214 int err; 215 216 BUG_ON(!th->t_trans_id); 217 BUG_ON(!th->t_refcount); 218 219 pathrelse(path); 220 221 /* we cannot restart while nested */ 222 if (th->t_refcount > 1) { 223 return 0; 224 } 225 reiserfs_update_sd(th, inode); 226 err = journal_end(th, s, len); 227 if (!err) { 228 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 229 if (!err) 230 reiserfs_update_inode_transaction(inode); 231 } 232 return err; 233 } 234 235 // it is called by get_block when create == 0. Returns block number 236 // for 'block'-th logical block of file. When it hits direct item it 237 // returns 0 (being called from bmap) or read direct item into piece 238 // of page (bh_result) 239 240 // Please improve the english/clarity in the comment above, as it is 241 // hard to understand. 242 243 static int _get_block_create_0(struct inode *inode, long block, 244 struct buffer_head *bh_result, int args) 245 { 246 INITIALIZE_PATH(path); 247 struct cpu_key key; 248 struct buffer_head *bh; 249 struct item_head *ih, tmp_ih; 250 int fs_gen; 251 int blocknr; 252 char *p = NULL; 253 int chars; 254 int ret; 255 int result; 256 int done = 0; 257 unsigned long offset; 258 259 // prepare the key to look for the 'block'-th block of file 260 make_cpu_key(&key, inode, 261 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 262 3); 263 264 research: 265 result = search_for_position_by_key(inode->i_sb, &key, &path); 266 if (result != POSITION_FOUND) { 267 pathrelse(&path); 268 if (p) 269 kunmap(bh_result->b_page); 270 if (result == IO_ERROR) 271 return -EIO; 272 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 273 // That there is some MMAPED data associated with it that is yet to be written to disk. 274 if ((args & GET_BLOCK_NO_HOLE) 275 && !PageUptodate(bh_result->b_page)) { 276 return -ENOENT; 277 } 278 return 0; 279 } 280 // 281 bh = get_last_bh(&path); 282 ih = get_ih(&path); 283 if (is_indirect_le_ih(ih)) { 284 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 285 286 /* FIXME: here we could cache indirect item or part of it in 287 the inode to avoid search_by_key in case of subsequent 288 access to file */ 289 blocknr = get_block_num(ind_item, path.pos_in_item); 290 ret = 0; 291 if (blocknr) { 292 map_bh(bh_result, inode->i_sb, blocknr); 293 if (path.pos_in_item == 294 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 295 set_buffer_boundary(bh_result); 296 } 297 } else 298 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 299 // That there is some MMAPED data associated with it that is yet to be written to disk. 300 if ((args & GET_BLOCK_NO_HOLE) 301 && !PageUptodate(bh_result->b_page)) { 302 ret = -ENOENT; 303 } 304 305 pathrelse(&path); 306 if (p) 307 kunmap(bh_result->b_page); 308 return ret; 309 } 310 // requested data are in direct item(s) 311 if (!(args & GET_BLOCK_READ_DIRECT)) { 312 // we are called by bmap. FIXME: we can not map block of file 313 // when it is stored in direct item(s) 314 pathrelse(&path); 315 if (p) 316 kunmap(bh_result->b_page); 317 return -ENOENT; 318 } 319 320 /* if we've got a direct item, and the buffer or page was uptodate, 321 ** we don't want to pull data off disk again. skip to the 322 ** end, where we map the buffer and return 323 */ 324 if (buffer_uptodate(bh_result)) { 325 goto finished; 326 } else 327 /* 328 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 329 ** pages without any buffers. If the page is up to date, we don't want 330 ** read old data off disk. Set the up to date bit on the buffer instead 331 ** and jump to the end 332 */ 333 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 334 set_buffer_uptodate(bh_result); 335 goto finished; 336 } 337 // read file tail into part of page 338 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 339 fs_gen = get_generation(inode->i_sb); 340 copy_item_head(&tmp_ih, ih); 341 342 /* we only want to kmap if we are reading the tail into the page. 343 ** this is not the common case, so we don't kmap until we are 344 ** sure we need to. But, this means the item might move if 345 ** kmap schedules 346 */ 347 if (!p) { 348 p = (char *)kmap(bh_result->b_page); 349 if (fs_changed(fs_gen, inode->i_sb) 350 && item_moved(&tmp_ih, &path)) { 351 goto research; 352 } 353 } 354 p += offset; 355 memset(p, 0, inode->i_sb->s_blocksize); 356 do { 357 if (!is_direct_le_ih(ih)) { 358 BUG(); 359 } 360 /* make sure we don't read more bytes than actually exist in 361 ** the file. This can happen in odd cases where i_size isn't 362 ** correct, and when direct item padding results in a few 363 ** extra bytes at the end of the direct item 364 */ 365 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 366 break; 367 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 368 chars = 369 inode->i_size - (le_ih_k_offset(ih) - 1) - 370 path.pos_in_item; 371 done = 1; 372 } else { 373 chars = ih_item_len(ih) - path.pos_in_item; 374 } 375 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 376 377 if (done) 378 break; 379 380 p += chars; 381 382 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 383 // we done, if read direct item is not the last item of 384 // node FIXME: we could try to check right delimiting key 385 // to see whether direct item continues in the right 386 // neighbor or rely on i_size 387 break; 388 389 // update key to look for the next piece 390 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 391 result = search_for_position_by_key(inode->i_sb, &key, &path); 392 if (result != POSITION_FOUND) 393 // i/o error most likely 394 break; 395 bh = get_last_bh(&path); 396 ih = get_ih(&path); 397 } while (1); 398 399 flush_dcache_page(bh_result->b_page); 400 kunmap(bh_result->b_page); 401 402 finished: 403 pathrelse(&path); 404 405 if (result == IO_ERROR) 406 return -EIO; 407 408 /* this buffer has valid data, but isn't valid for io. mapping it to 409 * block #0 tells the rest of reiserfs it just has a tail in it 410 */ 411 map_bh(bh_result, inode->i_sb, 0); 412 set_buffer_uptodate(bh_result); 413 return 0; 414 } 415 416 // this is called to create file map. So, _get_block_create_0 will not 417 // read direct item 418 static int reiserfs_bmap(struct inode *inode, sector_t block, 419 struct buffer_head *bh_result, int create) 420 { 421 if (!file_capable(inode, block)) 422 return -EFBIG; 423 424 reiserfs_write_lock(inode->i_sb); 425 /* do not read the direct item */ 426 _get_block_create_0(inode, block, bh_result, 0); 427 reiserfs_write_unlock(inode->i_sb); 428 return 0; 429 } 430 431 /* special version of get_block that is only used by grab_tail_page right 432 ** now. It is sent to block_prepare_write, and when you try to get a 433 ** block past the end of the file (or a block from a hole) it returns 434 ** -ENOENT instead of a valid buffer. block_prepare_write expects to 435 ** be able to do i/o on the buffers returned, unless an error value 436 ** is also returned. 437 ** 438 ** So, this allows block_prepare_write to be used for reading a single block 439 ** in a page. Where it does not produce a valid page for holes, or past the 440 ** end of the file. This turns out to be exactly what we need for reading 441 ** tails for conversion. 442 ** 443 ** The point of the wrapper is forcing a certain value for create, even 444 ** though the VFS layer is calling this function with create==1. If you 445 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 446 ** don't use this function. 447 */ 448 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 449 struct buffer_head *bh_result, 450 int create) 451 { 452 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 453 } 454 455 /* This is special helper for reiserfs_get_block in case we are executing 456 direct_IO request. */ 457 static int reiserfs_get_blocks_direct_io(struct inode *inode, 458 sector_t iblock, 459 struct buffer_head *bh_result, 460 int create) 461 { 462 int ret; 463 464 bh_result->b_page = NULL; 465 466 /* We set the b_size before reiserfs_get_block call since it is 467 referenced in convert_tail_for_hole() that may be called from 468 reiserfs_get_block() */ 469 bh_result->b_size = (1 << inode->i_blkbits); 470 471 ret = reiserfs_get_block(inode, iblock, bh_result, 472 create | GET_BLOCK_NO_DANGLE); 473 if (ret) 474 goto out; 475 476 /* don't allow direct io onto tail pages */ 477 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 478 /* make sure future calls to the direct io funcs for this offset 479 ** in the file fail by unmapping the buffer 480 */ 481 clear_buffer_mapped(bh_result); 482 ret = -EINVAL; 483 } 484 /* Possible unpacked tail. Flush the data before pages have 485 disappeared */ 486 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 487 int err; 488 lock_kernel(); 489 err = reiserfs_commit_for_inode(inode); 490 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 491 unlock_kernel(); 492 if (err < 0) 493 ret = err; 494 } 495 out: 496 return ret; 497 } 498 499 /* 500 ** helper function for when reiserfs_get_block is called for a hole 501 ** but the file tail is still in a direct item 502 ** bh_result is the buffer head for the hole 503 ** tail_offset is the offset of the start of the tail in the file 504 ** 505 ** This calls prepare_write, which will start a new transaction 506 ** you should not be in a transaction, or have any paths held when you 507 ** call this. 508 */ 509 static int convert_tail_for_hole(struct inode *inode, 510 struct buffer_head *bh_result, 511 loff_t tail_offset) 512 { 513 unsigned long index; 514 unsigned long tail_end; 515 unsigned long tail_start; 516 struct page *tail_page; 517 struct page *hole_page = bh_result->b_page; 518 int retval = 0; 519 520 if ((tail_offset & (bh_result->b_size - 1)) != 1) 521 return -EIO; 522 523 /* always try to read until the end of the block */ 524 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 525 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 526 527 index = tail_offset >> PAGE_CACHE_SHIFT; 528 /* hole_page can be zero in case of direct_io, we are sure 529 that we cannot get here if we write with O_DIRECT into 530 tail page */ 531 if (!hole_page || index != hole_page->index) { 532 tail_page = grab_cache_page(inode->i_mapping, index); 533 retval = -ENOMEM; 534 if (!tail_page) { 535 goto out; 536 } 537 } else { 538 tail_page = hole_page; 539 } 540 541 /* we don't have to make sure the conversion did not happen while 542 ** we were locking the page because anyone that could convert 543 ** must first take i_mutex. 544 ** 545 ** We must fix the tail page for writing because it might have buffers 546 ** that are mapped, but have a block number of 0. This indicates tail 547 ** data that has been read directly into the page, and block_prepare_write 548 ** won't trigger a get_block in this case. 549 */ 550 fix_tail_page_for_writing(tail_page); 551 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 552 if (retval) 553 goto unlock; 554 555 /* tail conversion might change the data in the page */ 556 flush_dcache_page(tail_page); 557 558 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 559 560 unlock: 561 if (tail_page != hole_page) { 562 unlock_page(tail_page); 563 page_cache_release(tail_page); 564 } 565 out: 566 return retval; 567 } 568 569 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 570 long block, 571 struct inode *inode, 572 b_blocknr_t * allocated_block_nr, 573 struct treepath *path, int flags) 574 { 575 BUG_ON(!th->t_trans_id); 576 577 #ifdef REISERFS_PREALLOCATE 578 if (!(flags & GET_BLOCK_NO_IMUX)) { 579 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 580 path, block); 581 } 582 #endif 583 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 584 block); 585 } 586 587 int reiserfs_get_block(struct inode *inode, sector_t block, 588 struct buffer_head *bh_result, int create) 589 { 590 int repeat, retval = 0; 591 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 592 INITIALIZE_PATH(path); 593 int pos_in_item; 594 struct cpu_key key; 595 struct buffer_head *bh, *unbh = NULL; 596 struct item_head *ih, tmp_ih; 597 __le32 *item; 598 int done; 599 int fs_gen; 600 struct reiserfs_transaction_handle *th = NULL; 601 /* space reserved in transaction batch: 602 . 3 balancings in direct->indirect conversion 603 . 1 block involved into reiserfs_update_sd() 604 XXX in practically impossible worst case direct2indirect() 605 can incur (much) more than 3 balancings. 606 quota update for user, group */ 607 int jbegin_count = 608 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 609 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 610 int version; 611 int dangle = 1; 612 loff_t new_offset = 613 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 614 615 /* bad.... */ 616 reiserfs_write_lock(inode->i_sb); 617 version = get_inode_item_key_version(inode); 618 619 if (!file_capable(inode, block)) { 620 reiserfs_write_unlock(inode->i_sb); 621 return -EFBIG; 622 } 623 624 /* if !create, we aren't changing the FS, so we don't need to 625 ** log anything, so we don't need to start a transaction 626 */ 627 if (!(create & GET_BLOCK_CREATE)) { 628 int ret; 629 /* find number of block-th logical block of the file */ 630 ret = _get_block_create_0(inode, block, bh_result, 631 create | GET_BLOCK_READ_DIRECT); 632 reiserfs_write_unlock(inode->i_sb); 633 return ret; 634 } 635 /* 636 * if we're already in a transaction, make sure to close 637 * any new transactions we start in this func 638 */ 639 if ((create & GET_BLOCK_NO_DANGLE) || 640 reiserfs_transaction_running(inode->i_sb)) 641 dangle = 0; 642 643 /* If file is of such a size, that it might have a tail and tails are enabled 644 ** we should mark it as possibly needing tail packing on close 645 */ 646 if ((have_large_tails(inode->i_sb) 647 && inode->i_size < i_block_size(inode) * 4) 648 || (have_small_tails(inode->i_sb) 649 && inode->i_size < i_block_size(inode))) 650 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 651 652 /* set the key of the first byte in the 'block'-th block of file */ 653 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 654 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 655 start_trans: 656 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 657 if (!th) { 658 retval = -ENOMEM; 659 goto failure; 660 } 661 reiserfs_update_inode_transaction(inode); 662 } 663 research: 664 665 retval = search_for_position_by_key(inode->i_sb, &key, &path); 666 if (retval == IO_ERROR) { 667 retval = -EIO; 668 goto failure; 669 } 670 671 bh = get_last_bh(&path); 672 ih = get_ih(&path); 673 item = get_item(&path); 674 pos_in_item = path.pos_in_item; 675 676 fs_gen = get_generation(inode->i_sb); 677 copy_item_head(&tmp_ih, ih); 678 679 if (allocation_needed 680 (retval, allocated_block_nr, ih, item, pos_in_item)) { 681 /* we have to allocate block for the unformatted node */ 682 if (!th) { 683 pathrelse(&path); 684 goto start_trans; 685 } 686 687 repeat = 688 _allocate_block(th, block, inode, &allocated_block_nr, 689 &path, create); 690 691 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 692 /* restart the transaction to give the journal a chance to free 693 ** some blocks. releases the path, so we have to go back to 694 ** research if we succeed on the second try 695 */ 696 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 697 retval = restart_transaction(th, inode, &path); 698 if (retval) 699 goto failure; 700 repeat = 701 _allocate_block(th, block, inode, 702 &allocated_block_nr, NULL, create); 703 704 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 705 goto research; 706 } 707 if (repeat == QUOTA_EXCEEDED) 708 retval = -EDQUOT; 709 else 710 retval = -ENOSPC; 711 goto failure; 712 } 713 714 if (fs_changed(fs_gen, inode->i_sb) 715 && item_moved(&tmp_ih, &path)) { 716 goto research; 717 } 718 } 719 720 if (indirect_item_found(retval, ih)) { 721 b_blocknr_t unfm_ptr; 722 /* 'block'-th block is in the file already (there is 723 corresponding cell in some indirect item). But it may be 724 zero unformatted node pointer (hole) */ 725 unfm_ptr = get_block_num(item, pos_in_item); 726 if (unfm_ptr == 0) { 727 /* use allocated block to plug the hole */ 728 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 729 if (fs_changed(fs_gen, inode->i_sb) 730 && item_moved(&tmp_ih, &path)) { 731 reiserfs_restore_prepared_buffer(inode->i_sb, 732 bh); 733 goto research; 734 } 735 set_buffer_new(bh_result); 736 if (buffer_dirty(bh_result) 737 && reiserfs_data_ordered(inode->i_sb)) 738 reiserfs_add_ordered_list(inode, bh_result); 739 put_block_num(item, pos_in_item, allocated_block_nr); 740 unfm_ptr = allocated_block_nr; 741 journal_mark_dirty(th, inode->i_sb, bh); 742 reiserfs_update_sd(th, inode); 743 } 744 set_block_dev_mapped(bh_result, unfm_ptr, inode); 745 pathrelse(&path); 746 retval = 0; 747 if (!dangle && th) 748 retval = reiserfs_end_persistent_transaction(th); 749 750 reiserfs_write_unlock(inode->i_sb); 751 752 /* the item was found, so new blocks were not added to the file 753 ** there is no need to make sure the inode is updated with this 754 ** transaction 755 */ 756 return retval; 757 } 758 759 if (!th) { 760 pathrelse(&path); 761 goto start_trans; 762 } 763 764 /* desired position is not found or is in the direct item. We have 765 to append file with holes up to 'block'-th block converting 766 direct items to indirect one if necessary */ 767 done = 0; 768 do { 769 if (is_statdata_le_ih(ih)) { 770 __le32 unp = 0; 771 struct cpu_key tmp_key; 772 773 /* indirect item has to be inserted */ 774 make_le_item_head(&tmp_ih, &key, version, 1, 775 TYPE_INDIRECT, UNFM_P_SIZE, 776 0 /* free_space */ ); 777 778 if (cpu_key_k_offset(&key) == 1) { 779 /* we are going to add 'block'-th block to the file. Use 780 allocated block for that */ 781 unp = cpu_to_le32(allocated_block_nr); 782 set_block_dev_mapped(bh_result, 783 allocated_block_nr, inode); 784 set_buffer_new(bh_result); 785 done = 1; 786 } 787 tmp_key = key; // ;) 788 set_cpu_key_k_offset(&tmp_key, 1); 789 PATH_LAST_POSITION(&path)++; 790 791 retval = 792 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 793 inode, (char *)&unp); 794 if (retval) { 795 reiserfs_free_block(th, inode, 796 allocated_block_nr, 1); 797 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 798 } 799 //mark_tail_converted (inode); 800 } else if (is_direct_le_ih(ih)) { 801 /* direct item has to be converted */ 802 loff_t tail_offset; 803 804 tail_offset = 805 ((le_ih_k_offset(ih) - 806 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 807 if (tail_offset == cpu_key_k_offset(&key)) { 808 /* direct item we just found fits into block we have 809 to map. Convert it into unformatted node: use 810 bh_result for the conversion */ 811 set_block_dev_mapped(bh_result, 812 allocated_block_nr, inode); 813 unbh = bh_result; 814 done = 1; 815 } else { 816 /* we have to padd file tail stored in direct item(s) 817 up to block size and convert it to unformatted 818 node. FIXME: this should also get into page cache */ 819 820 pathrelse(&path); 821 /* 822 * ugly, but we can only end the transaction if 823 * we aren't nested 824 */ 825 BUG_ON(!th->t_refcount); 826 if (th->t_refcount == 1) { 827 retval = 828 reiserfs_end_persistent_transaction 829 (th); 830 th = NULL; 831 if (retval) 832 goto failure; 833 } 834 835 retval = 836 convert_tail_for_hole(inode, bh_result, 837 tail_offset); 838 if (retval) { 839 if (retval != -ENOSPC) 840 reiserfs_warning(inode->i_sb, 841 "clm-6004: convert tail failed inode %lu, error %d", 842 inode->i_ino, 843 retval); 844 if (allocated_block_nr) { 845 /* the bitmap, the super, and the stat data == 3 */ 846 if (!th) 847 th = reiserfs_persistent_transaction(inode->i_sb, 3); 848 if (th) 849 reiserfs_free_block(th, 850 inode, 851 allocated_block_nr, 852 1); 853 } 854 goto failure; 855 } 856 goto research; 857 } 858 retval = 859 direct2indirect(th, inode, &path, unbh, 860 tail_offset); 861 if (retval) { 862 reiserfs_unmap_buffer(unbh); 863 reiserfs_free_block(th, inode, 864 allocated_block_nr, 1); 865 goto failure; 866 } 867 /* it is important the set_buffer_uptodate is done after 868 ** the direct2indirect. The buffer might contain valid 869 ** data newer than the data on disk (read by readpage, changed, 870 ** and then sent here by writepage). direct2indirect needs 871 ** to know if unbh was already up to date, so it can decide 872 ** if the data in unbh needs to be replaced with data from 873 ** the disk 874 */ 875 set_buffer_uptodate(unbh); 876 877 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 878 buffer will disappear shortly, so it should not be added to 879 */ 880 if (unbh->b_page) { 881 /* we've converted the tail, so we must 882 ** flush unbh before the transaction commits 883 */ 884 reiserfs_add_tail_list(inode, unbh); 885 886 /* mark it dirty now to prevent commit_write from adding 887 ** this buffer to the inode's dirty buffer list 888 */ 889 /* 890 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 891 * It's still atomic, but it sets the page dirty too, 892 * which makes it eligible for writeback at any time by the 893 * VM (which was also the case with __mark_buffer_dirty()) 894 */ 895 mark_buffer_dirty(unbh); 896 } 897 } else { 898 /* append indirect item with holes if needed, when appending 899 pointer to 'block'-th block use block, which is already 900 allocated */ 901 struct cpu_key tmp_key; 902 unp_t unf_single = 0; // We use this in case we need to allocate only 903 // one block which is a fastpath 904 unp_t *un; 905 __u64 max_to_insert = 906 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 907 UNFM_P_SIZE; 908 __u64 blocks_needed; 909 910 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 911 "vs-804: invalid position for append"); 912 /* indirect item has to be appended, set up key of that position */ 913 make_cpu_key(&tmp_key, inode, 914 le_key_k_offset(version, 915 &(ih->ih_key)) + 916 op_bytes_number(ih, 917 inode->i_sb->s_blocksize), 918 //pos_in_item * inode->i_sb->s_blocksize, 919 TYPE_INDIRECT, 3); // key type is unimportant 920 921 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 922 "green-805: invalid offset"); 923 blocks_needed = 924 1 + 925 ((cpu_key_k_offset(&key) - 926 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 927 s_blocksize_bits); 928 929 if (blocks_needed == 1) { 930 un = &unf_single; 931 } else { 932 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 933 if (!un) { 934 un = &unf_single; 935 blocks_needed = 1; 936 max_to_insert = 0; 937 } 938 } 939 if (blocks_needed <= max_to_insert) { 940 /* we are going to add target block to the file. Use allocated 941 block for that */ 942 un[blocks_needed - 1] = 943 cpu_to_le32(allocated_block_nr); 944 set_block_dev_mapped(bh_result, 945 allocated_block_nr, inode); 946 set_buffer_new(bh_result); 947 done = 1; 948 } else { 949 /* paste hole to the indirect item */ 950 /* If kmalloc failed, max_to_insert becomes zero and it means we 951 only have space for one block */ 952 blocks_needed = 953 max_to_insert ? max_to_insert : 1; 954 } 955 retval = 956 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 957 (char *)un, 958 UNFM_P_SIZE * 959 blocks_needed); 960 961 if (blocks_needed != 1) 962 kfree(un); 963 964 if (retval) { 965 reiserfs_free_block(th, inode, 966 allocated_block_nr, 1); 967 goto failure; 968 } 969 if (!done) { 970 /* We need to mark new file size in case this function will be 971 interrupted/aborted later on. And we may do this only for 972 holes. */ 973 inode->i_size += 974 inode->i_sb->s_blocksize * blocks_needed; 975 } 976 } 977 978 if (done == 1) 979 break; 980 981 /* this loop could log more blocks than we had originally asked 982 ** for. So, we have to allow the transaction to end if it is 983 ** too big or too full. Update the inode so things are 984 ** consistent if we crash before the function returns 985 ** 986 ** release the path so that anybody waiting on the path before 987 ** ending their transaction will be able to continue. 988 */ 989 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 990 retval = restart_transaction(th, inode, &path); 991 if (retval) 992 goto failure; 993 } 994 /* inserting indirect pointers for a hole can take a 995 ** long time. reschedule if needed 996 */ 997 cond_resched(); 998 999 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1000 if (retval == IO_ERROR) { 1001 retval = -EIO; 1002 goto failure; 1003 } 1004 if (retval == POSITION_FOUND) { 1005 reiserfs_warning(inode->i_sb, 1006 "vs-825: reiserfs_get_block: " 1007 "%K should not be found", &key); 1008 retval = -EEXIST; 1009 if (allocated_block_nr) 1010 reiserfs_free_block(th, inode, 1011 allocated_block_nr, 1); 1012 pathrelse(&path); 1013 goto failure; 1014 } 1015 bh = get_last_bh(&path); 1016 ih = get_ih(&path); 1017 item = get_item(&path); 1018 pos_in_item = path.pos_in_item; 1019 } while (1); 1020 1021 retval = 0; 1022 1023 failure: 1024 if (th && (!dangle || (retval && !th->t_trans_id))) { 1025 int err; 1026 if (th->t_trans_id) 1027 reiserfs_update_sd(th, inode); 1028 err = reiserfs_end_persistent_transaction(th); 1029 if (err) 1030 retval = err; 1031 } 1032 1033 reiserfs_write_unlock(inode->i_sb); 1034 reiserfs_check_path(&path); 1035 return retval; 1036 } 1037 1038 static int 1039 reiserfs_readpages(struct file *file, struct address_space *mapping, 1040 struct list_head *pages, unsigned nr_pages) 1041 { 1042 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1043 } 1044 1045 /* Compute real number of used bytes by file 1046 * Following three functions can go away when we'll have enough space in stat item 1047 */ 1048 static int real_space_diff(struct inode *inode, int sd_size) 1049 { 1050 int bytes; 1051 loff_t blocksize = inode->i_sb->s_blocksize; 1052 1053 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1054 return sd_size; 1055 1056 /* End of file is also in full block with indirect reference, so round 1057 ** up to the next block. 1058 ** 1059 ** there is just no way to know if the tail is actually packed 1060 ** on the file, so we have to assume it isn't. When we pack the 1061 ** tail, we add 4 bytes to pretend there really is an unformatted 1062 ** node pointer 1063 */ 1064 bytes = 1065 ((inode->i_size + 1066 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1067 sd_size; 1068 return bytes; 1069 } 1070 1071 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1072 int sd_size) 1073 { 1074 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1075 return inode->i_size + 1076 (loff_t) (real_space_diff(inode, sd_size)); 1077 } 1078 return ((loff_t) real_space_diff(inode, sd_size)) + 1079 (((loff_t) blocks) << 9); 1080 } 1081 1082 /* Compute number of blocks used by file in ReiserFS counting */ 1083 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1084 { 1085 loff_t bytes = inode_get_bytes(inode); 1086 loff_t real_space = real_space_diff(inode, sd_size); 1087 1088 /* keeps fsck and non-quota versions of reiserfs happy */ 1089 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1090 bytes += (loff_t) 511; 1091 } 1092 1093 /* files from before the quota patch might i_blocks such that 1094 ** bytes < real_space. Deal with that here to prevent it from 1095 ** going negative. 1096 */ 1097 if (bytes < real_space) 1098 return 0; 1099 return (bytes - real_space) >> 9; 1100 } 1101 1102 // 1103 // BAD: new directories have stat data of new type and all other items 1104 // of old type. Version stored in the inode says about body items, so 1105 // in update_stat_data we can not rely on inode, but have to check 1106 // item version directly 1107 // 1108 1109 // called by read_locked_inode 1110 static void init_inode(struct inode *inode, struct treepath *path) 1111 { 1112 struct buffer_head *bh; 1113 struct item_head *ih; 1114 __u32 rdev; 1115 //int version = ITEM_VERSION_1; 1116 1117 bh = PATH_PLAST_BUFFER(path); 1118 ih = PATH_PITEM_HEAD(path); 1119 1120 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1121 1122 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1123 REISERFS_I(inode)->i_flags = 0; 1124 REISERFS_I(inode)->i_prealloc_block = 0; 1125 REISERFS_I(inode)->i_prealloc_count = 0; 1126 REISERFS_I(inode)->i_trans_id = 0; 1127 REISERFS_I(inode)->i_jl = NULL; 1128 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1129 reiserfs_init_acl_access(inode); 1130 reiserfs_init_acl_default(inode); 1131 reiserfs_init_xattr_rwsem(inode); 1132 1133 if (stat_data_v1(ih)) { 1134 struct stat_data_v1 *sd = 1135 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1136 unsigned long blocks; 1137 1138 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1139 set_inode_sd_version(inode, STAT_DATA_V1); 1140 inode->i_mode = sd_v1_mode(sd); 1141 inode->i_nlink = sd_v1_nlink(sd); 1142 inode->i_uid = sd_v1_uid(sd); 1143 inode->i_gid = sd_v1_gid(sd); 1144 inode->i_size = sd_v1_size(sd); 1145 inode->i_atime.tv_sec = sd_v1_atime(sd); 1146 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1147 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1148 inode->i_atime.tv_nsec = 0; 1149 inode->i_ctime.tv_nsec = 0; 1150 inode->i_mtime.tv_nsec = 0; 1151 1152 inode->i_blocks = sd_v1_blocks(sd); 1153 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1154 blocks = (inode->i_size + 511) >> 9; 1155 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1156 if (inode->i_blocks > blocks) { 1157 // there was a bug in <=3.5.23 when i_blocks could take negative 1158 // values. Starting from 3.5.17 this value could even be stored in 1159 // stat data. For such files we set i_blocks based on file 1160 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1161 // only updated if file's inode will ever change 1162 inode->i_blocks = blocks; 1163 } 1164 1165 rdev = sd_v1_rdev(sd); 1166 REISERFS_I(inode)->i_first_direct_byte = 1167 sd_v1_first_direct_byte(sd); 1168 /* an early bug in the quota code can give us an odd number for the 1169 ** block count. This is incorrect, fix it here. 1170 */ 1171 if (inode->i_blocks & 1) { 1172 inode->i_blocks++; 1173 } 1174 inode_set_bytes(inode, 1175 to_real_used_space(inode, inode->i_blocks, 1176 SD_V1_SIZE)); 1177 /* nopack is initially zero for v1 objects. For v2 objects, 1178 nopack is initialised from sd_attrs */ 1179 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1180 } else { 1181 // new stat data found, but object may have old items 1182 // (directories and symlinks) 1183 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1184 1185 inode->i_mode = sd_v2_mode(sd); 1186 inode->i_nlink = sd_v2_nlink(sd); 1187 inode->i_uid = sd_v2_uid(sd); 1188 inode->i_size = sd_v2_size(sd); 1189 inode->i_gid = sd_v2_gid(sd); 1190 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1191 inode->i_atime.tv_sec = sd_v2_atime(sd); 1192 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1193 inode->i_ctime.tv_nsec = 0; 1194 inode->i_mtime.tv_nsec = 0; 1195 inode->i_atime.tv_nsec = 0; 1196 inode->i_blocks = sd_v2_blocks(sd); 1197 rdev = sd_v2_rdev(sd); 1198 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1199 inode->i_generation = 1200 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1201 else 1202 inode->i_generation = sd_v2_generation(sd); 1203 1204 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1205 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1206 else 1207 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1208 REISERFS_I(inode)->i_first_direct_byte = 0; 1209 set_inode_sd_version(inode, STAT_DATA_V2); 1210 inode_set_bytes(inode, 1211 to_real_used_space(inode, inode->i_blocks, 1212 SD_V2_SIZE)); 1213 /* read persistent inode attributes from sd and initalise 1214 generic inode flags from them */ 1215 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1216 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1217 } 1218 1219 pathrelse(path); 1220 if (S_ISREG(inode->i_mode)) { 1221 inode->i_op = &reiserfs_file_inode_operations; 1222 inode->i_fop = &reiserfs_file_operations; 1223 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1224 } else if (S_ISDIR(inode->i_mode)) { 1225 inode->i_op = &reiserfs_dir_inode_operations; 1226 inode->i_fop = &reiserfs_dir_operations; 1227 } else if (S_ISLNK(inode->i_mode)) { 1228 inode->i_op = &reiserfs_symlink_inode_operations; 1229 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1230 } else { 1231 inode->i_blocks = 0; 1232 inode->i_op = &reiserfs_special_inode_operations; 1233 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1234 } 1235 } 1236 1237 // update new stat data with inode fields 1238 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1239 { 1240 struct stat_data *sd_v2 = (struct stat_data *)sd; 1241 __u16 flags; 1242 1243 set_sd_v2_mode(sd_v2, inode->i_mode); 1244 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1245 set_sd_v2_uid(sd_v2, inode->i_uid); 1246 set_sd_v2_size(sd_v2, size); 1247 set_sd_v2_gid(sd_v2, inode->i_gid); 1248 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1249 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1250 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1251 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1252 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1253 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1254 else 1255 set_sd_v2_generation(sd_v2, inode->i_generation); 1256 flags = REISERFS_I(inode)->i_attrs; 1257 i_attrs_to_sd_attrs(inode, &flags); 1258 set_sd_v2_attrs(sd_v2, flags); 1259 } 1260 1261 // used to copy inode's fields to old stat data 1262 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1263 { 1264 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1265 1266 set_sd_v1_mode(sd_v1, inode->i_mode); 1267 set_sd_v1_uid(sd_v1, inode->i_uid); 1268 set_sd_v1_gid(sd_v1, inode->i_gid); 1269 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1270 set_sd_v1_size(sd_v1, size); 1271 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1272 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1273 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1274 1275 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1276 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1277 else 1278 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1279 1280 // Sigh. i_first_direct_byte is back 1281 set_sd_v1_first_direct_byte(sd_v1, 1282 REISERFS_I(inode)->i_first_direct_byte); 1283 } 1284 1285 /* NOTE, you must prepare the buffer head before sending it here, 1286 ** and then log it after the call 1287 */ 1288 static void update_stat_data(struct treepath *path, struct inode *inode, 1289 loff_t size) 1290 { 1291 struct buffer_head *bh; 1292 struct item_head *ih; 1293 1294 bh = PATH_PLAST_BUFFER(path); 1295 ih = PATH_PITEM_HEAD(path); 1296 1297 if (!is_statdata_le_ih(ih)) 1298 reiserfs_panic(inode->i_sb, 1299 "vs-13065: update_stat_data: key %k, found item %h", 1300 INODE_PKEY(inode), ih); 1301 1302 if (stat_data_v1(ih)) { 1303 // path points to old stat data 1304 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1305 } else { 1306 inode2sd(B_I_PITEM(bh, ih), inode, size); 1307 } 1308 1309 return; 1310 } 1311 1312 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1313 struct inode *inode, loff_t size) 1314 { 1315 struct cpu_key key; 1316 INITIALIZE_PATH(path); 1317 struct buffer_head *bh; 1318 int fs_gen; 1319 struct item_head *ih, tmp_ih; 1320 int retval; 1321 1322 BUG_ON(!th->t_trans_id); 1323 1324 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1325 1326 for (;;) { 1327 int pos; 1328 /* look for the object's stat data */ 1329 retval = search_item(inode->i_sb, &key, &path); 1330 if (retval == IO_ERROR) { 1331 reiserfs_warning(inode->i_sb, 1332 "vs-13050: reiserfs_update_sd: " 1333 "i/o failure occurred trying to update %K stat data", 1334 &key); 1335 return; 1336 } 1337 if (retval == ITEM_NOT_FOUND) { 1338 pos = PATH_LAST_POSITION(&path); 1339 pathrelse(&path); 1340 if (inode->i_nlink == 0) { 1341 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1342 return; 1343 } 1344 reiserfs_warning(inode->i_sb, 1345 "vs-13060: reiserfs_update_sd: " 1346 "stat data of object %k (nlink == %d) not found (pos %d)", 1347 INODE_PKEY(inode), inode->i_nlink, 1348 pos); 1349 reiserfs_check_path(&path); 1350 return; 1351 } 1352 1353 /* sigh, prepare_for_journal might schedule. When it schedules the 1354 ** FS might change. We have to detect that, and loop back to the 1355 ** search if the stat data item has moved 1356 */ 1357 bh = get_last_bh(&path); 1358 ih = get_ih(&path); 1359 copy_item_head(&tmp_ih, ih); 1360 fs_gen = get_generation(inode->i_sb); 1361 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1362 if (fs_changed(fs_gen, inode->i_sb) 1363 && item_moved(&tmp_ih, &path)) { 1364 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1365 continue; /* Stat_data item has been moved after scheduling. */ 1366 } 1367 break; 1368 } 1369 update_stat_data(&path, inode, size); 1370 journal_mark_dirty(th, th->t_super, bh); 1371 pathrelse(&path); 1372 return; 1373 } 1374 1375 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1376 ** does a make_bad_inode when things go wrong. But, we need to make sure 1377 ** and clear the key in the private portion of the inode, otherwise a 1378 ** corresponding iput might try to delete whatever object the inode last 1379 ** represented. 1380 */ 1381 static void reiserfs_make_bad_inode(struct inode *inode) 1382 { 1383 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1384 make_bad_inode(inode); 1385 } 1386 1387 // 1388 // initially this function was derived from minix or ext2's analog and 1389 // evolved as the prototype did 1390 // 1391 1392 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1393 { 1394 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1395 inode->i_ino = args->objectid; 1396 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1397 return 0; 1398 } 1399 1400 /* looks for stat data in the tree, and fills up the fields of in-core 1401 inode stat data fields */ 1402 void reiserfs_read_locked_inode(struct inode *inode, 1403 struct reiserfs_iget_args *args) 1404 { 1405 INITIALIZE_PATH(path_to_sd); 1406 struct cpu_key key; 1407 unsigned long dirino; 1408 int retval; 1409 1410 dirino = args->dirid; 1411 1412 /* set version 1, version 2 could be used too, because stat data 1413 key is the same in both versions */ 1414 key.version = KEY_FORMAT_3_5; 1415 key.on_disk_key.k_dir_id = dirino; 1416 key.on_disk_key.k_objectid = inode->i_ino; 1417 key.on_disk_key.k_offset = 0; 1418 key.on_disk_key.k_type = 0; 1419 1420 /* look for the object's stat data */ 1421 retval = search_item(inode->i_sb, &key, &path_to_sd); 1422 if (retval == IO_ERROR) { 1423 reiserfs_warning(inode->i_sb, 1424 "vs-13070: reiserfs_read_locked_inode: " 1425 "i/o failure occurred trying to find stat data of %K", 1426 &key); 1427 reiserfs_make_bad_inode(inode); 1428 return; 1429 } 1430 if (retval != ITEM_FOUND) { 1431 /* a stale NFS handle can trigger this without it being an error */ 1432 pathrelse(&path_to_sd); 1433 reiserfs_make_bad_inode(inode); 1434 inode->i_nlink = 0; 1435 return; 1436 } 1437 1438 init_inode(inode, &path_to_sd); 1439 1440 /* It is possible that knfsd is trying to access inode of a file 1441 that is being removed from the disk by some other thread. As we 1442 update sd on unlink all that is required is to check for nlink 1443 here. This bug was first found by Sizif when debugging 1444 SquidNG/Butterfly, forgotten, and found again after Philippe 1445 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1446 1447 More logical fix would require changes in fs/inode.c:iput() to 1448 remove inode from hash-table _after_ fs cleaned disk stuff up and 1449 in iget() to return NULL if I_FREEING inode is found in 1450 hash-table. */ 1451 /* Currently there is one place where it's ok to meet inode with 1452 nlink==0: processing of open-unlinked and half-truncated files 1453 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1454 if ((inode->i_nlink == 0) && 1455 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1456 reiserfs_warning(inode->i_sb, 1457 "vs-13075: reiserfs_read_locked_inode: " 1458 "dead inode read from disk %K. " 1459 "This is likely to be race with knfsd. Ignore", 1460 &key); 1461 reiserfs_make_bad_inode(inode); 1462 } 1463 1464 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1465 1466 } 1467 1468 /** 1469 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1470 * 1471 * @inode: inode from hash table to check 1472 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1473 * 1474 * This function is called by iget5_locked() to distinguish reiserfs inodes 1475 * having the same inode numbers. Such inodes can only exist due to some 1476 * error condition. One of them should be bad. Inodes with identical 1477 * inode numbers (objectids) are distinguished by parent directory ids. 1478 * 1479 */ 1480 int reiserfs_find_actor(struct inode *inode, void *opaque) 1481 { 1482 struct reiserfs_iget_args *args; 1483 1484 args = opaque; 1485 /* args is already in CPU order */ 1486 return (inode->i_ino == args->objectid) && 1487 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1488 } 1489 1490 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1491 { 1492 struct inode *inode; 1493 struct reiserfs_iget_args args; 1494 1495 args.objectid = key->on_disk_key.k_objectid; 1496 args.dirid = key->on_disk_key.k_dir_id; 1497 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1498 reiserfs_find_actor, reiserfs_init_locked_inode, 1499 (void *)(&args)); 1500 if (!inode) 1501 return ERR_PTR(-ENOMEM); 1502 1503 if (inode->i_state & I_NEW) { 1504 reiserfs_read_locked_inode(inode, &args); 1505 unlock_new_inode(inode); 1506 } 1507 1508 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1509 /* either due to i/o error or a stale NFS handle */ 1510 iput(inode); 1511 inode = NULL; 1512 } 1513 return inode; 1514 } 1515 1516 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp) 1517 { 1518 __u32 *data = vobjp; 1519 struct cpu_key key; 1520 struct dentry *result; 1521 struct inode *inode; 1522 1523 key.on_disk_key.k_objectid = data[0]; 1524 key.on_disk_key.k_dir_id = data[1]; 1525 reiserfs_write_lock(sb); 1526 inode = reiserfs_iget(sb, &key); 1527 if (inode && !IS_ERR(inode) && data[2] != 0 && 1528 data[2] != inode->i_generation) { 1529 iput(inode); 1530 inode = NULL; 1531 } 1532 reiserfs_write_unlock(sb); 1533 if (!inode) 1534 inode = ERR_PTR(-ESTALE); 1535 if (IS_ERR(inode)) 1536 return ERR_PTR(PTR_ERR(inode)); 1537 result = d_alloc_anon(inode); 1538 if (!result) { 1539 iput(inode); 1540 return ERR_PTR(-ENOMEM); 1541 } 1542 return result; 1543 } 1544 1545 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data, 1546 int len, int fhtype, 1547 int (*acceptable) (void *contect, 1548 struct dentry * de), 1549 void *context) 1550 { 1551 __u32 obj[3], parent[3]; 1552 1553 /* fhtype happens to reflect the number of u32s encoded. 1554 * due to a bug in earlier code, fhtype might indicate there 1555 * are more u32s then actually fitted. 1556 * so if fhtype seems to be more than len, reduce fhtype. 1557 * Valid types are: 1558 * 2 - objectid + dir_id - legacy support 1559 * 3 - objectid + dir_id + generation 1560 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1561 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1562 * 6 - as above plus generation of directory 1563 * 6 does not fit in NFSv2 handles 1564 */ 1565 if (fhtype > len) { 1566 if (fhtype != 6 || len != 5) 1567 reiserfs_warning(sb, 1568 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1569 fhtype, len); 1570 fhtype = 5; 1571 } 1572 1573 obj[0] = data[0]; 1574 obj[1] = data[1]; 1575 if (fhtype == 3 || fhtype >= 5) 1576 obj[2] = data[2]; 1577 else 1578 obj[2] = 0; /* generation number */ 1579 1580 if (fhtype >= 4) { 1581 parent[0] = data[fhtype >= 5 ? 3 : 2]; 1582 parent[1] = data[fhtype >= 5 ? 4 : 3]; 1583 if (fhtype == 6) 1584 parent[2] = data[5]; 1585 else 1586 parent[2] = 0; 1587 } 1588 return sb->s_export_op->find_exported_dentry(sb, obj, 1589 fhtype < 4 ? NULL : parent, 1590 acceptable, context); 1591 } 1592 1593 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1594 int need_parent) 1595 { 1596 struct inode *inode = dentry->d_inode; 1597 int maxlen = *lenp; 1598 1599 if (maxlen < 3) 1600 return 255; 1601 1602 data[0] = inode->i_ino; 1603 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1604 data[2] = inode->i_generation; 1605 *lenp = 3; 1606 /* no room for directory info? return what we've stored so far */ 1607 if (maxlen < 5 || !need_parent) 1608 return 3; 1609 1610 spin_lock(&dentry->d_lock); 1611 inode = dentry->d_parent->d_inode; 1612 data[3] = inode->i_ino; 1613 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1614 *lenp = 5; 1615 if (maxlen >= 6) { 1616 data[5] = inode->i_generation; 1617 *lenp = 6; 1618 } 1619 spin_unlock(&dentry->d_lock); 1620 return *lenp; 1621 } 1622 1623 /* looks for stat data, then copies fields to it, marks the buffer 1624 containing stat data as dirty */ 1625 /* reiserfs inodes are never really dirty, since the dirty inode call 1626 ** always logs them. This call allows the VFS inode marking routines 1627 ** to properly mark inodes for datasync and such, but only actually 1628 ** does something when called for a synchronous update. 1629 */ 1630 int reiserfs_write_inode(struct inode *inode, int do_sync) 1631 { 1632 struct reiserfs_transaction_handle th; 1633 int jbegin_count = 1; 1634 1635 if (inode->i_sb->s_flags & MS_RDONLY) 1636 return -EROFS; 1637 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1638 ** these cases are just when the system needs ram, not when the 1639 ** inode needs to reach disk for safety, and they can safely be 1640 ** ignored because the altered inode has already been logged. 1641 */ 1642 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1643 reiserfs_write_lock(inode->i_sb); 1644 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1645 reiserfs_update_sd(&th, inode); 1646 journal_end_sync(&th, inode->i_sb, jbegin_count); 1647 } 1648 reiserfs_write_unlock(inode->i_sb); 1649 } 1650 return 0; 1651 } 1652 1653 /* stat data of new object is inserted already, this inserts the item 1654 containing "." and ".." entries */ 1655 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1656 struct inode *inode, 1657 struct item_head *ih, struct treepath *path, 1658 struct inode *dir) 1659 { 1660 struct super_block *sb = th->t_super; 1661 char empty_dir[EMPTY_DIR_SIZE]; 1662 char *body = empty_dir; 1663 struct cpu_key key; 1664 int retval; 1665 1666 BUG_ON(!th->t_trans_id); 1667 1668 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1669 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1670 TYPE_DIRENTRY, 3 /*key length */ ); 1671 1672 /* compose item head for new item. Directories consist of items of 1673 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1674 is done by reiserfs_new_inode */ 1675 if (old_format_only(sb)) { 1676 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1677 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1678 1679 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1680 ih->ih_key.k_objectid, 1681 INODE_PKEY(dir)->k_dir_id, 1682 INODE_PKEY(dir)->k_objectid); 1683 } else { 1684 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1685 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1686 1687 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1688 ih->ih_key.k_objectid, 1689 INODE_PKEY(dir)->k_dir_id, 1690 INODE_PKEY(dir)->k_objectid); 1691 } 1692 1693 /* look for place in the tree for new item */ 1694 retval = search_item(sb, &key, path); 1695 if (retval == IO_ERROR) { 1696 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: " 1697 "i/o failure occurred creating new directory"); 1698 return -EIO; 1699 } 1700 if (retval == ITEM_FOUND) { 1701 pathrelse(path); 1702 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: " 1703 "object with this key exists (%k)", 1704 &(ih->ih_key)); 1705 return -EEXIST; 1706 } 1707 1708 /* insert item, that is empty directory item */ 1709 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1710 } 1711 1712 /* stat data of object has been inserted, this inserts the item 1713 containing the body of symlink */ 1714 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1715 struct item_head *ih, 1716 struct treepath *path, const char *symname, 1717 int item_len) 1718 { 1719 struct super_block *sb = th->t_super; 1720 struct cpu_key key; 1721 int retval; 1722 1723 BUG_ON(!th->t_trans_id); 1724 1725 _make_cpu_key(&key, KEY_FORMAT_3_5, 1726 le32_to_cpu(ih->ih_key.k_dir_id), 1727 le32_to_cpu(ih->ih_key.k_objectid), 1728 1, TYPE_DIRECT, 3 /*key length */ ); 1729 1730 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1731 0 /*free_space */ ); 1732 1733 /* look for place in the tree for new item */ 1734 retval = search_item(sb, &key, path); 1735 if (retval == IO_ERROR) { 1736 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: " 1737 "i/o failure occurred creating new symlink"); 1738 return -EIO; 1739 } 1740 if (retval == ITEM_FOUND) { 1741 pathrelse(path); 1742 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: " 1743 "object with this key exists (%k)", 1744 &(ih->ih_key)); 1745 return -EEXIST; 1746 } 1747 1748 /* insert item, that is body of symlink */ 1749 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1750 } 1751 1752 /* inserts the stat data into the tree, and then calls 1753 reiserfs_new_directory (to insert ".", ".." item if new object is 1754 directory) or reiserfs_new_symlink (to insert symlink body if new 1755 object is symlink) or nothing (if new object is regular file) 1756 1757 NOTE! uid and gid must already be set in the inode. If we return 1758 non-zero due to an error, we have to drop the quota previously allocated 1759 for the fresh inode. This can only be done outside a transaction, so 1760 if we return non-zero, we also end the transaction. */ 1761 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1762 struct inode *dir, int mode, const char *symname, 1763 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1764 strlen (symname) for symlinks) */ 1765 loff_t i_size, struct dentry *dentry, 1766 struct inode *inode) 1767 { 1768 struct super_block *sb; 1769 INITIALIZE_PATH(path_to_key); 1770 struct cpu_key key; 1771 struct item_head ih; 1772 struct stat_data sd; 1773 int retval; 1774 int err; 1775 1776 BUG_ON(!th->t_trans_id); 1777 1778 if (DQUOT_ALLOC_INODE(inode)) { 1779 err = -EDQUOT; 1780 goto out_end_trans; 1781 } 1782 if (!dir->i_nlink) { 1783 err = -EPERM; 1784 goto out_bad_inode; 1785 } 1786 1787 sb = dir->i_sb; 1788 1789 /* item head of new item */ 1790 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1791 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1792 if (!ih.ih_key.k_objectid) { 1793 err = -ENOMEM; 1794 goto out_bad_inode; 1795 } 1796 if (old_format_only(sb)) 1797 /* not a perfect generation count, as object ids can be reused, but 1798 ** this is as good as reiserfs can do right now. 1799 ** note that the private part of inode isn't filled in yet, we have 1800 ** to use the directory. 1801 */ 1802 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1803 else 1804 #if defined( USE_INODE_GENERATION_COUNTER ) 1805 inode->i_generation = 1806 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1807 #else 1808 inode->i_generation = ++event; 1809 #endif 1810 1811 /* fill stat data */ 1812 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1813 1814 /* uid and gid must already be set by the caller for quota init */ 1815 1816 /* symlink cannot be immutable or append only, right? */ 1817 if (S_ISLNK(inode->i_mode)) 1818 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1819 1820 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1821 inode->i_size = i_size; 1822 inode->i_blocks = 0; 1823 inode->i_bytes = 0; 1824 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1825 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1826 1827 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1828 REISERFS_I(inode)->i_flags = 0; 1829 REISERFS_I(inode)->i_prealloc_block = 0; 1830 REISERFS_I(inode)->i_prealloc_count = 0; 1831 REISERFS_I(inode)->i_trans_id = 0; 1832 REISERFS_I(inode)->i_jl = NULL; 1833 REISERFS_I(inode)->i_attrs = 1834 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1835 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1836 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1837 reiserfs_init_acl_access(inode); 1838 reiserfs_init_acl_default(inode); 1839 reiserfs_init_xattr_rwsem(inode); 1840 1841 if (old_format_only(sb)) 1842 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1843 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1844 else 1845 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1846 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1847 1848 /* key to search for correct place for new stat data */ 1849 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1850 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1851 TYPE_STAT_DATA, 3 /*key length */ ); 1852 1853 /* find proper place for inserting of stat data */ 1854 retval = search_item(sb, &key, &path_to_key); 1855 if (retval == IO_ERROR) { 1856 err = -EIO; 1857 goto out_bad_inode; 1858 } 1859 if (retval == ITEM_FOUND) { 1860 pathrelse(&path_to_key); 1861 err = -EEXIST; 1862 goto out_bad_inode; 1863 } 1864 if (old_format_only(sb)) { 1865 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1866 pathrelse(&path_to_key); 1867 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1868 err = -EINVAL; 1869 goto out_bad_inode; 1870 } 1871 inode2sd_v1(&sd, inode, inode->i_size); 1872 } else { 1873 inode2sd(&sd, inode, inode->i_size); 1874 } 1875 // these do not go to on-disk stat data 1876 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1877 1878 // store in in-core inode the key of stat data and version all 1879 // object items will have (directory items will have old offset 1880 // format, other new objects will consist of new items) 1881 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1882 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1883 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1884 else 1885 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1886 if (old_format_only(sb)) 1887 set_inode_sd_version(inode, STAT_DATA_V1); 1888 else 1889 set_inode_sd_version(inode, STAT_DATA_V2); 1890 1891 /* insert the stat data into the tree */ 1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1893 if (REISERFS_I(dir)->new_packing_locality) 1894 th->displace_new_blocks = 1; 1895 #endif 1896 retval = 1897 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1898 (char *)(&sd)); 1899 if (retval) { 1900 err = retval; 1901 reiserfs_check_path(&path_to_key); 1902 goto out_bad_inode; 1903 } 1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1905 if (!th->displace_new_blocks) 1906 REISERFS_I(dir)->new_packing_locality = 0; 1907 #endif 1908 if (S_ISDIR(mode)) { 1909 /* insert item with "." and ".." */ 1910 retval = 1911 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1912 } 1913 1914 if (S_ISLNK(mode)) { 1915 /* insert body of symlink */ 1916 if (!old_format_only(sb)) 1917 i_size = ROUND_UP(i_size); 1918 retval = 1919 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1920 i_size); 1921 } 1922 if (retval) { 1923 err = retval; 1924 reiserfs_check_path(&path_to_key); 1925 journal_end(th, th->t_super, th->t_blocks_allocated); 1926 goto out_inserted_sd; 1927 } 1928 1929 /* XXX CHECK THIS */ 1930 if (reiserfs_posixacl(inode->i_sb)) { 1931 retval = reiserfs_inherit_default_acl(dir, dentry, inode); 1932 if (retval) { 1933 err = retval; 1934 reiserfs_check_path(&path_to_key); 1935 journal_end(th, th->t_super, th->t_blocks_allocated); 1936 goto out_inserted_sd; 1937 } 1938 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1939 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, " 1940 "but vfs thinks they are!"); 1941 } else if (is_reiserfs_priv_object(dir)) { 1942 reiserfs_mark_inode_private(inode); 1943 } 1944 1945 insert_inode_hash(inode); 1946 reiserfs_update_sd(th, inode); 1947 reiserfs_check_path(&path_to_key); 1948 1949 return 0; 1950 1951 /* it looks like you can easily compress these two goto targets into 1952 * one. Keeping it like this doesn't actually hurt anything, and they 1953 * are place holders for what the quota code actually needs. 1954 */ 1955 out_bad_inode: 1956 /* Invalidate the object, nothing was inserted yet */ 1957 INODE_PKEY(inode)->k_objectid = 0; 1958 1959 /* Quota change must be inside a transaction for journaling */ 1960 DQUOT_FREE_INODE(inode); 1961 1962 out_end_trans: 1963 journal_end(th, th->t_super, th->t_blocks_allocated); 1964 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1965 DQUOT_DROP(inode); 1966 inode->i_flags |= S_NOQUOTA; 1967 make_bad_inode(inode); 1968 1969 out_inserted_sd: 1970 inode->i_nlink = 0; 1971 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1972 1973 /* If we were inheriting an ACL, we need to release the lock so that 1974 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking 1975 * code really needs to be reworked, but this will take care of it 1976 * for now. -jeffm */ 1977 #ifdef CONFIG_REISERFS_FS_POSIX_ACL 1978 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) { 1979 reiserfs_write_unlock_xattrs(dir->i_sb); 1980 iput(inode); 1981 reiserfs_write_lock_xattrs(dir->i_sb); 1982 } else 1983 #endif 1984 iput(inode); 1985 return err; 1986 } 1987 1988 /* 1989 ** finds the tail page in the page cache, 1990 ** reads the last block in. 1991 ** 1992 ** On success, page_result is set to a locked, pinned page, and bh_result 1993 ** is set to an up to date buffer for the last block in the file. returns 0. 1994 ** 1995 ** tail conversion is not done, so bh_result might not be valid for writing 1996 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1997 ** trying to write the block. 1998 ** 1999 ** on failure, nonzero is returned, page_result and bh_result are untouched. 2000 */ 2001 static int grab_tail_page(struct inode *p_s_inode, 2002 struct page **page_result, 2003 struct buffer_head **bh_result) 2004 { 2005 2006 /* we want the page with the last byte in the file, 2007 ** not the page that will hold the next byte for appending 2008 */ 2009 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2010 unsigned long pos = 0; 2011 unsigned long start = 0; 2012 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2013 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2014 struct buffer_head *bh; 2015 struct buffer_head *head; 2016 struct page *page; 2017 int error; 2018 2019 /* we know that we are only called with inode->i_size > 0. 2020 ** we also know that a file tail can never be as big as a block 2021 ** If i_size % blocksize == 0, our file is currently block aligned 2022 ** and it won't need converting or zeroing after a truncate. 2023 */ 2024 if ((offset & (blocksize - 1)) == 0) { 2025 return -ENOENT; 2026 } 2027 page = grab_cache_page(p_s_inode->i_mapping, index); 2028 error = -ENOMEM; 2029 if (!page) { 2030 goto out; 2031 } 2032 /* start within the page of the last block in the file */ 2033 start = (offset / blocksize) * blocksize; 2034 2035 error = block_prepare_write(page, start, offset, 2036 reiserfs_get_block_create_0); 2037 if (error) 2038 goto unlock; 2039 2040 head = page_buffers(page); 2041 bh = head; 2042 do { 2043 if (pos >= start) { 2044 break; 2045 } 2046 bh = bh->b_this_page; 2047 pos += blocksize; 2048 } while (bh != head); 2049 2050 if (!buffer_uptodate(bh)) { 2051 /* note, this should never happen, prepare_write should 2052 ** be taking care of this for us. If the buffer isn't up to date, 2053 ** I've screwed up the code to find the buffer, or the code to 2054 ** call prepare_write 2055 */ 2056 reiserfs_warning(p_s_inode->i_sb, 2057 "clm-6000: error reading block %lu on dev %s", 2058 bh->b_blocknr, 2059 reiserfs_bdevname(p_s_inode->i_sb)); 2060 error = -EIO; 2061 goto unlock; 2062 } 2063 *bh_result = bh; 2064 *page_result = page; 2065 2066 out: 2067 return error; 2068 2069 unlock: 2070 unlock_page(page); 2071 page_cache_release(page); 2072 return error; 2073 } 2074 2075 /* 2076 ** vfs version of truncate file. Must NOT be called with 2077 ** a transaction already started. 2078 ** 2079 ** some code taken from block_truncate_page 2080 */ 2081 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2082 { 2083 struct reiserfs_transaction_handle th; 2084 /* we want the offset for the first byte after the end of the file */ 2085 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2086 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2087 unsigned length; 2088 struct page *page = NULL; 2089 int error; 2090 struct buffer_head *bh = NULL; 2091 int err2; 2092 2093 reiserfs_write_lock(p_s_inode->i_sb); 2094 2095 if (p_s_inode->i_size > 0) { 2096 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2097 // -ENOENT means we truncated past the end of the file, 2098 // and get_block_create_0 could not find a block to read in, 2099 // which is ok. 2100 if (error != -ENOENT) 2101 reiserfs_warning(p_s_inode->i_sb, 2102 "clm-6001: grab_tail_page failed %d", 2103 error); 2104 page = NULL; 2105 bh = NULL; 2106 } 2107 } 2108 2109 /* so, if page != NULL, we have a buffer head for the offset at 2110 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2111 ** then we have an unformatted node. Otherwise, we have a direct item, 2112 ** and no zeroing is required on disk. We zero after the truncate, 2113 ** because the truncate might pack the item anyway 2114 ** (it will unmap bh if it packs). 2115 */ 2116 /* it is enough to reserve space in transaction for 2 balancings: 2117 one for "save" link adding and another for the first 2118 cut_from_item. 1 is for update_sd */ 2119 error = journal_begin(&th, p_s_inode->i_sb, 2120 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2121 if (error) 2122 goto out; 2123 reiserfs_update_inode_transaction(p_s_inode); 2124 if (update_timestamps) 2125 /* we are doing real truncate: if the system crashes before the last 2126 transaction of truncating gets committed - on reboot the file 2127 either appears truncated properly or not truncated at all */ 2128 add_save_link(&th, p_s_inode, 1); 2129 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2130 error = 2131 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2132 if (error) 2133 goto out; 2134 2135 /* check reiserfs_do_truncate after ending the transaction */ 2136 if (err2) { 2137 error = err2; 2138 goto out; 2139 } 2140 2141 if (update_timestamps) { 2142 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2143 if (error) 2144 goto out; 2145 } 2146 2147 if (page) { 2148 length = offset & (blocksize - 1); 2149 /* if we are not on a block boundary */ 2150 if (length) { 2151 length = blocksize - length; 2152 zero_user_page(page, offset, length, KM_USER0); 2153 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2154 mark_buffer_dirty(bh); 2155 } 2156 } 2157 unlock_page(page); 2158 page_cache_release(page); 2159 } 2160 2161 reiserfs_write_unlock(p_s_inode->i_sb); 2162 return 0; 2163 out: 2164 if (page) { 2165 unlock_page(page); 2166 page_cache_release(page); 2167 } 2168 reiserfs_write_unlock(p_s_inode->i_sb); 2169 return error; 2170 } 2171 2172 static int map_block_for_writepage(struct inode *inode, 2173 struct buffer_head *bh_result, 2174 unsigned long block) 2175 { 2176 struct reiserfs_transaction_handle th; 2177 int fs_gen; 2178 struct item_head tmp_ih; 2179 struct item_head *ih; 2180 struct buffer_head *bh; 2181 __le32 *item; 2182 struct cpu_key key; 2183 INITIALIZE_PATH(path); 2184 int pos_in_item; 2185 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2186 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2187 int retval; 2188 int use_get_block = 0; 2189 int bytes_copied = 0; 2190 int copy_size; 2191 int trans_running = 0; 2192 2193 /* catch places below that try to log something without starting a trans */ 2194 th.t_trans_id = 0; 2195 2196 if (!buffer_uptodate(bh_result)) { 2197 return -EIO; 2198 } 2199 2200 kmap(bh_result->b_page); 2201 start_over: 2202 reiserfs_write_lock(inode->i_sb); 2203 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2204 2205 research: 2206 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2207 if (retval != POSITION_FOUND) { 2208 use_get_block = 1; 2209 goto out; 2210 } 2211 2212 bh = get_last_bh(&path); 2213 ih = get_ih(&path); 2214 item = get_item(&path); 2215 pos_in_item = path.pos_in_item; 2216 2217 /* we've found an unformatted node */ 2218 if (indirect_item_found(retval, ih)) { 2219 if (bytes_copied > 0) { 2220 reiserfs_warning(inode->i_sb, 2221 "clm-6002: bytes_copied %d", 2222 bytes_copied); 2223 } 2224 if (!get_block_num(item, pos_in_item)) { 2225 /* crap, we are writing to a hole */ 2226 use_get_block = 1; 2227 goto out; 2228 } 2229 set_block_dev_mapped(bh_result, 2230 get_block_num(item, pos_in_item), inode); 2231 } else if (is_direct_le_ih(ih)) { 2232 char *p; 2233 p = page_address(bh_result->b_page); 2234 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2235 copy_size = ih_item_len(ih) - pos_in_item; 2236 2237 fs_gen = get_generation(inode->i_sb); 2238 copy_item_head(&tmp_ih, ih); 2239 2240 if (!trans_running) { 2241 /* vs-3050 is gone, no need to drop the path */ 2242 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2243 if (retval) 2244 goto out; 2245 reiserfs_update_inode_transaction(inode); 2246 trans_running = 1; 2247 if (fs_changed(fs_gen, inode->i_sb) 2248 && item_moved(&tmp_ih, &path)) { 2249 reiserfs_restore_prepared_buffer(inode->i_sb, 2250 bh); 2251 goto research; 2252 } 2253 } 2254 2255 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2256 2257 if (fs_changed(fs_gen, inode->i_sb) 2258 && item_moved(&tmp_ih, &path)) { 2259 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2260 goto research; 2261 } 2262 2263 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2264 copy_size); 2265 2266 journal_mark_dirty(&th, inode->i_sb, bh); 2267 bytes_copied += copy_size; 2268 set_block_dev_mapped(bh_result, 0, inode); 2269 2270 /* are there still bytes left? */ 2271 if (bytes_copied < bh_result->b_size && 2272 (byte_offset + bytes_copied) < inode->i_size) { 2273 set_cpu_key_k_offset(&key, 2274 cpu_key_k_offset(&key) + 2275 copy_size); 2276 goto research; 2277 } 2278 } else { 2279 reiserfs_warning(inode->i_sb, 2280 "clm-6003: bad item inode %lu, device %s", 2281 inode->i_ino, reiserfs_bdevname(inode->i_sb)); 2282 retval = -EIO; 2283 goto out; 2284 } 2285 retval = 0; 2286 2287 out: 2288 pathrelse(&path); 2289 if (trans_running) { 2290 int err = journal_end(&th, inode->i_sb, jbegin_count); 2291 if (err) 2292 retval = err; 2293 trans_running = 0; 2294 } 2295 reiserfs_write_unlock(inode->i_sb); 2296 2297 /* this is where we fill in holes in the file. */ 2298 if (use_get_block) { 2299 retval = reiserfs_get_block(inode, block, bh_result, 2300 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2301 | GET_BLOCK_NO_DANGLE); 2302 if (!retval) { 2303 if (!buffer_mapped(bh_result) 2304 || bh_result->b_blocknr == 0) { 2305 /* get_block failed to find a mapped unformatted node. */ 2306 use_get_block = 0; 2307 goto start_over; 2308 } 2309 } 2310 } 2311 kunmap(bh_result->b_page); 2312 2313 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2314 /* we've copied data from the page into the direct item, so the 2315 * buffer in the page is now clean, mark it to reflect that. 2316 */ 2317 lock_buffer(bh_result); 2318 clear_buffer_dirty(bh_result); 2319 unlock_buffer(bh_result); 2320 } 2321 return retval; 2322 } 2323 2324 /* 2325 * mason@suse.com: updated in 2.5.54 to follow the same general io 2326 * start/recovery path as __block_write_full_page, along with special 2327 * code to handle reiserfs tails. 2328 */ 2329 static int reiserfs_write_full_page(struct page *page, 2330 struct writeback_control *wbc) 2331 { 2332 struct inode *inode = page->mapping->host; 2333 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2334 int error = 0; 2335 unsigned long block; 2336 sector_t last_block; 2337 struct buffer_head *head, *bh; 2338 int partial = 0; 2339 int nr = 0; 2340 int checked = PageChecked(page); 2341 struct reiserfs_transaction_handle th; 2342 struct super_block *s = inode->i_sb; 2343 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2344 th.t_trans_id = 0; 2345 2346 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2347 if (checked && (current->flags & PF_MEMALLOC)) { 2348 redirty_page_for_writepage(wbc, page); 2349 unlock_page(page); 2350 return 0; 2351 } 2352 2353 /* The page dirty bit is cleared before writepage is called, which 2354 * means we have to tell create_empty_buffers to make dirty buffers 2355 * The page really should be up to date at this point, so tossing 2356 * in the BH_Uptodate is just a sanity check. 2357 */ 2358 if (!page_has_buffers(page)) { 2359 create_empty_buffers(page, s->s_blocksize, 2360 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2361 } 2362 head = page_buffers(page); 2363 2364 /* last page in the file, zero out any contents past the 2365 ** last byte in the file 2366 */ 2367 if (page->index >= end_index) { 2368 unsigned last_offset; 2369 2370 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2371 /* no file contents in this page */ 2372 if (page->index >= end_index + 1 || !last_offset) { 2373 unlock_page(page); 2374 return 0; 2375 } 2376 zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0); 2377 } 2378 bh = head; 2379 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2380 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2381 /* first map all the buffers, logging any direct items we find */ 2382 do { 2383 if (block > last_block) { 2384 /* 2385 * This can happen when the block size is less than 2386 * the page size. The corresponding bytes in the page 2387 * were zero filled above 2388 */ 2389 clear_buffer_dirty(bh); 2390 set_buffer_uptodate(bh); 2391 } else if ((checked || buffer_dirty(bh)) && 2392 (!buffer_mapped(bh) || (buffer_mapped(bh) 2393 && bh->b_blocknr == 2394 0))) { 2395 /* not mapped yet, or it points to a direct item, search 2396 * the btree for the mapping info, and log any direct 2397 * items found 2398 */ 2399 if ((error = map_block_for_writepage(inode, bh, block))) { 2400 goto fail; 2401 } 2402 } 2403 bh = bh->b_this_page; 2404 block++; 2405 } while (bh != head); 2406 2407 /* 2408 * we start the transaction after map_block_for_writepage, 2409 * because it can create holes in the file (an unbounded operation). 2410 * starting it here, we can make a reliable estimate for how many 2411 * blocks we're going to log 2412 */ 2413 if (checked) { 2414 ClearPageChecked(page); 2415 reiserfs_write_lock(s); 2416 error = journal_begin(&th, s, bh_per_page + 1); 2417 if (error) { 2418 reiserfs_write_unlock(s); 2419 goto fail; 2420 } 2421 reiserfs_update_inode_transaction(inode); 2422 } 2423 /* now go through and lock any dirty buffers on the page */ 2424 do { 2425 get_bh(bh); 2426 if (!buffer_mapped(bh)) 2427 continue; 2428 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2429 continue; 2430 2431 if (checked) { 2432 reiserfs_prepare_for_journal(s, bh, 1); 2433 journal_mark_dirty(&th, s, bh); 2434 continue; 2435 } 2436 /* from this point on, we know the buffer is mapped to a 2437 * real block and not a direct item 2438 */ 2439 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2440 lock_buffer(bh); 2441 } else { 2442 if (test_set_buffer_locked(bh)) { 2443 redirty_page_for_writepage(wbc, page); 2444 continue; 2445 } 2446 } 2447 if (test_clear_buffer_dirty(bh)) { 2448 mark_buffer_async_write(bh); 2449 } else { 2450 unlock_buffer(bh); 2451 } 2452 } while ((bh = bh->b_this_page) != head); 2453 2454 if (checked) { 2455 error = journal_end(&th, s, bh_per_page + 1); 2456 reiserfs_write_unlock(s); 2457 if (error) 2458 goto fail; 2459 } 2460 BUG_ON(PageWriteback(page)); 2461 set_page_writeback(page); 2462 unlock_page(page); 2463 2464 /* 2465 * since any buffer might be the only dirty buffer on the page, 2466 * the first submit_bh can bring the page out of writeback. 2467 * be careful with the buffers. 2468 */ 2469 do { 2470 struct buffer_head *next = bh->b_this_page; 2471 if (buffer_async_write(bh)) { 2472 submit_bh(WRITE, bh); 2473 nr++; 2474 } 2475 put_bh(bh); 2476 bh = next; 2477 } while (bh != head); 2478 2479 error = 0; 2480 done: 2481 if (nr == 0) { 2482 /* 2483 * if this page only had a direct item, it is very possible for 2484 * no io to be required without there being an error. Or, 2485 * someone else could have locked them and sent them down the 2486 * pipe without locking the page 2487 */ 2488 bh = head; 2489 do { 2490 if (!buffer_uptodate(bh)) { 2491 partial = 1; 2492 break; 2493 } 2494 bh = bh->b_this_page; 2495 } while (bh != head); 2496 if (!partial) 2497 SetPageUptodate(page); 2498 end_page_writeback(page); 2499 } 2500 return error; 2501 2502 fail: 2503 /* catches various errors, we need to make sure any valid dirty blocks 2504 * get to the media. The page is currently locked and not marked for 2505 * writeback 2506 */ 2507 ClearPageUptodate(page); 2508 bh = head; 2509 do { 2510 get_bh(bh); 2511 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2512 lock_buffer(bh); 2513 mark_buffer_async_write(bh); 2514 } else { 2515 /* 2516 * clear any dirty bits that might have come from getting 2517 * attached to a dirty page 2518 */ 2519 clear_buffer_dirty(bh); 2520 } 2521 bh = bh->b_this_page; 2522 } while (bh != head); 2523 SetPageError(page); 2524 BUG_ON(PageWriteback(page)); 2525 set_page_writeback(page); 2526 unlock_page(page); 2527 do { 2528 struct buffer_head *next = bh->b_this_page; 2529 if (buffer_async_write(bh)) { 2530 clear_buffer_dirty(bh); 2531 submit_bh(WRITE, bh); 2532 nr++; 2533 } 2534 put_bh(bh); 2535 bh = next; 2536 } while (bh != head); 2537 goto done; 2538 } 2539 2540 static int reiserfs_readpage(struct file *f, struct page *page) 2541 { 2542 return block_read_full_page(page, reiserfs_get_block); 2543 } 2544 2545 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2546 { 2547 struct inode *inode = page->mapping->host; 2548 reiserfs_wait_on_write_block(inode->i_sb); 2549 return reiserfs_write_full_page(page, wbc); 2550 } 2551 2552 static int reiserfs_prepare_write(struct file *f, struct page *page, 2553 unsigned from, unsigned to) 2554 { 2555 struct inode *inode = page->mapping->host; 2556 int ret; 2557 int old_ref = 0; 2558 2559 reiserfs_wait_on_write_block(inode->i_sb); 2560 fix_tail_page_for_writing(page); 2561 if (reiserfs_transaction_running(inode->i_sb)) { 2562 struct reiserfs_transaction_handle *th; 2563 th = (struct reiserfs_transaction_handle *)current-> 2564 journal_info; 2565 BUG_ON(!th->t_refcount); 2566 BUG_ON(!th->t_trans_id); 2567 old_ref = th->t_refcount; 2568 th->t_refcount++; 2569 } 2570 2571 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2572 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2573 struct reiserfs_transaction_handle *th = current->journal_info; 2574 /* this gets a little ugly. If reiserfs_get_block returned an 2575 * error and left a transacstion running, we've got to close it, 2576 * and we've got to free handle if it was a persistent transaction. 2577 * 2578 * But, if we had nested into an existing transaction, we need 2579 * to just drop the ref count on the handle. 2580 * 2581 * If old_ref == 0, the transaction is from reiserfs_get_block, 2582 * and it was a persistent trans. Otherwise, it was nested above. 2583 */ 2584 if (th->t_refcount > old_ref) { 2585 if (old_ref) 2586 th->t_refcount--; 2587 else { 2588 int err; 2589 reiserfs_write_lock(inode->i_sb); 2590 err = reiserfs_end_persistent_transaction(th); 2591 reiserfs_write_unlock(inode->i_sb); 2592 if (err) 2593 ret = err; 2594 } 2595 } 2596 } 2597 return ret; 2598 2599 } 2600 2601 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2602 { 2603 return generic_block_bmap(as, block, reiserfs_bmap); 2604 } 2605 2606 static int reiserfs_commit_write(struct file *f, struct page *page, 2607 unsigned from, unsigned to) 2608 { 2609 struct inode *inode = page->mapping->host; 2610 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2611 int ret = 0; 2612 int update_sd = 0; 2613 struct reiserfs_transaction_handle *th = NULL; 2614 2615 reiserfs_wait_on_write_block(inode->i_sb); 2616 if (reiserfs_transaction_running(inode->i_sb)) { 2617 th = current->journal_info; 2618 } 2619 reiserfs_commit_page(inode, page, from, to); 2620 2621 /* generic_commit_write does this for us, but does not update the 2622 ** transaction tracking stuff when the size changes. So, we have 2623 ** to do the i_size updates here. 2624 */ 2625 if (pos > inode->i_size) { 2626 struct reiserfs_transaction_handle myth; 2627 reiserfs_write_lock(inode->i_sb); 2628 /* If the file have grown beyond the border where it 2629 can have a tail, unmark it as needing a tail 2630 packing */ 2631 if ((have_large_tails(inode->i_sb) 2632 && inode->i_size > i_block_size(inode) * 4) 2633 || (have_small_tails(inode->i_sb) 2634 && inode->i_size > i_block_size(inode))) 2635 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2636 2637 ret = journal_begin(&myth, inode->i_sb, 1); 2638 if (ret) { 2639 reiserfs_write_unlock(inode->i_sb); 2640 goto journal_error; 2641 } 2642 reiserfs_update_inode_transaction(inode); 2643 inode->i_size = pos; 2644 /* 2645 * this will just nest into our transaction. It's important 2646 * to use mark_inode_dirty so the inode gets pushed around on the 2647 * dirty lists, and so that O_SYNC works as expected 2648 */ 2649 mark_inode_dirty(inode); 2650 reiserfs_update_sd(&myth, inode); 2651 update_sd = 1; 2652 ret = journal_end(&myth, inode->i_sb, 1); 2653 reiserfs_write_unlock(inode->i_sb); 2654 if (ret) 2655 goto journal_error; 2656 } 2657 if (th) { 2658 reiserfs_write_lock(inode->i_sb); 2659 if (!update_sd) 2660 mark_inode_dirty(inode); 2661 ret = reiserfs_end_persistent_transaction(th); 2662 reiserfs_write_unlock(inode->i_sb); 2663 if (ret) 2664 goto out; 2665 } 2666 2667 out: 2668 return ret; 2669 2670 journal_error: 2671 if (th) { 2672 reiserfs_write_lock(inode->i_sb); 2673 if (!update_sd) 2674 reiserfs_update_sd(th, inode); 2675 ret = reiserfs_end_persistent_transaction(th); 2676 reiserfs_write_unlock(inode->i_sb); 2677 } 2678 2679 return ret; 2680 } 2681 2682 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2683 { 2684 if (reiserfs_attrs(inode->i_sb)) { 2685 if (sd_attrs & REISERFS_SYNC_FL) 2686 inode->i_flags |= S_SYNC; 2687 else 2688 inode->i_flags &= ~S_SYNC; 2689 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2690 inode->i_flags |= S_IMMUTABLE; 2691 else 2692 inode->i_flags &= ~S_IMMUTABLE; 2693 if (sd_attrs & REISERFS_APPEND_FL) 2694 inode->i_flags |= S_APPEND; 2695 else 2696 inode->i_flags &= ~S_APPEND; 2697 if (sd_attrs & REISERFS_NOATIME_FL) 2698 inode->i_flags |= S_NOATIME; 2699 else 2700 inode->i_flags &= ~S_NOATIME; 2701 if (sd_attrs & REISERFS_NOTAIL_FL) 2702 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2703 else 2704 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2705 } 2706 } 2707 2708 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2709 { 2710 if (reiserfs_attrs(inode->i_sb)) { 2711 if (inode->i_flags & S_IMMUTABLE) 2712 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2713 else 2714 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2715 if (inode->i_flags & S_SYNC) 2716 *sd_attrs |= REISERFS_SYNC_FL; 2717 else 2718 *sd_attrs &= ~REISERFS_SYNC_FL; 2719 if (inode->i_flags & S_NOATIME) 2720 *sd_attrs |= REISERFS_NOATIME_FL; 2721 else 2722 *sd_attrs &= ~REISERFS_NOATIME_FL; 2723 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2724 *sd_attrs |= REISERFS_NOTAIL_FL; 2725 else 2726 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2727 } 2728 } 2729 2730 /* decide if this buffer needs to stay around for data logging or ordered 2731 ** write purposes 2732 */ 2733 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2734 { 2735 int ret = 1; 2736 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2737 2738 lock_buffer(bh); 2739 spin_lock(&j->j_dirty_buffers_lock); 2740 if (!buffer_mapped(bh)) { 2741 goto free_jh; 2742 } 2743 /* the page is locked, and the only places that log a data buffer 2744 * also lock the page. 2745 */ 2746 if (reiserfs_file_data_log(inode)) { 2747 /* 2748 * very conservative, leave the buffer pinned if 2749 * anyone might need it. 2750 */ 2751 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2752 ret = 0; 2753 } 2754 } else if (buffer_dirty(bh)) { 2755 struct reiserfs_journal_list *jl; 2756 struct reiserfs_jh *jh = bh->b_private; 2757 2758 /* why is this safe? 2759 * reiserfs_setattr updates i_size in the on disk 2760 * stat data before allowing vmtruncate to be called. 2761 * 2762 * If buffer was put onto the ordered list for this 2763 * transaction, we know for sure either this transaction 2764 * or an older one already has updated i_size on disk, 2765 * and this ordered data won't be referenced in the file 2766 * if we crash. 2767 * 2768 * if the buffer was put onto the ordered list for an older 2769 * transaction, we need to leave it around 2770 */ 2771 if (jh && (jl = jh->jl) 2772 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2773 ret = 0; 2774 } 2775 free_jh: 2776 if (ret && bh->b_private) { 2777 reiserfs_free_jh(bh); 2778 } 2779 spin_unlock(&j->j_dirty_buffers_lock); 2780 unlock_buffer(bh); 2781 return ret; 2782 } 2783 2784 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2785 static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2786 { 2787 struct buffer_head *head, *bh, *next; 2788 struct inode *inode = page->mapping->host; 2789 unsigned int curr_off = 0; 2790 int ret = 1; 2791 2792 BUG_ON(!PageLocked(page)); 2793 2794 if (offset == 0) 2795 ClearPageChecked(page); 2796 2797 if (!page_has_buffers(page)) 2798 goto out; 2799 2800 head = page_buffers(page); 2801 bh = head; 2802 do { 2803 unsigned int next_off = curr_off + bh->b_size; 2804 next = bh->b_this_page; 2805 2806 /* 2807 * is this block fully invalidated? 2808 */ 2809 if (offset <= curr_off) { 2810 if (invalidatepage_can_drop(inode, bh)) 2811 reiserfs_unmap_buffer(bh); 2812 else 2813 ret = 0; 2814 } 2815 curr_off = next_off; 2816 bh = next; 2817 } while (bh != head); 2818 2819 /* 2820 * We release buffers only if the entire page is being invalidated. 2821 * The get_block cached value has been unconditionally invalidated, 2822 * so real IO is not possible anymore. 2823 */ 2824 if (!offset && ret) { 2825 ret = try_to_release_page(page, 0); 2826 /* maybe should BUG_ON(!ret); - neilb */ 2827 } 2828 out: 2829 return; 2830 } 2831 2832 static int reiserfs_set_page_dirty(struct page *page) 2833 { 2834 struct inode *inode = page->mapping->host; 2835 if (reiserfs_file_data_log(inode)) { 2836 SetPageChecked(page); 2837 return __set_page_dirty_nobuffers(page); 2838 } 2839 return __set_page_dirty_buffers(page); 2840 } 2841 2842 /* 2843 * Returns 1 if the page's buffers were dropped. The page is locked. 2844 * 2845 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 2846 * in the buffers at page_buffers(page). 2847 * 2848 * even in -o notail mode, we can't be sure an old mount without -o notail 2849 * didn't create files with tails. 2850 */ 2851 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 2852 { 2853 struct inode *inode = page->mapping->host; 2854 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2855 struct buffer_head *head; 2856 struct buffer_head *bh; 2857 int ret = 1; 2858 2859 WARN_ON(PageChecked(page)); 2860 spin_lock(&j->j_dirty_buffers_lock); 2861 head = page_buffers(page); 2862 bh = head; 2863 do { 2864 if (bh->b_private) { 2865 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 2866 reiserfs_free_jh(bh); 2867 } else { 2868 ret = 0; 2869 break; 2870 } 2871 } 2872 bh = bh->b_this_page; 2873 } while (bh != head); 2874 if (ret) 2875 ret = try_to_free_buffers(page); 2876 spin_unlock(&j->j_dirty_buffers_lock); 2877 return ret; 2878 } 2879 2880 /* We thank Mingming Cao for helping us understand in great detail what 2881 to do in this section of the code. */ 2882 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 2883 const struct iovec *iov, loff_t offset, 2884 unsigned long nr_segs) 2885 { 2886 struct file *file = iocb->ki_filp; 2887 struct inode *inode = file->f_mapping->host; 2888 2889 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2890 offset, nr_segs, 2891 reiserfs_get_blocks_direct_io, NULL); 2892 } 2893 2894 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 2895 { 2896 struct inode *inode = dentry->d_inode; 2897 int error; 2898 unsigned int ia_valid = attr->ia_valid; 2899 reiserfs_write_lock(inode->i_sb); 2900 if (attr->ia_valid & ATTR_SIZE) { 2901 /* version 2 items will be caught by the s_maxbytes check 2902 ** done for us in vmtruncate 2903 */ 2904 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 2905 attr->ia_size > MAX_NON_LFS) { 2906 error = -EFBIG; 2907 goto out; 2908 } 2909 /* fill in hole pointers in the expanding truncate case. */ 2910 if (attr->ia_size > inode->i_size) { 2911 error = generic_cont_expand(inode, attr->ia_size); 2912 if (REISERFS_I(inode)->i_prealloc_count > 0) { 2913 int err; 2914 struct reiserfs_transaction_handle th; 2915 /* we're changing at most 2 bitmaps, inode + super */ 2916 err = journal_begin(&th, inode->i_sb, 4); 2917 if (!err) { 2918 reiserfs_discard_prealloc(&th, inode); 2919 err = journal_end(&th, inode->i_sb, 4); 2920 } 2921 if (err) 2922 error = err; 2923 } 2924 if (error) 2925 goto out; 2926 /* 2927 * file size is changed, ctime and mtime are 2928 * to be updated 2929 */ 2930 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 2931 } 2932 } 2933 2934 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 2935 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 2936 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 2937 /* stat data of format v3.5 has 16 bit uid and gid */ 2938 error = -EINVAL; 2939 goto out; 2940 } 2941 2942 error = inode_change_ok(inode, attr); 2943 if (!error) { 2944 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 2945 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 2946 error = reiserfs_chown_xattrs(inode, attr); 2947 2948 if (!error) { 2949 struct reiserfs_transaction_handle th; 2950 int jbegin_count = 2951 2 * 2952 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 2953 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 2954 2; 2955 2956 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 2957 error = 2958 journal_begin(&th, inode->i_sb, 2959 jbegin_count); 2960 if (error) 2961 goto out; 2962 error = 2963 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 2964 if (error) { 2965 journal_end(&th, inode->i_sb, 2966 jbegin_count); 2967 goto out; 2968 } 2969 /* Update corresponding info in inode so that everything is in 2970 * one transaction */ 2971 if (attr->ia_valid & ATTR_UID) 2972 inode->i_uid = attr->ia_uid; 2973 if (attr->ia_valid & ATTR_GID) 2974 inode->i_gid = attr->ia_gid; 2975 mark_inode_dirty(inode); 2976 error = 2977 journal_end(&th, inode->i_sb, jbegin_count); 2978 } 2979 } 2980 if (!error) 2981 error = inode_setattr(inode, attr); 2982 } 2983 2984 if (!error && reiserfs_posixacl(inode->i_sb)) { 2985 if (attr->ia_valid & ATTR_MODE) 2986 error = reiserfs_acl_chmod(inode); 2987 } 2988 2989 out: 2990 reiserfs_write_unlock(inode->i_sb); 2991 return error; 2992 } 2993 2994 const struct address_space_operations reiserfs_address_space_operations = { 2995 .writepage = reiserfs_writepage, 2996 .readpage = reiserfs_readpage, 2997 .readpages = reiserfs_readpages, 2998 .releasepage = reiserfs_releasepage, 2999 .invalidatepage = reiserfs_invalidatepage, 3000 .sync_page = block_sync_page, 3001 .prepare_write = reiserfs_prepare_write, 3002 .commit_write = reiserfs_commit_write, 3003 .bmap = reiserfs_aop_bmap, 3004 .direct_IO = reiserfs_direct_IO, 3005 .set_page_dirty = reiserfs_set_page_dirty, 3006 }; 3007