xref: /openbmc/linux/fs/reiserfs/inode.c (revision 64c70b1c)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/smp_lock.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <asm/uaccess.h>
14 #include <asm/unaligned.h>
15 #include <linux/buffer_head.h>
16 #include <linux/mpage.h>
17 #include <linux/writeback.h>
18 #include <linux/quotaops.h>
19 
20 static int reiserfs_commit_write(struct file *f, struct page *page,
21 				 unsigned from, unsigned to);
22 static int reiserfs_prepare_write(struct file *f, struct page *page,
23 				  unsigned from, unsigned to);
24 
25 void reiserfs_delete_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int err;
33 
34 	truncate_inode_pages(&inode->i_data, 0);
35 
36 	reiserfs_write_lock(inode->i_sb);
37 
38 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
40 		reiserfs_delete_xattrs(inode);
41 
42 		if (journal_begin(&th, inode->i_sb, jbegin_count))
43 			goto out;
44 		reiserfs_update_inode_transaction(inode);
45 
46 		err = reiserfs_delete_object(&th, inode);
47 
48 		/* Do quota update inside a transaction for journaled quotas. We must do that
49 		 * after delete_object so that quota updates go into the same transaction as
50 		 * stat data deletion */
51 		if (!err)
52 			DQUOT_FREE_INODE(inode);
53 
54 		if (journal_end(&th, inode->i_sb, jbegin_count))
55 			goto out;
56 
57 		/* check return value from reiserfs_delete_object after
58 		 * ending the transaction
59 		 */
60 		if (err)
61 		    goto out;
62 
63 		/* all items of file are deleted, so we can remove "save" link */
64 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
65 								 * about an error here */
66 	} else {
67 		/* no object items are in the tree */
68 		;
69 	}
70       out:
71 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
72 	inode->i_blocks = 0;
73 	reiserfs_write_unlock(inode->i_sb);
74 }
75 
76 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
77 			  __u32 objectid, loff_t offset, int type, int length)
78 {
79 	key->version = version;
80 
81 	key->on_disk_key.k_dir_id = dirid;
82 	key->on_disk_key.k_objectid = objectid;
83 	set_cpu_key_k_offset(key, offset);
84 	set_cpu_key_k_type(key, type);
85 	key->key_length = length;
86 }
87 
88 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
89    offset and type of key */
90 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
91 		  int type, int length)
92 {
93 	_make_cpu_key(key, get_inode_item_key_version(inode),
94 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
95 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
96 		      length);
97 }
98 
99 //
100 // when key is 0, do not set version and short key
101 //
102 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
103 			      int version,
104 			      loff_t offset, int type, int length,
105 			      int entry_count /*or ih_free_space */ )
106 {
107 	if (key) {
108 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
109 		ih->ih_key.k_objectid =
110 		    cpu_to_le32(key->on_disk_key.k_objectid);
111 	}
112 	put_ih_version(ih, version);
113 	set_le_ih_k_offset(ih, offset);
114 	set_le_ih_k_type(ih, type);
115 	put_ih_item_len(ih, length);
116 	/*    set_ih_free_space (ih, 0); */
117 	// for directory items it is entry count, for directs and stat
118 	// datas - 0xffff, for indirects - 0
119 	put_ih_entry_count(ih, entry_count);
120 }
121 
122 //
123 // FIXME: we might cache recently accessed indirect item
124 
125 // Ugh.  Not too eager for that....
126 //  I cut the code until such time as I see a convincing argument (benchmark).
127 // I don't want a bloated inode struct..., and I don't like code complexity....
128 
129 /* cutting the code is fine, since it really isn't in use yet and is easy
130 ** to add back in.  But, Vladimir has a really good idea here.  Think
131 ** about what happens for reading a file.  For each page,
132 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
133 ** an indirect item.  This indirect item has X number of pointers, where
134 ** X is a big number if we've done the block allocation right.  But,
135 ** we only use one or two of these pointers during each call to readpage,
136 ** needlessly researching again later on.
137 **
138 ** The size of the cache could be dynamic based on the size of the file.
139 **
140 ** I'd also like to see us cache the location the stat data item, since
141 ** we are needlessly researching for that frequently.
142 **
143 ** --chris
144 */
145 
146 /* If this page has a file tail in it, and
147 ** it was read in by get_block_create_0, the page data is valid,
148 ** but tail is still sitting in a direct item, and we can't write to
149 ** it.  So, look through this page, and check all the mapped buffers
150 ** to make sure they have valid block numbers.  Any that don't need
151 ** to be unmapped, so that block_prepare_write will correctly call
152 ** reiserfs_get_block to convert the tail into an unformatted node
153 */
154 static inline void fix_tail_page_for_writing(struct page *page)
155 {
156 	struct buffer_head *head, *next, *bh;
157 
158 	if (page && page_has_buffers(page)) {
159 		head = page_buffers(page);
160 		bh = head;
161 		do {
162 			next = bh->b_this_page;
163 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
164 				reiserfs_unmap_buffer(bh);
165 			}
166 			bh = next;
167 		} while (bh != head);
168 	}
169 }
170 
171 /* reiserfs_get_block does not need to allocate a block only if it has been
172    done already or non-hole position has been found in the indirect item */
173 static inline int allocation_needed(int retval, b_blocknr_t allocated,
174 				    struct item_head *ih,
175 				    __le32 * item, int pos_in_item)
176 {
177 	if (allocated)
178 		return 0;
179 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
180 	    get_block_num(item, pos_in_item))
181 		return 0;
182 	return 1;
183 }
184 
185 static inline int indirect_item_found(int retval, struct item_head *ih)
186 {
187 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
188 }
189 
190 static inline void set_block_dev_mapped(struct buffer_head *bh,
191 					b_blocknr_t block, struct inode *inode)
192 {
193 	map_bh(bh, inode->i_sb, block);
194 }
195 
196 //
197 // files which were created in the earlier version can not be longer,
198 // than 2 gb
199 //
200 static int file_capable(struct inode *inode, long block)
201 {
202 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
203 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
204 		return 1;
205 
206 	return 0;
207 }
208 
209 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
210 				   struct inode *inode, struct treepath *path)
211 {
212 	struct super_block *s = th->t_super;
213 	int len = th->t_blocks_allocated;
214 	int err;
215 
216 	BUG_ON(!th->t_trans_id);
217 	BUG_ON(!th->t_refcount);
218 
219 	pathrelse(path);
220 
221 	/* we cannot restart while nested */
222 	if (th->t_refcount > 1) {
223 		return 0;
224 	}
225 	reiserfs_update_sd(th, inode);
226 	err = journal_end(th, s, len);
227 	if (!err) {
228 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
229 		if (!err)
230 			reiserfs_update_inode_transaction(inode);
231 	}
232 	return err;
233 }
234 
235 // it is called by get_block when create == 0. Returns block number
236 // for 'block'-th logical block of file. When it hits direct item it
237 // returns 0 (being called from bmap) or read direct item into piece
238 // of page (bh_result)
239 
240 // Please improve the english/clarity in the comment above, as it is
241 // hard to understand.
242 
243 static int _get_block_create_0(struct inode *inode, long block,
244 			       struct buffer_head *bh_result, int args)
245 {
246 	INITIALIZE_PATH(path);
247 	struct cpu_key key;
248 	struct buffer_head *bh;
249 	struct item_head *ih, tmp_ih;
250 	int fs_gen;
251 	int blocknr;
252 	char *p = NULL;
253 	int chars;
254 	int ret;
255 	int result;
256 	int done = 0;
257 	unsigned long offset;
258 
259 	// prepare the key to look for the 'block'-th block of file
260 	make_cpu_key(&key, inode,
261 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
262 		     3);
263 
264       research:
265 	result = search_for_position_by_key(inode->i_sb, &key, &path);
266 	if (result != POSITION_FOUND) {
267 		pathrelse(&path);
268 		if (p)
269 			kunmap(bh_result->b_page);
270 		if (result == IO_ERROR)
271 			return -EIO;
272 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
273 		// That there is some MMAPED data associated with it that is yet to be written to disk.
274 		if ((args & GET_BLOCK_NO_HOLE)
275 		    && !PageUptodate(bh_result->b_page)) {
276 			return -ENOENT;
277 		}
278 		return 0;
279 	}
280 	//
281 	bh = get_last_bh(&path);
282 	ih = get_ih(&path);
283 	if (is_indirect_le_ih(ih)) {
284 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
285 
286 		/* FIXME: here we could cache indirect item or part of it in
287 		   the inode to avoid search_by_key in case of subsequent
288 		   access to file */
289 		blocknr = get_block_num(ind_item, path.pos_in_item);
290 		ret = 0;
291 		if (blocknr) {
292 			map_bh(bh_result, inode->i_sb, blocknr);
293 			if (path.pos_in_item ==
294 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
295 				set_buffer_boundary(bh_result);
296 			}
297 		} else
298 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
299 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
300 		if ((args & GET_BLOCK_NO_HOLE)
301 			    && !PageUptodate(bh_result->b_page)) {
302 			ret = -ENOENT;
303 		}
304 
305 		pathrelse(&path);
306 		if (p)
307 			kunmap(bh_result->b_page);
308 		return ret;
309 	}
310 	// requested data are in direct item(s)
311 	if (!(args & GET_BLOCK_READ_DIRECT)) {
312 		// we are called by bmap. FIXME: we can not map block of file
313 		// when it is stored in direct item(s)
314 		pathrelse(&path);
315 		if (p)
316 			kunmap(bh_result->b_page);
317 		return -ENOENT;
318 	}
319 
320 	/* if we've got a direct item, and the buffer or page was uptodate,
321 	 ** we don't want to pull data off disk again.  skip to the
322 	 ** end, where we map the buffer and return
323 	 */
324 	if (buffer_uptodate(bh_result)) {
325 		goto finished;
326 	} else
327 		/*
328 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
329 		 ** pages without any buffers.  If the page is up to date, we don't want
330 		 ** read old data off disk.  Set the up to date bit on the buffer instead
331 		 ** and jump to the end
332 		 */
333 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
334 		set_buffer_uptodate(bh_result);
335 		goto finished;
336 	}
337 	// read file tail into part of page
338 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
339 	fs_gen = get_generation(inode->i_sb);
340 	copy_item_head(&tmp_ih, ih);
341 
342 	/* we only want to kmap if we are reading the tail into the page.
343 	 ** this is not the common case, so we don't kmap until we are
344 	 ** sure we need to.  But, this means the item might move if
345 	 ** kmap schedules
346 	 */
347 	if (!p) {
348 		p = (char *)kmap(bh_result->b_page);
349 		if (fs_changed(fs_gen, inode->i_sb)
350 		    && item_moved(&tmp_ih, &path)) {
351 			goto research;
352 		}
353 	}
354 	p += offset;
355 	memset(p, 0, inode->i_sb->s_blocksize);
356 	do {
357 		if (!is_direct_le_ih(ih)) {
358 			BUG();
359 		}
360 		/* make sure we don't read more bytes than actually exist in
361 		 ** the file.  This can happen in odd cases where i_size isn't
362 		 ** correct, and when direct item padding results in a few
363 		 ** extra bytes at the end of the direct item
364 		 */
365 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
366 			break;
367 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
368 			chars =
369 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
370 			    path.pos_in_item;
371 			done = 1;
372 		} else {
373 			chars = ih_item_len(ih) - path.pos_in_item;
374 		}
375 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
376 
377 		if (done)
378 			break;
379 
380 		p += chars;
381 
382 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
383 			// we done, if read direct item is not the last item of
384 			// node FIXME: we could try to check right delimiting key
385 			// to see whether direct item continues in the right
386 			// neighbor or rely on i_size
387 			break;
388 
389 		// update key to look for the next piece
390 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
391 		result = search_for_position_by_key(inode->i_sb, &key, &path);
392 		if (result != POSITION_FOUND)
393 			// i/o error most likely
394 			break;
395 		bh = get_last_bh(&path);
396 		ih = get_ih(&path);
397 	} while (1);
398 
399 	flush_dcache_page(bh_result->b_page);
400 	kunmap(bh_result->b_page);
401 
402       finished:
403 	pathrelse(&path);
404 
405 	if (result == IO_ERROR)
406 		return -EIO;
407 
408 	/* this buffer has valid data, but isn't valid for io.  mapping it to
409 	 * block #0 tells the rest of reiserfs it just has a tail in it
410 	 */
411 	map_bh(bh_result, inode->i_sb, 0);
412 	set_buffer_uptodate(bh_result);
413 	return 0;
414 }
415 
416 // this is called to create file map. So, _get_block_create_0 will not
417 // read direct item
418 static int reiserfs_bmap(struct inode *inode, sector_t block,
419 			 struct buffer_head *bh_result, int create)
420 {
421 	if (!file_capable(inode, block))
422 		return -EFBIG;
423 
424 	reiserfs_write_lock(inode->i_sb);
425 	/* do not read the direct item */
426 	_get_block_create_0(inode, block, bh_result, 0);
427 	reiserfs_write_unlock(inode->i_sb);
428 	return 0;
429 }
430 
431 /* special version of get_block that is only used by grab_tail_page right
432 ** now.  It is sent to block_prepare_write, and when you try to get a
433 ** block past the end of the file (or a block from a hole) it returns
434 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
435 ** be able to do i/o on the buffers returned, unless an error value
436 ** is also returned.
437 **
438 ** So, this allows block_prepare_write to be used for reading a single block
439 ** in a page.  Where it does not produce a valid page for holes, or past the
440 ** end of the file.  This turns out to be exactly what we need for reading
441 ** tails for conversion.
442 **
443 ** The point of the wrapper is forcing a certain value for create, even
444 ** though the VFS layer is calling this function with create==1.  If you
445 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
446 ** don't use this function.
447 */
448 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
449 				       struct buffer_head *bh_result,
450 				       int create)
451 {
452 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
453 }
454 
455 /* This is special helper for reiserfs_get_block in case we are executing
456    direct_IO request. */
457 static int reiserfs_get_blocks_direct_io(struct inode *inode,
458 					 sector_t iblock,
459 					 struct buffer_head *bh_result,
460 					 int create)
461 {
462 	int ret;
463 
464 	bh_result->b_page = NULL;
465 
466 	/* We set the b_size before reiserfs_get_block call since it is
467 	   referenced in convert_tail_for_hole() that may be called from
468 	   reiserfs_get_block() */
469 	bh_result->b_size = (1 << inode->i_blkbits);
470 
471 	ret = reiserfs_get_block(inode, iblock, bh_result,
472 				 create | GET_BLOCK_NO_DANGLE);
473 	if (ret)
474 		goto out;
475 
476 	/* don't allow direct io onto tail pages */
477 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
478 		/* make sure future calls to the direct io funcs for this offset
479 		 ** in the file fail by unmapping the buffer
480 		 */
481 		clear_buffer_mapped(bh_result);
482 		ret = -EINVAL;
483 	}
484 	/* Possible unpacked tail. Flush the data before pages have
485 	   disappeared */
486 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
487 		int err;
488 		lock_kernel();
489 		err = reiserfs_commit_for_inode(inode);
490 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
491 		unlock_kernel();
492 		if (err < 0)
493 			ret = err;
494 	}
495       out:
496 	return ret;
497 }
498 
499 /*
500 ** helper function for when reiserfs_get_block is called for a hole
501 ** but the file tail is still in a direct item
502 ** bh_result is the buffer head for the hole
503 ** tail_offset is the offset of the start of the tail in the file
504 **
505 ** This calls prepare_write, which will start a new transaction
506 ** you should not be in a transaction, or have any paths held when you
507 ** call this.
508 */
509 static int convert_tail_for_hole(struct inode *inode,
510 				 struct buffer_head *bh_result,
511 				 loff_t tail_offset)
512 {
513 	unsigned long index;
514 	unsigned long tail_end;
515 	unsigned long tail_start;
516 	struct page *tail_page;
517 	struct page *hole_page = bh_result->b_page;
518 	int retval = 0;
519 
520 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
521 		return -EIO;
522 
523 	/* always try to read until the end of the block */
524 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
525 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
526 
527 	index = tail_offset >> PAGE_CACHE_SHIFT;
528 	/* hole_page can be zero in case of direct_io, we are sure
529 	   that we cannot get here if we write with O_DIRECT into
530 	   tail page */
531 	if (!hole_page || index != hole_page->index) {
532 		tail_page = grab_cache_page(inode->i_mapping, index);
533 		retval = -ENOMEM;
534 		if (!tail_page) {
535 			goto out;
536 		}
537 	} else {
538 		tail_page = hole_page;
539 	}
540 
541 	/* we don't have to make sure the conversion did not happen while
542 	 ** we were locking the page because anyone that could convert
543 	 ** must first take i_mutex.
544 	 **
545 	 ** We must fix the tail page for writing because it might have buffers
546 	 ** that are mapped, but have a block number of 0.  This indicates tail
547 	 ** data that has been read directly into the page, and block_prepare_write
548 	 ** won't trigger a get_block in this case.
549 	 */
550 	fix_tail_page_for_writing(tail_page);
551 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
552 	if (retval)
553 		goto unlock;
554 
555 	/* tail conversion might change the data in the page */
556 	flush_dcache_page(tail_page);
557 
558 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
559 
560       unlock:
561 	if (tail_page != hole_page) {
562 		unlock_page(tail_page);
563 		page_cache_release(tail_page);
564 	}
565       out:
566 	return retval;
567 }
568 
569 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
570 				  long block,
571 				  struct inode *inode,
572 				  b_blocknr_t * allocated_block_nr,
573 				  struct treepath *path, int flags)
574 {
575 	BUG_ON(!th->t_trans_id);
576 
577 #ifdef REISERFS_PREALLOCATE
578 	if (!(flags & GET_BLOCK_NO_IMUX)) {
579 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
580 						  path, block);
581 	}
582 #endif
583 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
584 					 block);
585 }
586 
587 int reiserfs_get_block(struct inode *inode, sector_t block,
588 		       struct buffer_head *bh_result, int create)
589 {
590 	int repeat, retval = 0;
591 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
592 	INITIALIZE_PATH(path);
593 	int pos_in_item;
594 	struct cpu_key key;
595 	struct buffer_head *bh, *unbh = NULL;
596 	struct item_head *ih, tmp_ih;
597 	__le32 *item;
598 	int done;
599 	int fs_gen;
600 	struct reiserfs_transaction_handle *th = NULL;
601 	/* space reserved in transaction batch:
602 	   . 3 balancings in direct->indirect conversion
603 	   . 1 block involved into reiserfs_update_sd()
604 	   XXX in practically impossible worst case direct2indirect()
605 	   can incur (much) more than 3 balancings.
606 	   quota update for user, group */
607 	int jbegin_count =
608 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
609 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
610 	int version;
611 	int dangle = 1;
612 	loff_t new_offset =
613 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
614 
615 	/* bad.... */
616 	reiserfs_write_lock(inode->i_sb);
617 	version = get_inode_item_key_version(inode);
618 
619 	if (!file_capable(inode, block)) {
620 		reiserfs_write_unlock(inode->i_sb);
621 		return -EFBIG;
622 	}
623 
624 	/* if !create, we aren't changing the FS, so we don't need to
625 	 ** log anything, so we don't need to start a transaction
626 	 */
627 	if (!(create & GET_BLOCK_CREATE)) {
628 		int ret;
629 		/* find number of block-th logical block of the file */
630 		ret = _get_block_create_0(inode, block, bh_result,
631 					  create | GET_BLOCK_READ_DIRECT);
632 		reiserfs_write_unlock(inode->i_sb);
633 		return ret;
634 	}
635 	/*
636 	 * if we're already in a transaction, make sure to close
637 	 * any new transactions we start in this func
638 	 */
639 	if ((create & GET_BLOCK_NO_DANGLE) ||
640 	    reiserfs_transaction_running(inode->i_sb))
641 		dangle = 0;
642 
643 	/* If file is of such a size, that it might have a tail and tails are enabled
644 	 ** we should mark it as possibly needing tail packing on close
645 	 */
646 	if ((have_large_tails(inode->i_sb)
647 	     && inode->i_size < i_block_size(inode) * 4)
648 	    || (have_small_tails(inode->i_sb)
649 		&& inode->i_size < i_block_size(inode)))
650 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
651 
652 	/* set the key of the first byte in the 'block'-th block of file */
653 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
654 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
655 	      start_trans:
656 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
657 		if (!th) {
658 			retval = -ENOMEM;
659 			goto failure;
660 		}
661 		reiserfs_update_inode_transaction(inode);
662 	}
663       research:
664 
665 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
666 	if (retval == IO_ERROR) {
667 		retval = -EIO;
668 		goto failure;
669 	}
670 
671 	bh = get_last_bh(&path);
672 	ih = get_ih(&path);
673 	item = get_item(&path);
674 	pos_in_item = path.pos_in_item;
675 
676 	fs_gen = get_generation(inode->i_sb);
677 	copy_item_head(&tmp_ih, ih);
678 
679 	if (allocation_needed
680 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
681 		/* we have to allocate block for the unformatted node */
682 		if (!th) {
683 			pathrelse(&path);
684 			goto start_trans;
685 		}
686 
687 		repeat =
688 		    _allocate_block(th, block, inode, &allocated_block_nr,
689 				    &path, create);
690 
691 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
692 			/* restart the transaction to give the journal a chance to free
693 			 ** some blocks.  releases the path, so we have to go back to
694 			 ** research if we succeed on the second try
695 			 */
696 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
697 			retval = restart_transaction(th, inode, &path);
698 			if (retval)
699 				goto failure;
700 			repeat =
701 			    _allocate_block(th, block, inode,
702 					    &allocated_block_nr, NULL, create);
703 
704 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
705 				goto research;
706 			}
707 			if (repeat == QUOTA_EXCEEDED)
708 				retval = -EDQUOT;
709 			else
710 				retval = -ENOSPC;
711 			goto failure;
712 		}
713 
714 		if (fs_changed(fs_gen, inode->i_sb)
715 		    && item_moved(&tmp_ih, &path)) {
716 			goto research;
717 		}
718 	}
719 
720 	if (indirect_item_found(retval, ih)) {
721 		b_blocknr_t unfm_ptr;
722 		/* 'block'-th block is in the file already (there is
723 		   corresponding cell in some indirect item). But it may be
724 		   zero unformatted node pointer (hole) */
725 		unfm_ptr = get_block_num(item, pos_in_item);
726 		if (unfm_ptr == 0) {
727 			/* use allocated block to plug the hole */
728 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
729 			if (fs_changed(fs_gen, inode->i_sb)
730 			    && item_moved(&tmp_ih, &path)) {
731 				reiserfs_restore_prepared_buffer(inode->i_sb,
732 								 bh);
733 				goto research;
734 			}
735 			set_buffer_new(bh_result);
736 			if (buffer_dirty(bh_result)
737 			    && reiserfs_data_ordered(inode->i_sb))
738 				reiserfs_add_ordered_list(inode, bh_result);
739 			put_block_num(item, pos_in_item, allocated_block_nr);
740 			unfm_ptr = allocated_block_nr;
741 			journal_mark_dirty(th, inode->i_sb, bh);
742 			reiserfs_update_sd(th, inode);
743 		}
744 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
745 		pathrelse(&path);
746 		retval = 0;
747 		if (!dangle && th)
748 			retval = reiserfs_end_persistent_transaction(th);
749 
750 		reiserfs_write_unlock(inode->i_sb);
751 
752 		/* the item was found, so new blocks were not added to the file
753 		 ** there is no need to make sure the inode is updated with this
754 		 ** transaction
755 		 */
756 		return retval;
757 	}
758 
759 	if (!th) {
760 		pathrelse(&path);
761 		goto start_trans;
762 	}
763 
764 	/* desired position is not found or is in the direct item. We have
765 	   to append file with holes up to 'block'-th block converting
766 	   direct items to indirect one if necessary */
767 	done = 0;
768 	do {
769 		if (is_statdata_le_ih(ih)) {
770 			__le32 unp = 0;
771 			struct cpu_key tmp_key;
772 
773 			/* indirect item has to be inserted */
774 			make_le_item_head(&tmp_ih, &key, version, 1,
775 					  TYPE_INDIRECT, UNFM_P_SIZE,
776 					  0 /* free_space */ );
777 
778 			if (cpu_key_k_offset(&key) == 1) {
779 				/* we are going to add 'block'-th block to the file. Use
780 				   allocated block for that */
781 				unp = cpu_to_le32(allocated_block_nr);
782 				set_block_dev_mapped(bh_result,
783 						     allocated_block_nr, inode);
784 				set_buffer_new(bh_result);
785 				done = 1;
786 			}
787 			tmp_key = key;	// ;)
788 			set_cpu_key_k_offset(&tmp_key, 1);
789 			PATH_LAST_POSITION(&path)++;
790 
791 			retval =
792 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
793 						 inode, (char *)&unp);
794 			if (retval) {
795 				reiserfs_free_block(th, inode,
796 						    allocated_block_nr, 1);
797 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
798 			}
799 			//mark_tail_converted (inode);
800 		} else if (is_direct_le_ih(ih)) {
801 			/* direct item has to be converted */
802 			loff_t tail_offset;
803 
804 			tail_offset =
805 			    ((le_ih_k_offset(ih) -
806 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
807 			if (tail_offset == cpu_key_k_offset(&key)) {
808 				/* direct item we just found fits into block we have
809 				   to map. Convert it into unformatted node: use
810 				   bh_result for the conversion */
811 				set_block_dev_mapped(bh_result,
812 						     allocated_block_nr, inode);
813 				unbh = bh_result;
814 				done = 1;
815 			} else {
816 				/* we have to padd file tail stored in direct item(s)
817 				   up to block size and convert it to unformatted
818 				   node. FIXME: this should also get into page cache */
819 
820 				pathrelse(&path);
821 				/*
822 				 * ugly, but we can only end the transaction if
823 				 * we aren't nested
824 				 */
825 				BUG_ON(!th->t_refcount);
826 				if (th->t_refcount == 1) {
827 					retval =
828 					    reiserfs_end_persistent_transaction
829 					    (th);
830 					th = NULL;
831 					if (retval)
832 						goto failure;
833 				}
834 
835 				retval =
836 				    convert_tail_for_hole(inode, bh_result,
837 							  tail_offset);
838 				if (retval) {
839 					if (retval != -ENOSPC)
840 						reiserfs_warning(inode->i_sb,
841 								 "clm-6004: convert tail failed inode %lu, error %d",
842 								 inode->i_ino,
843 								 retval);
844 					if (allocated_block_nr) {
845 						/* the bitmap, the super, and the stat data == 3 */
846 						if (!th)
847 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
848 						if (th)
849 							reiserfs_free_block(th,
850 									    inode,
851 									    allocated_block_nr,
852 									    1);
853 					}
854 					goto failure;
855 				}
856 				goto research;
857 			}
858 			retval =
859 			    direct2indirect(th, inode, &path, unbh,
860 					    tail_offset);
861 			if (retval) {
862 				reiserfs_unmap_buffer(unbh);
863 				reiserfs_free_block(th, inode,
864 						    allocated_block_nr, 1);
865 				goto failure;
866 			}
867 			/* it is important the set_buffer_uptodate is done after
868 			 ** the direct2indirect.  The buffer might contain valid
869 			 ** data newer than the data on disk (read by readpage, changed,
870 			 ** and then sent here by writepage).  direct2indirect needs
871 			 ** to know if unbh was already up to date, so it can decide
872 			 ** if the data in unbh needs to be replaced with data from
873 			 ** the disk
874 			 */
875 			set_buffer_uptodate(unbh);
876 
877 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
878 			   buffer will disappear shortly, so it should not be added to
879 			 */
880 			if (unbh->b_page) {
881 				/* we've converted the tail, so we must
882 				 ** flush unbh before the transaction commits
883 				 */
884 				reiserfs_add_tail_list(inode, unbh);
885 
886 				/* mark it dirty now to prevent commit_write from adding
887 				 ** this buffer to the inode's dirty buffer list
888 				 */
889 				/*
890 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
891 				 * It's still atomic, but it sets the page dirty too,
892 				 * which makes it eligible for writeback at any time by the
893 				 * VM (which was also the case with __mark_buffer_dirty())
894 				 */
895 				mark_buffer_dirty(unbh);
896 			}
897 		} else {
898 			/* append indirect item with holes if needed, when appending
899 			   pointer to 'block'-th block use block, which is already
900 			   allocated */
901 			struct cpu_key tmp_key;
902 			unp_t unf_single = 0;	// We use this in case we need to allocate only
903 			// one block which is a fastpath
904 			unp_t *un;
905 			__u64 max_to_insert =
906 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
907 			    UNFM_P_SIZE;
908 			__u64 blocks_needed;
909 
910 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
911 			       "vs-804: invalid position for append");
912 			/* indirect item has to be appended, set up key of that position */
913 			make_cpu_key(&tmp_key, inode,
914 				     le_key_k_offset(version,
915 						     &(ih->ih_key)) +
916 				     op_bytes_number(ih,
917 						     inode->i_sb->s_blocksize),
918 				     //pos_in_item * inode->i_sb->s_blocksize,
919 				     TYPE_INDIRECT, 3);	// key type is unimportant
920 
921 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
922 			       "green-805: invalid offset");
923 			blocks_needed =
924 			    1 +
925 			    ((cpu_key_k_offset(&key) -
926 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
927 			     s_blocksize_bits);
928 
929 			if (blocks_needed == 1) {
930 				un = &unf_single;
931 			} else {
932 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
933 				if (!un) {
934 					un = &unf_single;
935 					blocks_needed = 1;
936 					max_to_insert = 0;
937 				}
938 			}
939 			if (blocks_needed <= max_to_insert) {
940 				/* we are going to add target block to the file. Use allocated
941 				   block for that */
942 				un[blocks_needed - 1] =
943 				    cpu_to_le32(allocated_block_nr);
944 				set_block_dev_mapped(bh_result,
945 						     allocated_block_nr, inode);
946 				set_buffer_new(bh_result);
947 				done = 1;
948 			} else {
949 				/* paste hole to the indirect item */
950 				/* If kmalloc failed, max_to_insert becomes zero and it means we
951 				   only have space for one block */
952 				blocks_needed =
953 				    max_to_insert ? max_to_insert : 1;
954 			}
955 			retval =
956 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
957 						     (char *)un,
958 						     UNFM_P_SIZE *
959 						     blocks_needed);
960 
961 			if (blocks_needed != 1)
962 				kfree(un);
963 
964 			if (retval) {
965 				reiserfs_free_block(th, inode,
966 						    allocated_block_nr, 1);
967 				goto failure;
968 			}
969 			if (!done) {
970 				/* We need to mark new file size in case this function will be
971 				   interrupted/aborted later on. And we may do this only for
972 				   holes. */
973 				inode->i_size +=
974 				    inode->i_sb->s_blocksize * blocks_needed;
975 			}
976 		}
977 
978 		if (done == 1)
979 			break;
980 
981 		/* this loop could log more blocks than we had originally asked
982 		 ** for.  So, we have to allow the transaction to end if it is
983 		 ** too big or too full.  Update the inode so things are
984 		 ** consistent if we crash before the function returns
985 		 **
986 		 ** release the path so that anybody waiting on the path before
987 		 ** ending their transaction will be able to continue.
988 		 */
989 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
990 			retval = restart_transaction(th, inode, &path);
991 			if (retval)
992 				goto failure;
993 		}
994 		/* inserting indirect pointers for a hole can take a
995 		 ** long time.  reschedule if needed
996 		 */
997 		cond_resched();
998 
999 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1000 		if (retval == IO_ERROR) {
1001 			retval = -EIO;
1002 			goto failure;
1003 		}
1004 		if (retval == POSITION_FOUND) {
1005 			reiserfs_warning(inode->i_sb,
1006 					 "vs-825: reiserfs_get_block: "
1007 					 "%K should not be found", &key);
1008 			retval = -EEXIST;
1009 			if (allocated_block_nr)
1010 				reiserfs_free_block(th, inode,
1011 						    allocated_block_nr, 1);
1012 			pathrelse(&path);
1013 			goto failure;
1014 		}
1015 		bh = get_last_bh(&path);
1016 		ih = get_ih(&path);
1017 		item = get_item(&path);
1018 		pos_in_item = path.pos_in_item;
1019 	} while (1);
1020 
1021 	retval = 0;
1022 
1023       failure:
1024 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1025 		int err;
1026 		if (th->t_trans_id)
1027 			reiserfs_update_sd(th, inode);
1028 		err = reiserfs_end_persistent_transaction(th);
1029 		if (err)
1030 			retval = err;
1031 	}
1032 
1033 	reiserfs_write_unlock(inode->i_sb);
1034 	reiserfs_check_path(&path);
1035 	return retval;
1036 }
1037 
1038 static int
1039 reiserfs_readpages(struct file *file, struct address_space *mapping,
1040 		   struct list_head *pages, unsigned nr_pages)
1041 {
1042 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1043 }
1044 
1045 /* Compute real number of used bytes by file
1046  * Following three functions can go away when we'll have enough space in stat item
1047  */
1048 static int real_space_diff(struct inode *inode, int sd_size)
1049 {
1050 	int bytes;
1051 	loff_t blocksize = inode->i_sb->s_blocksize;
1052 
1053 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1054 		return sd_size;
1055 
1056 	/* End of file is also in full block with indirect reference, so round
1057 	 ** up to the next block.
1058 	 **
1059 	 ** there is just no way to know if the tail is actually packed
1060 	 ** on the file, so we have to assume it isn't.  When we pack the
1061 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1062 	 ** node pointer
1063 	 */
1064 	bytes =
1065 	    ((inode->i_size +
1066 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1067 	    sd_size;
1068 	return bytes;
1069 }
1070 
1071 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1072 					int sd_size)
1073 {
1074 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1075 		return inode->i_size +
1076 		    (loff_t) (real_space_diff(inode, sd_size));
1077 	}
1078 	return ((loff_t) real_space_diff(inode, sd_size)) +
1079 	    (((loff_t) blocks) << 9);
1080 }
1081 
1082 /* Compute number of blocks used by file in ReiserFS counting */
1083 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1084 {
1085 	loff_t bytes = inode_get_bytes(inode);
1086 	loff_t real_space = real_space_diff(inode, sd_size);
1087 
1088 	/* keeps fsck and non-quota versions of reiserfs happy */
1089 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1090 		bytes += (loff_t) 511;
1091 	}
1092 
1093 	/* files from before the quota patch might i_blocks such that
1094 	 ** bytes < real_space.  Deal with that here to prevent it from
1095 	 ** going negative.
1096 	 */
1097 	if (bytes < real_space)
1098 		return 0;
1099 	return (bytes - real_space) >> 9;
1100 }
1101 
1102 //
1103 // BAD: new directories have stat data of new type and all other items
1104 // of old type. Version stored in the inode says about body items, so
1105 // in update_stat_data we can not rely on inode, but have to check
1106 // item version directly
1107 //
1108 
1109 // called by read_locked_inode
1110 static void init_inode(struct inode *inode, struct treepath *path)
1111 {
1112 	struct buffer_head *bh;
1113 	struct item_head *ih;
1114 	__u32 rdev;
1115 	//int version = ITEM_VERSION_1;
1116 
1117 	bh = PATH_PLAST_BUFFER(path);
1118 	ih = PATH_PITEM_HEAD(path);
1119 
1120 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1121 
1122 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1123 	REISERFS_I(inode)->i_flags = 0;
1124 	REISERFS_I(inode)->i_prealloc_block = 0;
1125 	REISERFS_I(inode)->i_prealloc_count = 0;
1126 	REISERFS_I(inode)->i_trans_id = 0;
1127 	REISERFS_I(inode)->i_jl = NULL;
1128 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1129 	reiserfs_init_acl_access(inode);
1130 	reiserfs_init_acl_default(inode);
1131 	reiserfs_init_xattr_rwsem(inode);
1132 
1133 	if (stat_data_v1(ih)) {
1134 		struct stat_data_v1 *sd =
1135 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1136 		unsigned long blocks;
1137 
1138 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1139 		set_inode_sd_version(inode, STAT_DATA_V1);
1140 		inode->i_mode = sd_v1_mode(sd);
1141 		inode->i_nlink = sd_v1_nlink(sd);
1142 		inode->i_uid = sd_v1_uid(sd);
1143 		inode->i_gid = sd_v1_gid(sd);
1144 		inode->i_size = sd_v1_size(sd);
1145 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1146 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1147 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1148 		inode->i_atime.tv_nsec = 0;
1149 		inode->i_ctime.tv_nsec = 0;
1150 		inode->i_mtime.tv_nsec = 0;
1151 
1152 		inode->i_blocks = sd_v1_blocks(sd);
1153 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1154 		blocks = (inode->i_size + 511) >> 9;
1155 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1156 		if (inode->i_blocks > blocks) {
1157 			// there was a bug in <=3.5.23 when i_blocks could take negative
1158 			// values. Starting from 3.5.17 this value could even be stored in
1159 			// stat data. For such files we set i_blocks based on file
1160 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1161 			// only updated if file's inode will ever change
1162 			inode->i_blocks = blocks;
1163 		}
1164 
1165 		rdev = sd_v1_rdev(sd);
1166 		REISERFS_I(inode)->i_first_direct_byte =
1167 		    sd_v1_first_direct_byte(sd);
1168 		/* an early bug in the quota code can give us an odd number for the
1169 		 ** block count.  This is incorrect, fix it here.
1170 		 */
1171 		if (inode->i_blocks & 1) {
1172 			inode->i_blocks++;
1173 		}
1174 		inode_set_bytes(inode,
1175 				to_real_used_space(inode, inode->i_blocks,
1176 						   SD_V1_SIZE));
1177 		/* nopack is initially zero for v1 objects. For v2 objects,
1178 		   nopack is initialised from sd_attrs */
1179 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1180 	} else {
1181 		// new stat data found, but object may have old items
1182 		// (directories and symlinks)
1183 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1184 
1185 		inode->i_mode = sd_v2_mode(sd);
1186 		inode->i_nlink = sd_v2_nlink(sd);
1187 		inode->i_uid = sd_v2_uid(sd);
1188 		inode->i_size = sd_v2_size(sd);
1189 		inode->i_gid = sd_v2_gid(sd);
1190 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1191 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1192 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1193 		inode->i_ctime.tv_nsec = 0;
1194 		inode->i_mtime.tv_nsec = 0;
1195 		inode->i_atime.tv_nsec = 0;
1196 		inode->i_blocks = sd_v2_blocks(sd);
1197 		rdev = sd_v2_rdev(sd);
1198 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1199 			inode->i_generation =
1200 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1201 		else
1202 			inode->i_generation = sd_v2_generation(sd);
1203 
1204 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1205 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1206 		else
1207 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1208 		REISERFS_I(inode)->i_first_direct_byte = 0;
1209 		set_inode_sd_version(inode, STAT_DATA_V2);
1210 		inode_set_bytes(inode,
1211 				to_real_used_space(inode, inode->i_blocks,
1212 						   SD_V2_SIZE));
1213 		/* read persistent inode attributes from sd and initalise
1214 		   generic inode flags from them */
1215 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1216 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1217 	}
1218 
1219 	pathrelse(path);
1220 	if (S_ISREG(inode->i_mode)) {
1221 		inode->i_op = &reiserfs_file_inode_operations;
1222 		inode->i_fop = &reiserfs_file_operations;
1223 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1224 	} else if (S_ISDIR(inode->i_mode)) {
1225 		inode->i_op = &reiserfs_dir_inode_operations;
1226 		inode->i_fop = &reiserfs_dir_operations;
1227 	} else if (S_ISLNK(inode->i_mode)) {
1228 		inode->i_op = &reiserfs_symlink_inode_operations;
1229 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1230 	} else {
1231 		inode->i_blocks = 0;
1232 		inode->i_op = &reiserfs_special_inode_operations;
1233 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1234 	}
1235 }
1236 
1237 // update new stat data with inode fields
1238 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1239 {
1240 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1241 	__u16 flags;
1242 
1243 	set_sd_v2_mode(sd_v2, inode->i_mode);
1244 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1245 	set_sd_v2_uid(sd_v2, inode->i_uid);
1246 	set_sd_v2_size(sd_v2, size);
1247 	set_sd_v2_gid(sd_v2, inode->i_gid);
1248 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1249 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1250 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1251 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1252 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1253 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1254 	else
1255 		set_sd_v2_generation(sd_v2, inode->i_generation);
1256 	flags = REISERFS_I(inode)->i_attrs;
1257 	i_attrs_to_sd_attrs(inode, &flags);
1258 	set_sd_v2_attrs(sd_v2, flags);
1259 }
1260 
1261 // used to copy inode's fields to old stat data
1262 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1263 {
1264 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1265 
1266 	set_sd_v1_mode(sd_v1, inode->i_mode);
1267 	set_sd_v1_uid(sd_v1, inode->i_uid);
1268 	set_sd_v1_gid(sd_v1, inode->i_gid);
1269 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1270 	set_sd_v1_size(sd_v1, size);
1271 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1272 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1273 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1274 
1275 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1276 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1277 	else
1278 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1279 
1280 	// Sigh. i_first_direct_byte is back
1281 	set_sd_v1_first_direct_byte(sd_v1,
1282 				    REISERFS_I(inode)->i_first_direct_byte);
1283 }
1284 
1285 /* NOTE, you must prepare the buffer head before sending it here,
1286 ** and then log it after the call
1287 */
1288 static void update_stat_data(struct treepath *path, struct inode *inode,
1289 			     loff_t size)
1290 {
1291 	struct buffer_head *bh;
1292 	struct item_head *ih;
1293 
1294 	bh = PATH_PLAST_BUFFER(path);
1295 	ih = PATH_PITEM_HEAD(path);
1296 
1297 	if (!is_statdata_le_ih(ih))
1298 		reiserfs_panic(inode->i_sb,
1299 			       "vs-13065: update_stat_data: key %k, found item %h",
1300 			       INODE_PKEY(inode), ih);
1301 
1302 	if (stat_data_v1(ih)) {
1303 		// path points to old stat data
1304 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1305 	} else {
1306 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1307 	}
1308 
1309 	return;
1310 }
1311 
1312 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1313 			     struct inode *inode, loff_t size)
1314 {
1315 	struct cpu_key key;
1316 	INITIALIZE_PATH(path);
1317 	struct buffer_head *bh;
1318 	int fs_gen;
1319 	struct item_head *ih, tmp_ih;
1320 	int retval;
1321 
1322 	BUG_ON(!th->t_trans_id);
1323 
1324 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1325 
1326 	for (;;) {
1327 		int pos;
1328 		/* look for the object's stat data */
1329 		retval = search_item(inode->i_sb, &key, &path);
1330 		if (retval == IO_ERROR) {
1331 			reiserfs_warning(inode->i_sb,
1332 					 "vs-13050: reiserfs_update_sd: "
1333 					 "i/o failure occurred trying to update %K stat data",
1334 					 &key);
1335 			return;
1336 		}
1337 		if (retval == ITEM_NOT_FOUND) {
1338 			pos = PATH_LAST_POSITION(&path);
1339 			pathrelse(&path);
1340 			if (inode->i_nlink == 0) {
1341 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1342 				return;
1343 			}
1344 			reiserfs_warning(inode->i_sb,
1345 					 "vs-13060: reiserfs_update_sd: "
1346 					 "stat data of object %k (nlink == %d) not found (pos %d)",
1347 					 INODE_PKEY(inode), inode->i_nlink,
1348 					 pos);
1349 			reiserfs_check_path(&path);
1350 			return;
1351 		}
1352 
1353 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1354 		 ** FS might change.  We have to detect that, and loop back to the
1355 		 ** search if the stat data item has moved
1356 		 */
1357 		bh = get_last_bh(&path);
1358 		ih = get_ih(&path);
1359 		copy_item_head(&tmp_ih, ih);
1360 		fs_gen = get_generation(inode->i_sb);
1361 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1362 		if (fs_changed(fs_gen, inode->i_sb)
1363 		    && item_moved(&tmp_ih, &path)) {
1364 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1365 			continue;	/* Stat_data item has been moved after scheduling. */
1366 		}
1367 		break;
1368 	}
1369 	update_stat_data(&path, inode, size);
1370 	journal_mark_dirty(th, th->t_super, bh);
1371 	pathrelse(&path);
1372 	return;
1373 }
1374 
1375 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1376 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1377 ** and clear the key in the private portion of the inode, otherwise a
1378 ** corresponding iput might try to delete whatever object the inode last
1379 ** represented.
1380 */
1381 static void reiserfs_make_bad_inode(struct inode *inode)
1382 {
1383 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1384 	make_bad_inode(inode);
1385 }
1386 
1387 //
1388 // initially this function was derived from minix or ext2's analog and
1389 // evolved as the prototype did
1390 //
1391 
1392 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1393 {
1394 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1395 	inode->i_ino = args->objectid;
1396 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1397 	return 0;
1398 }
1399 
1400 /* looks for stat data in the tree, and fills up the fields of in-core
1401    inode stat data fields */
1402 void reiserfs_read_locked_inode(struct inode *inode,
1403 				struct reiserfs_iget_args *args)
1404 {
1405 	INITIALIZE_PATH(path_to_sd);
1406 	struct cpu_key key;
1407 	unsigned long dirino;
1408 	int retval;
1409 
1410 	dirino = args->dirid;
1411 
1412 	/* set version 1, version 2 could be used too, because stat data
1413 	   key is the same in both versions */
1414 	key.version = KEY_FORMAT_3_5;
1415 	key.on_disk_key.k_dir_id = dirino;
1416 	key.on_disk_key.k_objectid = inode->i_ino;
1417 	key.on_disk_key.k_offset = 0;
1418 	key.on_disk_key.k_type = 0;
1419 
1420 	/* look for the object's stat data */
1421 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1422 	if (retval == IO_ERROR) {
1423 		reiserfs_warning(inode->i_sb,
1424 				 "vs-13070: reiserfs_read_locked_inode: "
1425 				 "i/o failure occurred trying to find stat data of %K",
1426 				 &key);
1427 		reiserfs_make_bad_inode(inode);
1428 		return;
1429 	}
1430 	if (retval != ITEM_FOUND) {
1431 		/* a stale NFS handle can trigger this without it being an error */
1432 		pathrelse(&path_to_sd);
1433 		reiserfs_make_bad_inode(inode);
1434 		inode->i_nlink = 0;
1435 		return;
1436 	}
1437 
1438 	init_inode(inode, &path_to_sd);
1439 
1440 	/* It is possible that knfsd is trying to access inode of a file
1441 	   that is being removed from the disk by some other thread. As we
1442 	   update sd on unlink all that is required is to check for nlink
1443 	   here. This bug was first found by Sizif when debugging
1444 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1445 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1446 
1447 	   More logical fix would require changes in fs/inode.c:iput() to
1448 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1449 	   in iget() to return NULL if I_FREEING inode is found in
1450 	   hash-table. */
1451 	/* Currently there is one place where it's ok to meet inode with
1452 	   nlink==0: processing of open-unlinked and half-truncated files
1453 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1454 	if ((inode->i_nlink == 0) &&
1455 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1456 		reiserfs_warning(inode->i_sb,
1457 				 "vs-13075: reiserfs_read_locked_inode: "
1458 				 "dead inode read from disk %K. "
1459 				 "This is likely to be race with knfsd. Ignore",
1460 				 &key);
1461 		reiserfs_make_bad_inode(inode);
1462 	}
1463 
1464 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1465 
1466 }
1467 
1468 /**
1469  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1470  *
1471  * @inode:    inode from hash table to check
1472  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1473  *
1474  * This function is called by iget5_locked() to distinguish reiserfs inodes
1475  * having the same inode numbers. Such inodes can only exist due to some
1476  * error condition. One of them should be bad. Inodes with identical
1477  * inode numbers (objectids) are distinguished by parent directory ids.
1478  *
1479  */
1480 int reiserfs_find_actor(struct inode *inode, void *opaque)
1481 {
1482 	struct reiserfs_iget_args *args;
1483 
1484 	args = opaque;
1485 	/* args is already in CPU order */
1486 	return (inode->i_ino == args->objectid) &&
1487 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1488 }
1489 
1490 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1491 {
1492 	struct inode *inode;
1493 	struct reiserfs_iget_args args;
1494 
1495 	args.objectid = key->on_disk_key.k_objectid;
1496 	args.dirid = key->on_disk_key.k_dir_id;
1497 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1498 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1499 			     (void *)(&args));
1500 	if (!inode)
1501 		return ERR_PTR(-ENOMEM);
1502 
1503 	if (inode->i_state & I_NEW) {
1504 		reiserfs_read_locked_inode(inode, &args);
1505 		unlock_new_inode(inode);
1506 	}
1507 
1508 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1509 		/* either due to i/o error or a stale NFS handle */
1510 		iput(inode);
1511 		inode = NULL;
1512 	}
1513 	return inode;
1514 }
1515 
1516 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1517 {
1518 	__u32 *data = vobjp;
1519 	struct cpu_key key;
1520 	struct dentry *result;
1521 	struct inode *inode;
1522 
1523 	key.on_disk_key.k_objectid = data[0];
1524 	key.on_disk_key.k_dir_id = data[1];
1525 	reiserfs_write_lock(sb);
1526 	inode = reiserfs_iget(sb, &key);
1527 	if (inode && !IS_ERR(inode) && data[2] != 0 &&
1528 	    data[2] != inode->i_generation) {
1529 		iput(inode);
1530 		inode = NULL;
1531 	}
1532 	reiserfs_write_unlock(sb);
1533 	if (!inode)
1534 		inode = ERR_PTR(-ESTALE);
1535 	if (IS_ERR(inode))
1536 		return ERR_PTR(PTR_ERR(inode));
1537 	result = d_alloc_anon(inode);
1538 	if (!result) {
1539 		iput(inode);
1540 		return ERR_PTR(-ENOMEM);
1541 	}
1542 	return result;
1543 }
1544 
1545 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1546 				  int len, int fhtype,
1547 				  int (*acceptable) (void *contect,
1548 						     struct dentry * de),
1549 				  void *context)
1550 {
1551 	__u32 obj[3], parent[3];
1552 
1553 	/* fhtype happens to reflect the number of u32s encoded.
1554 	 * due to a bug in earlier code, fhtype might indicate there
1555 	 * are more u32s then actually fitted.
1556 	 * so if fhtype seems to be more than len, reduce fhtype.
1557 	 * Valid types are:
1558 	 *   2 - objectid + dir_id - legacy support
1559 	 *   3 - objectid + dir_id + generation
1560 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1561 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1562 	 *   6 - as above plus generation of directory
1563 	 * 6 does not fit in NFSv2 handles
1564 	 */
1565 	if (fhtype > len) {
1566 		if (fhtype != 6 || len != 5)
1567 			reiserfs_warning(sb,
1568 					 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1569 					 fhtype, len);
1570 		fhtype = 5;
1571 	}
1572 
1573 	obj[0] = data[0];
1574 	obj[1] = data[1];
1575 	if (fhtype == 3 || fhtype >= 5)
1576 		obj[2] = data[2];
1577 	else
1578 		obj[2] = 0;	/* generation number */
1579 
1580 	if (fhtype >= 4) {
1581 		parent[0] = data[fhtype >= 5 ? 3 : 2];
1582 		parent[1] = data[fhtype >= 5 ? 4 : 3];
1583 		if (fhtype == 6)
1584 			parent[2] = data[5];
1585 		else
1586 			parent[2] = 0;
1587 	}
1588 	return sb->s_export_op->find_exported_dentry(sb, obj,
1589 						     fhtype < 4 ? NULL : parent,
1590 						     acceptable, context);
1591 }
1592 
1593 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1594 		       int need_parent)
1595 {
1596 	struct inode *inode = dentry->d_inode;
1597 	int maxlen = *lenp;
1598 
1599 	if (maxlen < 3)
1600 		return 255;
1601 
1602 	data[0] = inode->i_ino;
1603 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1604 	data[2] = inode->i_generation;
1605 	*lenp = 3;
1606 	/* no room for directory info? return what we've stored so far */
1607 	if (maxlen < 5 || !need_parent)
1608 		return 3;
1609 
1610 	spin_lock(&dentry->d_lock);
1611 	inode = dentry->d_parent->d_inode;
1612 	data[3] = inode->i_ino;
1613 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614 	*lenp = 5;
1615 	if (maxlen >= 6) {
1616 		data[5] = inode->i_generation;
1617 		*lenp = 6;
1618 	}
1619 	spin_unlock(&dentry->d_lock);
1620 	return *lenp;
1621 }
1622 
1623 /* looks for stat data, then copies fields to it, marks the buffer
1624    containing stat data as dirty */
1625 /* reiserfs inodes are never really dirty, since the dirty inode call
1626 ** always logs them.  This call allows the VFS inode marking routines
1627 ** to properly mark inodes for datasync and such, but only actually
1628 ** does something when called for a synchronous update.
1629 */
1630 int reiserfs_write_inode(struct inode *inode, int do_sync)
1631 {
1632 	struct reiserfs_transaction_handle th;
1633 	int jbegin_count = 1;
1634 
1635 	if (inode->i_sb->s_flags & MS_RDONLY)
1636 		return -EROFS;
1637 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1638 	 ** these cases are just when the system needs ram, not when the
1639 	 ** inode needs to reach disk for safety, and they can safely be
1640 	 ** ignored because the altered inode has already been logged.
1641 	 */
1642 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1643 		reiserfs_write_lock(inode->i_sb);
1644 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1645 			reiserfs_update_sd(&th, inode);
1646 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1647 		}
1648 		reiserfs_write_unlock(inode->i_sb);
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* stat data of new object is inserted already, this inserts the item
1654    containing "." and ".." entries */
1655 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1656 				  struct inode *inode,
1657 				  struct item_head *ih, struct treepath *path,
1658 				  struct inode *dir)
1659 {
1660 	struct super_block *sb = th->t_super;
1661 	char empty_dir[EMPTY_DIR_SIZE];
1662 	char *body = empty_dir;
1663 	struct cpu_key key;
1664 	int retval;
1665 
1666 	BUG_ON(!th->t_trans_id);
1667 
1668 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1669 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1670 		      TYPE_DIRENTRY, 3 /*key length */ );
1671 
1672 	/* compose item head for new item. Directories consist of items of
1673 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1674 	   is done by reiserfs_new_inode */
1675 	if (old_format_only(sb)) {
1676 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1677 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1678 
1679 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1680 				       ih->ih_key.k_objectid,
1681 				       INODE_PKEY(dir)->k_dir_id,
1682 				       INODE_PKEY(dir)->k_objectid);
1683 	} else {
1684 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1685 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1686 
1687 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1688 				    ih->ih_key.k_objectid,
1689 				    INODE_PKEY(dir)->k_dir_id,
1690 				    INODE_PKEY(dir)->k_objectid);
1691 	}
1692 
1693 	/* look for place in the tree for new item */
1694 	retval = search_item(sb, &key, path);
1695 	if (retval == IO_ERROR) {
1696 		reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1697 				 "i/o failure occurred creating new directory");
1698 		return -EIO;
1699 	}
1700 	if (retval == ITEM_FOUND) {
1701 		pathrelse(path);
1702 		reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1703 				 "object with this key exists (%k)",
1704 				 &(ih->ih_key));
1705 		return -EEXIST;
1706 	}
1707 
1708 	/* insert item, that is empty directory item */
1709 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1710 }
1711 
1712 /* stat data of object has been inserted, this inserts the item
1713    containing the body of symlink */
1714 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1715 				struct item_head *ih,
1716 				struct treepath *path, const char *symname,
1717 				int item_len)
1718 {
1719 	struct super_block *sb = th->t_super;
1720 	struct cpu_key key;
1721 	int retval;
1722 
1723 	BUG_ON(!th->t_trans_id);
1724 
1725 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1726 		      le32_to_cpu(ih->ih_key.k_dir_id),
1727 		      le32_to_cpu(ih->ih_key.k_objectid),
1728 		      1, TYPE_DIRECT, 3 /*key length */ );
1729 
1730 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1731 			  0 /*free_space */ );
1732 
1733 	/* look for place in the tree for new item */
1734 	retval = search_item(sb, &key, path);
1735 	if (retval == IO_ERROR) {
1736 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1737 				 "i/o failure occurred creating new symlink");
1738 		return -EIO;
1739 	}
1740 	if (retval == ITEM_FOUND) {
1741 		pathrelse(path);
1742 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1743 				 "object with this key exists (%k)",
1744 				 &(ih->ih_key));
1745 		return -EEXIST;
1746 	}
1747 
1748 	/* insert item, that is body of symlink */
1749 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1750 }
1751 
1752 /* inserts the stat data into the tree, and then calls
1753    reiserfs_new_directory (to insert ".", ".." item if new object is
1754    directory) or reiserfs_new_symlink (to insert symlink body if new
1755    object is symlink) or nothing (if new object is regular file)
1756 
1757    NOTE! uid and gid must already be set in the inode.  If we return
1758    non-zero due to an error, we have to drop the quota previously allocated
1759    for the fresh inode.  This can only be done outside a transaction, so
1760    if we return non-zero, we also end the transaction.  */
1761 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1762 		       struct inode *dir, int mode, const char *symname,
1763 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1764 		          strlen (symname) for symlinks) */
1765 		       loff_t i_size, struct dentry *dentry,
1766 		       struct inode *inode)
1767 {
1768 	struct super_block *sb;
1769 	INITIALIZE_PATH(path_to_key);
1770 	struct cpu_key key;
1771 	struct item_head ih;
1772 	struct stat_data sd;
1773 	int retval;
1774 	int err;
1775 
1776 	BUG_ON(!th->t_trans_id);
1777 
1778 	if (DQUOT_ALLOC_INODE(inode)) {
1779 		err = -EDQUOT;
1780 		goto out_end_trans;
1781 	}
1782 	if (!dir->i_nlink) {
1783 		err = -EPERM;
1784 		goto out_bad_inode;
1785 	}
1786 
1787 	sb = dir->i_sb;
1788 
1789 	/* item head of new item */
1790 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1791 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1792 	if (!ih.ih_key.k_objectid) {
1793 		err = -ENOMEM;
1794 		goto out_bad_inode;
1795 	}
1796 	if (old_format_only(sb))
1797 		/* not a perfect generation count, as object ids can be reused, but
1798 		 ** this is as good as reiserfs can do right now.
1799 		 ** note that the private part of inode isn't filled in yet, we have
1800 		 ** to use the directory.
1801 		 */
1802 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1803 	else
1804 #if defined( USE_INODE_GENERATION_COUNTER )
1805 		inode->i_generation =
1806 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1807 #else
1808 		inode->i_generation = ++event;
1809 #endif
1810 
1811 	/* fill stat data */
1812 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1813 
1814 	/* uid and gid must already be set by the caller for quota init */
1815 
1816 	/* symlink cannot be immutable or append only, right? */
1817 	if (S_ISLNK(inode->i_mode))
1818 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1819 
1820 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1821 	inode->i_size = i_size;
1822 	inode->i_blocks = 0;
1823 	inode->i_bytes = 0;
1824 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1825 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1826 
1827 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1828 	REISERFS_I(inode)->i_flags = 0;
1829 	REISERFS_I(inode)->i_prealloc_block = 0;
1830 	REISERFS_I(inode)->i_prealloc_count = 0;
1831 	REISERFS_I(inode)->i_trans_id = 0;
1832 	REISERFS_I(inode)->i_jl = NULL;
1833 	REISERFS_I(inode)->i_attrs =
1834 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1835 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1836 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1837 	reiserfs_init_acl_access(inode);
1838 	reiserfs_init_acl_default(inode);
1839 	reiserfs_init_xattr_rwsem(inode);
1840 
1841 	if (old_format_only(sb))
1842 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1843 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1844 	else
1845 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1846 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1847 
1848 	/* key to search for correct place for new stat data */
1849 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1850 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1851 		      TYPE_STAT_DATA, 3 /*key length */ );
1852 
1853 	/* find proper place for inserting of stat data */
1854 	retval = search_item(sb, &key, &path_to_key);
1855 	if (retval == IO_ERROR) {
1856 		err = -EIO;
1857 		goto out_bad_inode;
1858 	}
1859 	if (retval == ITEM_FOUND) {
1860 		pathrelse(&path_to_key);
1861 		err = -EEXIST;
1862 		goto out_bad_inode;
1863 	}
1864 	if (old_format_only(sb)) {
1865 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1866 			pathrelse(&path_to_key);
1867 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1868 			err = -EINVAL;
1869 			goto out_bad_inode;
1870 		}
1871 		inode2sd_v1(&sd, inode, inode->i_size);
1872 	} else {
1873 		inode2sd(&sd, inode, inode->i_size);
1874 	}
1875 	// these do not go to on-disk stat data
1876 	inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1877 
1878 	// store in in-core inode the key of stat data and version all
1879 	// object items will have (directory items will have old offset
1880 	// format, other new objects will consist of new items)
1881 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1882 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1883 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1884 	else
1885 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1886 	if (old_format_only(sb))
1887 		set_inode_sd_version(inode, STAT_DATA_V1);
1888 	else
1889 		set_inode_sd_version(inode, STAT_DATA_V2);
1890 
1891 	/* insert the stat data into the tree */
1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1893 	if (REISERFS_I(dir)->new_packing_locality)
1894 		th->displace_new_blocks = 1;
1895 #endif
1896 	retval =
1897 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1898 				 (char *)(&sd));
1899 	if (retval) {
1900 		err = retval;
1901 		reiserfs_check_path(&path_to_key);
1902 		goto out_bad_inode;
1903 	}
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 	if (!th->displace_new_blocks)
1906 		REISERFS_I(dir)->new_packing_locality = 0;
1907 #endif
1908 	if (S_ISDIR(mode)) {
1909 		/* insert item with "." and ".." */
1910 		retval =
1911 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1912 	}
1913 
1914 	if (S_ISLNK(mode)) {
1915 		/* insert body of symlink */
1916 		if (!old_format_only(sb))
1917 			i_size = ROUND_UP(i_size);
1918 		retval =
1919 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1920 					 i_size);
1921 	}
1922 	if (retval) {
1923 		err = retval;
1924 		reiserfs_check_path(&path_to_key);
1925 		journal_end(th, th->t_super, th->t_blocks_allocated);
1926 		goto out_inserted_sd;
1927 	}
1928 
1929 	/* XXX CHECK THIS */
1930 	if (reiserfs_posixacl(inode->i_sb)) {
1931 		retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1932 		if (retval) {
1933 			err = retval;
1934 			reiserfs_check_path(&path_to_key);
1935 			journal_end(th, th->t_super, th->t_blocks_allocated);
1936 			goto out_inserted_sd;
1937 		}
1938 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1939 		reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1940 				 "but vfs thinks they are!");
1941 	} else if (is_reiserfs_priv_object(dir)) {
1942 		reiserfs_mark_inode_private(inode);
1943 	}
1944 
1945 	insert_inode_hash(inode);
1946 	reiserfs_update_sd(th, inode);
1947 	reiserfs_check_path(&path_to_key);
1948 
1949 	return 0;
1950 
1951 /* it looks like you can easily compress these two goto targets into
1952  * one.  Keeping it like this doesn't actually hurt anything, and they
1953  * are place holders for what the quota code actually needs.
1954  */
1955       out_bad_inode:
1956 	/* Invalidate the object, nothing was inserted yet */
1957 	INODE_PKEY(inode)->k_objectid = 0;
1958 
1959 	/* Quota change must be inside a transaction for journaling */
1960 	DQUOT_FREE_INODE(inode);
1961 
1962       out_end_trans:
1963 	journal_end(th, th->t_super, th->t_blocks_allocated);
1964 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1965 	DQUOT_DROP(inode);
1966 	inode->i_flags |= S_NOQUOTA;
1967 	make_bad_inode(inode);
1968 
1969       out_inserted_sd:
1970 	inode->i_nlink = 0;
1971 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1972 
1973 	/* If we were inheriting an ACL, we need to release the lock so that
1974 	 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1975 	 * code really needs to be reworked, but this will take care of it
1976 	 * for now. -jeffm */
1977 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1978 	if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1979 		reiserfs_write_unlock_xattrs(dir->i_sb);
1980 		iput(inode);
1981 		reiserfs_write_lock_xattrs(dir->i_sb);
1982 	} else
1983 #endif
1984 		iput(inode);
1985 	return err;
1986 }
1987 
1988 /*
1989 ** finds the tail page in the page cache,
1990 ** reads the last block in.
1991 **
1992 ** On success, page_result is set to a locked, pinned page, and bh_result
1993 ** is set to an up to date buffer for the last block in the file.  returns 0.
1994 **
1995 ** tail conversion is not done, so bh_result might not be valid for writing
1996 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1997 ** trying to write the block.
1998 **
1999 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2000 */
2001 static int grab_tail_page(struct inode *p_s_inode,
2002 			  struct page **page_result,
2003 			  struct buffer_head **bh_result)
2004 {
2005 
2006 	/* we want the page with the last byte in the file,
2007 	 ** not the page that will hold the next byte for appending
2008 	 */
2009 	unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2010 	unsigned long pos = 0;
2011 	unsigned long start = 0;
2012 	unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2013 	unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2014 	struct buffer_head *bh;
2015 	struct buffer_head *head;
2016 	struct page *page;
2017 	int error;
2018 
2019 	/* we know that we are only called with inode->i_size > 0.
2020 	 ** we also know that a file tail can never be as big as a block
2021 	 ** If i_size % blocksize == 0, our file is currently block aligned
2022 	 ** and it won't need converting or zeroing after a truncate.
2023 	 */
2024 	if ((offset & (blocksize - 1)) == 0) {
2025 		return -ENOENT;
2026 	}
2027 	page = grab_cache_page(p_s_inode->i_mapping, index);
2028 	error = -ENOMEM;
2029 	if (!page) {
2030 		goto out;
2031 	}
2032 	/* start within the page of the last block in the file */
2033 	start = (offset / blocksize) * blocksize;
2034 
2035 	error = block_prepare_write(page, start, offset,
2036 				    reiserfs_get_block_create_0);
2037 	if (error)
2038 		goto unlock;
2039 
2040 	head = page_buffers(page);
2041 	bh = head;
2042 	do {
2043 		if (pos >= start) {
2044 			break;
2045 		}
2046 		bh = bh->b_this_page;
2047 		pos += blocksize;
2048 	} while (bh != head);
2049 
2050 	if (!buffer_uptodate(bh)) {
2051 		/* note, this should never happen, prepare_write should
2052 		 ** be taking care of this for us.  If the buffer isn't up to date,
2053 		 ** I've screwed up the code to find the buffer, or the code to
2054 		 ** call prepare_write
2055 		 */
2056 		reiserfs_warning(p_s_inode->i_sb,
2057 				 "clm-6000: error reading block %lu on dev %s",
2058 				 bh->b_blocknr,
2059 				 reiserfs_bdevname(p_s_inode->i_sb));
2060 		error = -EIO;
2061 		goto unlock;
2062 	}
2063 	*bh_result = bh;
2064 	*page_result = page;
2065 
2066       out:
2067 	return error;
2068 
2069       unlock:
2070 	unlock_page(page);
2071 	page_cache_release(page);
2072 	return error;
2073 }
2074 
2075 /*
2076 ** vfs version of truncate file.  Must NOT be called with
2077 ** a transaction already started.
2078 **
2079 ** some code taken from block_truncate_page
2080 */
2081 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2082 {
2083 	struct reiserfs_transaction_handle th;
2084 	/* we want the offset for the first byte after the end of the file */
2085 	unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2086 	unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2087 	unsigned length;
2088 	struct page *page = NULL;
2089 	int error;
2090 	struct buffer_head *bh = NULL;
2091 	int err2;
2092 
2093 	reiserfs_write_lock(p_s_inode->i_sb);
2094 
2095 	if (p_s_inode->i_size > 0) {
2096 		if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2097 			// -ENOENT means we truncated past the end of the file,
2098 			// and get_block_create_0 could not find a block to read in,
2099 			// which is ok.
2100 			if (error != -ENOENT)
2101 				reiserfs_warning(p_s_inode->i_sb,
2102 						 "clm-6001: grab_tail_page failed %d",
2103 						 error);
2104 			page = NULL;
2105 			bh = NULL;
2106 		}
2107 	}
2108 
2109 	/* so, if page != NULL, we have a buffer head for the offset at
2110 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2111 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2112 	 ** and no zeroing is required on disk.  We zero after the truncate,
2113 	 ** because the truncate might pack the item anyway
2114 	 ** (it will unmap bh if it packs).
2115 	 */
2116 	/* it is enough to reserve space in transaction for 2 balancings:
2117 	   one for "save" link adding and another for the first
2118 	   cut_from_item. 1 is for update_sd */
2119 	error = journal_begin(&th, p_s_inode->i_sb,
2120 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2121 	if (error)
2122 		goto out;
2123 	reiserfs_update_inode_transaction(p_s_inode);
2124 	if (update_timestamps)
2125 		/* we are doing real truncate: if the system crashes before the last
2126 		   transaction of truncating gets committed - on reboot the file
2127 		   either appears truncated properly or not truncated at all */
2128 		add_save_link(&th, p_s_inode, 1);
2129 	err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2130 	error =
2131 	    journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2132 	if (error)
2133 		goto out;
2134 
2135 	/* check reiserfs_do_truncate after ending the transaction */
2136 	if (err2) {
2137 		error = err2;
2138   		goto out;
2139 	}
2140 
2141 	if (update_timestamps) {
2142 		error = remove_save_link(p_s_inode, 1 /* truncate */ );
2143 		if (error)
2144 			goto out;
2145 	}
2146 
2147 	if (page) {
2148 		length = offset & (blocksize - 1);
2149 		/* if we are not on a block boundary */
2150 		if (length) {
2151 			length = blocksize - length;
2152 			zero_user_page(page, offset, length, KM_USER0);
2153 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2154 				mark_buffer_dirty(bh);
2155 			}
2156 		}
2157 		unlock_page(page);
2158 		page_cache_release(page);
2159 	}
2160 
2161 	reiserfs_write_unlock(p_s_inode->i_sb);
2162 	return 0;
2163       out:
2164 	if (page) {
2165 		unlock_page(page);
2166 		page_cache_release(page);
2167 	}
2168 	reiserfs_write_unlock(p_s_inode->i_sb);
2169 	return error;
2170 }
2171 
2172 static int map_block_for_writepage(struct inode *inode,
2173 				   struct buffer_head *bh_result,
2174 				   unsigned long block)
2175 {
2176 	struct reiserfs_transaction_handle th;
2177 	int fs_gen;
2178 	struct item_head tmp_ih;
2179 	struct item_head *ih;
2180 	struct buffer_head *bh;
2181 	__le32 *item;
2182 	struct cpu_key key;
2183 	INITIALIZE_PATH(path);
2184 	int pos_in_item;
2185 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2186 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2187 	int retval;
2188 	int use_get_block = 0;
2189 	int bytes_copied = 0;
2190 	int copy_size;
2191 	int trans_running = 0;
2192 
2193 	/* catch places below that try to log something without starting a trans */
2194 	th.t_trans_id = 0;
2195 
2196 	if (!buffer_uptodate(bh_result)) {
2197 		return -EIO;
2198 	}
2199 
2200 	kmap(bh_result->b_page);
2201       start_over:
2202 	reiserfs_write_lock(inode->i_sb);
2203 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2204 
2205       research:
2206 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2207 	if (retval != POSITION_FOUND) {
2208 		use_get_block = 1;
2209 		goto out;
2210 	}
2211 
2212 	bh = get_last_bh(&path);
2213 	ih = get_ih(&path);
2214 	item = get_item(&path);
2215 	pos_in_item = path.pos_in_item;
2216 
2217 	/* we've found an unformatted node */
2218 	if (indirect_item_found(retval, ih)) {
2219 		if (bytes_copied > 0) {
2220 			reiserfs_warning(inode->i_sb,
2221 					 "clm-6002: bytes_copied %d",
2222 					 bytes_copied);
2223 		}
2224 		if (!get_block_num(item, pos_in_item)) {
2225 			/* crap, we are writing to a hole */
2226 			use_get_block = 1;
2227 			goto out;
2228 		}
2229 		set_block_dev_mapped(bh_result,
2230 				     get_block_num(item, pos_in_item), inode);
2231 	} else if (is_direct_le_ih(ih)) {
2232 		char *p;
2233 		p = page_address(bh_result->b_page);
2234 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2235 		copy_size = ih_item_len(ih) - pos_in_item;
2236 
2237 		fs_gen = get_generation(inode->i_sb);
2238 		copy_item_head(&tmp_ih, ih);
2239 
2240 		if (!trans_running) {
2241 			/* vs-3050 is gone, no need to drop the path */
2242 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2243 			if (retval)
2244 				goto out;
2245 			reiserfs_update_inode_transaction(inode);
2246 			trans_running = 1;
2247 			if (fs_changed(fs_gen, inode->i_sb)
2248 			    && item_moved(&tmp_ih, &path)) {
2249 				reiserfs_restore_prepared_buffer(inode->i_sb,
2250 								 bh);
2251 				goto research;
2252 			}
2253 		}
2254 
2255 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2256 
2257 		if (fs_changed(fs_gen, inode->i_sb)
2258 		    && item_moved(&tmp_ih, &path)) {
2259 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2260 			goto research;
2261 		}
2262 
2263 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2264 		       copy_size);
2265 
2266 		journal_mark_dirty(&th, inode->i_sb, bh);
2267 		bytes_copied += copy_size;
2268 		set_block_dev_mapped(bh_result, 0, inode);
2269 
2270 		/* are there still bytes left? */
2271 		if (bytes_copied < bh_result->b_size &&
2272 		    (byte_offset + bytes_copied) < inode->i_size) {
2273 			set_cpu_key_k_offset(&key,
2274 					     cpu_key_k_offset(&key) +
2275 					     copy_size);
2276 			goto research;
2277 		}
2278 	} else {
2279 		reiserfs_warning(inode->i_sb,
2280 				 "clm-6003: bad item inode %lu, device %s",
2281 				 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2282 		retval = -EIO;
2283 		goto out;
2284 	}
2285 	retval = 0;
2286 
2287       out:
2288 	pathrelse(&path);
2289 	if (trans_running) {
2290 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2291 		if (err)
2292 			retval = err;
2293 		trans_running = 0;
2294 	}
2295 	reiserfs_write_unlock(inode->i_sb);
2296 
2297 	/* this is where we fill in holes in the file. */
2298 	if (use_get_block) {
2299 		retval = reiserfs_get_block(inode, block, bh_result,
2300 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2301 					    | GET_BLOCK_NO_DANGLE);
2302 		if (!retval) {
2303 			if (!buffer_mapped(bh_result)
2304 			    || bh_result->b_blocknr == 0) {
2305 				/* get_block failed to find a mapped unformatted node. */
2306 				use_get_block = 0;
2307 				goto start_over;
2308 			}
2309 		}
2310 	}
2311 	kunmap(bh_result->b_page);
2312 
2313 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2314 		/* we've copied data from the page into the direct item, so the
2315 		 * buffer in the page is now clean, mark it to reflect that.
2316 		 */
2317 		lock_buffer(bh_result);
2318 		clear_buffer_dirty(bh_result);
2319 		unlock_buffer(bh_result);
2320 	}
2321 	return retval;
2322 }
2323 
2324 /*
2325  * mason@suse.com: updated in 2.5.54 to follow the same general io
2326  * start/recovery path as __block_write_full_page, along with special
2327  * code to handle reiserfs tails.
2328  */
2329 static int reiserfs_write_full_page(struct page *page,
2330 				    struct writeback_control *wbc)
2331 {
2332 	struct inode *inode = page->mapping->host;
2333 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2334 	int error = 0;
2335 	unsigned long block;
2336 	sector_t last_block;
2337 	struct buffer_head *head, *bh;
2338 	int partial = 0;
2339 	int nr = 0;
2340 	int checked = PageChecked(page);
2341 	struct reiserfs_transaction_handle th;
2342 	struct super_block *s = inode->i_sb;
2343 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2344 	th.t_trans_id = 0;
2345 
2346 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2347 	if (checked && (current->flags & PF_MEMALLOC)) {
2348 		redirty_page_for_writepage(wbc, page);
2349 		unlock_page(page);
2350 		return 0;
2351 	}
2352 
2353 	/* The page dirty bit is cleared before writepage is called, which
2354 	 * means we have to tell create_empty_buffers to make dirty buffers
2355 	 * The page really should be up to date at this point, so tossing
2356 	 * in the BH_Uptodate is just a sanity check.
2357 	 */
2358 	if (!page_has_buffers(page)) {
2359 		create_empty_buffers(page, s->s_blocksize,
2360 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2361 	}
2362 	head = page_buffers(page);
2363 
2364 	/* last page in the file, zero out any contents past the
2365 	 ** last byte in the file
2366 	 */
2367 	if (page->index >= end_index) {
2368 		unsigned last_offset;
2369 
2370 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2371 		/* no file contents in this page */
2372 		if (page->index >= end_index + 1 || !last_offset) {
2373 			unlock_page(page);
2374 			return 0;
2375 		}
2376 		zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0);
2377 	}
2378 	bh = head;
2379 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2380 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2381 	/* first map all the buffers, logging any direct items we find */
2382 	do {
2383 		if (block > last_block) {
2384 			/*
2385 			 * This can happen when the block size is less than
2386 			 * the page size.  The corresponding bytes in the page
2387 			 * were zero filled above
2388 			 */
2389 			clear_buffer_dirty(bh);
2390 			set_buffer_uptodate(bh);
2391 		} else if ((checked || buffer_dirty(bh)) &&
2392 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2393 						       && bh->b_blocknr ==
2394 						       0))) {
2395 			/* not mapped yet, or it points to a direct item, search
2396 			 * the btree for the mapping info, and log any direct
2397 			 * items found
2398 			 */
2399 			if ((error = map_block_for_writepage(inode, bh, block))) {
2400 				goto fail;
2401 			}
2402 		}
2403 		bh = bh->b_this_page;
2404 		block++;
2405 	} while (bh != head);
2406 
2407 	/*
2408 	 * we start the transaction after map_block_for_writepage,
2409 	 * because it can create holes in the file (an unbounded operation).
2410 	 * starting it here, we can make a reliable estimate for how many
2411 	 * blocks we're going to log
2412 	 */
2413 	if (checked) {
2414 		ClearPageChecked(page);
2415 		reiserfs_write_lock(s);
2416 		error = journal_begin(&th, s, bh_per_page + 1);
2417 		if (error) {
2418 			reiserfs_write_unlock(s);
2419 			goto fail;
2420 		}
2421 		reiserfs_update_inode_transaction(inode);
2422 	}
2423 	/* now go through and lock any dirty buffers on the page */
2424 	do {
2425 		get_bh(bh);
2426 		if (!buffer_mapped(bh))
2427 			continue;
2428 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2429 			continue;
2430 
2431 		if (checked) {
2432 			reiserfs_prepare_for_journal(s, bh, 1);
2433 			journal_mark_dirty(&th, s, bh);
2434 			continue;
2435 		}
2436 		/* from this point on, we know the buffer is mapped to a
2437 		 * real block and not a direct item
2438 		 */
2439 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2440 			lock_buffer(bh);
2441 		} else {
2442 			if (test_set_buffer_locked(bh)) {
2443 				redirty_page_for_writepage(wbc, page);
2444 				continue;
2445 			}
2446 		}
2447 		if (test_clear_buffer_dirty(bh)) {
2448 			mark_buffer_async_write(bh);
2449 		} else {
2450 			unlock_buffer(bh);
2451 		}
2452 	} while ((bh = bh->b_this_page) != head);
2453 
2454 	if (checked) {
2455 		error = journal_end(&th, s, bh_per_page + 1);
2456 		reiserfs_write_unlock(s);
2457 		if (error)
2458 			goto fail;
2459 	}
2460 	BUG_ON(PageWriteback(page));
2461 	set_page_writeback(page);
2462 	unlock_page(page);
2463 
2464 	/*
2465 	 * since any buffer might be the only dirty buffer on the page,
2466 	 * the first submit_bh can bring the page out of writeback.
2467 	 * be careful with the buffers.
2468 	 */
2469 	do {
2470 		struct buffer_head *next = bh->b_this_page;
2471 		if (buffer_async_write(bh)) {
2472 			submit_bh(WRITE, bh);
2473 			nr++;
2474 		}
2475 		put_bh(bh);
2476 		bh = next;
2477 	} while (bh != head);
2478 
2479 	error = 0;
2480       done:
2481 	if (nr == 0) {
2482 		/*
2483 		 * if this page only had a direct item, it is very possible for
2484 		 * no io to be required without there being an error.  Or,
2485 		 * someone else could have locked them and sent them down the
2486 		 * pipe without locking the page
2487 		 */
2488 		bh = head;
2489 		do {
2490 			if (!buffer_uptodate(bh)) {
2491 				partial = 1;
2492 				break;
2493 			}
2494 			bh = bh->b_this_page;
2495 		} while (bh != head);
2496 		if (!partial)
2497 			SetPageUptodate(page);
2498 		end_page_writeback(page);
2499 	}
2500 	return error;
2501 
2502       fail:
2503 	/* catches various errors, we need to make sure any valid dirty blocks
2504 	 * get to the media.  The page is currently locked and not marked for
2505 	 * writeback
2506 	 */
2507 	ClearPageUptodate(page);
2508 	bh = head;
2509 	do {
2510 		get_bh(bh);
2511 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2512 			lock_buffer(bh);
2513 			mark_buffer_async_write(bh);
2514 		} else {
2515 			/*
2516 			 * clear any dirty bits that might have come from getting
2517 			 * attached to a dirty page
2518 			 */
2519 			clear_buffer_dirty(bh);
2520 		}
2521 		bh = bh->b_this_page;
2522 	} while (bh != head);
2523 	SetPageError(page);
2524 	BUG_ON(PageWriteback(page));
2525 	set_page_writeback(page);
2526 	unlock_page(page);
2527 	do {
2528 		struct buffer_head *next = bh->b_this_page;
2529 		if (buffer_async_write(bh)) {
2530 			clear_buffer_dirty(bh);
2531 			submit_bh(WRITE, bh);
2532 			nr++;
2533 		}
2534 		put_bh(bh);
2535 		bh = next;
2536 	} while (bh != head);
2537 	goto done;
2538 }
2539 
2540 static int reiserfs_readpage(struct file *f, struct page *page)
2541 {
2542 	return block_read_full_page(page, reiserfs_get_block);
2543 }
2544 
2545 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2546 {
2547 	struct inode *inode = page->mapping->host;
2548 	reiserfs_wait_on_write_block(inode->i_sb);
2549 	return reiserfs_write_full_page(page, wbc);
2550 }
2551 
2552 static int reiserfs_prepare_write(struct file *f, struct page *page,
2553 				  unsigned from, unsigned to)
2554 {
2555 	struct inode *inode = page->mapping->host;
2556 	int ret;
2557 	int old_ref = 0;
2558 
2559 	reiserfs_wait_on_write_block(inode->i_sb);
2560 	fix_tail_page_for_writing(page);
2561 	if (reiserfs_transaction_running(inode->i_sb)) {
2562 		struct reiserfs_transaction_handle *th;
2563 		th = (struct reiserfs_transaction_handle *)current->
2564 		    journal_info;
2565 		BUG_ON(!th->t_refcount);
2566 		BUG_ON(!th->t_trans_id);
2567 		old_ref = th->t_refcount;
2568 		th->t_refcount++;
2569 	}
2570 
2571 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2572 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2573 		struct reiserfs_transaction_handle *th = current->journal_info;
2574 		/* this gets a little ugly.  If reiserfs_get_block returned an
2575 		 * error and left a transacstion running, we've got to close it,
2576 		 * and we've got to free handle if it was a persistent transaction.
2577 		 *
2578 		 * But, if we had nested into an existing transaction, we need
2579 		 * to just drop the ref count on the handle.
2580 		 *
2581 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2582 		 * and it was a persistent trans.  Otherwise, it was nested above.
2583 		 */
2584 		if (th->t_refcount > old_ref) {
2585 			if (old_ref)
2586 				th->t_refcount--;
2587 			else {
2588 				int err;
2589 				reiserfs_write_lock(inode->i_sb);
2590 				err = reiserfs_end_persistent_transaction(th);
2591 				reiserfs_write_unlock(inode->i_sb);
2592 				if (err)
2593 					ret = err;
2594 			}
2595 		}
2596 	}
2597 	return ret;
2598 
2599 }
2600 
2601 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2602 {
2603 	return generic_block_bmap(as, block, reiserfs_bmap);
2604 }
2605 
2606 static int reiserfs_commit_write(struct file *f, struct page *page,
2607 				 unsigned from, unsigned to)
2608 {
2609 	struct inode *inode = page->mapping->host;
2610 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2611 	int ret = 0;
2612 	int update_sd = 0;
2613 	struct reiserfs_transaction_handle *th = NULL;
2614 
2615 	reiserfs_wait_on_write_block(inode->i_sb);
2616 	if (reiserfs_transaction_running(inode->i_sb)) {
2617 		th = current->journal_info;
2618 	}
2619 	reiserfs_commit_page(inode, page, from, to);
2620 
2621 	/* generic_commit_write does this for us, but does not update the
2622 	 ** transaction tracking stuff when the size changes.  So, we have
2623 	 ** to do the i_size updates here.
2624 	 */
2625 	if (pos > inode->i_size) {
2626 		struct reiserfs_transaction_handle myth;
2627 		reiserfs_write_lock(inode->i_sb);
2628 		/* If the file have grown beyond the border where it
2629 		   can have a tail, unmark it as needing a tail
2630 		   packing */
2631 		if ((have_large_tails(inode->i_sb)
2632 		     && inode->i_size > i_block_size(inode) * 4)
2633 		    || (have_small_tails(inode->i_sb)
2634 			&& inode->i_size > i_block_size(inode)))
2635 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2636 
2637 		ret = journal_begin(&myth, inode->i_sb, 1);
2638 		if (ret) {
2639 			reiserfs_write_unlock(inode->i_sb);
2640 			goto journal_error;
2641 		}
2642 		reiserfs_update_inode_transaction(inode);
2643 		inode->i_size = pos;
2644 		/*
2645 		 * this will just nest into our transaction.  It's important
2646 		 * to use mark_inode_dirty so the inode gets pushed around on the
2647 		 * dirty lists, and so that O_SYNC works as expected
2648 		 */
2649 		mark_inode_dirty(inode);
2650 		reiserfs_update_sd(&myth, inode);
2651 		update_sd = 1;
2652 		ret = journal_end(&myth, inode->i_sb, 1);
2653 		reiserfs_write_unlock(inode->i_sb);
2654 		if (ret)
2655 			goto journal_error;
2656 	}
2657 	if (th) {
2658 		reiserfs_write_lock(inode->i_sb);
2659 		if (!update_sd)
2660 			mark_inode_dirty(inode);
2661 		ret = reiserfs_end_persistent_transaction(th);
2662 		reiserfs_write_unlock(inode->i_sb);
2663 		if (ret)
2664 			goto out;
2665 	}
2666 
2667       out:
2668 	return ret;
2669 
2670       journal_error:
2671 	if (th) {
2672 		reiserfs_write_lock(inode->i_sb);
2673 		if (!update_sd)
2674 			reiserfs_update_sd(th, inode);
2675 		ret = reiserfs_end_persistent_transaction(th);
2676 		reiserfs_write_unlock(inode->i_sb);
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2683 {
2684 	if (reiserfs_attrs(inode->i_sb)) {
2685 		if (sd_attrs & REISERFS_SYNC_FL)
2686 			inode->i_flags |= S_SYNC;
2687 		else
2688 			inode->i_flags &= ~S_SYNC;
2689 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2690 			inode->i_flags |= S_IMMUTABLE;
2691 		else
2692 			inode->i_flags &= ~S_IMMUTABLE;
2693 		if (sd_attrs & REISERFS_APPEND_FL)
2694 			inode->i_flags |= S_APPEND;
2695 		else
2696 			inode->i_flags &= ~S_APPEND;
2697 		if (sd_attrs & REISERFS_NOATIME_FL)
2698 			inode->i_flags |= S_NOATIME;
2699 		else
2700 			inode->i_flags &= ~S_NOATIME;
2701 		if (sd_attrs & REISERFS_NOTAIL_FL)
2702 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2703 		else
2704 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2705 	}
2706 }
2707 
2708 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2709 {
2710 	if (reiserfs_attrs(inode->i_sb)) {
2711 		if (inode->i_flags & S_IMMUTABLE)
2712 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2713 		else
2714 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2715 		if (inode->i_flags & S_SYNC)
2716 			*sd_attrs |= REISERFS_SYNC_FL;
2717 		else
2718 			*sd_attrs &= ~REISERFS_SYNC_FL;
2719 		if (inode->i_flags & S_NOATIME)
2720 			*sd_attrs |= REISERFS_NOATIME_FL;
2721 		else
2722 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2723 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2724 			*sd_attrs |= REISERFS_NOTAIL_FL;
2725 		else
2726 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2727 	}
2728 }
2729 
2730 /* decide if this buffer needs to stay around for data logging or ordered
2731 ** write purposes
2732 */
2733 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2734 {
2735 	int ret = 1;
2736 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2737 
2738 	lock_buffer(bh);
2739 	spin_lock(&j->j_dirty_buffers_lock);
2740 	if (!buffer_mapped(bh)) {
2741 		goto free_jh;
2742 	}
2743 	/* the page is locked, and the only places that log a data buffer
2744 	 * also lock the page.
2745 	 */
2746 	if (reiserfs_file_data_log(inode)) {
2747 		/*
2748 		 * very conservative, leave the buffer pinned if
2749 		 * anyone might need it.
2750 		 */
2751 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2752 			ret = 0;
2753 		}
2754 	} else  if (buffer_dirty(bh)) {
2755 		struct reiserfs_journal_list *jl;
2756 		struct reiserfs_jh *jh = bh->b_private;
2757 
2758 		/* why is this safe?
2759 		 * reiserfs_setattr updates i_size in the on disk
2760 		 * stat data before allowing vmtruncate to be called.
2761 		 *
2762 		 * If buffer was put onto the ordered list for this
2763 		 * transaction, we know for sure either this transaction
2764 		 * or an older one already has updated i_size on disk,
2765 		 * and this ordered data won't be referenced in the file
2766 		 * if we crash.
2767 		 *
2768 		 * if the buffer was put onto the ordered list for an older
2769 		 * transaction, we need to leave it around
2770 		 */
2771 		if (jh && (jl = jh->jl)
2772 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2773 			ret = 0;
2774 	}
2775       free_jh:
2776 	if (ret && bh->b_private) {
2777 		reiserfs_free_jh(bh);
2778 	}
2779 	spin_unlock(&j->j_dirty_buffers_lock);
2780 	unlock_buffer(bh);
2781 	return ret;
2782 }
2783 
2784 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2785 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2786 {
2787 	struct buffer_head *head, *bh, *next;
2788 	struct inode *inode = page->mapping->host;
2789 	unsigned int curr_off = 0;
2790 	int ret = 1;
2791 
2792 	BUG_ON(!PageLocked(page));
2793 
2794 	if (offset == 0)
2795 		ClearPageChecked(page);
2796 
2797 	if (!page_has_buffers(page))
2798 		goto out;
2799 
2800 	head = page_buffers(page);
2801 	bh = head;
2802 	do {
2803 		unsigned int next_off = curr_off + bh->b_size;
2804 		next = bh->b_this_page;
2805 
2806 		/*
2807 		 * is this block fully invalidated?
2808 		 */
2809 		if (offset <= curr_off) {
2810 			if (invalidatepage_can_drop(inode, bh))
2811 				reiserfs_unmap_buffer(bh);
2812 			else
2813 				ret = 0;
2814 		}
2815 		curr_off = next_off;
2816 		bh = next;
2817 	} while (bh != head);
2818 
2819 	/*
2820 	 * We release buffers only if the entire page is being invalidated.
2821 	 * The get_block cached value has been unconditionally invalidated,
2822 	 * so real IO is not possible anymore.
2823 	 */
2824 	if (!offset && ret) {
2825 		ret = try_to_release_page(page, 0);
2826 		/* maybe should BUG_ON(!ret); - neilb */
2827 	}
2828       out:
2829 	return;
2830 }
2831 
2832 static int reiserfs_set_page_dirty(struct page *page)
2833 {
2834 	struct inode *inode = page->mapping->host;
2835 	if (reiserfs_file_data_log(inode)) {
2836 		SetPageChecked(page);
2837 		return __set_page_dirty_nobuffers(page);
2838 	}
2839 	return __set_page_dirty_buffers(page);
2840 }
2841 
2842 /*
2843  * Returns 1 if the page's buffers were dropped.  The page is locked.
2844  *
2845  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2846  * in the buffers at page_buffers(page).
2847  *
2848  * even in -o notail mode, we can't be sure an old mount without -o notail
2849  * didn't create files with tails.
2850  */
2851 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2852 {
2853 	struct inode *inode = page->mapping->host;
2854 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2855 	struct buffer_head *head;
2856 	struct buffer_head *bh;
2857 	int ret = 1;
2858 
2859 	WARN_ON(PageChecked(page));
2860 	spin_lock(&j->j_dirty_buffers_lock);
2861 	head = page_buffers(page);
2862 	bh = head;
2863 	do {
2864 		if (bh->b_private) {
2865 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2866 				reiserfs_free_jh(bh);
2867 			} else {
2868 				ret = 0;
2869 				break;
2870 			}
2871 		}
2872 		bh = bh->b_this_page;
2873 	} while (bh != head);
2874 	if (ret)
2875 		ret = try_to_free_buffers(page);
2876 	spin_unlock(&j->j_dirty_buffers_lock);
2877 	return ret;
2878 }
2879 
2880 /* We thank Mingming Cao for helping us understand in great detail what
2881    to do in this section of the code. */
2882 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2883 				  const struct iovec *iov, loff_t offset,
2884 				  unsigned long nr_segs)
2885 {
2886 	struct file *file = iocb->ki_filp;
2887 	struct inode *inode = file->f_mapping->host;
2888 
2889 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2890 				  offset, nr_segs,
2891 				  reiserfs_get_blocks_direct_io, NULL);
2892 }
2893 
2894 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2895 {
2896 	struct inode *inode = dentry->d_inode;
2897 	int error;
2898 	unsigned int ia_valid = attr->ia_valid;
2899 	reiserfs_write_lock(inode->i_sb);
2900 	if (attr->ia_valid & ATTR_SIZE) {
2901 		/* version 2 items will be caught by the s_maxbytes check
2902 		 ** done for us in vmtruncate
2903 		 */
2904 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2905 		    attr->ia_size > MAX_NON_LFS) {
2906 			error = -EFBIG;
2907 			goto out;
2908 		}
2909 		/* fill in hole pointers in the expanding truncate case. */
2910 		if (attr->ia_size > inode->i_size) {
2911 			error = generic_cont_expand(inode, attr->ia_size);
2912 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
2913 				int err;
2914 				struct reiserfs_transaction_handle th;
2915 				/* we're changing at most 2 bitmaps, inode + super */
2916 				err = journal_begin(&th, inode->i_sb, 4);
2917 				if (!err) {
2918 					reiserfs_discard_prealloc(&th, inode);
2919 					err = journal_end(&th, inode->i_sb, 4);
2920 				}
2921 				if (err)
2922 					error = err;
2923 			}
2924 			if (error)
2925 				goto out;
2926 			/*
2927 			 * file size is changed, ctime and mtime are
2928 			 * to be updated
2929 			 */
2930 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2931 		}
2932 	}
2933 
2934 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2935 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2936 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2937 		/* stat data of format v3.5 has 16 bit uid and gid */
2938 		error = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	error = inode_change_ok(inode, attr);
2943 	if (!error) {
2944 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2945 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2946 			error = reiserfs_chown_xattrs(inode, attr);
2947 
2948 			if (!error) {
2949 				struct reiserfs_transaction_handle th;
2950 				int jbegin_count =
2951 				    2 *
2952 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2953 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2954 				    2;
2955 
2956 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2957 				error =
2958 				    journal_begin(&th, inode->i_sb,
2959 						  jbegin_count);
2960 				if (error)
2961 					goto out;
2962 				error =
2963 				    DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2964 				if (error) {
2965 					journal_end(&th, inode->i_sb,
2966 						    jbegin_count);
2967 					goto out;
2968 				}
2969 				/* Update corresponding info in inode so that everything is in
2970 				 * one transaction */
2971 				if (attr->ia_valid & ATTR_UID)
2972 					inode->i_uid = attr->ia_uid;
2973 				if (attr->ia_valid & ATTR_GID)
2974 					inode->i_gid = attr->ia_gid;
2975 				mark_inode_dirty(inode);
2976 				error =
2977 				    journal_end(&th, inode->i_sb, jbegin_count);
2978 			}
2979 		}
2980 		if (!error)
2981 			error = inode_setattr(inode, attr);
2982 	}
2983 
2984 	if (!error && reiserfs_posixacl(inode->i_sb)) {
2985 		if (attr->ia_valid & ATTR_MODE)
2986 			error = reiserfs_acl_chmod(inode);
2987 	}
2988 
2989       out:
2990 	reiserfs_write_unlock(inode->i_sb);
2991 	return error;
2992 }
2993 
2994 const struct address_space_operations reiserfs_address_space_operations = {
2995 	.writepage = reiserfs_writepage,
2996 	.readpage = reiserfs_readpage,
2997 	.readpages = reiserfs_readpages,
2998 	.releasepage = reiserfs_releasepage,
2999 	.invalidatepage = reiserfs_invalidatepage,
3000 	.sync_page = block_sync_page,
3001 	.prepare_write = reiserfs_prepare_write,
3002 	.commit_write = reiserfs_commit_write,
3003 	.bmap = reiserfs_aop_bmap,
3004 	.direct_IO = reiserfs_direct_IO,
3005 	.set_page_dirty = reiserfs_set_page_dirty,
3006 };
3007