xref: /openbmc/linux/fs/reiserfs/inode.c (revision 4dc7ccf7)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <asm/uaccess.h>
16 #include <asm/unaligned.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mpage.h>
19 #include <linux/writeback.h>
20 #include <linux/quotaops.h>
21 #include <linux/swap.h>
22 
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 			  unsigned from, unsigned to);
25 int reiserfs_prepare_write(struct file *f, struct page *page,
26 			   unsigned from, unsigned to);
27 
28 void reiserfs_delete_inode(struct inode *inode)
29 {
30 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
31 	int jbegin_count =
32 	    JOURNAL_PER_BALANCE_CNT * 2 +
33 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34 	struct reiserfs_transaction_handle th;
35 	int depth;
36 	int err;
37 
38 	if (!is_bad_inode(inode))
39 		dquot_initialize(inode);
40 
41 	truncate_inode_pages(&inode->i_data, 0);
42 
43 	depth = reiserfs_write_lock_once(inode->i_sb);
44 
45 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
47 		reiserfs_delete_xattrs(inode);
48 
49 		if (journal_begin(&th, inode->i_sb, jbegin_count))
50 			goto out;
51 		reiserfs_update_inode_transaction(inode);
52 
53 		reiserfs_discard_prealloc(&th, inode);
54 
55 		err = reiserfs_delete_object(&th, inode);
56 
57 		/* Do quota update inside a transaction for journaled quotas. We must do that
58 		 * after delete_object so that quota updates go into the same transaction as
59 		 * stat data deletion */
60 		if (!err)
61 			dquot_free_inode(inode);
62 
63 		if (journal_end(&th, inode->i_sb, jbegin_count))
64 			goto out;
65 
66 		/* check return value from reiserfs_delete_object after
67 		 * ending the transaction
68 		 */
69 		if (err)
70 		    goto out;
71 
72 		/* all items of file are deleted, so we can remove "save" link */
73 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
74 								 * about an error here */
75 	} else {
76 		/* no object items are in the tree */
77 		;
78 	}
79       out:
80 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
81 	inode->i_blocks = 0;
82 	reiserfs_write_unlock_once(inode->i_sb, depth);
83 }
84 
85 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
86 			  __u32 objectid, loff_t offset, int type, int length)
87 {
88 	key->version = version;
89 
90 	key->on_disk_key.k_dir_id = dirid;
91 	key->on_disk_key.k_objectid = objectid;
92 	set_cpu_key_k_offset(key, offset);
93 	set_cpu_key_k_type(key, type);
94 	key->key_length = length;
95 }
96 
97 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
98    offset and type of key */
99 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
100 		  int type, int length)
101 {
102 	_make_cpu_key(key, get_inode_item_key_version(inode),
103 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
104 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
105 		      length);
106 }
107 
108 //
109 // when key is 0, do not set version and short key
110 //
111 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
112 			      int version,
113 			      loff_t offset, int type, int length,
114 			      int entry_count /*or ih_free_space */ )
115 {
116 	if (key) {
117 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
118 		ih->ih_key.k_objectid =
119 		    cpu_to_le32(key->on_disk_key.k_objectid);
120 	}
121 	put_ih_version(ih, version);
122 	set_le_ih_k_offset(ih, offset);
123 	set_le_ih_k_type(ih, type);
124 	put_ih_item_len(ih, length);
125 	/*    set_ih_free_space (ih, 0); */
126 	// for directory items it is entry count, for directs and stat
127 	// datas - 0xffff, for indirects - 0
128 	put_ih_entry_count(ih, entry_count);
129 }
130 
131 //
132 // FIXME: we might cache recently accessed indirect item
133 
134 // Ugh.  Not too eager for that....
135 //  I cut the code until such time as I see a convincing argument (benchmark).
136 // I don't want a bloated inode struct..., and I don't like code complexity....
137 
138 /* cutting the code is fine, since it really isn't in use yet and is easy
139 ** to add back in.  But, Vladimir has a really good idea here.  Think
140 ** about what happens for reading a file.  For each page,
141 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
142 ** an indirect item.  This indirect item has X number of pointers, where
143 ** X is a big number if we've done the block allocation right.  But,
144 ** we only use one or two of these pointers during each call to readpage,
145 ** needlessly researching again later on.
146 **
147 ** The size of the cache could be dynamic based on the size of the file.
148 **
149 ** I'd also like to see us cache the location the stat data item, since
150 ** we are needlessly researching for that frequently.
151 **
152 ** --chris
153 */
154 
155 /* If this page has a file tail in it, and
156 ** it was read in by get_block_create_0, the page data is valid,
157 ** but tail is still sitting in a direct item, and we can't write to
158 ** it.  So, look through this page, and check all the mapped buffers
159 ** to make sure they have valid block numbers.  Any that don't need
160 ** to be unmapped, so that block_prepare_write will correctly call
161 ** reiserfs_get_block to convert the tail into an unformatted node
162 */
163 static inline void fix_tail_page_for_writing(struct page *page)
164 {
165 	struct buffer_head *head, *next, *bh;
166 
167 	if (page && page_has_buffers(page)) {
168 		head = page_buffers(page);
169 		bh = head;
170 		do {
171 			next = bh->b_this_page;
172 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
173 				reiserfs_unmap_buffer(bh);
174 			}
175 			bh = next;
176 		} while (bh != head);
177 	}
178 }
179 
180 /* reiserfs_get_block does not need to allocate a block only if it has been
181    done already or non-hole position has been found in the indirect item */
182 static inline int allocation_needed(int retval, b_blocknr_t allocated,
183 				    struct item_head *ih,
184 				    __le32 * item, int pos_in_item)
185 {
186 	if (allocated)
187 		return 0;
188 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
189 	    get_block_num(item, pos_in_item))
190 		return 0;
191 	return 1;
192 }
193 
194 static inline int indirect_item_found(int retval, struct item_head *ih)
195 {
196 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
197 }
198 
199 static inline void set_block_dev_mapped(struct buffer_head *bh,
200 					b_blocknr_t block, struct inode *inode)
201 {
202 	map_bh(bh, inode->i_sb, block);
203 }
204 
205 //
206 // files which were created in the earlier version can not be longer,
207 // than 2 gb
208 //
209 static int file_capable(struct inode *inode, sector_t block)
210 {
211 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
212 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
213 		return 1;
214 
215 	return 0;
216 }
217 
218 static int restart_transaction(struct reiserfs_transaction_handle *th,
219 			       struct inode *inode, struct treepath *path)
220 {
221 	struct super_block *s = th->t_super;
222 	int len = th->t_blocks_allocated;
223 	int err;
224 
225 	BUG_ON(!th->t_trans_id);
226 	BUG_ON(!th->t_refcount);
227 
228 	pathrelse(path);
229 
230 	/* we cannot restart while nested */
231 	if (th->t_refcount > 1) {
232 		return 0;
233 	}
234 	reiserfs_update_sd(th, inode);
235 	err = journal_end(th, s, len);
236 	if (!err) {
237 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
238 		if (!err)
239 			reiserfs_update_inode_transaction(inode);
240 	}
241 	return err;
242 }
243 
244 // it is called by get_block when create == 0. Returns block number
245 // for 'block'-th logical block of file. When it hits direct item it
246 // returns 0 (being called from bmap) or read direct item into piece
247 // of page (bh_result)
248 
249 // Please improve the english/clarity in the comment above, as it is
250 // hard to understand.
251 
252 static int _get_block_create_0(struct inode *inode, sector_t block,
253 			       struct buffer_head *bh_result, int args)
254 {
255 	INITIALIZE_PATH(path);
256 	struct cpu_key key;
257 	struct buffer_head *bh;
258 	struct item_head *ih, tmp_ih;
259 	b_blocknr_t blocknr;
260 	char *p = NULL;
261 	int chars;
262 	int ret;
263 	int result;
264 	int done = 0;
265 	unsigned long offset;
266 
267 	// prepare the key to look for the 'block'-th block of file
268 	make_cpu_key(&key, inode,
269 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
270 		     3);
271 
272 	result = search_for_position_by_key(inode->i_sb, &key, &path);
273 	if (result != POSITION_FOUND) {
274 		pathrelse(&path);
275 		if (p)
276 			kunmap(bh_result->b_page);
277 		if (result == IO_ERROR)
278 			return -EIO;
279 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
280 		// That there is some MMAPED data associated with it that is yet to be written to disk.
281 		if ((args & GET_BLOCK_NO_HOLE)
282 		    && !PageUptodate(bh_result->b_page)) {
283 			return -ENOENT;
284 		}
285 		return 0;
286 	}
287 	//
288 	bh = get_last_bh(&path);
289 	ih = get_ih(&path);
290 	if (is_indirect_le_ih(ih)) {
291 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
292 
293 		/* FIXME: here we could cache indirect item or part of it in
294 		   the inode to avoid search_by_key in case of subsequent
295 		   access to file */
296 		blocknr = get_block_num(ind_item, path.pos_in_item);
297 		ret = 0;
298 		if (blocknr) {
299 			map_bh(bh_result, inode->i_sb, blocknr);
300 			if (path.pos_in_item ==
301 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
302 				set_buffer_boundary(bh_result);
303 			}
304 		} else
305 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
306 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
307 		if ((args & GET_BLOCK_NO_HOLE)
308 			    && !PageUptodate(bh_result->b_page)) {
309 			ret = -ENOENT;
310 		}
311 
312 		pathrelse(&path);
313 		if (p)
314 			kunmap(bh_result->b_page);
315 		return ret;
316 	}
317 	// requested data are in direct item(s)
318 	if (!(args & GET_BLOCK_READ_DIRECT)) {
319 		// we are called by bmap. FIXME: we can not map block of file
320 		// when it is stored in direct item(s)
321 		pathrelse(&path);
322 		if (p)
323 			kunmap(bh_result->b_page);
324 		return -ENOENT;
325 	}
326 
327 	/* if we've got a direct item, and the buffer or page was uptodate,
328 	 ** we don't want to pull data off disk again.  skip to the
329 	 ** end, where we map the buffer and return
330 	 */
331 	if (buffer_uptodate(bh_result)) {
332 		goto finished;
333 	} else
334 		/*
335 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
336 		 ** pages without any buffers.  If the page is up to date, we don't want
337 		 ** read old data off disk.  Set the up to date bit on the buffer instead
338 		 ** and jump to the end
339 		 */
340 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
341 		set_buffer_uptodate(bh_result);
342 		goto finished;
343 	}
344 	// read file tail into part of page
345 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
346 	copy_item_head(&tmp_ih, ih);
347 
348 	/* we only want to kmap if we are reading the tail into the page.
349 	 ** this is not the common case, so we don't kmap until we are
350 	 ** sure we need to.  But, this means the item might move if
351 	 ** kmap schedules
352 	 */
353 	if (!p)
354 		p = (char *)kmap(bh_result->b_page);
355 
356 	p += offset;
357 	memset(p, 0, inode->i_sb->s_blocksize);
358 	do {
359 		if (!is_direct_le_ih(ih)) {
360 			BUG();
361 		}
362 		/* make sure we don't read more bytes than actually exist in
363 		 ** the file.  This can happen in odd cases where i_size isn't
364 		 ** correct, and when direct item padding results in a few
365 		 ** extra bytes at the end of the direct item
366 		 */
367 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
368 			break;
369 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
370 			chars =
371 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
372 			    path.pos_in_item;
373 			done = 1;
374 		} else {
375 			chars = ih_item_len(ih) - path.pos_in_item;
376 		}
377 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
378 
379 		if (done)
380 			break;
381 
382 		p += chars;
383 
384 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
385 			// we done, if read direct item is not the last item of
386 			// node FIXME: we could try to check right delimiting key
387 			// to see whether direct item continues in the right
388 			// neighbor or rely on i_size
389 			break;
390 
391 		// update key to look for the next piece
392 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
393 		result = search_for_position_by_key(inode->i_sb, &key, &path);
394 		if (result != POSITION_FOUND)
395 			// i/o error most likely
396 			break;
397 		bh = get_last_bh(&path);
398 		ih = get_ih(&path);
399 	} while (1);
400 
401 	flush_dcache_page(bh_result->b_page);
402 	kunmap(bh_result->b_page);
403 
404       finished:
405 	pathrelse(&path);
406 
407 	if (result == IO_ERROR)
408 		return -EIO;
409 
410 	/* this buffer has valid data, but isn't valid for io.  mapping it to
411 	 * block #0 tells the rest of reiserfs it just has a tail in it
412 	 */
413 	map_bh(bh_result, inode->i_sb, 0);
414 	set_buffer_uptodate(bh_result);
415 	return 0;
416 }
417 
418 // this is called to create file map. So, _get_block_create_0 will not
419 // read direct item
420 static int reiserfs_bmap(struct inode *inode, sector_t block,
421 			 struct buffer_head *bh_result, int create)
422 {
423 	if (!file_capable(inode, block))
424 		return -EFBIG;
425 
426 	reiserfs_write_lock(inode->i_sb);
427 	/* do not read the direct item */
428 	_get_block_create_0(inode, block, bh_result, 0);
429 	reiserfs_write_unlock(inode->i_sb);
430 	return 0;
431 }
432 
433 /* special version of get_block that is only used by grab_tail_page right
434 ** now.  It is sent to block_prepare_write, and when you try to get a
435 ** block past the end of the file (or a block from a hole) it returns
436 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
437 ** be able to do i/o on the buffers returned, unless an error value
438 ** is also returned.
439 **
440 ** So, this allows block_prepare_write to be used for reading a single block
441 ** in a page.  Where it does not produce a valid page for holes, or past the
442 ** end of the file.  This turns out to be exactly what we need for reading
443 ** tails for conversion.
444 **
445 ** The point of the wrapper is forcing a certain value for create, even
446 ** though the VFS layer is calling this function with create==1.  If you
447 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
448 ** don't use this function.
449 */
450 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
451 				       struct buffer_head *bh_result,
452 				       int create)
453 {
454 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
455 }
456 
457 /* This is special helper for reiserfs_get_block in case we are executing
458    direct_IO request. */
459 static int reiserfs_get_blocks_direct_io(struct inode *inode,
460 					 sector_t iblock,
461 					 struct buffer_head *bh_result,
462 					 int create)
463 {
464 	int ret;
465 
466 	bh_result->b_page = NULL;
467 
468 	/* We set the b_size before reiserfs_get_block call since it is
469 	   referenced in convert_tail_for_hole() that may be called from
470 	   reiserfs_get_block() */
471 	bh_result->b_size = (1 << inode->i_blkbits);
472 
473 	ret = reiserfs_get_block(inode, iblock, bh_result,
474 				 create | GET_BLOCK_NO_DANGLE);
475 	if (ret)
476 		goto out;
477 
478 	/* don't allow direct io onto tail pages */
479 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
480 		/* make sure future calls to the direct io funcs for this offset
481 		 ** in the file fail by unmapping the buffer
482 		 */
483 		clear_buffer_mapped(bh_result);
484 		ret = -EINVAL;
485 	}
486 	/* Possible unpacked tail. Flush the data before pages have
487 	   disappeared */
488 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
489 		int err;
490 
491 		reiserfs_write_lock(inode->i_sb);
492 
493 		err = reiserfs_commit_for_inode(inode);
494 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 
496 		reiserfs_write_unlock(inode->i_sb);
497 
498 		if (err < 0)
499 			ret = err;
500 	}
501       out:
502 	return ret;
503 }
504 
505 /*
506 ** helper function for when reiserfs_get_block is called for a hole
507 ** but the file tail is still in a direct item
508 ** bh_result is the buffer head for the hole
509 ** tail_offset is the offset of the start of the tail in the file
510 **
511 ** This calls prepare_write, which will start a new transaction
512 ** you should not be in a transaction, or have any paths held when you
513 ** call this.
514 */
515 static int convert_tail_for_hole(struct inode *inode,
516 				 struct buffer_head *bh_result,
517 				 loff_t tail_offset)
518 {
519 	unsigned long index;
520 	unsigned long tail_end;
521 	unsigned long tail_start;
522 	struct page *tail_page;
523 	struct page *hole_page = bh_result->b_page;
524 	int retval = 0;
525 
526 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
527 		return -EIO;
528 
529 	/* always try to read until the end of the block */
530 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
531 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
532 
533 	index = tail_offset >> PAGE_CACHE_SHIFT;
534 	/* hole_page can be zero in case of direct_io, we are sure
535 	   that we cannot get here if we write with O_DIRECT into
536 	   tail page */
537 	if (!hole_page || index != hole_page->index) {
538 		tail_page = grab_cache_page(inode->i_mapping, index);
539 		retval = -ENOMEM;
540 		if (!tail_page) {
541 			goto out;
542 		}
543 	} else {
544 		tail_page = hole_page;
545 	}
546 
547 	/* we don't have to make sure the conversion did not happen while
548 	 ** we were locking the page because anyone that could convert
549 	 ** must first take i_mutex.
550 	 **
551 	 ** We must fix the tail page for writing because it might have buffers
552 	 ** that are mapped, but have a block number of 0.  This indicates tail
553 	 ** data that has been read directly into the page, and block_prepare_write
554 	 ** won't trigger a get_block in this case.
555 	 */
556 	fix_tail_page_for_writing(tail_page);
557 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
558 	if (retval)
559 		goto unlock;
560 
561 	/* tail conversion might change the data in the page */
562 	flush_dcache_page(tail_page);
563 
564 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
565 
566       unlock:
567 	if (tail_page != hole_page) {
568 		unlock_page(tail_page);
569 		page_cache_release(tail_page);
570 	}
571       out:
572 	return retval;
573 }
574 
575 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
576 				  sector_t block,
577 				  struct inode *inode,
578 				  b_blocknr_t * allocated_block_nr,
579 				  struct treepath *path, int flags)
580 {
581 	BUG_ON(!th->t_trans_id);
582 
583 #ifdef REISERFS_PREALLOCATE
584 	if (!(flags & GET_BLOCK_NO_IMUX)) {
585 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
586 						  path, block);
587 	}
588 #endif
589 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
590 					 block);
591 }
592 
593 int reiserfs_get_block(struct inode *inode, sector_t block,
594 		       struct buffer_head *bh_result, int create)
595 {
596 	int repeat, retval = 0;
597 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
598 	INITIALIZE_PATH(path);
599 	int pos_in_item;
600 	struct cpu_key key;
601 	struct buffer_head *bh, *unbh = NULL;
602 	struct item_head *ih, tmp_ih;
603 	__le32 *item;
604 	int done;
605 	int fs_gen;
606 	int lock_depth;
607 	struct reiserfs_transaction_handle *th = NULL;
608 	/* space reserved in transaction batch:
609 	   . 3 balancings in direct->indirect conversion
610 	   . 1 block involved into reiserfs_update_sd()
611 	   XXX in practically impossible worst case direct2indirect()
612 	   can incur (much) more than 3 balancings.
613 	   quota update for user, group */
614 	int jbegin_count =
615 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
616 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
617 	int version;
618 	int dangle = 1;
619 	loff_t new_offset =
620 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
621 
622 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
623 	version = get_inode_item_key_version(inode);
624 
625 	if (!file_capable(inode, block)) {
626 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
627 		return -EFBIG;
628 	}
629 
630 	/* if !create, we aren't changing the FS, so we don't need to
631 	 ** log anything, so we don't need to start a transaction
632 	 */
633 	if (!(create & GET_BLOCK_CREATE)) {
634 		int ret;
635 		/* find number of block-th logical block of the file */
636 		ret = _get_block_create_0(inode, block, bh_result,
637 					  create | GET_BLOCK_READ_DIRECT);
638 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
639 		return ret;
640 	}
641 	/*
642 	 * if we're already in a transaction, make sure to close
643 	 * any new transactions we start in this func
644 	 */
645 	if ((create & GET_BLOCK_NO_DANGLE) ||
646 	    reiserfs_transaction_running(inode->i_sb))
647 		dangle = 0;
648 
649 	/* If file is of such a size, that it might have a tail and tails are enabled
650 	 ** we should mark it as possibly needing tail packing on close
651 	 */
652 	if ((have_large_tails(inode->i_sb)
653 	     && inode->i_size < i_block_size(inode) * 4)
654 	    || (have_small_tails(inode->i_sb)
655 		&& inode->i_size < i_block_size(inode)))
656 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
657 
658 	/* set the key of the first byte in the 'block'-th block of file */
659 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
660 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
661 	      start_trans:
662 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
663 		if (!th) {
664 			retval = -ENOMEM;
665 			goto failure;
666 		}
667 		reiserfs_update_inode_transaction(inode);
668 	}
669       research:
670 
671 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
672 	if (retval == IO_ERROR) {
673 		retval = -EIO;
674 		goto failure;
675 	}
676 
677 	bh = get_last_bh(&path);
678 	ih = get_ih(&path);
679 	item = get_item(&path);
680 	pos_in_item = path.pos_in_item;
681 
682 	fs_gen = get_generation(inode->i_sb);
683 	copy_item_head(&tmp_ih, ih);
684 
685 	if (allocation_needed
686 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
687 		/* we have to allocate block for the unformatted node */
688 		if (!th) {
689 			pathrelse(&path);
690 			goto start_trans;
691 		}
692 
693 		repeat =
694 		    _allocate_block(th, block, inode, &allocated_block_nr,
695 				    &path, create);
696 
697 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
698 			/* restart the transaction to give the journal a chance to free
699 			 ** some blocks.  releases the path, so we have to go back to
700 			 ** research if we succeed on the second try
701 			 */
702 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
703 			retval = restart_transaction(th, inode, &path);
704 			if (retval)
705 				goto failure;
706 			repeat =
707 			    _allocate_block(th, block, inode,
708 					    &allocated_block_nr, NULL, create);
709 
710 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
711 				goto research;
712 			}
713 			if (repeat == QUOTA_EXCEEDED)
714 				retval = -EDQUOT;
715 			else
716 				retval = -ENOSPC;
717 			goto failure;
718 		}
719 
720 		if (fs_changed(fs_gen, inode->i_sb)
721 		    && item_moved(&tmp_ih, &path)) {
722 			goto research;
723 		}
724 	}
725 
726 	if (indirect_item_found(retval, ih)) {
727 		b_blocknr_t unfm_ptr;
728 		/* 'block'-th block is in the file already (there is
729 		   corresponding cell in some indirect item). But it may be
730 		   zero unformatted node pointer (hole) */
731 		unfm_ptr = get_block_num(item, pos_in_item);
732 		if (unfm_ptr == 0) {
733 			/* use allocated block to plug the hole */
734 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
735 			if (fs_changed(fs_gen, inode->i_sb)
736 			    && item_moved(&tmp_ih, &path)) {
737 				reiserfs_restore_prepared_buffer(inode->i_sb,
738 								 bh);
739 				goto research;
740 			}
741 			set_buffer_new(bh_result);
742 			if (buffer_dirty(bh_result)
743 			    && reiserfs_data_ordered(inode->i_sb))
744 				reiserfs_add_ordered_list(inode, bh_result);
745 			put_block_num(item, pos_in_item, allocated_block_nr);
746 			unfm_ptr = allocated_block_nr;
747 			journal_mark_dirty(th, inode->i_sb, bh);
748 			reiserfs_update_sd(th, inode);
749 		}
750 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
751 		pathrelse(&path);
752 		retval = 0;
753 		if (!dangle && th)
754 			retval = reiserfs_end_persistent_transaction(th);
755 
756 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
757 
758 		/* the item was found, so new blocks were not added to the file
759 		 ** there is no need to make sure the inode is updated with this
760 		 ** transaction
761 		 */
762 		return retval;
763 	}
764 
765 	if (!th) {
766 		pathrelse(&path);
767 		goto start_trans;
768 	}
769 
770 	/* desired position is not found or is in the direct item. We have
771 	   to append file with holes up to 'block'-th block converting
772 	   direct items to indirect one if necessary */
773 	done = 0;
774 	do {
775 		if (is_statdata_le_ih(ih)) {
776 			__le32 unp = 0;
777 			struct cpu_key tmp_key;
778 
779 			/* indirect item has to be inserted */
780 			make_le_item_head(&tmp_ih, &key, version, 1,
781 					  TYPE_INDIRECT, UNFM_P_SIZE,
782 					  0 /* free_space */ );
783 
784 			if (cpu_key_k_offset(&key) == 1) {
785 				/* we are going to add 'block'-th block to the file. Use
786 				   allocated block for that */
787 				unp = cpu_to_le32(allocated_block_nr);
788 				set_block_dev_mapped(bh_result,
789 						     allocated_block_nr, inode);
790 				set_buffer_new(bh_result);
791 				done = 1;
792 			}
793 			tmp_key = key;	// ;)
794 			set_cpu_key_k_offset(&tmp_key, 1);
795 			PATH_LAST_POSITION(&path)++;
796 
797 			retval =
798 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
799 						 inode, (char *)&unp);
800 			if (retval) {
801 				reiserfs_free_block(th, inode,
802 						    allocated_block_nr, 1);
803 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
804 			}
805 			//mark_tail_converted (inode);
806 		} else if (is_direct_le_ih(ih)) {
807 			/* direct item has to be converted */
808 			loff_t tail_offset;
809 
810 			tail_offset =
811 			    ((le_ih_k_offset(ih) -
812 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
813 			if (tail_offset == cpu_key_k_offset(&key)) {
814 				/* direct item we just found fits into block we have
815 				   to map. Convert it into unformatted node: use
816 				   bh_result for the conversion */
817 				set_block_dev_mapped(bh_result,
818 						     allocated_block_nr, inode);
819 				unbh = bh_result;
820 				done = 1;
821 			} else {
822 				/* we have to padd file tail stored in direct item(s)
823 				   up to block size and convert it to unformatted
824 				   node. FIXME: this should also get into page cache */
825 
826 				pathrelse(&path);
827 				/*
828 				 * ugly, but we can only end the transaction if
829 				 * we aren't nested
830 				 */
831 				BUG_ON(!th->t_refcount);
832 				if (th->t_refcount == 1) {
833 					retval =
834 					    reiserfs_end_persistent_transaction
835 					    (th);
836 					th = NULL;
837 					if (retval)
838 						goto failure;
839 				}
840 
841 				retval =
842 				    convert_tail_for_hole(inode, bh_result,
843 							  tail_offset);
844 				if (retval) {
845 					if (retval != -ENOSPC)
846 						reiserfs_error(inode->i_sb,
847 							"clm-6004",
848 							"convert tail failed "
849 							"inode %lu, error %d",
850 							inode->i_ino,
851 							retval);
852 					if (allocated_block_nr) {
853 						/* the bitmap, the super, and the stat data == 3 */
854 						if (!th)
855 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
856 						if (th)
857 							reiserfs_free_block(th,
858 									    inode,
859 									    allocated_block_nr,
860 									    1);
861 					}
862 					goto failure;
863 				}
864 				goto research;
865 			}
866 			retval =
867 			    direct2indirect(th, inode, &path, unbh,
868 					    tail_offset);
869 			if (retval) {
870 				reiserfs_unmap_buffer(unbh);
871 				reiserfs_free_block(th, inode,
872 						    allocated_block_nr, 1);
873 				goto failure;
874 			}
875 			/* it is important the set_buffer_uptodate is done after
876 			 ** the direct2indirect.  The buffer might contain valid
877 			 ** data newer than the data on disk (read by readpage, changed,
878 			 ** and then sent here by writepage).  direct2indirect needs
879 			 ** to know if unbh was already up to date, so it can decide
880 			 ** if the data in unbh needs to be replaced with data from
881 			 ** the disk
882 			 */
883 			set_buffer_uptodate(unbh);
884 
885 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
886 			   buffer will disappear shortly, so it should not be added to
887 			 */
888 			if (unbh->b_page) {
889 				/* we've converted the tail, so we must
890 				 ** flush unbh before the transaction commits
891 				 */
892 				reiserfs_add_tail_list(inode, unbh);
893 
894 				/* mark it dirty now to prevent commit_write from adding
895 				 ** this buffer to the inode's dirty buffer list
896 				 */
897 				/*
898 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
899 				 * It's still atomic, but it sets the page dirty too,
900 				 * which makes it eligible for writeback at any time by the
901 				 * VM (which was also the case with __mark_buffer_dirty())
902 				 */
903 				mark_buffer_dirty(unbh);
904 			}
905 		} else {
906 			/* append indirect item with holes if needed, when appending
907 			   pointer to 'block'-th block use block, which is already
908 			   allocated */
909 			struct cpu_key tmp_key;
910 			unp_t unf_single = 0;	// We use this in case we need to allocate only
911 			// one block which is a fastpath
912 			unp_t *un;
913 			__u64 max_to_insert =
914 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
915 			    UNFM_P_SIZE;
916 			__u64 blocks_needed;
917 
918 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
919 			       "vs-804: invalid position for append");
920 			/* indirect item has to be appended, set up key of that position */
921 			make_cpu_key(&tmp_key, inode,
922 				     le_key_k_offset(version,
923 						     &(ih->ih_key)) +
924 				     op_bytes_number(ih,
925 						     inode->i_sb->s_blocksize),
926 				     //pos_in_item * inode->i_sb->s_blocksize,
927 				     TYPE_INDIRECT, 3);	// key type is unimportant
928 
929 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
930 			       "green-805: invalid offset");
931 			blocks_needed =
932 			    1 +
933 			    ((cpu_key_k_offset(&key) -
934 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
935 			     s_blocksize_bits);
936 
937 			if (blocks_needed == 1) {
938 				un = &unf_single;
939 			} else {
940 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
941 				if (!un) {
942 					un = &unf_single;
943 					blocks_needed = 1;
944 					max_to_insert = 0;
945 				}
946 			}
947 			if (blocks_needed <= max_to_insert) {
948 				/* we are going to add target block to the file. Use allocated
949 				   block for that */
950 				un[blocks_needed - 1] =
951 				    cpu_to_le32(allocated_block_nr);
952 				set_block_dev_mapped(bh_result,
953 						     allocated_block_nr, inode);
954 				set_buffer_new(bh_result);
955 				done = 1;
956 			} else {
957 				/* paste hole to the indirect item */
958 				/* If kmalloc failed, max_to_insert becomes zero and it means we
959 				   only have space for one block */
960 				blocks_needed =
961 				    max_to_insert ? max_to_insert : 1;
962 			}
963 			retval =
964 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
965 						     (char *)un,
966 						     UNFM_P_SIZE *
967 						     blocks_needed);
968 
969 			if (blocks_needed != 1)
970 				kfree(un);
971 
972 			if (retval) {
973 				reiserfs_free_block(th, inode,
974 						    allocated_block_nr, 1);
975 				goto failure;
976 			}
977 			if (!done) {
978 				/* We need to mark new file size in case this function will be
979 				   interrupted/aborted later on. And we may do this only for
980 				   holes. */
981 				inode->i_size +=
982 				    inode->i_sb->s_blocksize * blocks_needed;
983 			}
984 		}
985 
986 		if (done == 1)
987 			break;
988 
989 		/* this loop could log more blocks than we had originally asked
990 		 ** for.  So, we have to allow the transaction to end if it is
991 		 ** too big or too full.  Update the inode so things are
992 		 ** consistent if we crash before the function returns
993 		 **
994 		 ** release the path so that anybody waiting on the path before
995 		 ** ending their transaction will be able to continue.
996 		 */
997 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
998 			retval = restart_transaction(th, inode, &path);
999 			if (retval)
1000 				goto failure;
1001 		}
1002 		/*
1003 		 * inserting indirect pointers for a hole can take a
1004 		 * long time.  reschedule if needed and also release the write
1005 		 * lock for others.
1006 		 */
1007 		if (need_resched()) {
1008 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1009 			schedule();
1010 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1011 		}
1012 
1013 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1014 		if (retval == IO_ERROR) {
1015 			retval = -EIO;
1016 			goto failure;
1017 		}
1018 		if (retval == POSITION_FOUND) {
1019 			reiserfs_warning(inode->i_sb, "vs-825",
1020 					 "%K should not be found", &key);
1021 			retval = -EEXIST;
1022 			if (allocated_block_nr)
1023 				reiserfs_free_block(th, inode,
1024 						    allocated_block_nr, 1);
1025 			pathrelse(&path);
1026 			goto failure;
1027 		}
1028 		bh = get_last_bh(&path);
1029 		ih = get_ih(&path);
1030 		item = get_item(&path);
1031 		pos_in_item = path.pos_in_item;
1032 	} while (1);
1033 
1034 	retval = 0;
1035 
1036       failure:
1037 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1038 		int err;
1039 		if (th->t_trans_id)
1040 			reiserfs_update_sd(th, inode);
1041 		err = reiserfs_end_persistent_transaction(th);
1042 		if (err)
1043 			retval = err;
1044 	}
1045 
1046 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1047 	reiserfs_check_path(&path);
1048 	return retval;
1049 }
1050 
1051 static int
1052 reiserfs_readpages(struct file *file, struct address_space *mapping,
1053 		   struct list_head *pages, unsigned nr_pages)
1054 {
1055 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1056 }
1057 
1058 /* Compute real number of used bytes by file
1059  * Following three functions can go away when we'll have enough space in stat item
1060  */
1061 static int real_space_diff(struct inode *inode, int sd_size)
1062 {
1063 	int bytes;
1064 	loff_t blocksize = inode->i_sb->s_blocksize;
1065 
1066 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1067 		return sd_size;
1068 
1069 	/* End of file is also in full block with indirect reference, so round
1070 	 ** up to the next block.
1071 	 **
1072 	 ** there is just no way to know if the tail is actually packed
1073 	 ** on the file, so we have to assume it isn't.  When we pack the
1074 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1075 	 ** node pointer
1076 	 */
1077 	bytes =
1078 	    ((inode->i_size +
1079 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1080 	    sd_size;
1081 	return bytes;
1082 }
1083 
1084 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1085 					int sd_size)
1086 {
1087 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1088 		return inode->i_size +
1089 		    (loff_t) (real_space_diff(inode, sd_size));
1090 	}
1091 	return ((loff_t) real_space_diff(inode, sd_size)) +
1092 	    (((loff_t) blocks) << 9);
1093 }
1094 
1095 /* Compute number of blocks used by file in ReiserFS counting */
1096 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1097 {
1098 	loff_t bytes = inode_get_bytes(inode);
1099 	loff_t real_space = real_space_diff(inode, sd_size);
1100 
1101 	/* keeps fsck and non-quota versions of reiserfs happy */
1102 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1103 		bytes += (loff_t) 511;
1104 	}
1105 
1106 	/* files from before the quota patch might i_blocks such that
1107 	 ** bytes < real_space.  Deal with that here to prevent it from
1108 	 ** going negative.
1109 	 */
1110 	if (bytes < real_space)
1111 		return 0;
1112 	return (bytes - real_space) >> 9;
1113 }
1114 
1115 //
1116 // BAD: new directories have stat data of new type and all other items
1117 // of old type. Version stored in the inode says about body items, so
1118 // in update_stat_data we can not rely on inode, but have to check
1119 // item version directly
1120 //
1121 
1122 // called by read_locked_inode
1123 static void init_inode(struct inode *inode, struct treepath *path)
1124 {
1125 	struct buffer_head *bh;
1126 	struct item_head *ih;
1127 	__u32 rdev;
1128 	//int version = ITEM_VERSION_1;
1129 
1130 	bh = PATH_PLAST_BUFFER(path);
1131 	ih = PATH_PITEM_HEAD(path);
1132 
1133 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1134 
1135 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1136 	REISERFS_I(inode)->i_flags = 0;
1137 	REISERFS_I(inode)->i_prealloc_block = 0;
1138 	REISERFS_I(inode)->i_prealloc_count = 0;
1139 	REISERFS_I(inode)->i_trans_id = 0;
1140 	REISERFS_I(inode)->i_jl = NULL;
1141 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1142 	reiserfs_init_xattr_rwsem(inode);
1143 
1144 	if (stat_data_v1(ih)) {
1145 		struct stat_data_v1 *sd =
1146 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1147 		unsigned long blocks;
1148 
1149 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1150 		set_inode_sd_version(inode, STAT_DATA_V1);
1151 		inode->i_mode = sd_v1_mode(sd);
1152 		inode->i_nlink = sd_v1_nlink(sd);
1153 		inode->i_uid = sd_v1_uid(sd);
1154 		inode->i_gid = sd_v1_gid(sd);
1155 		inode->i_size = sd_v1_size(sd);
1156 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1157 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1158 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1159 		inode->i_atime.tv_nsec = 0;
1160 		inode->i_ctime.tv_nsec = 0;
1161 		inode->i_mtime.tv_nsec = 0;
1162 
1163 		inode->i_blocks = sd_v1_blocks(sd);
1164 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1165 		blocks = (inode->i_size + 511) >> 9;
1166 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1167 		if (inode->i_blocks > blocks) {
1168 			// there was a bug in <=3.5.23 when i_blocks could take negative
1169 			// values. Starting from 3.5.17 this value could even be stored in
1170 			// stat data. For such files we set i_blocks based on file
1171 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1172 			// only updated if file's inode will ever change
1173 			inode->i_blocks = blocks;
1174 		}
1175 
1176 		rdev = sd_v1_rdev(sd);
1177 		REISERFS_I(inode)->i_first_direct_byte =
1178 		    sd_v1_first_direct_byte(sd);
1179 		/* an early bug in the quota code can give us an odd number for the
1180 		 ** block count.  This is incorrect, fix it here.
1181 		 */
1182 		if (inode->i_blocks & 1) {
1183 			inode->i_blocks++;
1184 		}
1185 		inode_set_bytes(inode,
1186 				to_real_used_space(inode, inode->i_blocks,
1187 						   SD_V1_SIZE));
1188 		/* nopack is initially zero for v1 objects. For v2 objects,
1189 		   nopack is initialised from sd_attrs */
1190 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1191 	} else {
1192 		// new stat data found, but object may have old items
1193 		// (directories and symlinks)
1194 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1195 
1196 		inode->i_mode = sd_v2_mode(sd);
1197 		inode->i_nlink = sd_v2_nlink(sd);
1198 		inode->i_uid = sd_v2_uid(sd);
1199 		inode->i_size = sd_v2_size(sd);
1200 		inode->i_gid = sd_v2_gid(sd);
1201 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1202 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1203 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1204 		inode->i_ctime.tv_nsec = 0;
1205 		inode->i_mtime.tv_nsec = 0;
1206 		inode->i_atime.tv_nsec = 0;
1207 		inode->i_blocks = sd_v2_blocks(sd);
1208 		rdev = sd_v2_rdev(sd);
1209 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1210 			inode->i_generation =
1211 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1212 		else
1213 			inode->i_generation = sd_v2_generation(sd);
1214 
1215 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1216 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1217 		else
1218 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1219 		REISERFS_I(inode)->i_first_direct_byte = 0;
1220 		set_inode_sd_version(inode, STAT_DATA_V2);
1221 		inode_set_bytes(inode,
1222 				to_real_used_space(inode, inode->i_blocks,
1223 						   SD_V2_SIZE));
1224 		/* read persistent inode attributes from sd and initalise
1225 		   generic inode flags from them */
1226 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1227 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1228 	}
1229 
1230 	pathrelse(path);
1231 	if (S_ISREG(inode->i_mode)) {
1232 		inode->i_op = &reiserfs_file_inode_operations;
1233 		inode->i_fop = &reiserfs_file_operations;
1234 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1235 	} else if (S_ISDIR(inode->i_mode)) {
1236 		inode->i_op = &reiserfs_dir_inode_operations;
1237 		inode->i_fop = &reiserfs_dir_operations;
1238 	} else if (S_ISLNK(inode->i_mode)) {
1239 		inode->i_op = &reiserfs_symlink_inode_operations;
1240 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 	} else {
1242 		inode->i_blocks = 0;
1243 		inode->i_op = &reiserfs_special_inode_operations;
1244 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1245 	}
1246 }
1247 
1248 // update new stat data with inode fields
1249 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1250 {
1251 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1252 	__u16 flags;
1253 
1254 	set_sd_v2_mode(sd_v2, inode->i_mode);
1255 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1256 	set_sd_v2_uid(sd_v2, inode->i_uid);
1257 	set_sd_v2_size(sd_v2, size);
1258 	set_sd_v2_gid(sd_v2, inode->i_gid);
1259 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1260 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1261 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1262 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1263 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1264 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1265 	else
1266 		set_sd_v2_generation(sd_v2, inode->i_generation);
1267 	flags = REISERFS_I(inode)->i_attrs;
1268 	i_attrs_to_sd_attrs(inode, &flags);
1269 	set_sd_v2_attrs(sd_v2, flags);
1270 }
1271 
1272 // used to copy inode's fields to old stat data
1273 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1274 {
1275 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1276 
1277 	set_sd_v1_mode(sd_v1, inode->i_mode);
1278 	set_sd_v1_uid(sd_v1, inode->i_uid);
1279 	set_sd_v1_gid(sd_v1, inode->i_gid);
1280 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1281 	set_sd_v1_size(sd_v1, size);
1282 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1283 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1284 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1285 
1286 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1287 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1288 	else
1289 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1290 
1291 	// Sigh. i_first_direct_byte is back
1292 	set_sd_v1_first_direct_byte(sd_v1,
1293 				    REISERFS_I(inode)->i_first_direct_byte);
1294 }
1295 
1296 /* NOTE, you must prepare the buffer head before sending it here,
1297 ** and then log it after the call
1298 */
1299 static void update_stat_data(struct treepath *path, struct inode *inode,
1300 			     loff_t size)
1301 {
1302 	struct buffer_head *bh;
1303 	struct item_head *ih;
1304 
1305 	bh = PATH_PLAST_BUFFER(path);
1306 	ih = PATH_PITEM_HEAD(path);
1307 
1308 	if (!is_statdata_le_ih(ih))
1309 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1310 			       INODE_PKEY(inode), ih);
1311 
1312 	if (stat_data_v1(ih)) {
1313 		// path points to old stat data
1314 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1315 	} else {
1316 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1317 	}
1318 
1319 	return;
1320 }
1321 
1322 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1323 			     struct inode *inode, loff_t size)
1324 {
1325 	struct cpu_key key;
1326 	INITIALIZE_PATH(path);
1327 	struct buffer_head *bh;
1328 	int fs_gen;
1329 	struct item_head *ih, tmp_ih;
1330 	int retval;
1331 
1332 	BUG_ON(!th->t_trans_id);
1333 
1334 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1335 
1336 	for (;;) {
1337 		int pos;
1338 		/* look for the object's stat data */
1339 		retval = search_item(inode->i_sb, &key, &path);
1340 		if (retval == IO_ERROR) {
1341 			reiserfs_error(inode->i_sb, "vs-13050",
1342 				       "i/o failure occurred trying to "
1343 				       "update %K stat data", &key);
1344 			return;
1345 		}
1346 		if (retval == ITEM_NOT_FOUND) {
1347 			pos = PATH_LAST_POSITION(&path);
1348 			pathrelse(&path);
1349 			if (inode->i_nlink == 0) {
1350 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1351 				return;
1352 			}
1353 			reiserfs_warning(inode->i_sb, "vs-13060",
1354 					 "stat data of object %k (nlink == %d) "
1355 					 "not found (pos %d)",
1356 					 INODE_PKEY(inode), inode->i_nlink,
1357 					 pos);
1358 			reiserfs_check_path(&path);
1359 			return;
1360 		}
1361 
1362 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1363 		 ** FS might change.  We have to detect that, and loop back to the
1364 		 ** search if the stat data item has moved
1365 		 */
1366 		bh = get_last_bh(&path);
1367 		ih = get_ih(&path);
1368 		copy_item_head(&tmp_ih, ih);
1369 		fs_gen = get_generation(inode->i_sb);
1370 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1371 		if (fs_changed(fs_gen, inode->i_sb)
1372 		    && item_moved(&tmp_ih, &path)) {
1373 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1374 			continue;	/* Stat_data item has been moved after scheduling. */
1375 		}
1376 		break;
1377 	}
1378 	update_stat_data(&path, inode, size);
1379 	journal_mark_dirty(th, th->t_super, bh);
1380 	pathrelse(&path);
1381 	return;
1382 }
1383 
1384 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1385 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1386 ** and clear the key in the private portion of the inode, otherwise a
1387 ** corresponding iput might try to delete whatever object the inode last
1388 ** represented.
1389 */
1390 static void reiserfs_make_bad_inode(struct inode *inode)
1391 {
1392 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1393 	make_bad_inode(inode);
1394 }
1395 
1396 //
1397 // initially this function was derived from minix or ext2's analog and
1398 // evolved as the prototype did
1399 //
1400 
1401 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1402 {
1403 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1404 	inode->i_ino = args->objectid;
1405 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1406 	return 0;
1407 }
1408 
1409 /* looks for stat data in the tree, and fills up the fields of in-core
1410    inode stat data fields */
1411 void reiserfs_read_locked_inode(struct inode *inode,
1412 				struct reiserfs_iget_args *args)
1413 {
1414 	INITIALIZE_PATH(path_to_sd);
1415 	struct cpu_key key;
1416 	unsigned long dirino;
1417 	int retval;
1418 
1419 	dirino = args->dirid;
1420 
1421 	/* set version 1, version 2 could be used too, because stat data
1422 	   key is the same in both versions */
1423 	key.version = KEY_FORMAT_3_5;
1424 	key.on_disk_key.k_dir_id = dirino;
1425 	key.on_disk_key.k_objectid = inode->i_ino;
1426 	key.on_disk_key.k_offset = 0;
1427 	key.on_disk_key.k_type = 0;
1428 
1429 	/* look for the object's stat data */
1430 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1431 	if (retval == IO_ERROR) {
1432 		reiserfs_error(inode->i_sb, "vs-13070",
1433 			       "i/o failure occurred trying to find "
1434 			       "stat data of %K", &key);
1435 		reiserfs_make_bad_inode(inode);
1436 		return;
1437 	}
1438 	if (retval != ITEM_FOUND) {
1439 		/* a stale NFS handle can trigger this without it being an error */
1440 		pathrelse(&path_to_sd);
1441 		reiserfs_make_bad_inode(inode);
1442 		inode->i_nlink = 0;
1443 		return;
1444 	}
1445 
1446 	init_inode(inode, &path_to_sd);
1447 
1448 	/* It is possible that knfsd is trying to access inode of a file
1449 	   that is being removed from the disk by some other thread. As we
1450 	   update sd on unlink all that is required is to check for nlink
1451 	   here. This bug was first found by Sizif when debugging
1452 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1453 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1454 
1455 	   More logical fix would require changes in fs/inode.c:iput() to
1456 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1457 	   in iget() to return NULL if I_FREEING inode is found in
1458 	   hash-table. */
1459 	/* Currently there is one place where it's ok to meet inode with
1460 	   nlink==0: processing of open-unlinked and half-truncated files
1461 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1462 	if ((inode->i_nlink == 0) &&
1463 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1464 		reiserfs_warning(inode->i_sb, "vs-13075",
1465 				 "dead inode read from disk %K. "
1466 				 "This is likely to be race with knfsd. Ignore",
1467 				 &key);
1468 		reiserfs_make_bad_inode(inode);
1469 	}
1470 
1471 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1472 
1473 }
1474 
1475 /**
1476  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1477  *
1478  * @inode:    inode from hash table to check
1479  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1480  *
1481  * This function is called by iget5_locked() to distinguish reiserfs inodes
1482  * having the same inode numbers. Such inodes can only exist due to some
1483  * error condition. One of them should be bad. Inodes with identical
1484  * inode numbers (objectids) are distinguished by parent directory ids.
1485  *
1486  */
1487 int reiserfs_find_actor(struct inode *inode, void *opaque)
1488 {
1489 	struct reiserfs_iget_args *args;
1490 
1491 	args = opaque;
1492 	/* args is already in CPU order */
1493 	return (inode->i_ino == args->objectid) &&
1494 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1495 }
1496 
1497 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1498 {
1499 	struct inode *inode;
1500 	struct reiserfs_iget_args args;
1501 
1502 	args.objectid = key->on_disk_key.k_objectid;
1503 	args.dirid = key->on_disk_key.k_dir_id;
1504 	reiserfs_write_unlock(s);
1505 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1506 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1507 			     (void *)(&args));
1508 	reiserfs_write_lock(s);
1509 	if (!inode)
1510 		return ERR_PTR(-ENOMEM);
1511 
1512 	if (inode->i_state & I_NEW) {
1513 		reiserfs_read_locked_inode(inode, &args);
1514 		unlock_new_inode(inode);
1515 	}
1516 
1517 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1518 		/* either due to i/o error or a stale NFS handle */
1519 		iput(inode);
1520 		inode = NULL;
1521 	}
1522 	return inode;
1523 }
1524 
1525 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1526 	u32 objectid, u32 dir_id, u32 generation)
1527 
1528 {
1529 	struct cpu_key key;
1530 	struct inode *inode;
1531 
1532 	key.on_disk_key.k_objectid = objectid;
1533 	key.on_disk_key.k_dir_id = dir_id;
1534 	reiserfs_write_lock(sb);
1535 	inode = reiserfs_iget(sb, &key);
1536 	if (inode && !IS_ERR(inode) && generation != 0 &&
1537 	    generation != inode->i_generation) {
1538 		iput(inode);
1539 		inode = NULL;
1540 	}
1541 	reiserfs_write_unlock(sb);
1542 
1543 	return d_obtain_alias(inode);
1544 }
1545 
1546 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1547 		int fh_len, int fh_type)
1548 {
1549 	/* fhtype happens to reflect the number of u32s encoded.
1550 	 * due to a bug in earlier code, fhtype might indicate there
1551 	 * are more u32s then actually fitted.
1552 	 * so if fhtype seems to be more than len, reduce fhtype.
1553 	 * Valid types are:
1554 	 *   2 - objectid + dir_id - legacy support
1555 	 *   3 - objectid + dir_id + generation
1556 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1557 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1558 	 *   6 - as above plus generation of directory
1559 	 * 6 does not fit in NFSv2 handles
1560 	 */
1561 	if (fh_type > fh_len) {
1562 		if (fh_type != 6 || fh_len != 5)
1563 			reiserfs_warning(sb, "reiserfs-13077",
1564 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1565 				fh_type, fh_len);
1566 		fh_type = 5;
1567 	}
1568 
1569 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1570 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1571 }
1572 
1573 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1574 		int fh_len, int fh_type)
1575 {
1576 	if (fh_type < 4)
1577 		return NULL;
1578 
1579 	return reiserfs_get_dentry(sb,
1580 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1581 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1582 		(fh_type == 6) ? fid->raw[5] : 0);
1583 }
1584 
1585 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1586 		       int need_parent)
1587 {
1588 	struct inode *inode = dentry->d_inode;
1589 	int maxlen = *lenp;
1590 
1591 	if (maxlen < 3)
1592 		return 255;
1593 
1594 	data[0] = inode->i_ino;
1595 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1596 	data[2] = inode->i_generation;
1597 	*lenp = 3;
1598 	/* no room for directory info? return what we've stored so far */
1599 	if (maxlen < 5 || !need_parent)
1600 		return 3;
1601 
1602 	spin_lock(&dentry->d_lock);
1603 	inode = dentry->d_parent->d_inode;
1604 	data[3] = inode->i_ino;
1605 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1606 	*lenp = 5;
1607 	if (maxlen >= 6) {
1608 		data[5] = inode->i_generation;
1609 		*lenp = 6;
1610 	}
1611 	spin_unlock(&dentry->d_lock);
1612 	return *lenp;
1613 }
1614 
1615 /* looks for stat data, then copies fields to it, marks the buffer
1616    containing stat data as dirty */
1617 /* reiserfs inodes are never really dirty, since the dirty inode call
1618 ** always logs them.  This call allows the VFS inode marking routines
1619 ** to properly mark inodes for datasync and such, but only actually
1620 ** does something when called for a synchronous update.
1621 */
1622 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1623 {
1624 	struct reiserfs_transaction_handle th;
1625 	int jbegin_count = 1;
1626 
1627 	if (inode->i_sb->s_flags & MS_RDONLY)
1628 		return -EROFS;
1629 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1630 	 ** these cases are just when the system needs ram, not when the
1631 	 ** inode needs to reach disk for safety, and they can safely be
1632 	 ** ignored because the altered inode has already been logged.
1633 	 */
1634 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1635 		reiserfs_write_lock(inode->i_sb);
1636 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1637 			reiserfs_update_sd(&th, inode);
1638 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1639 		}
1640 		reiserfs_write_unlock(inode->i_sb);
1641 	}
1642 	return 0;
1643 }
1644 
1645 /* stat data of new object is inserted already, this inserts the item
1646    containing "." and ".." entries */
1647 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1648 				  struct inode *inode,
1649 				  struct item_head *ih, struct treepath *path,
1650 				  struct inode *dir)
1651 {
1652 	struct super_block *sb = th->t_super;
1653 	char empty_dir[EMPTY_DIR_SIZE];
1654 	char *body = empty_dir;
1655 	struct cpu_key key;
1656 	int retval;
1657 
1658 	BUG_ON(!th->t_trans_id);
1659 
1660 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1661 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1662 		      TYPE_DIRENTRY, 3 /*key length */ );
1663 
1664 	/* compose item head for new item. Directories consist of items of
1665 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1666 	   is done by reiserfs_new_inode */
1667 	if (old_format_only(sb)) {
1668 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1669 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1670 
1671 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1672 				       ih->ih_key.k_objectid,
1673 				       INODE_PKEY(dir)->k_dir_id,
1674 				       INODE_PKEY(dir)->k_objectid);
1675 	} else {
1676 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1677 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1678 
1679 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1680 				    ih->ih_key.k_objectid,
1681 				    INODE_PKEY(dir)->k_dir_id,
1682 				    INODE_PKEY(dir)->k_objectid);
1683 	}
1684 
1685 	/* look for place in the tree for new item */
1686 	retval = search_item(sb, &key, path);
1687 	if (retval == IO_ERROR) {
1688 		reiserfs_error(sb, "vs-13080",
1689 			       "i/o failure occurred creating new directory");
1690 		return -EIO;
1691 	}
1692 	if (retval == ITEM_FOUND) {
1693 		pathrelse(path);
1694 		reiserfs_warning(sb, "vs-13070",
1695 				 "object with this key exists (%k)",
1696 				 &(ih->ih_key));
1697 		return -EEXIST;
1698 	}
1699 
1700 	/* insert item, that is empty directory item */
1701 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1702 }
1703 
1704 /* stat data of object has been inserted, this inserts the item
1705    containing the body of symlink */
1706 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1707 				struct item_head *ih,
1708 				struct treepath *path, const char *symname,
1709 				int item_len)
1710 {
1711 	struct super_block *sb = th->t_super;
1712 	struct cpu_key key;
1713 	int retval;
1714 
1715 	BUG_ON(!th->t_trans_id);
1716 
1717 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1718 		      le32_to_cpu(ih->ih_key.k_dir_id),
1719 		      le32_to_cpu(ih->ih_key.k_objectid),
1720 		      1, TYPE_DIRECT, 3 /*key length */ );
1721 
1722 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1723 			  0 /*free_space */ );
1724 
1725 	/* look for place in the tree for new item */
1726 	retval = search_item(sb, &key, path);
1727 	if (retval == IO_ERROR) {
1728 		reiserfs_error(sb, "vs-13080",
1729 			       "i/o failure occurred creating new symlink");
1730 		return -EIO;
1731 	}
1732 	if (retval == ITEM_FOUND) {
1733 		pathrelse(path);
1734 		reiserfs_warning(sb, "vs-13080",
1735 				 "object with this key exists (%k)",
1736 				 &(ih->ih_key));
1737 		return -EEXIST;
1738 	}
1739 
1740 	/* insert item, that is body of symlink */
1741 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1742 }
1743 
1744 /* inserts the stat data into the tree, and then calls
1745    reiserfs_new_directory (to insert ".", ".." item if new object is
1746    directory) or reiserfs_new_symlink (to insert symlink body if new
1747    object is symlink) or nothing (if new object is regular file)
1748 
1749    NOTE! uid and gid must already be set in the inode.  If we return
1750    non-zero due to an error, we have to drop the quota previously allocated
1751    for the fresh inode.  This can only be done outside a transaction, so
1752    if we return non-zero, we also end the transaction.  */
1753 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1754 		       struct inode *dir, int mode, const char *symname,
1755 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1756 		          strlen (symname) for symlinks) */
1757 		       loff_t i_size, struct dentry *dentry,
1758 		       struct inode *inode,
1759 		       struct reiserfs_security_handle *security)
1760 {
1761 	struct super_block *sb;
1762 	struct reiserfs_iget_args args;
1763 	INITIALIZE_PATH(path_to_key);
1764 	struct cpu_key key;
1765 	struct item_head ih;
1766 	struct stat_data sd;
1767 	int retval;
1768 	int err;
1769 
1770 	BUG_ON(!th->t_trans_id);
1771 
1772 	dquot_initialize(inode);
1773 	err = dquot_alloc_inode(inode);
1774 	if (err)
1775 		goto out_end_trans;
1776 	if (!dir->i_nlink) {
1777 		err = -EPERM;
1778 		goto out_bad_inode;
1779 	}
1780 
1781 	sb = dir->i_sb;
1782 
1783 	/* item head of new item */
1784 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1785 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1786 	if (!ih.ih_key.k_objectid) {
1787 		err = -ENOMEM;
1788 		goto out_bad_inode;
1789 	}
1790 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1791 	if (old_format_only(sb))
1792 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1793 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1794 	else
1795 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1796 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1797 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1798 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1799 	if (insert_inode_locked4(inode, args.objectid,
1800 			     reiserfs_find_actor, &args) < 0) {
1801 		err = -EINVAL;
1802 		goto out_bad_inode;
1803 	}
1804 	if (old_format_only(sb))
1805 		/* not a perfect generation count, as object ids can be reused, but
1806 		 ** this is as good as reiserfs can do right now.
1807 		 ** note that the private part of inode isn't filled in yet, we have
1808 		 ** to use the directory.
1809 		 */
1810 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1811 	else
1812 #if defined( USE_INODE_GENERATION_COUNTER )
1813 		inode->i_generation =
1814 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1815 #else
1816 		inode->i_generation = ++event;
1817 #endif
1818 
1819 	/* fill stat data */
1820 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1821 
1822 	/* uid and gid must already be set by the caller for quota init */
1823 
1824 	/* symlink cannot be immutable or append only, right? */
1825 	if (S_ISLNK(inode->i_mode))
1826 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1827 
1828 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1829 	inode->i_size = i_size;
1830 	inode->i_blocks = 0;
1831 	inode->i_bytes = 0;
1832 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1833 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1834 
1835 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1836 	REISERFS_I(inode)->i_flags = 0;
1837 	REISERFS_I(inode)->i_prealloc_block = 0;
1838 	REISERFS_I(inode)->i_prealloc_count = 0;
1839 	REISERFS_I(inode)->i_trans_id = 0;
1840 	REISERFS_I(inode)->i_jl = NULL;
1841 	REISERFS_I(inode)->i_attrs =
1842 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1843 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1844 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1845 	reiserfs_init_xattr_rwsem(inode);
1846 
1847 	/* key to search for correct place for new stat data */
1848 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1849 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1850 		      TYPE_STAT_DATA, 3 /*key length */ );
1851 
1852 	/* find proper place for inserting of stat data */
1853 	retval = search_item(sb, &key, &path_to_key);
1854 	if (retval == IO_ERROR) {
1855 		err = -EIO;
1856 		goto out_bad_inode;
1857 	}
1858 	if (retval == ITEM_FOUND) {
1859 		pathrelse(&path_to_key);
1860 		err = -EEXIST;
1861 		goto out_bad_inode;
1862 	}
1863 	if (old_format_only(sb)) {
1864 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1865 			pathrelse(&path_to_key);
1866 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1867 			err = -EINVAL;
1868 			goto out_bad_inode;
1869 		}
1870 		inode2sd_v1(&sd, inode, inode->i_size);
1871 	} else {
1872 		inode2sd(&sd, inode, inode->i_size);
1873 	}
1874 	// store in in-core inode the key of stat data and version all
1875 	// object items will have (directory items will have old offset
1876 	// format, other new objects will consist of new items)
1877 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1878 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1879 	else
1880 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1881 	if (old_format_only(sb))
1882 		set_inode_sd_version(inode, STAT_DATA_V1);
1883 	else
1884 		set_inode_sd_version(inode, STAT_DATA_V2);
1885 
1886 	/* insert the stat data into the tree */
1887 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1888 	if (REISERFS_I(dir)->new_packing_locality)
1889 		th->displace_new_blocks = 1;
1890 #endif
1891 	retval =
1892 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1893 				 (char *)(&sd));
1894 	if (retval) {
1895 		err = retval;
1896 		reiserfs_check_path(&path_to_key);
1897 		goto out_bad_inode;
1898 	}
1899 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1900 	if (!th->displace_new_blocks)
1901 		REISERFS_I(dir)->new_packing_locality = 0;
1902 #endif
1903 	if (S_ISDIR(mode)) {
1904 		/* insert item with "." and ".." */
1905 		retval =
1906 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1907 	}
1908 
1909 	if (S_ISLNK(mode)) {
1910 		/* insert body of symlink */
1911 		if (!old_format_only(sb))
1912 			i_size = ROUND_UP(i_size);
1913 		retval =
1914 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1915 					 i_size);
1916 	}
1917 	if (retval) {
1918 		err = retval;
1919 		reiserfs_check_path(&path_to_key);
1920 		journal_end(th, th->t_super, th->t_blocks_allocated);
1921 		goto out_inserted_sd;
1922 	}
1923 
1924 	if (reiserfs_posixacl(inode->i_sb)) {
1925 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1926 		if (retval) {
1927 			err = retval;
1928 			reiserfs_check_path(&path_to_key);
1929 			journal_end(th, th->t_super, th->t_blocks_allocated);
1930 			goto out_inserted_sd;
1931 		}
1932 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1933 		reiserfs_warning(inode->i_sb, "jdm-13090",
1934 				 "ACLs aren't enabled in the fs, "
1935 				 "but vfs thinks they are!");
1936 	} else if (IS_PRIVATE(dir))
1937 		inode->i_flags |= S_PRIVATE;
1938 
1939 	if (security->name) {
1940 		retval = reiserfs_security_write(th, inode, security);
1941 		if (retval) {
1942 			err = retval;
1943 			reiserfs_check_path(&path_to_key);
1944 			retval = journal_end(th, th->t_super,
1945 					     th->t_blocks_allocated);
1946 			if (retval)
1947 				err = retval;
1948 			goto out_inserted_sd;
1949 		}
1950 	}
1951 
1952 	reiserfs_update_sd(th, inode);
1953 	reiserfs_check_path(&path_to_key);
1954 
1955 	return 0;
1956 
1957 /* it looks like you can easily compress these two goto targets into
1958  * one.  Keeping it like this doesn't actually hurt anything, and they
1959  * are place holders for what the quota code actually needs.
1960  */
1961       out_bad_inode:
1962 	/* Invalidate the object, nothing was inserted yet */
1963 	INODE_PKEY(inode)->k_objectid = 0;
1964 
1965 	/* Quota change must be inside a transaction for journaling */
1966 	dquot_free_inode(inode);
1967 
1968       out_end_trans:
1969 	journal_end(th, th->t_super, th->t_blocks_allocated);
1970 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1971 	dquot_drop(inode);
1972 	inode->i_flags |= S_NOQUOTA;
1973 	make_bad_inode(inode);
1974 
1975       out_inserted_sd:
1976 	inode->i_nlink = 0;
1977 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1978 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1979 	iput(inode);
1980 	return err;
1981 }
1982 
1983 /*
1984 ** finds the tail page in the page cache,
1985 ** reads the last block in.
1986 **
1987 ** On success, page_result is set to a locked, pinned page, and bh_result
1988 ** is set to an up to date buffer for the last block in the file.  returns 0.
1989 **
1990 ** tail conversion is not done, so bh_result might not be valid for writing
1991 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1992 ** trying to write the block.
1993 **
1994 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1995 */
1996 static int grab_tail_page(struct inode *inode,
1997 			  struct page **page_result,
1998 			  struct buffer_head **bh_result)
1999 {
2000 
2001 	/* we want the page with the last byte in the file,
2002 	 ** not the page that will hold the next byte for appending
2003 	 */
2004 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2005 	unsigned long pos = 0;
2006 	unsigned long start = 0;
2007 	unsigned long blocksize = inode->i_sb->s_blocksize;
2008 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2009 	struct buffer_head *bh;
2010 	struct buffer_head *head;
2011 	struct page *page;
2012 	int error;
2013 
2014 	/* we know that we are only called with inode->i_size > 0.
2015 	 ** we also know that a file tail can never be as big as a block
2016 	 ** If i_size % blocksize == 0, our file is currently block aligned
2017 	 ** and it won't need converting or zeroing after a truncate.
2018 	 */
2019 	if ((offset & (blocksize - 1)) == 0) {
2020 		return -ENOENT;
2021 	}
2022 	page = grab_cache_page(inode->i_mapping, index);
2023 	error = -ENOMEM;
2024 	if (!page) {
2025 		goto out;
2026 	}
2027 	/* start within the page of the last block in the file */
2028 	start = (offset / blocksize) * blocksize;
2029 
2030 	error = block_prepare_write(page, start, offset,
2031 				    reiserfs_get_block_create_0);
2032 	if (error)
2033 		goto unlock;
2034 
2035 	head = page_buffers(page);
2036 	bh = head;
2037 	do {
2038 		if (pos >= start) {
2039 			break;
2040 		}
2041 		bh = bh->b_this_page;
2042 		pos += blocksize;
2043 	} while (bh != head);
2044 
2045 	if (!buffer_uptodate(bh)) {
2046 		/* note, this should never happen, prepare_write should
2047 		 ** be taking care of this for us.  If the buffer isn't up to date,
2048 		 ** I've screwed up the code to find the buffer, or the code to
2049 		 ** call prepare_write
2050 		 */
2051 		reiserfs_error(inode->i_sb, "clm-6000",
2052 			       "error reading block %lu", bh->b_blocknr);
2053 		error = -EIO;
2054 		goto unlock;
2055 	}
2056 	*bh_result = bh;
2057 	*page_result = page;
2058 
2059       out:
2060 	return error;
2061 
2062       unlock:
2063 	unlock_page(page);
2064 	page_cache_release(page);
2065 	return error;
2066 }
2067 
2068 /*
2069 ** vfs version of truncate file.  Must NOT be called with
2070 ** a transaction already started.
2071 **
2072 ** some code taken from block_truncate_page
2073 */
2074 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2075 {
2076 	struct reiserfs_transaction_handle th;
2077 	/* we want the offset for the first byte after the end of the file */
2078 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2079 	unsigned blocksize = inode->i_sb->s_blocksize;
2080 	unsigned length;
2081 	struct page *page = NULL;
2082 	int error;
2083 	struct buffer_head *bh = NULL;
2084 	int err2;
2085 	int lock_depth;
2086 
2087 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2088 
2089 	if (inode->i_size > 0) {
2090 		error = grab_tail_page(inode, &page, &bh);
2091 		if (error) {
2092 			// -ENOENT means we truncated past the end of the file,
2093 			// and get_block_create_0 could not find a block to read in,
2094 			// which is ok.
2095 			if (error != -ENOENT)
2096 				reiserfs_error(inode->i_sb, "clm-6001",
2097 					       "grab_tail_page failed %d",
2098 					       error);
2099 			page = NULL;
2100 			bh = NULL;
2101 		}
2102 	}
2103 
2104 	/* so, if page != NULL, we have a buffer head for the offset at
2105 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2106 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2107 	 ** and no zeroing is required on disk.  We zero after the truncate,
2108 	 ** because the truncate might pack the item anyway
2109 	 ** (it will unmap bh if it packs).
2110 	 */
2111 	/* it is enough to reserve space in transaction for 2 balancings:
2112 	   one for "save" link adding and another for the first
2113 	   cut_from_item. 1 is for update_sd */
2114 	error = journal_begin(&th, inode->i_sb,
2115 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2116 	if (error)
2117 		goto out;
2118 	reiserfs_update_inode_transaction(inode);
2119 	if (update_timestamps)
2120 		/* we are doing real truncate: if the system crashes before the last
2121 		   transaction of truncating gets committed - on reboot the file
2122 		   either appears truncated properly or not truncated at all */
2123 		add_save_link(&th, inode, 1);
2124 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2125 	error =
2126 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2127 	if (error)
2128 		goto out;
2129 
2130 	/* check reiserfs_do_truncate after ending the transaction */
2131 	if (err2) {
2132 		error = err2;
2133   		goto out;
2134 	}
2135 
2136 	if (update_timestamps) {
2137 		error = remove_save_link(inode, 1 /* truncate */);
2138 		if (error)
2139 			goto out;
2140 	}
2141 
2142 	if (page) {
2143 		length = offset & (blocksize - 1);
2144 		/* if we are not on a block boundary */
2145 		if (length) {
2146 			length = blocksize - length;
2147 			zero_user(page, offset, length);
2148 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2149 				mark_buffer_dirty(bh);
2150 			}
2151 		}
2152 		unlock_page(page);
2153 		page_cache_release(page);
2154 	}
2155 
2156 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2157 
2158 	return 0;
2159       out:
2160 	if (page) {
2161 		unlock_page(page);
2162 		page_cache_release(page);
2163 	}
2164 
2165 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2166 
2167 	return error;
2168 }
2169 
2170 static int map_block_for_writepage(struct inode *inode,
2171 				   struct buffer_head *bh_result,
2172 				   unsigned long block)
2173 {
2174 	struct reiserfs_transaction_handle th;
2175 	int fs_gen;
2176 	struct item_head tmp_ih;
2177 	struct item_head *ih;
2178 	struct buffer_head *bh;
2179 	__le32 *item;
2180 	struct cpu_key key;
2181 	INITIALIZE_PATH(path);
2182 	int pos_in_item;
2183 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2184 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2185 	int retval;
2186 	int use_get_block = 0;
2187 	int bytes_copied = 0;
2188 	int copy_size;
2189 	int trans_running = 0;
2190 
2191 	/* catch places below that try to log something without starting a trans */
2192 	th.t_trans_id = 0;
2193 
2194 	if (!buffer_uptodate(bh_result)) {
2195 		return -EIO;
2196 	}
2197 
2198 	kmap(bh_result->b_page);
2199       start_over:
2200 	reiserfs_write_lock(inode->i_sb);
2201 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2202 
2203       research:
2204 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2205 	if (retval != POSITION_FOUND) {
2206 		use_get_block = 1;
2207 		goto out;
2208 	}
2209 
2210 	bh = get_last_bh(&path);
2211 	ih = get_ih(&path);
2212 	item = get_item(&path);
2213 	pos_in_item = path.pos_in_item;
2214 
2215 	/* we've found an unformatted node */
2216 	if (indirect_item_found(retval, ih)) {
2217 		if (bytes_copied > 0) {
2218 			reiserfs_warning(inode->i_sb, "clm-6002",
2219 					 "bytes_copied %d", bytes_copied);
2220 		}
2221 		if (!get_block_num(item, pos_in_item)) {
2222 			/* crap, we are writing to a hole */
2223 			use_get_block = 1;
2224 			goto out;
2225 		}
2226 		set_block_dev_mapped(bh_result,
2227 				     get_block_num(item, pos_in_item), inode);
2228 	} else if (is_direct_le_ih(ih)) {
2229 		char *p;
2230 		p = page_address(bh_result->b_page);
2231 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2232 		copy_size = ih_item_len(ih) - pos_in_item;
2233 
2234 		fs_gen = get_generation(inode->i_sb);
2235 		copy_item_head(&tmp_ih, ih);
2236 
2237 		if (!trans_running) {
2238 			/* vs-3050 is gone, no need to drop the path */
2239 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2240 			if (retval)
2241 				goto out;
2242 			reiserfs_update_inode_transaction(inode);
2243 			trans_running = 1;
2244 			if (fs_changed(fs_gen, inode->i_sb)
2245 			    && item_moved(&tmp_ih, &path)) {
2246 				reiserfs_restore_prepared_buffer(inode->i_sb,
2247 								 bh);
2248 				goto research;
2249 			}
2250 		}
2251 
2252 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2253 
2254 		if (fs_changed(fs_gen, inode->i_sb)
2255 		    && item_moved(&tmp_ih, &path)) {
2256 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2257 			goto research;
2258 		}
2259 
2260 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2261 		       copy_size);
2262 
2263 		journal_mark_dirty(&th, inode->i_sb, bh);
2264 		bytes_copied += copy_size;
2265 		set_block_dev_mapped(bh_result, 0, inode);
2266 
2267 		/* are there still bytes left? */
2268 		if (bytes_copied < bh_result->b_size &&
2269 		    (byte_offset + bytes_copied) < inode->i_size) {
2270 			set_cpu_key_k_offset(&key,
2271 					     cpu_key_k_offset(&key) +
2272 					     copy_size);
2273 			goto research;
2274 		}
2275 	} else {
2276 		reiserfs_warning(inode->i_sb, "clm-6003",
2277 				 "bad item inode %lu", inode->i_ino);
2278 		retval = -EIO;
2279 		goto out;
2280 	}
2281 	retval = 0;
2282 
2283       out:
2284 	pathrelse(&path);
2285 	if (trans_running) {
2286 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2287 		if (err)
2288 			retval = err;
2289 		trans_running = 0;
2290 	}
2291 	reiserfs_write_unlock(inode->i_sb);
2292 
2293 	/* this is where we fill in holes in the file. */
2294 	if (use_get_block) {
2295 		retval = reiserfs_get_block(inode, block, bh_result,
2296 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2297 					    | GET_BLOCK_NO_DANGLE);
2298 		if (!retval) {
2299 			if (!buffer_mapped(bh_result)
2300 			    || bh_result->b_blocknr == 0) {
2301 				/* get_block failed to find a mapped unformatted node. */
2302 				use_get_block = 0;
2303 				goto start_over;
2304 			}
2305 		}
2306 	}
2307 	kunmap(bh_result->b_page);
2308 
2309 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2310 		/* we've copied data from the page into the direct item, so the
2311 		 * buffer in the page is now clean, mark it to reflect that.
2312 		 */
2313 		lock_buffer(bh_result);
2314 		clear_buffer_dirty(bh_result);
2315 		unlock_buffer(bh_result);
2316 	}
2317 	return retval;
2318 }
2319 
2320 /*
2321  * mason@suse.com: updated in 2.5.54 to follow the same general io
2322  * start/recovery path as __block_write_full_page, along with special
2323  * code to handle reiserfs tails.
2324  */
2325 static int reiserfs_write_full_page(struct page *page,
2326 				    struct writeback_control *wbc)
2327 {
2328 	struct inode *inode = page->mapping->host;
2329 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2330 	int error = 0;
2331 	unsigned long block;
2332 	sector_t last_block;
2333 	struct buffer_head *head, *bh;
2334 	int partial = 0;
2335 	int nr = 0;
2336 	int checked = PageChecked(page);
2337 	struct reiserfs_transaction_handle th;
2338 	struct super_block *s = inode->i_sb;
2339 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2340 	th.t_trans_id = 0;
2341 
2342 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2343 	if (checked && (current->flags & PF_MEMALLOC)) {
2344 		redirty_page_for_writepage(wbc, page);
2345 		unlock_page(page);
2346 		return 0;
2347 	}
2348 
2349 	/* The page dirty bit is cleared before writepage is called, which
2350 	 * means we have to tell create_empty_buffers to make dirty buffers
2351 	 * The page really should be up to date at this point, so tossing
2352 	 * in the BH_Uptodate is just a sanity check.
2353 	 */
2354 	if (!page_has_buffers(page)) {
2355 		create_empty_buffers(page, s->s_blocksize,
2356 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2357 	}
2358 	head = page_buffers(page);
2359 
2360 	/* last page in the file, zero out any contents past the
2361 	 ** last byte in the file
2362 	 */
2363 	if (page->index >= end_index) {
2364 		unsigned last_offset;
2365 
2366 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2367 		/* no file contents in this page */
2368 		if (page->index >= end_index + 1 || !last_offset) {
2369 			unlock_page(page);
2370 			return 0;
2371 		}
2372 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2373 	}
2374 	bh = head;
2375 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2376 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2377 	/* first map all the buffers, logging any direct items we find */
2378 	do {
2379 		if (block > last_block) {
2380 			/*
2381 			 * This can happen when the block size is less than
2382 			 * the page size.  The corresponding bytes in the page
2383 			 * were zero filled above
2384 			 */
2385 			clear_buffer_dirty(bh);
2386 			set_buffer_uptodate(bh);
2387 		} else if ((checked || buffer_dirty(bh)) &&
2388 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2389 						       && bh->b_blocknr ==
2390 						       0))) {
2391 			/* not mapped yet, or it points to a direct item, search
2392 			 * the btree for the mapping info, and log any direct
2393 			 * items found
2394 			 */
2395 			if ((error = map_block_for_writepage(inode, bh, block))) {
2396 				goto fail;
2397 			}
2398 		}
2399 		bh = bh->b_this_page;
2400 		block++;
2401 	} while (bh != head);
2402 
2403 	/*
2404 	 * we start the transaction after map_block_for_writepage,
2405 	 * because it can create holes in the file (an unbounded operation).
2406 	 * starting it here, we can make a reliable estimate for how many
2407 	 * blocks we're going to log
2408 	 */
2409 	if (checked) {
2410 		ClearPageChecked(page);
2411 		reiserfs_write_lock(s);
2412 		error = journal_begin(&th, s, bh_per_page + 1);
2413 		if (error) {
2414 			reiserfs_write_unlock(s);
2415 			goto fail;
2416 		}
2417 		reiserfs_update_inode_transaction(inode);
2418 	}
2419 	/* now go through and lock any dirty buffers on the page */
2420 	do {
2421 		get_bh(bh);
2422 		if (!buffer_mapped(bh))
2423 			continue;
2424 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2425 			continue;
2426 
2427 		if (checked) {
2428 			reiserfs_prepare_for_journal(s, bh, 1);
2429 			journal_mark_dirty(&th, s, bh);
2430 			continue;
2431 		}
2432 		/* from this point on, we know the buffer is mapped to a
2433 		 * real block and not a direct item
2434 		 */
2435 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2436 			lock_buffer(bh);
2437 		} else {
2438 			if (!trylock_buffer(bh)) {
2439 				redirty_page_for_writepage(wbc, page);
2440 				continue;
2441 			}
2442 		}
2443 		if (test_clear_buffer_dirty(bh)) {
2444 			mark_buffer_async_write(bh);
2445 		} else {
2446 			unlock_buffer(bh);
2447 		}
2448 	} while ((bh = bh->b_this_page) != head);
2449 
2450 	if (checked) {
2451 		error = journal_end(&th, s, bh_per_page + 1);
2452 		reiserfs_write_unlock(s);
2453 		if (error)
2454 			goto fail;
2455 	}
2456 	BUG_ON(PageWriteback(page));
2457 	set_page_writeback(page);
2458 	unlock_page(page);
2459 
2460 	/*
2461 	 * since any buffer might be the only dirty buffer on the page,
2462 	 * the first submit_bh can bring the page out of writeback.
2463 	 * be careful with the buffers.
2464 	 */
2465 	do {
2466 		struct buffer_head *next = bh->b_this_page;
2467 		if (buffer_async_write(bh)) {
2468 			submit_bh(WRITE, bh);
2469 			nr++;
2470 		}
2471 		put_bh(bh);
2472 		bh = next;
2473 	} while (bh != head);
2474 
2475 	error = 0;
2476       done:
2477 	if (nr == 0) {
2478 		/*
2479 		 * if this page only had a direct item, it is very possible for
2480 		 * no io to be required without there being an error.  Or,
2481 		 * someone else could have locked them and sent them down the
2482 		 * pipe without locking the page
2483 		 */
2484 		bh = head;
2485 		do {
2486 			if (!buffer_uptodate(bh)) {
2487 				partial = 1;
2488 				break;
2489 			}
2490 			bh = bh->b_this_page;
2491 		} while (bh != head);
2492 		if (!partial)
2493 			SetPageUptodate(page);
2494 		end_page_writeback(page);
2495 	}
2496 	return error;
2497 
2498       fail:
2499 	/* catches various errors, we need to make sure any valid dirty blocks
2500 	 * get to the media.  The page is currently locked and not marked for
2501 	 * writeback
2502 	 */
2503 	ClearPageUptodate(page);
2504 	bh = head;
2505 	do {
2506 		get_bh(bh);
2507 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2508 			lock_buffer(bh);
2509 			mark_buffer_async_write(bh);
2510 		} else {
2511 			/*
2512 			 * clear any dirty bits that might have come from getting
2513 			 * attached to a dirty page
2514 			 */
2515 			clear_buffer_dirty(bh);
2516 		}
2517 		bh = bh->b_this_page;
2518 	} while (bh != head);
2519 	SetPageError(page);
2520 	BUG_ON(PageWriteback(page));
2521 	set_page_writeback(page);
2522 	unlock_page(page);
2523 	do {
2524 		struct buffer_head *next = bh->b_this_page;
2525 		if (buffer_async_write(bh)) {
2526 			clear_buffer_dirty(bh);
2527 			submit_bh(WRITE, bh);
2528 			nr++;
2529 		}
2530 		put_bh(bh);
2531 		bh = next;
2532 	} while (bh != head);
2533 	goto done;
2534 }
2535 
2536 static int reiserfs_readpage(struct file *f, struct page *page)
2537 {
2538 	return block_read_full_page(page, reiserfs_get_block);
2539 }
2540 
2541 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2542 {
2543 	struct inode *inode = page->mapping->host;
2544 	reiserfs_wait_on_write_block(inode->i_sb);
2545 	return reiserfs_write_full_page(page, wbc);
2546 }
2547 
2548 static void reiserfs_truncate_failed_write(struct inode *inode)
2549 {
2550 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2551 	reiserfs_truncate_file(inode, 0);
2552 }
2553 
2554 static int reiserfs_write_begin(struct file *file,
2555 				struct address_space *mapping,
2556 				loff_t pos, unsigned len, unsigned flags,
2557 				struct page **pagep, void **fsdata)
2558 {
2559 	struct inode *inode;
2560 	struct page *page;
2561 	pgoff_t index;
2562 	int ret;
2563 	int old_ref = 0;
2564 
2565  	inode = mapping->host;
2566 	*fsdata = 0;
2567  	if (flags & AOP_FLAG_CONT_EXPAND &&
2568  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2569  		pos ++;
2570 		*fsdata = (void *)(unsigned long)flags;
2571 	}
2572 
2573 	index = pos >> PAGE_CACHE_SHIFT;
2574 	page = grab_cache_page_write_begin(mapping, index, flags);
2575 	if (!page)
2576 		return -ENOMEM;
2577 	*pagep = page;
2578 
2579 	reiserfs_wait_on_write_block(inode->i_sb);
2580 	fix_tail_page_for_writing(page);
2581 	if (reiserfs_transaction_running(inode->i_sb)) {
2582 		struct reiserfs_transaction_handle *th;
2583 		th = (struct reiserfs_transaction_handle *)current->
2584 		    journal_info;
2585 		BUG_ON(!th->t_refcount);
2586 		BUG_ON(!th->t_trans_id);
2587 		old_ref = th->t_refcount;
2588 		th->t_refcount++;
2589 	}
2590 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2591 				reiserfs_get_block);
2592 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2593 		struct reiserfs_transaction_handle *th = current->journal_info;
2594 		/* this gets a little ugly.  If reiserfs_get_block returned an
2595 		 * error and left a transacstion running, we've got to close it,
2596 		 * and we've got to free handle if it was a persistent transaction.
2597 		 *
2598 		 * But, if we had nested into an existing transaction, we need
2599 		 * to just drop the ref count on the handle.
2600 		 *
2601 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2602 		 * and it was a persistent trans.  Otherwise, it was nested above.
2603 		 */
2604 		if (th->t_refcount > old_ref) {
2605 			if (old_ref)
2606 				th->t_refcount--;
2607 			else {
2608 				int err;
2609 				reiserfs_write_lock(inode->i_sb);
2610 				err = reiserfs_end_persistent_transaction(th);
2611 				reiserfs_write_unlock(inode->i_sb);
2612 				if (err)
2613 					ret = err;
2614 			}
2615 		}
2616 	}
2617 	if (ret) {
2618 		unlock_page(page);
2619 		page_cache_release(page);
2620 		/* Truncate allocated blocks */
2621 		reiserfs_truncate_failed_write(inode);
2622 	}
2623 	return ret;
2624 }
2625 
2626 int reiserfs_prepare_write(struct file *f, struct page *page,
2627 			   unsigned from, unsigned to)
2628 {
2629 	struct inode *inode = page->mapping->host;
2630 	int ret;
2631 	int old_ref = 0;
2632 
2633 	reiserfs_write_unlock(inode->i_sb);
2634 	reiserfs_wait_on_write_block(inode->i_sb);
2635 	reiserfs_write_lock(inode->i_sb);
2636 
2637 	fix_tail_page_for_writing(page);
2638 	if (reiserfs_transaction_running(inode->i_sb)) {
2639 		struct reiserfs_transaction_handle *th;
2640 		th = (struct reiserfs_transaction_handle *)current->
2641 		    journal_info;
2642 		BUG_ON(!th->t_refcount);
2643 		BUG_ON(!th->t_trans_id);
2644 		old_ref = th->t_refcount;
2645 		th->t_refcount++;
2646 	}
2647 
2648 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2649 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2650 		struct reiserfs_transaction_handle *th = current->journal_info;
2651 		/* this gets a little ugly.  If reiserfs_get_block returned an
2652 		 * error and left a transacstion running, we've got to close it,
2653 		 * and we've got to free handle if it was a persistent transaction.
2654 		 *
2655 		 * But, if we had nested into an existing transaction, we need
2656 		 * to just drop the ref count on the handle.
2657 		 *
2658 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2659 		 * and it was a persistent trans.  Otherwise, it was nested above.
2660 		 */
2661 		if (th->t_refcount > old_ref) {
2662 			if (old_ref)
2663 				th->t_refcount--;
2664 			else {
2665 				int err;
2666 				reiserfs_write_lock(inode->i_sb);
2667 				err = reiserfs_end_persistent_transaction(th);
2668 				reiserfs_write_unlock(inode->i_sb);
2669 				if (err)
2670 					ret = err;
2671 			}
2672 		}
2673 	}
2674 	return ret;
2675 
2676 }
2677 
2678 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2679 {
2680 	return generic_block_bmap(as, block, reiserfs_bmap);
2681 }
2682 
2683 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2684 			      loff_t pos, unsigned len, unsigned copied,
2685 			      struct page *page, void *fsdata)
2686 {
2687 	struct inode *inode = page->mapping->host;
2688 	int ret = 0;
2689 	int update_sd = 0;
2690 	struct reiserfs_transaction_handle *th;
2691 	unsigned start;
2692 	int lock_depth = 0;
2693 	bool locked = false;
2694 
2695 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2696 		pos ++;
2697 
2698 	reiserfs_wait_on_write_block(inode->i_sb);
2699 	if (reiserfs_transaction_running(inode->i_sb))
2700 		th = current->journal_info;
2701 	else
2702 		th = NULL;
2703 
2704 	start = pos & (PAGE_CACHE_SIZE - 1);
2705 	if (unlikely(copied < len)) {
2706 		if (!PageUptodate(page))
2707 			copied = 0;
2708 
2709 		page_zero_new_buffers(page, start + copied, start + len);
2710 	}
2711 	flush_dcache_page(page);
2712 
2713 	reiserfs_commit_page(inode, page, start, start + copied);
2714 
2715 	/* generic_commit_write does this for us, but does not update the
2716 	 ** transaction tracking stuff when the size changes.  So, we have
2717 	 ** to do the i_size updates here.
2718 	 */
2719 	if (pos + copied > inode->i_size) {
2720 		struct reiserfs_transaction_handle myth;
2721 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2722 		locked = true;
2723 		/* If the file have grown beyond the border where it
2724 		   can have a tail, unmark it as needing a tail
2725 		   packing */
2726 		if ((have_large_tails(inode->i_sb)
2727 		     && inode->i_size > i_block_size(inode) * 4)
2728 		    || (have_small_tails(inode->i_sb)
2729 			&& inode->i_size > i_block_size(inode)))
2730 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2731 
2732 		ret = journal_begin(&myth, inode->i_sb, 1);
2733 		if (ret)
2734 			goto journal_error;
2735 
2736 		reiserfs_update_inode_transaction(inode);
2737 		inode->i_size = pos + copied;
2738 		/*
2739 		 * this will just nest into our transaction.  It's important
2740 		 * to use mark_inode_dirty so the inode gets pushed around on the
2741 		 * dirty lists, and so that O_SYNC works as expected
2742 		 */
2743 		mark_inode_dirty(inode);
2744 		reiserfs_update_sd(&myth, inode);
2745 		update_sd = 1;
2746 		ret = journal_end(&myth, inode->i_sb, 1);
2747 		if (ret)
2748 			goto journal_error;
2749 	}
2750 	if (th) {
2751 		if (!locked) {
2752 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2753 			locked = true;
2754 		}
2755 		if (!update_sd)
2756 			mark_inode_dirty(inode);
2757 		ret = reiserfs_end_persistent_transaction(th);
2758 		if (ret)
2759 			goto out;
2760 	}
2761 
2762       out:
2763 	if (locked)
2764 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2765 	unlock_page(page);
2766 	page_cache_release(page);
2767 
2768 	if (pos + len > inode->i_size)
2769 		reiserfs_truncate_failed_write(inode);
2770 
2771 	return ret == 0 ? copied : ret;
2772 
2773       journal_error:
2774 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2775 	locked = false;
2776 	if (th) {
2777 		if (!update_sd)
2778 			reiserfs_update_sd(th, inode);
2779 		ret = reiserfs_end_persistent_transaction(th);
2780 	}
2781 	goto out;
2782 }
2783 
2784 int reiserfs_commit_write(struct file *f, struct page *page,
2785 			  unsigned from, unsigned to)
2786 {
2787 	struct inode *inode = page->mapping->host;
2788 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2789 	int ret = 0;
2790 	int update_sd = 0;
2791 	struct reiserfs_transaction_handle *th = NULL;
2792 
2793 	reiserfs_write_unlock(inode->i_sb);
2794 	reiserfs_wait_on_write_block(inode->i_sb);
2795 	reiserfs_write_lock(inode->i_sb);
2796 
2797 	if (reiserfs_transaction_running(inode->i_sb)) {
2798 		th = current->journal_info;
2799 	}
2800 	reiserfs_commit_page(inode, page, from, to);
2801 
2802 	/* generic_commit_write does this for us, but does not update the
2803 	 ** transaction tracking stuff when the size changes.  So, we have
2804 	 ** to do the i_size updates here.
2805 	 */
2806 	if (pos > inode->i_size) {
2807 		struct reiserfs_transaction_handle myth;
2808 		/* If the file have grown beyond the border where it
2809 		   can have a tail, unmark it as needing a tail
2810 		   packing */
2811 		if ((have_large_tails(inode->i_sb)
2812 		     && inode->i_size > i_block_size(inode) * 4)
2813 		    || (have_small_tails(inode->i_sb)
2814 			&& inode->i_size > i_block_size(inode)))
2815 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2816 
2817 		ret = journal_begin(&myth, inode->i_sb, 1);
2818 		if (ret)
2819 			goto journal_error;
2820 
2821 		reiserfs_update_inode_transaction(inode);
2822 		inode->i_size = pos;
2823 		/*
2824 		 * this will just nest into our transaction.  It's important
2825 		 * to use mark_inode_dirty so the inode gets pushed around on the
2826 		 * dirty lists, and so that O_SYNC works as expected
2827 		 */
2828 		mark_inode_dirty(inode);
2829 		reiserfs_update_sd(&myth, inode);
2830 		update_sd = 1;
2831 		ret = journal_end(&myth, inode->i_sb, 1);
2832 		if (ret)
2833 			goto journal_error;
2834 	}
2835 	if (th) {
2836 		if (!update_sd)
2837 			mark_inode_dirty(inode);
2838 		ret = reiserfs_end_persistent_transaction(th);
2839 		if (ret)
2840 			goto out;
2841 	}
2842 
2843       out:
2844 	return ret;
2845 
2846       journal_error:
2847 	if (th) {
2848 		if (!update_sd)
2849 			reiserfs_update_sd(th, inode);
2850 		ret = reiserfs_end_persistent_transaction(th);
2851 	}
2852 
2853 	return ret;
2854 }
2855 
2856 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2857 {
2858 	if (reiserfs_attrs(inode->i_sb)) {
2859 		if (sd_attrs & REISERFS_SYNC_FL)
2860 			inode->i_flags |= S_SYNC;
2861 		else
2862 			inode->i_flags &= ~S_SYNC;
2863 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2864 			inode->i_flags |= S_IMMUTABLE;
2865 		else
2866 			inode->i_flags &= ~S_IMMUTABLE;
2867 		if (sd_attrs & REISERFS_APPEND_FL)
2868 			inode->i_flags |= S_APPEND;
2869 		else
2870 			inode->i_flags &= ~S_APPEND;
2871 		if (sd_attrs & REISERFS_NOATIME_FL)
2872 			inode->i_flags |= S_NOATIME;
2873 		else
2874 			inode->i_flags &= ~S_NOATIME;
2875 		if (sd_attrs & REISERFS_NOTAIL_FL)
2876 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2877 		else
2878 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2879 	}
2880 }
2881 
2882 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2883 {
2884 	if (reiserfs_attrs(inode->i_sb)) {
2885 		if (inode->i_flags & S_IMMUTABLE)
2886 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2887 		else
2888 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2889 		if (inode->i_flags & S_SYNC)
2890 			*sd_attrs |= REISERFS_SYNC_FL;
2891 		else
2892 			*sd_attrs &= ~REISERFS_SYNC_FL;
2893 		if (inode->i_flags & S_NOATIME)
2894 			*sd_attrs |= REISERFS_NOATIME_FL;
2895 		else
2896 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2897 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2898 			*sd_attrs |= REISERFS_NOTAIL_FL;
2899 		else
2900 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2901 	}
2902 }
2903 
2904 /* decide if this buffer needs to stay around for data logging or ordered
2905 ** write purposes
2906 */
2907 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2908 {
2909 	int ret = 1;
2910 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2911 
2912 	lock_buffer(bh);
2913 	spin_lock(&j->j_dirty_buffers_lock);
2914 	if (!buffer_mapped(bh)) {
2915 		goto free_jh;
2916 	}
2917 	/* the page is locked, and the only places that log a data buffer
2918 	 * also lock the page.
2919 	 */
2920 	if (reiserfs_file_data_log(inode)) {
2921 		/*
2922 		 * very conservative, leave the buffer pinned if
2923 		 * anyone might need it.
2924 		 */
2925 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2926 			ret = 0;
2927 		}
2928 	} else  if (buffer_dirty(bh)) {
2929 		struct reiserfs_journal_list *jl;
2930 		struct reiserfs_jh *jh = bh->b_private;
2931 
2932 		/* why is this safe?
2933 		 * reiserfs_setattr updates i_size in the on disk
2934 		 * stat data before allowing vmtruncate to be called.
2935 		 *
2936 		 * If buffer was put onto the ordered list for this
2937 		 * transaction, we know for sure either this transaction
2938 		 * or an older one already has updated i_size on disk,
2939 		 * and this ordered data won't be referenced in the file
2940 		 * if we crash.
2941 		 *
2942 		 * if the buffer was put onto the ordered list for an older
2943 		 * transaction, we need to leave it around
2944 		 */
2945 		if (jh && (jl = jh->jl)
2946 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2947 			ret = 0;
2948 	}
2949       free_jh:
2950 	if (ret && bh->b_private) {
2951 		reiserfs_free_jh(bh);
2952 	}
2953 	spin_unlock(&j->j_dirty_buffers_lock);
2954 	unlock_buffer(bh);
2955 	return ret;
2956 }
2957 
2958 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2959 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2960 {
2961 	struct buffer_head *head, *bh, *next;
2962 	struct inode *inode = page->mapping->host;
2963 	unsigned int curr_off = 0;
2964 	int ret = 1;
2965 
2966 	BUG_ON(!PageLocked(page));
2967 
2968 	if (offset == 0)
2969 		ClearPageChecked(page);
2970 
2971 	if (!page_has_buffers(page))
2972 		goto out;
2973 
2974 	head = page_buffers(page);
2975 	bh = head;
2976 	do {
2977 		unsigned int next_off = curr_off + bh->b_size;
2978 		next = bh->b_this_page;
2979 
2980 		/*
2981 		 * is this block fully invalidated?
2982 		 */
2983 		if (offset <= curr_off) {
2984 			if (invalidatepage_can_drop(inode, bh))
2985 				reiserfs_unmap_buffer(bh);
2986 			else
2987 				ret = 0;
2988 		}
2989 		curr_off = next_off;
2990 		bh = next;
2991 	} while (bh != head);
2992 
2993 	/*
2994 	 * We release buffers only if the entire page is being invalidated.
2995 	 * The get_block cached value has been unconditionally invalidated,
2996 	 * so real IO is not possible anymore.
2997 	 */
2998 	if (!offset && ret) {
2999 		ret = try_to_release_page(page, 0);
3000 		/* maybe should BUG_ON(!ret); - neilb */
3001 	}
3002       out:
3003 	return;
3004 }
3005 
3006 static int reiserfs_set_page_dirty(struct page *page)
3007 {
3008 	struct inode *inode = page->mapping->host;
3009 	if (reiserfs_file_data_log(inode)) {
3010 		SetPageChecked(page);
3011 		return __set_page_dirty_nobuffers(page);
3012 	}
3013 	return __set_page_dirty_buffers(page);
3014 }
3015 
3016 /*
3017  * Returns 1 if the page's buffers were dropped.  The page is locked.
3018  *
3019  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3020  * in the buffers at page_buffers(page).
3021  *
3022  * even in -o notail mode, we can't be sure an old mount without -o notail
3023  * didn't create files with tails.
3024  */
3025 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3026 {
3027 	struct inode *inode = page->mapping->host;
3028 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3029 	struct buffer_head *head;
3030 	struct buffer_head *bh;
3031 	int ret = 1;
3032 
3033 	WARN_ON(PageChecked(page));
3034 	spin_lock(&j->j_dirty_buffers_lock);
3035 	head = page_buffers(page);
3036 	bh = head;
3037 	do {
3038 		if (bh->b_private) {
3039 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3040 				reiserfs_free_jh(bh);
3041 			} else {
3042 				ret = 0;
3043 				break;
3044 			}
3045 		}
3046 		bh = bh->b_this_page;
3047 	} while (bh != head);
3048 	if (ret)
3049 		ret = try_to_free_buffers(page);
3050 	spin_unlock(&j->j_dirty_buffers_lock);
3051 	return ret;
3052 }
3053 
3054 /* We thank Mingming Cao for helping us understand in great detail what
3055    to do in this section of the code. */
3056 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3057 				  const struct iovec *iov, loff_t offset,
3058 				  unsigned long nr_segs)
3059 {
3060 	struct file *file = iocb->ki_filp;
3061 	struct inode *inode = file->f_mapping->host;
3062 
3063 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3064 				  offset, nr_segs,
3065 				  reiserfs_get_blocks_direct_io, NULL);
3066 }
3067 
3068 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3069 {
3070 	struct inode *inode = dentry->d_inode;
3071 	unsigned int ia_valid;
3072 	int depth;
3073 	int error;
3074 
3075 	/* must be turned off for recursive notify_change calls */
3076 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3077 
3078 	depth = reiserfs_write_lock_once(inode->i_sb);
3079 	if (attr->ia_valid & ATTR_SIZE) {
3080 		dquot_initialize(inode);
3081 
3082 		/* version 2 items will be caught by the s_maxbytes check
3083 		 ** done for us in vmtruncate
3084 		 */
3085 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3086 		    attr->ia_size > MAX_NON_LFS) {
3087 			error = -EFBIG;
3088 			goto out;
3089 		}
3090 		/* fill in hole pointers in the expanding truncate case. */
3091 		if (attr->ia_size > inode->i_size) {
3092 			error = generic_cont_expand_simple(inode, attr->ia_size);
3093 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3094 				int err;
3095 				struct reiserfs_transaction_handle th;
3096 				/* we're changing at most 2 bitmaps, inode + super */
3097 				err = journal_begin(&th, inode->i_sb, 4);
3098 				if (!err) {
3099 					reiserfs_discard_prealloc(&th, inode);
3100 					err = journal_end(&th, inode->i_sb, 4);
3101 				}
3102 				if (err)
3103 					error = err;
3104 			}
3105 			if (error)
3106 				goto out;
3107 			/*
3108 			 * file size is changed, ctime and mtime are
3109 			 * to be updated
3110 			 */
3111 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3112 		}
3113 	}
3114 
3115 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3116 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3117 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3118 		/* stat data of format v3.5 has 16 bit uid and gid */
3119 		error = -EINVAL;
3120 		goto out;
3121 	}
3122 
3123 	error = inode_change_ok(inode, attr);
3124 	if (!error) {
3125 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3126 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3127 			error = reiserfs_chown_xattrs(inode, attr);
3128 
3129 			if (!error) {
3130 				struct reiserfs_transaction_handle th;
3131 				int jbegin_count =
3132 				    2 *
3133 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3134 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3135 				    2;
3136 
3137 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3138 				error =
3139 				    journal_begin(&th, inode->i_sb,
3140 						  jbegin_count);
3141 				if (error)
3142 					goto out;
3143 				error = dquot_transfer(inode, attr);
3144 				if (error) {
3145 					journal_end(&th, inode->i_sb,
3146 						    jbegin_count);
3147 					goto out;
3148 				}
3149 				/* Update corresponding info in inode so that everything is in
3150 				 * one transaction */
3151 				if (attr->ia_valid & ATTR_UID)
3152 					inode->i_uid = attr->ia_uid;
3153 				if (attr->ia_valid & ATTR_GID)
3154 					inode->i_gid = attr->ia_gid;
3155 				mark_inode_dirty(inode);
3156 				error =
3157 				    journal_end(&th, inode->i_sb, jbegin_count);
3158 			}
3159 		}
3160 		if (!error) {
3161 			/*
3162 			 * Relax the lock here, as it might truncate the
3163 			 * inode pages and wait for inode pages locks.
3164 			 * To release such page lock, the owner needs the
3165 			 * reiserfs lock
3166 			 */
3167 			reiserfs_write_unlock_once(inode->i_sb, depth);
3168 			error = inode_setattr(inode, attr);
3169 			depth = reiserfs_write_lock_once(inode->i_sb);
3170 		}
3171 	}
3172 
3173 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3174 		if (attr->ia_valid & ATTR_MODE)
3175 			error = reiserfs_acl_chmod(inode);
3176 	}
3177 
3178       out:
3179 	reiserfs_write_unlock_once(inode->i_sb, depth);
3180 
3181 	return error;
3182 }
3183 
3184 const struct address_space_operations reiserfs_address_space_operations = {
3185 	.writepage = reiserfs_writepage,
3186 	.readpage = reiserfs_readpage,
3187 	.readpages = reiserfs_readpages,
3188 	.releasepage = reiserfs_releasepage,
3189 	.invalidatepage = reiserfs_invalidatepage,
3190 	.sync_page = block_sync_page,
3191 	.write_begin = reiserfs_write_begin,
3192 	.write_end = reiserfs_write_end,
3193 	.bmap = reiserfs_aop_bmap,
3194 	.direct_IO = reiserfs_direct_IO,
3195 	.set_page_dirty = reiserfs_set_page_dirty,
3196 };
3197