xref: /openbmc/linux/fs/reiserfs/inode.c (revision 384740dc)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 			   unsigned from, unsigned to);
26 
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 	int jbegin_count =
31 	    JOURNAL_PER_BALANCE_CNT * 2 +
32 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 	struct reiserfs_transaction_handle th;
34 	int err;
35 
36 	truncate_inode_pages(&inode->i_data, 0);
37 
38 	reiserfs_write_lock(inode->i_sb);
39 
40 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
42 		reiserfs_delete_xattrs(inode);
43 
44 		if (journal_begin(&th, inode->i_sb, jbegin_count))
45 			goto out;
46 		reiserfs_update_inode_transaction(inode);
47 
48 		reiserfs_discard_prealloc(&th, inode);
49 
50 		err = reiserfs_delete_object(&th, inode);
51 
52 		/* Do quota update inside a transaction for journaled quotas. We must do that
53 		 * after delete_object so that quota updates go into the same transaction as
54 		 * stat data deletion */
55 		if (!err)
56 			DQUOT_FREE_INODE(inode);
57 
58 		if (journal_end(&th, inode->i_sb, jbegin_count))
59 			goto out;
60 
61 		/* check return value from reiserfs_delete_object after
62 		 * ending the transaction
63 		 */
64 		if (err)
65 		    goto out;
66 
67 		/* all items of file are deleted, so we can remove "save" link */
68 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
69 								 * about an error here */
70 	} else {
71 		/* no object items are in the tree */
72 		;
73 	}
74       out:
75 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
76 	inode->i_blocks = 0;
77 	reiserfs_write_unlock(inode->i_sb);
78 }
79 
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 			  __u32 objectid, loff_t offset, int type, int length)
82 {
83 	key->version = version;
84 
85 	key->on_disk_key.k_dir_id = dirid;
86 	key->on_disk_key.k_objectid = objectid;
87 	set_cpu_key_k_offset(key, offset);
88 	set_cpu_key_k_type(key, type);
89 	key->key_length = length;
90 }
91 
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93    offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 		  int type, int length)
96 {
97 	_make_cpu_key(key, get_inode_item_key_version(inode),
98 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 		      length);
101 }
102 
103 //
104 // when key is 0, do not set version and short key
105 //
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 			      int version,
108 			      loff_t offset, int type, int length,
109 			      int entry_count /*or ih_free_space */ )
110 {
111 	if (key) {
112 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 		ih->ih_key.k_objectid =
114 		    cpu_to_le32(key->on_disk_key.k_objectid);
115 	}
116 	put_ih_version(ih, version);
117 	set_le_ih_k_offset(ih, offset);
118 	set_le_ih_k_type(ih, type);
119 	put_ih_item_len(ih, length);
120 	/*    set_ih_free_space (ih, 0); */
121 	// for directory items it is entry count, for directs and stat
122 	// datas - 0xffff, for indirects - 0
123 	put_ih_entry_count(ih, entry_count);
124 }
125 
126 //
127 // FIXME: we might cache recently accessed indirect item
128 
129 // Ugh.  Not too eager for that....
130 //  I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
132 
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in.  But, Vladimir has a really good idea here.  Think
135 ** about what happens for reading a file.  For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item.  This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right.  But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
141 **
142 ** The size of the cache could be dynamic based on the size of the file.
143 **
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
146 **
147 ** --chris
148 */
149 
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it.  So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers.  Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
157 */
158 static inline void fix_tail_page_for_writing(struct page *page)
159 {
160 	struct buffer_head *head, *next, *bh;
161 
162 	if (page && page_has_buffers(page)) {
163 		head = page_buffers(page);
164 		bh = head;
165 		do {
166 			next = bh->b_this_page;
167 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 				reiserfs_unmap_buffer(bh);
169 			}
170 			bh = next;
171 		} while (bh != head);
172 	}
173 }
174 
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176    done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 				    struct item_head *ih,
179 				    __le32 * item, int pos_in_item)
180 {
181 	if (allocated)
182 		return 0;
183 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 	    get_block_num(item, pos_in_item))
185 		return 0;
186 	return 1;
187 }
188 
189 static inline int indirect_item_found(int retval, struct item_head *ih)
190 {
191 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 }
193 
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 					b_blocknr_t block, struct inode *inode)
196 {
197 	map_bh(bh, inode->i_sb, block);
198 }
199 
200 //
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
203 //
204 static int file_capable(struct inode *inode, sector_t block)
205 {
206 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
207 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
208 		return 1;
209 
210 	return 0;
211 }
212 
213 static int restart_transaction(struct reiserfs_transaction_handle *th,
214 			       struct inode *inode, struct treepath *path)
215 {
216 	struct super_block *s = th->t_super;
217 	int len = th->t_blocks_allocated;
218 	int err;
219 
220 	BUG_ON(!th->t_trans_id);
221 	BUG_ON(!th->t_refcount);
222 
223 	pathrelse(path);
224 
225 	/* we cannot restart while nested */
226 	if (th->t_refcount > 1) {
227 		return 0;
228 	}
229 	reiserfs_update_sd(th, inode);
230 	err = journal_end(th, s, len);
231 	if (!err) {
232 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
233 		if (!err)
234 			reiserfs_update_inode_transaction(inode);
235 	}
236 	return err;
237 }
238 
239 // it is called by get_block when create == 0. Returns block number
240 // for 'block'-th logical block of file. When it hits direct item it
241 // returns 0 (being called from bmap) or read direct item into piece
242 // of page (bh_result)
243 
244 // Please improve the english/clarity in the comment above, as it is
245 // hard to understand.
246 
247 static int _get_block_create_0(struct inode *inode, sector_t block,
248 			       struct buffer_head *bh_result, int args)
249 {
250 	INITIALIZE_PATH(path);
251 	struct cpu_key key;
252 	struct buffer_head *bh;
253 	struct item_head *ih, tmp_ih;
254 	int fs_gen;
255 	b_blocknr_t blocknr;
256 	char *p = NULL;
257 	int chars;
258 	int ret;
259 	int result;
260 	int done = 0;
261 	unsigned long offset;
262 
263 	// prepare the key to look for the 'block'-th block of file
264 	make_cpu_key(&key, inode,
265 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
266 		     3);
267 
268       research:
269 	result = search_for_position_by_key(inode->i_sb, &key, &path);
270 	if (result != POSITION_FOUND) {
271 		pathrelse(&path);
272 		if (p)
273 			kunmap(bh_result->b_page);
274 		if (result == IO_ERROR)
275 			return -EIO;
276 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
277 		// That there is some MMAPED data associated with it that is yet to be written to disk.
278 		if ((args & GET_BLOCK_NO_HOLE)
279 		    && !PageUptodate(bh_result->b_page)) {
280 			return -ENOENT;
281 		}
282 		return 0;
283 	}
284 	//
285 	bh = get_last_bh(&path);
286 	ih = get_ih(&path);
287 	if (is_indirect_le_ih(ih)) {
288 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
289 
290 		/* FIXME: here we could cache indirect item or part of it in
291 		   the inode to avoid search_by_key in case of subsequent
292 		   access to file */
293 		blocknr = get_block_num(ind_item, path.pos_in_item);
294 		ret = 0;
295 		if (blocknr) {
296 			map_bh(bh_result, inode->i_sb, blocknr);
297 			if (path.pos_in_item ==
298 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
299 				set_buffer_boundary(bh_result);
300 			}
301 		} else
302 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
303 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
304 		if ((args & GET_BLOCK_NO_HOLE)
305 			    && !PageUptodate(bh_result->b_page)) {
306 			ret = -ENOENT;
307 		}
308 
309 		pathrelse(&path);
310 		if (p)
311 			kunmap(bh_result->b_page);
312 		return ret;
313 	}
314 	// requested data are in direct item(s)
315 	if (!(args & GET_BLOCK_READ_DIRECT)) {
316 		// we are called by bmap. FIXME: we can not map block of file
317 		// when it is stored in direct item(s)
318 		pathrelse(&path);
319 		if (p)
320 			kunmap(bh_result->b_page);
321 		return -ENOENT;
322 	}
323 
324 	/* if we've got a direct item, and the buffer or page was uptodate,
325 	 ** we don't want to pull data off disk again.  skip to the
326 	 ** end, where we map the buffer and return
327 	 */
328 	if (buffer_uptodate(bh_result)) {
329 		goto finished;
330 	} else
331 		/*
332 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
333 		 ** pages without any buffers.  If the page is up to date, we don't want
334 		 ** read old data off disk.  Set the up to date bit on the buffer instead
335 		 ** and jump to the end
336 		 */
337 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
338 		set_buffer_uptodate(bh_result);
339 		goto finished;
340 	}
341 	// read file tail into part of page
342 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
343 	fs_gen = get_generation(inode->i_sb);
344 	copy_item_head(&tmp_ih, ih);
345 
346 	/* we only want to kmap if we are reading the tail into the page.
347 	 ** this is not the common case, so we don't kmap until we are
348 	 ** sure we need to.  But, this means the item might move if
349 	 ** kmap schedules
350 	 */
351 	if (!p) {
352 		p = (char *)kmap(bh_result->b_page);
353 		if (fs_changed(fs_gen, inode->i_sb)
354 		    && item_moved(&tmp_ih, &path)) {
355 			goto research;
356 		}
357 	}
358 	p += offset;
359 	memset(p, 0, inode->i_sb->s_blocksize);
360 	do {
361 		if (!is_direct_le_ih(ih)) {
362 			BUG();
363 		}
364 		/* make sure we don't read more bytes than actually exist in
365 		 ** the file.  This can happen in odd cases where i_size isn't
366 		 ** correct, and when direct item padding results in a few
367 		 ** extra bytes at the end of the direct item
368 		 */
369 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
370 			break;
371 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
372 			chars =
373 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
374 			    path.pos_in_item;
375 			done = 1;
376 		} else {
377 			chars = ih_item_len(ih) - path.pos_in_item;
378 		}
379 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
380 
381 		if (done)
382 			break;
383 
384 		p += chars;
385 
386 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
387 			// we done, if read direct item is not the last item of
388 			// node FIXME: we could try to check right delimiting key
389 			// to see whether direct item continues in the right
390 			// neighbor or rely on i_size
391 			break;
392 
393 		// update key to look for the next piece
394 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
395 		result = search_for_position_by_key(inode->i_sb, &key, &path);
396 		if (result != POSITION_FOUND)
397 			// i/o error most likely
398 			break;
399 		bh = get_last_bh(&path);
400 		ih = get_ih(&path);
401 	} while (1);
402 
403 	flush_dcache_page(bh_result->b_page);
404 	kunmap(bh_result->b_page);
405 
406       finished:
407 	pathrelse(&path);
408 
409 	if (result == IO_ERROR)
410 		return -EIO;
411 
412 	/* this buffer has valid data, but isn't valid for io.  mapping it to
413 	 * block #0 tells the rest of reiserfs it just has a tail in it
414 	 */
415 	map_bh(bh_result, inode->i_sb, 0);
416 	set_buffer_uptodate(bh_result);
417 	return 0;
418 }
419 
420 // this is called to create file map. So, _get_block_create_0 will not
421 // read direct item
422 static int reiserfs_bmap(struct inode *inode, sector_t block,
423 			 struct buffer_head *bh_result, int create)
424 {
425 	if (!file_capable(inode, block))
426 		return -EFBIG;
427 
428 	reiserfs_write_lock(inode->i_sb);
429 	/* do not read the direct item */
430 	_get_block_create_0(inode, block, bh_result, 0);
431 	reiserfs_write_unlock(inode->i_sb);
432 	return 0;
433 }
434 
435 /* special version of get_block that is only used by grab_tail_page right
436 ** now.  It is sent to block_prepare_write, and when you try to get a
437 ** block past the end of the file (or a block from a hole) it returns
438 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
439 ** be able to do i/o on the buffers returned, unless an error value
440 ** is also returned.
441 **
442 ** So, this allows block_prepare_write to be used for reading a single block
443 ** in a page.  Where it does not produce a valid page for holes, or past the
444 ** end of the file.  This turns out to be exactly what we need for reading
445 ** tails for conversion.
446 **
447 ** The point of the wrapper is forcing a certain value for create, even
448 ** though the VFS layer is calling this function with create==1.  If you
449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
450 ** don't use this function.
451 */
452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
453 				       struct buffer_head *bh_result,
454 				       int create)
455 {
456 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
457 }
458 
459 /* This is special helper for reiserfs_get_block in case we are executing
460    direct_IO request. */
461 static int reiserfs_get_blocks_direct_io(struct inode *inode,
462 					 sector_t iblock,
463 					 struct buffer_head *bh_result,
464 					 int create)
465 {
466 	int ret;
467 
468 	bh_result->b_page = NULL;
469 
470 	/* We set the b_size before reiserfs_get_block call since it is
471 	   referenced in convert_tail_for_hole() that may be called from
472 	   reiserfs_get_block() */
473 	bh_result->b_size = (1 << inode->i_blkbits);
474 
475 	ret = reiserfs_get_block(inode, iblock, bh_result,
476 				 create | GET_BLOCK_NO_DANGLE);
477 	if (ret)
478 		goto out;
479 
480 	/* don't allow direct io onto tail pages */
481 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 		/* make sure future calls to the direct io funcs for this offset
483 		 ** in the file fail by unmapping the buffer
484 		 */
485 		clear_buffer_mapped(bh_result);
486 		ret = -EINVAL;
487 	}
488 	/* Possible unpacked tail. Flush the data before pages have
489 	   disappeared */
490 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 		int err;
492 		lock_kernel();
493 		err = reiserfs_commit_for_inode(inode);
494 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 		unlock_kernel();
496 		if (err < 0)
497 			ret = err;
498 	}
499       out:
500 	return ret;
501 }
502 
503 /*
504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file
508 **
509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you
511 ** call this.
512 */
513 static int convert_tail_for_hole(struct inode *inode,
514 				 struct buffer_head *bh_result,
515 				 loff_t tail_offset)
516 {
517 	unsigned long index;
518 	unsigned long tail_end;
519 	unsigned long tail_start;
520 	struct page *tail_page;
521 	struct page *hole_page = bh_result->b_page;
522 	int retval = 0;
523 
524 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 		return -EIO;
526 
527 	/* always try to read until the end of the block */
528 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
530 
531 	index = tail_offset >> PAGE_CACHE_SHIFT;
532 	/* hole_page can be zero in case of direct_io, we are sure
533 	   that we cannot get here if we write with O_DIRECT into
534 	   tail page */
535 	if (!hole_page || index != hole_page->index) {
536 		tail_page = grab_cache_page(inode->i_mapping, index);
537 		retval = -ENOMEM;
538 		if (!tail_page) {
539 			goto out;
540 		}
541 	} else {
542 		tail_page = hole_page;
543 	}
544 
545 	/* we don't have to make sure the conversion did not happen while
546 	 ** we were locking the page because anyone that could convert
547 	 ** must first take i_mutex.
548 	 **
549 	 ** We must fix the tail page for writing because it might have buffers
550 	 ** that are mapped, but have a block number of 0.  This indicates tail
551 	 ** data that has been read directly into the page, and block_prepare_write
552 	 ** won't trigger a get_block in this case.
553 	 */
554 	fix_tail_page_for_writing(tail_page);
555 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 	if (retval)
557 		goto unlock;
558 
559 	/* tail conversion might change the data in the page */
560 	flush_dcache_page(tail_page);
561 
562 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
563 
564       unlock:
565 	if (tail_page != hole_page) {
566 		unlock_page(tail_page);
567 		page_cache_release(tail_page);
568 	}
569       out:
570 	return retval;
571 }
572 
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 				  sector_t block,
575 				  struct inode *inode,
576 				  b_blocknr_t * allocated_block_nr,
577 				  struct treepath *path, int flags)
578 {
579 	BUG_ON(!th->t_trans_id);
580 
581 #ifdef REISERFS_PREALLOCATE
582 	if (!(flags & GET_BLOCK_NO_IMUX)) {
583 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 						  path, block);
585 	}
586 #endif
587 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 					 block);
589 }
590 
591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 		       struct buffer_head *bh_result, int create)
593 {
594 	int repeat, retval = 0;
595 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
596 	INITIALIZE_PATH(path);
597 	int pos_in_item;
598 	struct cpu_key key;
599 	struct buffer_head *bh, *unbh = NULL;
600 	struct item_head *ih, tmp_ih;
601 	__le32 *item;
602 	int done;
603 	int fs_gen;
604 	struct reiserfs_transaction_handle *th = NULL;
605 	/* space reserved in transaction batch:
606 	   . 3 balancings in direct->indirect conversion
607 	   . 1 block involved into reiserfs_update_sd()
608 	   XXX in practically impossible worst case direct2indirect()
609 	   can incur (much) more than 3 balancings.
610 	   quota update for user, group */
611 	int jbegin_count =
612 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 	int version;
615 	int dangle = 1;
616 	loff_t new_offset =
617 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
618 
619 	/* bad.... */
620 	reiserfs_write_lock(inode->i_sb);
621 	version = get_inode_item_key_version(inode);
622 
623 	if (!file_capable(inode, block)) {
624 		reiserfs_write_unlock(inode->i_sb);
625 		return -EFBIG;
626 	}
627 
628 	/* if !create, we aren't changing the FS, so we don't need to
629 	 ** log anything, so we don't need to start a transaction
630 	 */
631 	if (!(create & GET_BLOCK_CREATE)) {
632 		int ret;
633 		/* find number of block-th logical block of the file */
634 		ret = _get_block_create_0(inode, block, bh_result,
635 					  create | GET_BLOCK_READ_DIRECT);
636 		reiserfs_write_unlock(inode->i_sb);
637 		return ret;
638 	}
639 	/*
640 	 * if we're already in a transaction, make sure to close
641 	 * any new transactions we start in this func
642 	 */
643 	if ((create & GET_BLOCK_NO_DANGLE) ||
644 	    reiserfs_transaction_running(inode->i_sb))
645 		dangle = 0;
646 
647 	/* If file is of such a size, that it might have a tail and tails are enabled
648 	 ** we should mark it as possibly needing tail packing on close
649 	 */
650 	if ((have_large_tails(inode->i_sb)
651 	     && inode->i_size < i_block_size(inode) * 4)
652 	    || (have_small_tails(inode->i_sb)
653 		&& inode->i_size < i_block_size(inode)))
654 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
655 
656 	/* set the key of the first byte in the 'block'-th block of file */
657 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
658 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
659 	      start_trans:
660 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
661 		if (!th) {
662 			retval = -ENOMEM;
663 			goto failure;
664 		}
665 		reiserfs_update_inode_transaction(inode);
666 	}
667       research:
668 
669 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
670 	if (retval == IO_ERROR) {
671 		retval = -EIO;
672 		goto failure;
673 	}
674 
675 	bh = get_last_bh(&path);
676 	ih = get_ih(&path);
677 	item = get_item(&path);
678 	pos_in_item = path.pos_in_item;
679 
680 	fs_gen = get_generation(inode->i_sb);
681 	copy_item_head(&tmp_ih, ih);
682 
683 	if (allocation_needed
684 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
685 		/* we have to allocate block for the unformatted node */
686 		if (!th) {
687 			pathrelse(&path);
688 			goto start_trans;
689 		}
690 
691 		repeat =
692 		    _allocate_block(th, block, inode, &allocated_block_nr,
693 				    &path, create);
694 
695 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
696 			/* restart the transaction to give the journal a chance to free
697 			 ** some blocks.  releases the path, so we have to go back to
698 			 ** research if we succeed on the second try
699 			 */
700 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
701 			retval = restart_transaction(th, inode, &path);
702 			if (retval)
703 				goto failure;
704 			repeat =
705 			    _allocate_block(th, block, inode,
706 					    &allocated_block_nr, NULL, create);
707 
708 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
709 				goto research;
710 			}
711 			if (repeat == QUOTA_EXCEEDED)
712 				retval = -EDQUOT;
713 			else
714 				retval = -ENOSPC;
715 			goto failure;
716 		}
717 
718 		if (fs_changed(fs_gen, inode->i_sb)
719 		    && item_moved(&tmp_ih, &path)) {
720 			goto research;
721 		}
722 	}
723 
724 	if (indirect_item_found(retval, ih)) {
725 		b_blocknr_t unfm_ptr;
726 		/* 'block'-th block is in the file already (there is
727 		   corresponding cell in some indirect item). But it may be
728 		   zero unformatted node pointer (hole) */
729 		unfm_ptr = get_block_num(item, pos_in_item);
730 		if (unfm_ptr == 0) {
731 			/* use allocated block to plug the hole */
732 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
733 			if (fs_changed(fs_gen, inode->i_sb)
734 			    && item_moved(&tmp_ih, &path)) {
735 				reiserfs_restore_prepared_buffer(inode->i_sb,
736 								 bh);
737 				goto research;
738 			}
739 			set_buffer_new(bh_result);
740 			if (buffer_dirty(bh_result)
741 			    && reiserfs_data_ordered(inode->i_sb))
742 				reiserfs_add_ordered_list(inode, bh_result);
743 			put_block_num(item, pos_in_item, allocated_block_nr);
744 			unfm_ptr = allocated_block_nr;
745 			journal_mark_dirty(th, inode->i_sb, bh);
746 			reiserfs_update_sd(th, inode);
747 		}
748 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
749 		pathrelse(&path);
750 		retval = 0;
751 		if (!dangle && th)
752 			retval = reiserfs_end_persistent_transaction(th);
753 
754 		reiserfs_write_unlock(inode->i_sb);
755 
756 		/* the item was found, so new blocks were not added to the file
757 		 ** there is no need to make sure the inode is updated with this
758 		 ** transaction
759 		 */
760 		return retval;
761 	}
762 
763 	if (!th) {
764 		pathrelse(&path);
765 		goto start_trans;
766 	}
767 
768 	/* desired position is not found or is in the direct item. We have
769 	   to append file with holes up to 'block'-th block converting
770 	   direct items to indirect one if necessary */
771 	done = 0;
772 	do {
773 		if (is_statdata_le_ih(ih)) {
774 			__le32 unp = 0;
775 			struct cpu_key tmp_key;
776 
777 			/* indirect item has to be inserted */
778 			make_le_item_head(&tmp_ih, &key, version, 1,
779 					  TYPE_INDIRECT, UNFM_P_SIZE,
780 					  0 /* free_space */ );
781 
782 			if (cpu_key_k_offset(&key) == 1) {
783 				/* we are going to add 'block'-th block to the file. Use
784 				   allocated block for that */
785 				unp = cpu_to_le32(allocated_block_nr);
786 				set_block_dev_mapped(bh_result,
787 						     allocated_block_nr, inode);
788 				set_buffer_new(bh_result);
789 				done = 1;
790 			}
791 			tmp_key = key;	// ;)
792 			set_cpu_key_k_offset(&tmp_key, 1);
793 			PATH_LAST_POSITION(&path)++;
794 
795 			retval =
796 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
797 						 inode, (char *)&unp);
798 			if (retval) {
799 				reiserfs_free_block(th, inode,
800 						    allocated_block_nr, 1);
801 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
802 			}
803 			//mark_tail_converted (inode);
804 		} else if (is_direct_le_ih(ih)) {
805 			/* direct item has to be converted */
806 			loff_t tail_offset;
807 
808 			tail_offset =
809 			    ((le_ih_k_offset(ih) -
810 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
811 			if (tail_offset == cpu_key_k_offset(&key)) {
812 				/* direct item we just found fits into block we have
813 				   to map. Convert it into unformatted node: use
814 				   bh_result for the conversion */
815 				set_block_dev_mapped(bh_result,
816 						     allocated_block_nr, inode);
817 				unbh = bh_result;
818 				done = 1;
819 			} else {
820 				/* we have to padd file tail stored in direct item(s)
821 				   up to block size and convert it to unformatted
822 				   node. FIXME: this should also get into page cache */
823 
824 				pathrelse(&path);
825 				/*
826 				 * ugly, but we can only end the transaction if
827 				 * we aren't nested
828 				 */
829 				BUG_ON(!th->t_refcount);
830 				if (th->t_refcount == 1) {
831 					retval =
832 					    reiserfs_end_persistent_transaction
833 					    (th);
834 					th = NULL;
835 					if (retval)
836 						goto failure;
837 				}
838 
839 				retval =
840 				    convert_tail_for_hole(inode, bh_result,
841 							  tail_offset);
842 				if (retval) {
843 					if (retval != -ENOSPC)
844 						reiserfs_warning(inode->i_sb,
845 								 "clm-6004: convert tail failed inode %lu, error %d",
846 								 inode->i_ino,
847 								 retval);
848 					if (allocated_block_nr) {
849 						/* the bitmap, the super, and the stat data == 3 */
850 						if (!th)
851 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
852 						if (th)
853 							reiserfs_free_block(th,
854 									    inode,
855 									    allocated_block_nr,
856 									    1);
857 					}
858 					goto failure;
859 				}
860 				goto research;
861 			}
862 			retval =
863 			    direct2indirect(th, inode, &path, unbh,
864 					    tail_offset);
865 			if (retval) {
866 				reiserfs_unmap_buffer(unbh);
867 				reiserfs_free_block(th, inode,
868 						    allocated_block_nr, 1);
869 				goto failure;
870 			}
871 			/* it is important the set_buffer_uptodate is done after
872 			 ** the direct2indirect.  The buffer might contain valid
873 			 ** data newer than the data on disk (read by readpage, changed,
874 			 ** and then sent here by writepage).  direct2indirect needs
875 			 ** to know if unbh was already up to date, so it can decide
876 			 ** if the data in unbh needs to be replaced with data from
877 			 ** the disk
878 			 */
879 			set_buffer_uptodate(unbh);
880 
881 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
882 			   buffer will disappear shortly, so it should not be added to
883 			 */
884 			if (unbh->b_page) {
885 				/* we've converted the tail, so we must
886 				 ** flush unbh before the transaction commits
887 				 */
888 				reiserfs_add_tail_list(inode, unbh);
889 
890 				/* mark it dirty now to prevent commit_write from adding
891 				 ** this buffer to the inode's dirty buffer list
892 				 */
893 				/*
894 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
895 				 * It's still atomic, but it sets the page dirty too,
896 				 * which makes it eligible for writeback at any time by the
897 				 * VM (which was also the case with __mark_buffer_dirty())
898 				 */
899 				mark_buffer_dirty(unbh);
900 			}
901 		} else {
902 			/* append indirect item with holes if needed, when appending
903 			   pointer to 'block'-th block use block, which is already
904 			   allocated */
905 			struct cpu_key tmp_key;
906 			unp_t unf_single = 0;	// We use this in case we need to allocate only
907 			// one block which is a fastpath
908 			unp_t *un;
909 			__u64 max_to_insert =
910 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
911 			    UNFM_P_SIZE;
912 			__u64 blocks_needed;
913 
914 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
915 			       "vs-804: invalid position for append");
916 			/* indirect item has to be appended, set up key of that position */
917 			make_cpu_key(&tmp_key, inode,
918 				     le_key_k_offset(version,
919 						     &(ih->ih_key)) +
920 				     op_bytes_number(ih,
921 						     inode->i_sb->s_blocksize),
922 				     //pos_in_item * inode->i_sb->s_blocksize,
923 				     TYPE_INDIRECT, 3);	// key type is unimportant
924 
925 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
926 			       "green-805: invalid offset");
927 			blocks_needed =
928 			    1 +
929 			    ((cpu_key_k_offset(&key) -
930 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
931 			     s_blocksize_bits);
932 
933 			if (blocks_needed == 1) {
934 				un = &unf_single;
935 			} else {
936 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
937 				if (!un) {
938 					un = &unf_single;
939 					blocks_needed = 1;
940 					max_to_insert = 0;
941 				}
942 			}
943 			if (blocks_needed <= max_to_insert) {
944 				/* we are going to add target block to the file. Use allocated
945 				   block for that */
946 				un[blocks_needed - 1] =
947 				    cpu_to_le32(allocated_block_nr);
948 				set_block_dev_mapped(bh_result,
949 						     allocated_block_nr, inode);
950 				set_buffer_new(bh_result);
951 				done = 1;
952 			} else {
953 				/* paste hole to the indirect item */
954 				/* If kmalloc failed, max_to_insert becomes zero and it means we
955 				   only have space for one block */
956 				blocks_needed =
957 				    max_to_insert ? max_to_insert : 1;
958 			}
959 			retval =
960 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
961 						     (char *)un,
962 						     UNFM_P_SIZE *
963 						     blocks_needed);
964 
965 			if (blocks_needed != 1)
966 				kfree(un);
967 
968 			if (retval) {
969 				reiserfs_free_block(th, inode,
970 						    allocated_block_nr, 1);
971 				goto failure;
972 			}
973 			if (!done) {
974 				/* We need to mark new file size in case this function will be
975 				   interrupted/aborted later on. And we may do this only for
976 				   holes. */
977 				inode->i_size +=
978 				    inode->i_sb->s_blocksize * blocks_needed;
979 			}
980 		}
981 
982 		if (done == 1)
983 			break;
984 
985 		/* this loop could log more blocks than we had originally asked
986 		 ** for.  So, we have to allow the transaction to end if it is
987 		 ** too big or too full.  Update the inode so things are
988 		 ** consistent if we crash before the function returns
989 		 **
990 		 ** release the path so that anybody waiting on the path before
991 		 ** ending their transaction will be able to continue.
992 		 */
993 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
994 			retval = restart_transaction(th, inode, &path);
995 			if (retval)
996 				goto failure;
997 		}
998 		/* inserting indirect pointers for a hole can take a
999 		 ** long time.  reschedule if needed
1000 		 */
1001 		cond_resched();
1002 
1003 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1004 		if (retval == IO_ERROR) {
1005 			retval = -EIO;
1006 			goto failure;
1007 		}
1008 		if (retval == POSITION_FOUND) {
1009 			reiserfs_warning(inode->i_sb,
1010 					 "vs-825: reiserfs_get_block: "
1011 					 "%K should not be found", &key);
1012 			retval = -EEXIST;
1013 			if (allocated_block_nr)
1014 				reiserfs_free_block(th, inode,
1015 						    allocated_block_nr, 1);
1016 			pathrelse(&path);
1017 			goto failure;
1018 		}
1019 		bh = get_last_bh(&path);
1020 		ih = get_ih(&path);
1021 		item = get_item(&path);
1022 		pos_in_item = path.pos_in_item;
1023 	} while (1);
1024 
1025 	retval = 0;
1026 
1027       failure:
1028 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1029 		int err;
1030 		if (th->t_trans_id)
1031 			reiserfs_update_sd(th, inode);
1032 		err = reiserfs_end_persistent_transaction(th);
1033 		if (err)
1034 			retval = err;
1035 	}
1036 
1037 	reiserfs_write_unlock(inode->i_sb);
1038 	reiserfs_check_path(&path);
1039 	return retval;
1040 }
1041 
1042 static int
1043 reiserfs_readpages(struct file *file, struct address_space *mapping,
1044 		   struct list_head *pages, unsigned nr_pages)
1045 {
1046 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1047 }
1048 
1049 /* Compute real number of used bytes by file
1050  * Following three functions can go away when we'll have enough space in stat item
1051  */
1052 static int real_space_diff(struct inode *inode, int sd_size)
1053 {
1054 	int bytes;
1055 	loff_t blocksize = inode->i_sb->s_blocksize;
1056 
1057 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1058 		return sd_size;
1059 
1060 	/* End of file is also in full block with indirect reference, so round
1061 	 ** up to the next block.
1062 	 **
1063 	 ** there is just no way to know if the tail is actually packed
1064 	 ** on the file, so we have to assume it isn't.  When we pack the
1065 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1066 	 ** node pointer
1067 	 */
1068 	bytes =
1069 	    ((inode->i_size +
1070 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1071 	    sd_size;
1072 	return bytes;
1073 }
1074 
1075 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1076 					int sd_size)
1077 {
1078 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1079 		return inode->i_size +
1080 		    (loff_t) (real_space_diff(inode, sd_size));
1081 	}
1082 	return ((loff_t) real_space_diff(inode, sd_size)) +
1083 	    (((loff_t) blocks) << 9);
1084 }
1085 
1086 /* Compute number of blocks used by file in ReiserFS counting */
1087 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1088 {
1089 	loff_t bytes = inode_get_bytes(inode);
1090 	loff_t real_space = real_space_diff(inode, sd_size);
1091 
1092 	/* keeps fsck and non-quota versions of reiserfs happy */
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		bytes += (loff_t) 511;
1095 	}
1096 
1097 	/* files from before the quota patch might i_blocks such that
1098 	 ** bytes < real_space.  Deal with that here to prevent it from
1099 	 ** going negative.
1100 	 */
1101 	if (bytes < real_space)
1102 		return 0;
1103 	return (bytes - real_space) >> 9;
1104 }
1105 
1106 //
1107 // BAD: new directories have stat data of new type and all other items
1108 // of old type. Version stored in the inode says about body items, so
1109 // in update_stat_data we can not rely on inode, but have to check
1110 // item version directly
1111 //
1112 
1113 // called by read_locked_inode
1114 static void init_inode(struct inode *inode, struct treepath *path)
1115 {
1116 	struct buffer_head *bh;
1117 	struct item_head *ih;
1118 	__u32 rdev;
1119 	//int version = ITEM_VERSION_1;
1120 
1121 	bh = PATH_PLAST_BUFFER(path);
1122 	ih = PATH_PITEM_HEAD(path);
1123 
1124 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1125 
1126 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1127 	REISERFS_I(inode)->i_flags = 0;
1128 	REISERFS_I(inode)->i_prealloc_block = 0;
1129 	REISERFS_I(inode)->i_prealloc_count = 0;
1130 	REISERFS_I(inode)->i_trans_id = 0;
1131 	REISERFS_I(inode)->i_jl = NULL;
1132 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1133 	reiserfs_init_acl_access(inode);
1134 	reiserfs_init_acl_default(inode);
1135 	reiserfs_init_xattr_rwsem(inode);
1136 
1137 	if (stat_data_v1(ih)) {
1138 		struct stat_data_v1 *sd =
1139 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1140 		unsigned long blocks;
1141 
1142 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1143 		set_inode_sd_version(inode, STAT_DATA_V1);
1144 		inode->i_mode = sd_v1_mode(sd);
1145 		inode->i_nlink = sd_v1_nlink(sd);
1146 		inode->i_uid = sd_v1_uid(sd);
1147 		inode->i_gid = sd_v1_gid(sd);
1148 		inode->i_size = sd_v1_size(sd);
1149 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1150 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1151 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1152 		inode->i_atime.tv_nsec = 0;
1153 		inode->i_ctime.tv_nsec = 0;
1154 		inode->i_mtime.tv_nsec = 0;
1155 
1156 		inode->i_blocks = sd_v1_blocks(sd);
1157 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1158 		blocks = (inode->i_size + 511) >> 9;
1159 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1160 		if (inode->i_blocks > blocks) {
1161 			// there was a bug in <=3.5.23 when i_blocks could take negative
1162 			// values. Starting from 3.5.17 this value could even be stored in
1163 			// stat data. For such files we set i_blocks based on file
1164 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1165 			// only updated if file's inode will ever change
1166 			inode->i_blocks = blocks;
1167 		}
1168 
1169 		rdev = sd_v1_rdev(sd);
1170 		REISERFS_I(inode)->i_first_direct_byte =
1171 		    sd_v1_first_direct_byte(sd);
1172 		/* an early bug in the quota code can give us an odd number for the
1173 		 ** block count.  This is incorrect, fix it here.
1174 		 */
1175 		if (inode->i_blocks & 1) {
1176 			inode->i_blocks++;
1177 		}
1178 		inode_set_bytes(inode,
1179 				to_real_used_space(inode, inode->i_blocks,
1180 						   SD_V1_SIZE));
1181 		/* nopack is initially zero for v1 objects. For v2 objects,
1182 		   nopack is initialised from sd_attrs */
1183 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1184 	} else {
1185 		// new stat data found, but object may have old items
1186 		// (directories and symlinks)
1187 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1188 
1189 		inode->i_mode = sd_v2_mode(sd);
1190 		inode->i_nlink = sd_v2_nlink(sd);
1191 		inode->i_uid = sd_v2_uid(sd);
1192 		inode->i_size = sd_v2_size(sd);
1193 		inode->i_gid = sd_v2_gid(sd);
1194 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1195 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1196 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1197 		inode->i_ctime.tv_nsec = 0;
1198 		inode->i_mtime.tv_nsec = 0;
1199 		inode->i_atime.tv_nsec = 0;
1200 		inode->i_blocks = sd_v2_blocks(sd);
1201 		rdev = sd_v2_rdev(sd);
1202 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1203 			inode->i_generation =
1204 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1205 		else
1206 			inode->i_generation = sd_v2_generation(sd);
1207 
1208 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1209 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1210 		else
1211 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1212 		REISERFS_I(inode)->i_first_direct_byte = 0;
1213 		set_inode_sd_version(inode, STAT_DATA_V2);
1214 		inode_set_bytes(inode,
1215 				to_real_used_space(inode, inode->i_blocks,
1216 						   SD_V2_SIZE));
1217 		/* read persistent inode attributes from sd and initalise
1218 		   generic inode flags from them */
1219 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1220 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1221 	}
1222 
1223 	pathrelse(path);
1224 	if (S_ISREG(inode->i_mode)) {
1225 		inode->i_op = &reiserfs_file_inode_operations;
1226 		inode->i_fop = &reiserfs_file_operations;
1227 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1228 	} else if (S_ISDIR(inode->i_mode)) {
1229 		inode->i_op = &reiserfs_dir_inode_operations;
1230 		inode->i_fop = &reiserfs_dir_operations;
1231 	} else if (S_ISLNK(inode->i_mode)) {
1232 		inode->i_op = &reiserfs_symlink_inode_operations;
1233 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1234 	} else {
1235 		inode->i_blocks = 0;
1236 		inode->i_op = &reiserfs_special_inode_operations;
1237 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1238 	}
1239 }
1240 
1241 // update new stat data with inode fields
1242 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1243 {
1244 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1245 	__u16 flags;
1246 
1247 	set_sd_v2_mode(sd_v2, inode->i_mode);
1248 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1249 	set_sd_v2_uid(sd_v2, inode->i_uid);
1250 	set_sd_v2_size(sd_v2, size);
1251 	set_sd_v2_gid(sd_v2, inode->i_gid);
1252 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1253 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1254 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1255 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1256 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1257 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1258 	else
1259 		set_sd_v2_generation(sd_v2, inode->i_generation);
1260 	flags = REISERFS_I(inode)->i_attrs;
1261 	i_attrs_to_sd_attrs(inode, &flags);
1262 	set_sd_v2_attrs(sd_v2, flags);
1263 }
1264 
1265 // used to copy inode's fields to old stat data
1266 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1267 {
1268 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1269 
1270 	set_sd_v1_mode(sd_v1, inode->i_mode);
1271 	set_sd_v1_uid(sd_v1, inode->i_uid);
1272 	set_sd_v1_gid(sd_v1, inode->i_gid);
1273 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1274 	set_sd_v1_size(sd_v1, size);
1275 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1276 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1277 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1278 
1279 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1280 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1281 	else
1282 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1283 
1284 	// Sigh. i_first_direct_byte is back
1285 	set_sd_v1_first_direct_byte(sd_v1,
1286 				    REISERFS_I(inode)->i_first_direct_byte);
1287 }
1288 
1289 /* NOTE, you must prepare the buffer head before sending it here,
1290 ** and then log it after the call
1291 */
1292 static void update_stat_data(struct treepath *path, struct inode *inode,
1293 			     loff_t size)
1294 {
1295 	struct buffer_head *bh;
1296 	struct item_head *ih;
1297 
1298 	bh = PATH_PLAST_BUFFER(path);
1299 	ih = PATH_PITEM_HEAD(path);
1300 
1301 	if (!is_statdata_le_ih(ih))
1302 		reiserfs_panic(inode->i_sb,
1303 			       "vs-13065: update_stat_data: key %k, found item %h",
1304 			       INODE_PKEY(inode), ih);
1305 
1306 	if (stat_data_v1(ih)) {
1307 		// path points to old stat data
1308 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1309 	} else {
1310 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1311 	}
1312 
1313 	return;
1314 }
1315 
1316 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1317 			     struct inode *inode, loff_t size)
1318 {
1319 	struct cpu_key key;
1320 	INITIALIZE_PATH(path);
1321 	struct buffer_head *bh;
1322 	int fs_gen;
1323 	struct item_head *ih, tmp_ih;
1324 	int retval;
1325 
1326 	BUG_ON(!th->t_trans_id);
1327 
1328 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1329 
1330 	for (;;) {
1331 		int pos;
1332 		/* look for the object's stat data */
1333 		retval = search_item(inode->i_sb, &key, &path);
1334 		if (retval == IO_ERROR) {
1335 			reiserfs_warning(inode->i_sb,
1336 					 "vs-13050: reiserfs_update_sd: "
1337 					 "i/o failure occurred trying to update %K stat data",
1338 					 &key);
1339 			return;
1340 		}
1341 		if (retval == ITEM_NOT_FOUND) {
1342 			pos = PATH_LAST_POSITION(&path);
1343 			pathrelse(&path);
1344 			if (inode->i_nlink == 0) {
1345 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1346 				return;
1347 			}
1348 			reiserfs_warning(inode->i_sb,
1349 					 "vs-13060: reiserfs_update_sd: "
1350 					 "stat data of object %k (nlink == %d) not found (pos %d)",
1351 					 INODE_PKEY(inode), inode->i_nlink,
1352 					 pos);
1353 			reiserfs_check_path(&path);
1354 			return;
1355 		}
1356 
1357 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1358 		 ** FS might change.  We have to detect that, and loop back to the
1359 		 ** search if the stat data item has moved
1360 		 */
1361 		bh = get_last_bh(&path);
1362 		ih = get_ih(&path);
1363 		copy_item_head(&tmp_ih, ih);
1364 		fs_gen = get_generation(inode->i_sb);
1365 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1366 		if (fs_changed(fs_gen, inode->i_sb)
1367 		    && item_moved(&tmp_ih, &path)) {
1368 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1369 			continue;	/* Stat_data item has been moved after scheduling. */
1370 		}
1371 		break;
1372 	}
1373 	update_stat_data(&path, inode, size);
1374 	journal_mark_dirty(th, th->t_super, bh);
1375 	pathrelse(&path);
1376 	return;
1377 }
1378 
1379 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1380 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1381 ** and clear the key in the private portion of the inode, otherwise a
1382 ** corresponding iput might try to delete whatever object the inode last
1383 ** represented.
1384 */
1385 static void reiserfs_make_bad_inode(struct inode *inode)
1386 {
1387 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1388 	make_bad_inode(inode);
1389 }
1390 
1391 //
1392 // initially this function was derived from minix or ext2's analog and
1393 // evolved as the prototype did
1394 //
1395 
1396 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1397 {
1398 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1399 	inode->i_ino = args->objectid;
1400 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1401 	return 0;
1402 }
1403 
1404 /* looks for stat data in the tree, and fills up the fields of in-core
1405    inode stat data fields */
1406 void reiserfs_read_locked_inode(struct inode *inode,
1407 				struct reiserfs_iget_args *args)
1408 {
1409 	INITIALIZE_PATH(path_to_sd);
1410 	struct cpu_key key;
1411 	unsigned long dirino;
1412 	int retval;
1413 
1414 	dirino = args->dirid;
1415 
1416 	/* set version 1, version 2 could be used too, because stat data
1417 	   key is the same in both versions */
1418 	key.version = KEY_FORMAT_3_5;
1419 	key.on_disk_key.k_dir_id = dirino;
1420 	key.on_disk_key.k_objectid = inode->i_ino;
1421 	key.on_disk_key.k_offset = 0;
1422 	key.on_disk_key.k_type = 0;
1423 
1424 	/* look for the object's stat data */
1425 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1426 	if (retval == IO_ERROR) {
1427 		reiserfs_warning(inode->i_sb,
1428 				 "vs-13070: reiserfs_read_locked_inode: "
1429 				 "i/o failure occurred trying to find stat data of %K",
1430 				 &key);
1431 		reiserfs_make_bad_inode(inode);
1432 		return;
1433 	}
1434 	if (retval != ITEM_FOUND) {
1435 		/* a stale NFS handle can trigger this without it being an error */
1436 		pathrelse(&path_to_sd);
1437 		reiserfs_make_bad_inode(inode);
1438 		inode->i_nlink = 0;
1439 		return;
1440 	}
1441 
1442 	init_inode(inode, &path_to_sd);
1443 
1444 	/* It is possible that knfsd is trying to access inode of a file
1445 	   that is being removed from the disk by some other thread. As we
1446 	   update sd on unlink all that is required is to check for nlink
1447 	   here. This bug was first found by Sizif when debugging
1448 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1449 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1450 
1451 	   More logical fix would require changes in fs/inode.c:iput() to
1452 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1453 	   in iget() to return NULL if I_FREEING inode is found in
1454 	   hash-table. */
1455 	/* Currently there is one place where it's ok to meet inode with
1456 	   nlink==0: processing of open-unlinked and half-truncated files
1457 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1458 	if ((inode->i_nlink == 0) &&
1459 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1460 		reiserfs_warning(inode->i_sb,
1461 				 "vs-13075: reiserfs_read_locked_inode: "
1462 				 "dead inode read from disk %K. "
1463 				 "This is likely to be race with knfsd. Ignore",
1464 				 &key);
1465 		reiserfs_make_bad_inode(inode);
1466 	}
1467 
1468 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1469 
1470 }
1471 
1472 /**
1473  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1474  *
1475  * @inode:    inode from hash table to check
1476  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1477  *
1478  * This function is called by iget5_locked() to distinguish reiserfs inodes
1479  * having the same inode numbers. Such inodes can only exist due to some
1480  * error condition. One of them should be bad. Inodes with identical
1481  * inode numbers (objectids) are distinguished by parent directory ids.
1482  *
1483  */
1484 int reiserfs_find_actor(struct inode *inode, void *opaque)
1485 {
1486 	struct reiserfs_iget_args *args;
1487 
1488 	args = opaque;
1489 	/* args is already in CPU order */
1490 	return (inode->i_ino == args->objectid) &&
1491 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1492 }
1493 
1494 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1495 {
1496 	struct inode *inode;
1497 	struct reiserfs_iget_args args;
1498 
1499 	args.objectid = key->on_disk_key.k_objectid;
1500 	args.dirid = key->on_disk_key.k_dir_id;
1501 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1502 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1503 			     (void *)(&args));
1504 	if (!inode)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	if (inode->i_state & I_NEW) {
1508 		reiserfs_read_locked_inode(inode, &args);
1509 		unlock_new_inode(inode);
1510 	}
1511 
1512 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1513 		/* either due to i/o error or a stale NFS handle */
1514 		iput(inode);
1515 		inode = NULL;
1516 	}
1517 	return inode;
1518 }
1519 
1520 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1521 	u32 objectid, u32 dir_id, u32 generation)
1522 
1523 {
1524 	struct cpu_key key;
1525 	struct dentry *result;
1526 	struct inode *inode;
1527 
1528 	key.on_disk_key.k_objectid = objectid;
1529 	key.on_disk_key.k_dir_id = dir_id;
1530 	reiserfs_write_lock(sb);
1531 	inode = reiserfs_iget(sb, &key);
1532 	if (inode && !IS_ERR(inode) && generation != 0 &&
1533 	    generation != inode->i_generation) {
1534 		iput(inode);
1535 		inode = NULL;
1536 	}
1537 	reiserfs_write_unlock(sb);
1538 	if (!inode)
1539 		inode = ERR_PTR(-ESTALE);
1540 	if (IS_ERR(inode))
1541 		return ERR_CAST(inode);
1542 	result = d_alloc_anon(inode);
1543 	if (!result) {
1544 		iput(inode);
1545 		return ERR_PTR(-ENOMEM);
1546 	}
1547 	return result;
1548 }
1549 
1550 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1551 		int fh_len, int fh_type)
1552 {
1553 	/* fhtype happens to reflect the number of u32s encoded.
1554 	 * due to a bug in earlier code, fhtype might indicate there
1555 	 * are more u32s then actually fitted.
1556 	 * so if fhtype seems to be more than len, reduce fhtype.
1557 	 * Valid types are:
1558 	 *   2 - objectid + dir_id - legacy support
1559 	 *   3 - objectid + dir_id + generation
1560 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1561 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1562 	 *   6 - as above plus generation of directory
1563 	 * 6 does not fit in NFSv2 handles
1564 	 */
1565 	if (fh_type > fh_len) {
1566 		if (fh_type != 6 || fh_len != 5)
1567 			reiserfs_warning(sb,
1568 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1569 				fh_type, fh_len);
1570 		fh_type = 5;
1571 	}
1572 
1573 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1574 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1575 }
1576 
1577 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1578 		int fh_len, int fh_type)
1579 {
1580 	if (fh_type < 4)
1581 		return NULL;
1582 
1583 	return reiserfs_get_dentry(sb,
1584 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1585 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1586 		(fh_type == 6) ? fid->raw[5] : 0);
1587 }
1588 
1589 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1590 		       int need_parent)
1591 {
1592 	struct inode *inode = dentry->d_inode;
1593 	int maxlen = *lenp;
1594 
1595 	if (maxlen < 3)
1596 		return 255;
1597 
1598 	data[0] = inode->i_ino;
1599 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1600 	data[2] = inode->i_generation;
1601 	*lenp = 3;
1602 	/* no room for directory info? return what we've stored so far */
1603 	if (maxlen < 5 || !need_parent)
1604 		return 3;
1605 
1606 	spin_lock(&dentry->d_lock);
1607 	inode = dentry->d_parent->d_inode;
1608 	data[3] = inode->i_ino;
1609 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1610 	*lenp = 5;
1611 	if (maxlen >= 6) {
1612 		data[5] = inode->i_generation;
1613 		*lenp = 6;
1614 	}
1615 	spin_unlock(&dentry->d_lock);
1616 	return *lenp;
1617 }
1618 
1619 /* looks for stat data, then copies fields to it, marks the buffer
1620    containing stat data as dirty */
1621 /* reiserfs inodes are never really dirty, since the dirty inode call
1622 ** always logs them.  This call allows the VFS inode marking routines
1623 ** to properly mark inodes for datasync and such, but only actually
1624 ** does something when called for a synchronous update.
1625 */
1626 int reiserfs_write_inode(struct inode *inode, int do_sync)
1627 {
1628 	struct reiserfs_transaction_handle th;
1629 	int jbegin_count = 1;
1630 
1631 	if (inode->i_sb->s_flags & MS_RDONLY)
1632 		return -EROFS;
1633 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1634 	 ** these cases are just when the system needs ram, not when the
1635 	 ** inode needs to reach disk for safety, and they can safely be
1636 	 ** ignored because the altered inode has already been logged.
1637 	 */
1638 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1639 		reiserfs_write_lock(inode->i_sb);
1640 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1641 			reiserfs_update_sd(&th, inode);
1642 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1643 		}
1644 		reiserfs_write_unlock(inode->i_sb);
1645 	}
1646 	return 0;
1647 }
1648 
1649 /* stat data of new object is inserted already, this inserts the item
1650    containing "." and ".." entries */
1651 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1652 				  struct inode *inode,
1653 				  struct item_head *ih, struct treepath *path,
1654 				  struct inode *dir)
1655 {
1656 	struct super_block *sb = th->t_super;
1657 	char empty_dir[EMPTY_DIR_SIZE];
1658 	char *body = empty_dir;
1659 	struct cpu_key key;
1660 	int retval;
1661 
1662 	BUG_ON(!th->t_trans_id);
1663 
1664 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1665 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1666 		      TYPE_DIRENTRY, 3 /*key length */ );
1667 
1668 	/* compose item head for new item. Directories consist of items of
1669 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1670 	   is done by reiserfs_new_inode */
1671 	if (old_format_only(sb)) {
1672 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1673 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1674 
1675 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1676 				       ih->ih_key.k_objectid,
1677 				       INODE_PKEY(dir)->k_dir_id,
1678 				       INODE_PKEY(dir)->k_objectid);
1679 	} else {
1680 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1681 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1682 
1683 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1684 				    ih->ih_key.k_objectid,
1685 				    INODE_PKEY(dir)->k_dir_id,
1686 				    INODE_PKEY(dir)->k_objectid);
1687 	}
1688 
1689 	/* look for place in the tree for new item */
1690 	retval = search_item(sb, &key, path);
1691 	if (retval == IO_ERROR) {
1692 		reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1693 				 "i/o failure occurred creating new directory");
1694 		return -EIO;
1695 	}
1696 	if (retval == ITEM_FOUND) {
1697 		pathrelse(path);
1698 		reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1699 				 "object with this key exists (%k)",
1700 				 &(ih->ih_key));
1701 		return -EEXIST;
1702 	}
1703 
1704 	/* insert item, that is empty directory item */
1705 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1706 }
1707 
1708 /* stat data of object has been inserted, this inserts the item
1709    containing the body of symlink */
1710 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1711 				struct item_head *ih,
1712 				struct treepath *path, const char *symname,
1713 				int item_len)
1714 {
1715 	struct super_block *sb = th->t_super;
1716 	struct cpu_key key;
1717 	int retval;
1718 
1719 	BUG_ON(!th->t_trans_id);
1720 
1721 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1722 		      le32_to_cpu(ih->ih_key.k_dir_id),
1723 		      le32_to_cpu(ih->ih_key.k_objectid),
1724 		      1, TYPE_DIRECT, 3 /*key length */ );
1725 
1726 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1727 			  0 /*free_space */ );
1728 
1729 	/* look for place in the tree for new item */
1730 	retval = search_item(sb, &key, path);
1731 	if (retval == IO_ERROR) {
1732 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1733 				 "i/o failure occurred creating new symlink");
1734 		return -EIO;
1735 	}
1736 	if (retval == ITEM_FOUND) {
1737 		pathrelse(path);
1738 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1739 				 "object with this key exists (%k)",
1740 				 &(ih->ih_key));
1741 		return -EEXIST;
1742 	}
1743 
1744 	/* insert item, that is body of symlink */
1745 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1746 }
1747 
1748 /* inserts the stat data into the tree, and then calls
1749    reiserfs_new_directory (to insert ".", ".." item if new object is
1750    directory) or reiserfs_new_symlink (to insert symlink body if new
1751    object is symlink) or nothing (if new object is regular file)
1752 
1753    NOTE! uid and gid must already be set in the inode.  If we return
1754    non-zero due to an error, we have to drop the quota previously allocated
1755    for the fresh inode.  This can only be done outside a transaction, so
1756    if we return non-zero, we also end the transaction.  */
1757 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1758 		       struct inode *dir, int mode, const char *symname,
1759 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1760 		          strlen (symname) for symlinks) */
1761 		       loff_t i_size, struct dentry *dentry,
1762 		       struct inode *inode)
1763 {
1764 	struct super_block *sb;
1765 	INITIALIZE_PATH(path_to_key);
1766 	struct cpu_key key;
1767 	struct item_head ih;
1768 	struct stat_data sd;
1769 	int retval;
1770 	int err;
1771 
1772 	BUG_ON(!th->t_trans_id);
1773 
1774 	if (DQUOT_ALLOC_INODE(inode)) {
1775 		err = -EDQUOT;
1776 		goto out_end_trans;
1777 	}
1778 	if (!dir->i_nlink) {
1779 		err = -EPERM;
1780 		goto out_bad_inode;
1781 	}
1782 
1783 	sb = dir->i_sb;
1784 
1785 	/* item head of new item */
1786 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1787 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1788 	if (!ih.ih_key.k_objectid) {
1789 		err = -ENOMEM;
1790 		goto out_bad_inode;
1791 	}
1792 	if (old_format_only(sb))
1793 		/* not a perfect generation count, as object ids can be reused, but
1794 		 ** this is as good as reiserfs can do right now.
1795 		 ** note that the private part of inode isn't filled in yet, we have
1796 		 ** to use the directory.
1797 		 */
1798 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1799 	else
1800 #if defined( USE_INODE_GENERATION_COUNTER )
1801 		inode->i_generation =
1802 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1803 #else
1804 		inode->i_generation = ++event;
1805 #endif
1806 
1807 	/* fill stat data */
1808 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1809 
1810 	/* uid and gid must already be set by the caller for quota init */
1811 
1812 	/* symlink cannot be immutable or append only, right? */
1813 	if (S_ISLNK(inode->i_mode))
1814 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1815 
1816 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1817 	inode->i_size = i_size;
1818 	inode->i_blocks = 0;
1819 	inode->i_bytes = 0;
1820 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1821 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1822 
1823 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1824 	REISERFS_I(inode)->i_flags = 0;
1825 	REISERFS_I(inode)->i_prealloc_block = 0;
1826 	REISERFS_I(inode)->i_prealloc_count = 0;
1827 	REISERFS_I(inode)->i_trans_id = 0;
1828 	REISERFS_I(inode)->i_jl = NULL;
1829 	REISERFS_I(inode)->i_attrs =
1830 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1831 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1832 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1833 	reiserfs_init_acl_access(inode);
1834 	reiserfs_init_acl_default(inode);
1835 	reiserfs_init_xattr_rwsem(inode);
1836 
1837 	if (old_format_only(sb))
1838 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1839 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1840 	else
1841 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1842 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1843 
1844 	/* key to search for correct place for new stat data */
1845 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1846 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1847 		      TYPE_STAT_DATA, 3 /*key length */ );
1848 
1849 	/* find proper place for inserting of stat data */
1850 	retval = search_item(sb, &key, &path_to_key);
1851 	if (retval == IO_ERROR) {
1852 		err = -EIO;
1853 		goto out_bad_inode;
1854 	}
1855 	if (retval == ITEM_FOUND) {
1856 		pathrelse(&path_to_key);
1857 		err = -EEXIST;
1858 		goto out_bad_inode;
1859 	}
1860 	if (old_format_only(sb)) {
1861 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1862 			pathrelse(&path_to_key);
1863 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1864 			err = -EINVAL;
1865 			goto out_bad_inode;
1866 		}
1867 		inode2sd_v1(&sd, inode, inode->i_size);
1868 	} else {
1869 		inode2sd(&sd, inode, inode->i_size);
1870 	}
1871 	// these do not go to on-disk stat data
1872 	inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1873 
1874 	// store in in-core inode the key of stat data and version all
1875 	// object items will have (directory items will have old offset
1876 	// format, other new objects will consist of new items)
1877 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1878 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1879 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1880 	else
1881 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1882 	if (old_format_only(sb))
1883 		set_inode_sd_version(inode, STAT_DATA_V1);
1884 	else
1885 		set_inode_sd_version(inode, STAT_DATA_V2);
1886 
1887 	/* insert the stat data into the tree */
1888 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1889 	if (REISERFS_I(dir)->new_packing_locality)
1890 		th->displace_new_blocks = 1;
1891 #endif
1892 	retval =
1893 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1894 				 (char *)(&sd));
1895 	if (retval) {
1896 		err = retval;
1897 		reiserfs_check_path(&path_to_key);
1898 		goto out_bad_inode;
1899 	}
1900 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1901 	if (!th->displace_new_blocks)
1902 		REISERFS_I(dir)->new_packing_locality = 0;
1903 #endif
1904 	if (S_ISDIR(mode)) {
1905 		/* insert item with "." and ".." */
1906 		retval =
1907 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1908 	}
1909 
1910 	if (S_ISLNK(mode)) {
1911 		/* insert body of symlink */
1912 		if (!old_format_only(sb))
1913 			i_size = ROUND_UP(i_size);
1914 		retval =
1915 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1916 					 i_size);
1917 	}
1918 	if (retval) {
1919 		err = retval;
1920 		reiserfs_check_path(&path_to_key);
1921 		journal_end(th, th->t_super, th->t_blocks_allocated);
1922 		goto out_inserted_sd;
1923 	}
1924 
1925 	/* XXX CHECK THIS */
1926 	if (reiserfs_posixacl(inode->i_sb)) {
1927 		retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1928 		if (retval) {
1929 			err = retval;
1930 			reiserfs_check_path(&path_to_key);
1931 			journal_end(th, th->t_super, th->t_blocks_allocated);
1932 			goto out_inserted_sd;
1933 		}
1934 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1935 		reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1936 				 "but vfs thinks they are!");
1937 	} else if (is_reiserfs_priv_object(dir)) {
1938 		reiserfs_mark_inode_private(inode);
1939 	}
1940 
1941 	insert_inode_hash(inode);
1942 	reiserfs_update_sd(th, inode);
1943 	reiserfs_check_path(&path_to_key);
1944 
1945 	return 0;
1946 
1947 /* it looks like you can easily compress these two goto targets into
1948  * one.  Keeping it like this doesn't actually hurt anything, and they
1949  * are place holders for what the quota code actually needs.
1950  */
1951       out_bad_inode:
1952 	/* Invalidate the object, nothing was inserted yet */
1953 	INODE_PKEY(inode)->k_objectid = 0;
1954 
1955 	/* Quota change must be inside a transaction for journaling */
1956 	DQUOT_FREE_INODE(inode);
1957 
1958       out_end_trans:
1959 	journal_end(th, th->t_super, th->t_blocks_allocated);
1960 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1961 	DQUOT_DROP(inode);
1962 	inode->i_flags |= S_NOQUOTA;
1963 	make_bad_inode(inode);
1964 
1965       out_inserted_sd:
1966 	inode->i_nlink = 0;
1967 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1968 
1969 	/* If we were inheriting an ACL, we need to release the lock so that
1970 	 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1971 	 * code really needs to be reworked, but this will take care of it
1972 	 * for now. -jeffm */
1973 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1974 	if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1975 		reiserfs_write_unlock_xattrs(dir->i_sb);
1976 		iput(inode);
1977 		reiserfs_write_lock_xattrs(dir->i_sb);
1978 	} else
1979 #endif
1980 		iput(inode);
1981 	return err;
1982 }
1983 
1984 /*
1985 ** finds the tail page in the page cache,
1986 ** reads the last block in.
1987 **
1988 ** On success, page_result is set to a locked, pinned page, and bh_result
1989 ** is set to an up to date buffer for the last block in the file.  returns 0.
1990 **
1991 ** tail conversion is not done, so bh_result might not be valid for writing
1992 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1993 ** trying to write the block.
1994 **
1995 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1996 */
1997 static int grab_tail_page(struct inode *p_s_inode,
1998 			  struct page **page_result,
1999 			  struct buffer_head **bh_result)
2000 {
2001 
2002 	/* we want the page with the last byte in the file,
2003 	 ** not the page that will hold the next byte for appending
2004 	 */
2005 	unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2006 	unsigned long pos = 0;
2007 	unsigned long start = 0;
2008 	unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2009 	unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2010 	struct buffer_head *bh;
2011 	struct buffer_head *head;
2012 	struct page *page;
2013 	int error;
2014 
2015 	/* we know that we are only called with inode->i_size > 0.
2016 	 ** we also know that a file tail can never be as big as a block
2017 	 ** If i_size % blocksize == 0, our file is currently block aligned
2018 	 ** and it won't need converting or zeroing after a truncate.
2019 	 */
2020 	if ((offset & (blocksize - 1)) == 0) {
2021 		return -ENOENT;
2022 	}
2023 	page = grab_cache_page(p_s_inode->i_mapping, index);
2024 	error = -ENOMEM;
2025 	if (!page) {
2026 		goto out;
2027 	}
2028 	/* start within the page of the last block in the file */
2029 	start = (offset / blocksize) * blocksize;
2030 
2031 	error = block_prepare_write(page, start, offset,
2032 				    reiserfs_get_block_create_0);
2033 	if (error)
2034 		goto unlock;
2035 
2036 	head = page_buffers(page);
2037 	bh = head;
2038 	do {
2039 		if (pos >= start) {
2040 			break;
2041 		}
2042 		bh = bh->b_this_page;
2043 		pos += blocksize;
2044 	} while (bh != head);
2045 
2046 	if (!buffer_uptodate(bh)) {
2047 		/* note, this should never happen, prepare_write should
2048 		 ** be taking care of this for us.  If the buffer isn't up to date,
2049 		 ** I've screwed up the code to find the buffer, or the code to
2050 		 ** call prepare_write
2051 		 */
2052 		reiserfs_warning(p_s_inode->i_sb,
2053 				 "clm-6000: error reading block %lu on dev %s",
2054 				 bh->b_blocknr,
2055 				 reiserfs_bdevname(p_s_inode->i_sb));
2056 		error = -EIO;
2057 		goto unlock;
2058 	}
2059 	*bh_result = bh;
2060 	*page_result = page;
2061 
2062       out:
2063 	return error;
2064 
2065       unlock:
2066 	unlock_page(page);
2067 	page_cache_release(page);
2068 	return error;
2069 }
2070 
2071 /*
2072 ** vfs version of truncate file.  Must NOT be called with
2073 ** a transaction already started.
2074 **
2075 ** some code taken from block_truncate_page
2076 */
2077 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2078 {
2079 	struct reiserfs_transaction_handle th;
2080 	/* we want the offset for the first byte after the end of the file */
2081 	unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2082 	unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2083 	unsigned length;
2084 	struct page *page = NULL;
2085 	int error;
2086 	struct buffer_head *bh = NULL;
2087 	int err2;
2088 
2089 	reiserfs_write_lock(p_s_inode->i_sb);
2090 
2091 	if (p_s_inode->i_size > 0) {
2092 		if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2093 			// -ENOENT means we truncated past the end of the file,
2094 			// and get_block_create_0 could not find a block to read in,
2095 			// which is ok.
2096 			if (error != -ENOENT)
2097 				reiserfs_warning(p_s_inode->i_sb,
2098 						 "clm-6001: grab_tail_page failed %d",
2099 						 error);
2100 			page = NULL;
2101 			bh = NULL;
2102 		}
2103 	}
2104 
2105 	/* so, if page != NULL, we have a buffer head for the offset at
2106 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2107 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2108 	 ** and no zeroing is required on disk.  We zero after the truncate,
2109 	 ** because the truncate might pack the item anyway
2110 	 ** (it will unmap bh if it packs).
2111 	 */
2112 	/* it is enough to reserve space in transaction for 2 balancings:
2113 	   one for "save" link adding and another for the first
2114 	   cut_from_item. 1 is for update_sd */
2115 	error = journal_begin(&th, p_s_inode->i_sb,
2116 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2117 	if (error)
2118 		goto out;
2119 	reiserfs_update_inode_transaction(p_s_inode);
2120 	if (update_timestamps)
2121 		/* we are doing real truncate: if the system crashes before the last
2122 		   transaction of truncating gets committed - on reboot the file
2123 		   either appears truncated properly or not truncated at all */
2124 		add_save_link(&th, p_s_inode, 1);
2125 	err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2126 	error =
2127 	    journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2128 	if (error)
2129 		goto out;
2130 
2131 	/* check reiserfs_do_truncate after ending the transaction */
2132 	if (err2) {
2133 		error = err2;
2134   		goto out;
2135 	}
2136 
2137 	if (update_timestamps) {
2138 		error = remove_save_link(p_s_inode, 1 /* truncate */ );
2139 		if (error)
2140 			goto out;
2141 	}
2142 
2143 	if (page) {
2144 		length = offset & (blocksize - 1);
2145 		/* if we are not on a block boundary */
2146 		if (length) {
2147 			length = blocksize - length;
2148 			zero_user(page, offset, length);
2149 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2150 				mark_buffer_dirty(bh);
2151 			}
2152 		}
2153 		unlock_page(page);
2154 		page_cache_release(page);
2155 	}
2156 
2157 	reiserfs_write_unlock(p_s_inode->i_sb);
2158 	return 0;
2159       out:
2160 	if (page) {
2161 		unlock_page(page);
2162 		page_cache_release(page);
2163 	}
2164 	reiserfs_write_unlock(p_s_inode->i_sb);
2165 	return error;
2166 }
2167 
2168 static int map_block_for_writepage(struct inode *inode,
2169 				   struct buffer_head *bh_result,
2170 				   unsigned long block)
2171 {
2172 	struct reiserfs_transaction_handle th;
2173 	int fs_gen;
2174 	struct item_head tmp_ih;
2175 	struct item_head *ih;
2176 	struct buffer_head *bh;
2177 	__le32 *item;
2178 	struct cpu_key key;
2179 	INITIALIZE_PATH(path);
2180 	int pos_in_item;
2181 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2182 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2183 	int retval;
2184 	int use_get_block = 0;
2185 	int bytes_copied = 0;
2186 	int copy_size;
2187 	int trans_running = 0;
2188 
2189 	/* catch places below that try to log something without starting a trans */
2190 	th.t_trans_id = 0;
2191 
2192 	if (!buffer_uptodate(bh_result)) {
2193 		return -EIO;
2194 	}
2195 
2196 	kmap(bh_result->b_page);
2197       start_over:
2198 	reiserfs_write_lock(inode->i_sb);
2199 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2200 
2201       research:
2202 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2203 	if (retval != POSITION_FOUND) {
2204 		use_get_block = 1;
2205 		goto out;
2206 	}
2207 
2208 	bh = get_last_bh(&path);
2209 	ih = get_ih(&path);
2210 	item = get_item(&path);
2211 	pos_in_item = path.pos_in_item;
2212 
2213 	/* we've found an unformatted node */
2214 	if (indirect_item_found(retval, ih)) {
2215 		if (bytes_copied > 0) {
2216 			reiserfs_warning(inode->i_sb,
2217 					 "clm-6002: bytes_copied %d",
2218 					 bytes_copied);
2219 		}
2220 		if (!get_block_num(item, pos_in_item)) {
2221 			/* crap, we are writing to a hole */
2222 			use_get_block = 1;
2223 			goto out;
2224 		}
2225 		set_block_dev_mapped(bh_result,
2226 				     get_block_num(item, pos_in_item), inode);
2227 	} else if (is_direct_le_ih(ih)) {
2228 		char *p;
2229 		p = page_address(bh_result->b_page);
2230 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2231 		copy_size = ih_item_len(ih) - pos_in_item;
2232 
2233 		fs_gen = get_generation(inode->i_sb);
2234 		copy_item_head(&tmp_ih, ih);
2235 
2236 		if (!trans_running) {
2237 			/* vs-3050 is gone, no need to drop the path */
2238 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2239 			if (retval)
2240 				goto out;
2241 			reiserfs_update_inode_transaction(inode);
2242 			trans_running = 1;
2243 			if (fs_changed(fs_gen, inode->i_sb)
2244 			    && item_moved(&tmp_ih, &path)) {
2245 				reiserfs_restore_prepared_buffer(inode->i_sb,
2246 								 bh);
2247 				goto research;
2248 			}
2249 		}
2250 
2251 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2252 
2253 		if (fs_changed(fs_gen, inode->i_sb)
2254 		    && item_moved(&tmp_ih, &path)) {
2255 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2256 			goto research;
2257 		}
2258 
2259 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2260 		       copy_size);
2261 
2262 		journal_mark_dirty(&th, inode->i_sb, bh);
2263 		bytes_copied += copy_size;
2264 		set_block_dev_mapped(bh_result, 0, inode);
2265 
2266 		/* are there still bytes left? */
2267 		if (bytes_copied < bh_result->b_size &&
2268 		    (byte_offset + bytes_copied) < inode->i_size) {
2269 			set_cpu_key_k_offset(&key,
2270 					     cpu_key_k_offset(&key) +
2271 					     copy_size);
2272 			goto research;
2273 		}
2274 	} else {
2275 		reiserfs_warning(inode->i_sb,
2276 				 "clm-6003: bad item inode %lu, device %s",
2277 				 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2278 		retval = -EIO;
2279 		goto out;
2280 	}
2281 	retval = 0;
2282 
2283       out:
2284 	pathrelse(&path);
2285 	if (trans_running) {
2286 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2287 		if (err)
2288 			retval = err;
2289 		trans_running = 0;
2290 	}
2291 	reiserfs_write_unlock(inode->i_sb);
2292 
2293 	/* this is where we fill in holes in the file. */
2294 	if (use_get_block) {
2295 		retval = reiserfs_get_block(inode, block, bh_result,
2296 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2297 					    | GET_BLOCK_NO_DANGLE);
2298 		if (!retval) {
2299 			if (!buffer_mapped(bh_result)
2300 			    || bh_result->b_blocknr == 0) {
2301 				/* get_block failed to find a mapped unformatted node. */
2302 				use_get_block = 0;
2303 				goto start_over;
2304 			}
2305 		}
2306 	}
2307 	kunmap(bh_result->b_page);
2308 
2309 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2310 		/* we've copied data from the page into the direct item, so the
2311 		 * buffer in the page is now clean, mark it to reflect that.
2312 		 */
2313 		lock_buffer(bh_result);
2314 		clear_buffer_dirty(bh_result);
2315 		unlock_buffer(bh_result);
2316 	}
2317 	return retval;
2318 }
2319 
2320 /*
2321  * mason@suse.com: updated in 2.5.54 to follow the same general io
2322  * start/recovery path as __block_write_full_page, along with special
2323  * code to handle reiserfs tails.
2324  */
2325 static int reiserfs_write_full_page(struct page *page,
2326 				    struct writeback_control *wbc)
2327 {
2328 	struct inode *inode = page->mapping->host;
2329 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2330 	int error = 0;
2331 	unsigned long block;
2332 	sector_t last_block;
2333 	struct buffer_head *head, *bh;
2334 	int partial = 0;
2335 	int nr = 0;
2336 	int checked = PageChecked(page);
2337 	struct reiserfs_transaction_handle th;
2338 	struct super_block *s = inode->i_sb;
2339 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2340 	th.t_trans_id = 0;
2341 
2342 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2343 	if (checked && (current->flags & PF_MEMALLOC)) {
2344 		redirty_page_for_writepage(wbc, page);
2345 		unlock_page(page);
2346 		return 0;
2347 	}
2348 
2349 	/* The page dirty bit is cleared before writepage is called, which
2350 	 * means we have to tell create_empty_buffers to make dirty buffers
2351 	 * The page really should be up to date at this point, so tossing
2352 	 * in the BH_Uptodate is just a sanity check.
2353 	 */
2354 	if (!page_has_buffers(page)) {
2355 		create_empty_buffers(page, s->s_blocksize,
2356 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2357 	}
2358 	head = page_buffers(page);
2359 
2360 	/* last page in the file, zero out any contents past the
2361 	 ** last byte in the file
2362 	 */
2363 	if (page->index >= end_index) {
2364 		unsigned last_offset;
2365 
2366 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2367 		/* no file contents in this page */
2368 		if (page->index >= end_index + 1 || !last_offset) {
2369 			unlock_page(page);
2370 			return 0;
2371 		}
2372 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2373 	}
2374 	bh = head;
2375 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2376 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2377 	/* first map all the buffers, logging any direct items we find */
2378 	do {
2379 		if (block > last_block) {
2380 			/*
2381 			 * This can happen when the block size is less than
2382 			 * the page size.  The corresponding bytes in the page
2383 			 * were zero filled above
2384 			 */
2385 			clear_buffer_dirty(bh);
2386 			set_buffer_uptodate(bh);
2387 		} else if ((checked || buffer_dirty(bh)) &&
2388 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2389 						       && bh->b_blocknr ==
2390 						       0))) {
2391 			/* not mapped yet, or it points to a direct item, search
2392 			 * the btree for the mapping info, and log any direct
2393 			 * items found
2394 			 */
2395 			if ((error = map_block_for_writepage(inode, bh, block))) {
2396 				goto fail;
2397 			}
2398 		}
2399 		bh = bh->b_this_page;
2400 		block++;
2401 	} while (bh != head);
2402 
2403 	/*
2404 	 * we start the transaction after map_block_for_writepage,
2405 	 * because it can create holes in the file (an unbounded operation).
2406 	 * starting it here, we can make a reliable estimate for how many
2407 	 * blocks we're going to log
2408 	 */
2409 	if (checked) {
2410 		ClearPageChecked(page);
2411 		reiserfs_write_lock(s);
2412 		error = journal_begin(&th, s, bh_per_page + 1);
2413 		if (error) {
2414 			reiserfs_write_unlock(s);
2415 			goto fail;
2416 		}
2417 		reiserfs_update_inode_transaction(inode);
2418 	}
2419 	/* now go through and lock any dirty buffers on the page */
2420 	do {
2421 		get_bh(bh);
2422 		if (!buffer_mapped(bh))
2423 			continue;
2424 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2425 			continue;
2426 
2427 		if (checked) {
2428 			reiserfs_prepare_for_journal(s, bh, 1);
2429 			journal_mark_dirty(&th, s, bh);
2430 			continue;
2431 		}
2432 		/* from this point on, we know the buffer is mapped to a
2433 		 * real block and not a direct item
2434 		 */
2435 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2436 			lock_buffer(bh);
2437 		} else {
2438 			if (!trylock_buffer(bh)) {
2439 				redirty_page_for_writepage(wbc, page);
2440 				continue;
2441 			}
2442 		}
2443 		if (test_clear_buffer_dirty(bh)) {
2444 			mark_buffer_async_write(bh);
2445 		} else {
2446 			unlock_buffer(bh);
2447 		}
2448 	} while ((bh = bh->b_this_page) != head);
2449 
2450 	if (checked) {
2451 		error = journal_end(&th, s, bh_per_page + 1);
2452 		reiserfs_write_unlock(s);
2453 		if (error)
2454 			goto fail;
2455 	}
2456 	BUG_ON(PageWriteback(page));
2457 	set_page_writeback(page);
2458 	unlock_page(page);
2459 
2460 	/*
2461 	 * since any buffer might be the only dirty buffer on the page,
2462 	 * the first submit_bh can bring the page out of writeback.
2463 	 * be careful with the buffers.
2464 	 */
2465 	do {
2466 		struct buffer_head *next = bh->b_this_page;
2467 		if (buffer_async_write(bh)) {
2468 			submit_bh(WRITE, bh);
2469 			nr++;
2470 		}
2471 		put_bh(bh);
2472 		bh = next;
2473 	} while (bh != head);
2474 
2475 	error = 0;
2476       done:
2477 	if (nr == 0) {
2478 		/*
2479 		 * if this page only had a direct item, it is very possible for
2480 		 * no io to be required without there being an error.  Or,
2481 		 * someone else could have locked them and sent them down the
2482 		 * pipe without locking the page
2483 		 */
2484 		bh = head;
2485 		do {
2486 			if (!buffer_uptodate(bh)) {
2487 				partial = 1;
2488 				break;
2489 			}
2490 			bh = bh->b_this_page;
2491 		} while (bh != head);
2492 		if (!partial)
2493 			SetPageUptodate(page);
2494 		end_page_writeback(page);
2495 	}
2496 	return error;
2497 
2498       fail:
2499 	/* catches various errors, we need to make sure any valid dirty blocks
2500 	 * get to the media.  The page is currently locked and not marked for
2501 	 * writeback
2502 	 */
2503 	ClearPageUptodate(page);
2504 	bh = head;
2505 	do {
2506 		get_bh(bh);
2507 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2508 			lock_buffer(bh);
2509 			mark_buffer_async_write(bh);
2510 		} else {
2511 			/*
2512 			 * clear any dirty bits that might have come from getting
2513 			 * attached to a dirty page
2514 			 */
2515 			clear_buffer_dirty(bh);
2516 		}
2517 		bh = bh->b_this_page;
2518 	} while (bh != head);
2519 	SetPageError(page);
2520 	BUG_ON(PageWriteback(page));
2521 	set_page_writeback(page);
2522 	unlock_page(page);
2523 	do {
2524 		struct buffer_head *next = bh->b_this_page;
2525 		if (buffer_async_write(bh)) {
2526 			clear_buffer_dirty(bh);
2527 			submit_bh(WRITE, bh);
2528 			nr++;
2529 		}
2530 		put_bh(bh);
2531 		bh = next;
2532 	} while (bh != head);
2533 	goto done;
2534 }
2535 
2536 static int reiserfs_readpage(struct file *f, struct page *page)
2537 {
2538 	return block_read_full_page(page, reiserfs_get_block);
2539 }
2540 
2541 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2542 {
2543 	struct inode *inode = page->mapping->host;
2544 	reiserfs_wait_on_write_block(inode->i_sb);
2545 	return reiserfs_write_full_page(page, wbc);
2546 }
2547 
2548 static int reiserfs_write_begin(struct file *file,
2549 				struct address_space *mapping,
2550 				loff_t pos, unsigned len, unsigned flags,
2551 				struct page **pagep, void **fsdata)
2552 {
2553 	struct inode *inode;
2554 	struct page *page;
2555 	pgoff_t index;
2556 	int ret;
2557 	int old_ref = 0;
2558 
2559  	inode = mapping->host;
2560 	*fsdata = 0;
2561  	if (flags & AOP_FLAG_CONT_EXPAND &&
2562  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2563  		pos ++;
2564 		*fsdata = (void *)(unsigned long)flags;
2565 	}
2566 
2567 	index = pos >> PAGE_CACHE_SHIFT;
2568 	page = __grab_cache_page(mapping, index);
2569 	if (!page)
2570 		return -ENOMEM;
2571 	*pagep = page;
2572 
2573 	reiserfs_wait_on_write_block(inode->i_sb);
2574 	fix_tail_page_for_writing(page);
2575 	if (reiserfs_transaction_running(inode->i_sb)) {
2576 		struct reiserfs_transaction_handle *th;
2577 		th = (struct reiserfs_transaction_handle *)current->
2578 		    journal_info;
2579 		BUG_ON(!th->t_refcount);
2580 		BUG_ON(!th->t_trans_id);
2581 		old_ref = th->t_refcount;
2582 		th->t_refcount++;
2583 	}
2584 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2585 				reiserfs_get_block);
2586 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2587 		struct reiserfs_transaction_handle *th = current->journal_info;
2588 		/* this gets a little ugly.  If reiserfs_get_block returned an
2589 		 * error and left a transacstion running, we've got to close it,
2590 		 * and we've got to free handle if it was a persistent transaction.
2591 		 *
2592 		 * But, if we had nested into an existing transaction, we need
2593 		 * to just drop the ref count on the handle.
2594 		 *
2595 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2596 		 * and it was a persistent trans.  Otherwise, it was nested above.
2597 		 */
2598 		if (th->t_refcount > old_ref) {
2599 			if (old_ref)
2600 				th->t_refcount--;
2601 			else {
2602 				int err;
2603 				reiserfs_write_lock(inode->i_sb);
2604 				err = reiserfs_end_persistent_transaction(th);
2605 				reiserfs_write_unlock(inode->i_sb);
2606 				if (err)
2607 					ret = err;
2608 			}
2609 		}
2610 	}
2611 	if (ret) {
2612 		unlock_page(page);
2613 		page_cache_release(page);
2614 	}
2615 	return ret;
2616 }
2617 
2618 int reiserfs_prepare_write(struct file *f, struct page *page,
2619 			   unsigned from, unsigned to)
2620 {
2621 	struct inode *inode = page->mapping->host;
2622 	int ret;
2623 	int old_ref = 0;
2624 
2625 	reiserfs_wait_on_write_block(inode->i_sb);
2626 	fix_tail_page_for_writing(page);
2627 	if (reiserfs_transaction_running(inode->i_sb)) {
2628 		struct reiserfs_transaction_handle *th;
2629 		th = (struct reiserfs_transaction_handle *)current->
2630 		    journal_info;
2631 		BUG_ON(!th->t_refcount);
2632 		BUG_ON(!th->t_trans_id);
2633 		old_ref = th->t_refcount;
2634 		th->t_refcount++;
2635 	}
2636 
2637 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2638 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2639 		struct reiserfs_transaction_handle *th = current->journal_info;
2640 		/* this gets a little ugly.  If reiserfs_get_block returned an
2641 		 * error and left a transacstion running, we've got to close it,
2642 		 * and we've got to free handle if it was a persistent transaction.
2643 		 *
2644 		 * But, if we had nested into an existing transaction, we need
2645 		 * to just drop the ref count on the handle.
2646 		 *
2647 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2648 		 * and it was a persistent trans.  Otherwise, it was nested above.
2649 		 */
2650 		if (th->t_refcount > old_ref) {
2651 			if (old_ref)
2652 				th->t_refcount--;
2653 			else {
2654 				int err;
2655 				reiserfs_write_lock(inode->i_sb);
2656 				err = reiserfs_end_persistent_transaction(th);
2657 				reiserfs_write_unlock(inode->i_sb);
2658 				if (err)
2659 					ret = err;
2660 			}
2661 		}
2662 	}
2663 	return ret;
2664 
2665 }
2666 
2667 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2668 {
2669 	return generic_block_bmap(as, block, reiserfs_bmap);
2670 }
2671 
2672 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2673 			      loff_t pos, unsigned len, unsigned copied,
2674 			      struct page *page, void *fsdata)
2675 {
2676 	struct inode *inode = page->mapping->host;
2677 	int ret = 0;
2678 	int update_sd = 0;
2679 	struct reiserfs_transaction_handle *th;
2680 	unsigned start;
2681 
2682 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2683 		pos ++;
2684 
2685 	reiserfs_wait_on_write_block(inode->i_sb);
2686 	if (reiserfs_transaction_running(inode->i_sb))
2687 		th = current->journal_info;
2688 	else
2689 		th = NULL;
2690 
2691 	start = pos & (PAGE_CACHE_SIZE - 1);
2692 	if (unlikely(copied < len)) {
2693 		if (!PageUptodate(page))
2694 			copied = 0;
2695 
2696 		page_zero_new_buffers(page, start + copied, start + len);
2697 	}
2698 	flush_dcache_page(page);
2699 
2700 	reiserfs_commit_page(inode, page, start, start + copied);
2701 
2702 	/* generic_commit_write does this for us, but does not update the
2703 	 ** transaction tracking stuff when the size changes.  So, we have
2704 	 ** to do the i_size updates here.
2705 	 */
2706 	pos += copied;
2707 	if (pos > inode->i_size) {
2708 		struct reiserfs_transaction_handle myth;
2709 		reiserfs_write_lock(inode->i_sb);
2710 		/* If the file have grown beyond the border where it
2711 		   can have a tail, unmark it as needing a tail
2712 		   packing */
2713 		if ((have_large_tails(inode->i_sb)
2714 		     && inode->i_size > i_block_size(inode) * 4)
2715 		    || (have_small_tails(inode->i_sb)
2716 			&& inode->i_size > i_block_size(inode)))
2717 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2718 
2719 		ret = journal_begin(&myth, inode->i_sb, 1);
2720 		if (ret) {
2721 			reiserfs_write_unlock(inode->i_sb);
2722 			goto journal_error;
2723 		}
2724 		reiserfs_update_inode_transaction(inode);
2725 		inode->i_size = pos;
2726 		/*
2727 		 * this will just nest into our transaction.  It's important
2728 		 * to use mark_inode_dirty so the inode gets pushed around on the
2729 		 * dirty lists, and so that O_SYNC works as expected
2730 		 */
2731 		mark_inode_dirty(inode);
2732 		reiserfs_update_sd(&myth, inode);
2733 		update_sd = 1;
2734 		ret = journal_end(&myth, inode->i_sb, 1);
2735 		reiserfs_write_unlock(inode->i_sb);
2736 		if (ret)
2737 			goto journal_error;
2738 	}
2739 	if (th) {
2740 		reiserfs_write_lock(inode->i_sb);
2741 		if (!update_sd)
2742 			mark_inode_dirty(inode);
2743 		ret = reiserfs_end_persistent_transaction(th);
2744 		reiserfs_write_unlock(inode->i_sb);
2745 		if (ret)
2746 			goto out;
2747 	}
2748 
2749       out:
2750 	unlock_page(page);
2751 	page_cache_release(page);
2752 	return ret == 0 ? copied : ret;
2753 
2754       journal_error:
2755 	if (th) {
2756 		reiserfs_write_lock(inode->i_sb);
2757 		if (!update_sd)
2758 			reiserfs_update_sd(th, inode);
2759 		ret = reiserfs_end_persistent_transaction(th);
2760 		reiserfs_write_unlock(inode->i_sb);
2761 	}
2762 
2763 	goto out;
2764 }
2765 
2766 int reiserfs_commit_write(struct file *f, struct page *page,
2767 			  unsigned from, unsigned to)
2768 {
2769 	struct inode *inode = page->mapping->host;
2770 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2771 	int ret = 0;
2772 	int update_sd = 0;
2773 	struct reiserfs_transaction_handle *th = NULL;
2774 
2775 	reiserfs_wait_on_write_block(inode->i_sb);
2776 	if (reiserfs_transaction_running(inode->i_sb)) {
2777 		th = current->journal_info;
2778 	}
2779 	reiserfs_commit_page(inode, page, from, to);
2780 
2781 	/* generic_commit_write does this for us, but does not update the
2782 	 ** transaction tracking stuff when the size changes.  So, we have
2783 	 ** to do the i_size updates here.
2784 	 */
2785 	if (pos > inode->i_size) {
2786 		struct reiserfs_transaction_handle myth;
2787 		reiserfs_write_lock(inode->i_sb);
2788 		/* If the file have grown beyond the border where it
2789 		   can have a tail, unmark it as needing a tail
2790 		   packing */
2791 		if ((have_large_tails(inode->i_sb)
2792 		     && inode->i_size > i_block_size(inode) * 4)
2793 		    || (have_small_tails(inode->i_sb)
2794 			&& inode->i_size > i_block_size(inode)))
2795 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2796 
2797 		ret = journal_begin(&myth, inode->i_sb, 1);
2798 		if (ret) {
2799 			reiserfs_write_unlock(inode->i_sb);
2800 			goto journal_error;
2801 		}
2802 		reiserfs_update_inode_transaction(inode);
2803 		inode->i_size = pos;
2804 		/*
2805 		 * this will just nest into our transaction.  It's important
2806 		 * to use mark_inode_dirty so the inode gets pushed around on the
2807 		 * dirty lists, and so that O_SYNC works as expected
2808 		 */
2809 		mark_inode_dirty(inode);
2810 		reiserfs_update_sd(&myth, inode);
2811 		update_sd = 1;
2812 		ret = journal_end(&myth, inode->i_sb, 1);
2813 		reiserfs_write_unlock(inode->i_sb);
2814 		if (ret)
2815 			goto journal_error;
2816 	}
2817 	if (th) {
2818 		reiserfs_write_lock(inode->i_sb);
2819 		if (!update_sd)
2820 			mark_inode_dirty(inode);
2821 		ret = reiserfs_end_persistent_transaction(th);
2822 		reiserfs_write_unlock(inode->i_sb);
2823 		if (ret)
2824 			goto out;
2825 	}
2826 
2827       out:
2828 	return ret;
2829 
2830       journal_error:
2831 	if (th) {
2832 		reiserfs_write_lock(inode->i_sb);
2833 		if (!update_sd)
2834 			reiserfs_update_sd(th, inode);
2835 		ret = reiserfs_end_persistent_transaction(th);
2836 		reiserfs_write_unlock(inode->i_sb);
2837 	}
2838 
2839 	return ret;
2840 }
2841 
2842 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2843 {
2844 	if (reiserfs_attrs(inode->i_sb)) {
2845 		if (sd_attrs & REISERFS_SYNC_FL)
2846 			inode->i_flags |= S_SYNC;
2847 		else
2848 			inode->i_flags &= ~S_SYNC;
2849 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2850 			inode->i_flags |= S_IMMUTABLE;
2851 		else
2852 			inode->i_flags &= ~S_IMMUTABLE;
2853 		if (sd_attrs & REISERFS_APPEND_FL)
2854 			inode->i_flags |= S_APPEND;
2855 		else
2856 			inode->i_flags &= ~S_APPEND;
2857 		if (sd_attrs & REISERFS_NOATIME_FL)
2858 			inode->i_flags |= S_NOATIME;
2859 		else
2860 			inode->i_flags &= ~S_NOATIME;
2861 		if (sd_attrs & REISERFS_NOTAIL_FL)
2862 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2863 		else
2864 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2865 	}
2866 }
2867 
2868 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2869 {
2870 	if (reiserfs_attrs(inode->i_sb)) {
2871 		if (inode->i_flags & S_IMMUTABLE)
2872 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2873 		else
2874 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2875 		if (inode->i_flags & S_SYNC)
2876 			*sd_attrs |= REISERFS_SYNC_FL;
2877 		else
2878 			*sd_attrs &= ~REISERFS_SYNC_FL;
2879 		if (inode->i_flags & S_NOATIME)
2880 			*sd_attrs |= REISERFS_NOATIME_FL;
2881 		else
2882 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2883 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2884 			*sd_attrs |= REISERFS_NOTAIL_FL;
2885 		else
2886 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2887 	}
2888 }
2889 
2890 /* decide if this buffer needs to stay around for data logging or ordered
2891 ** write purposes
2892 */
2893 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2894 {
2895 	int ret = 1;
2896 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2897 
2898 	lock_buffer(bh);
2899 	spin_lock(&j->j_dirty_buffers_lock);
2900 	if (!buffer_mapped(bh)) {
2901 		goto free_jh;
2902 	}
2903 	/* the page is locked, and the only places that log a data buffer
2904 	 * also lock the page.
2905 	 */
2906 	if (reiserfs_file_data_log(inode)) {
2907 		/*
2908 		 * very conservative, leave the buffer pinned if
2909 		 * anyone might need it.
2910 		 */
2911 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2912 			ret = 0;
2913 		}
2914 	} else  if (buffer_dirty(bh)) {
2915 		struct reiserfs_journal_list *jl;
2916 		struct reiserfs_jh *jh = bh->b_private;
2917 
2918 		/* why is this safe?
2919 		 * reiserfs_setattr updates i_size in the on disk
2920 		 * stat data before allowing vmtruncate to be called.
2921 		 *
2922 		 * If buffer was put onto the ordered list for this
2923 		 * transaction, we know for sure either this transaction
2924 		 * or an older one already has updated i_size on disk,
2925 		 * and this ordered data won't be referenced in the file
2926 		 * if we crash.
2927 		 *
2928 		 * if the buffer was put onto the ordered list for an older
2929 		 * transaction, we need to leave it around
2930 		 */
2931 		if (jh && (jl = jh->jl)
2932 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2933 			ret = 0;
2934 	}
2935       free_jh:
2936 	if (ret && bh->b_private) {
2937 		reiserfs_free_jh(bh);
2938 	}
2939 	spin_unlock(&j->j_dirty_buffers_lock);
2940 	unlock_buffer(bh);
2941 	return ret;
2942 }
2943 
2944 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2945 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2946 {
2947 	struct buffer_head *head, *bh, *next;
2948 	struct inode *inode = page->mapping->host;
2949 	unsigned int curr_off = 0;
2950 	int ret = 1;
2951 
2952 	BUG_ON(!PageLocked(page));
2953 
2954 	if (offset == 0)
2955 		ClearPageChecked(page);
2956 
2957 	if (!page_has_buffers(page))
2958 		goto out;
2959 
2960 	head = page_buffers(page);
2961 	bh = head;
2962 	do {
2963 		unsigned int next_off = curr_off + bh->b_size;
2964 		next = bh->b_this_page;
2965 
2966 		/*
2967 		 * is this block fully invalidated?
2968 		 */
2969 		if (offset <= curr_off) {
2970 			if (invalidatepage_can_drop(inode, bh))
2971 				reiserfs_unmap_buffer(bh);
2972 			else
2973 				ret = 0;
2974 		}
2975 		curr_off = next_off;
2976 		bh = next;
2977 	} while (bh != head);
2978 
2979 	/*
2980 	 * We release buffers only if the entire page is being invalidated.
2981 	 * The get_block cached value has been unconditionally invalidated,
2982 	 * so real IO is not possible anymore.
2983 	 */
2984 	if (!offset && ret) {
2985 		ret = try_to_release_page(page, 0);
2986 		/* maybe should BUG_ON(!ret); - neilb */
2987 	}
2988       out:
2989 	return;
2990 }
2991 
2992 static int reiserfs_set_page_dirty(struct page *page)
2993 {
2994 	struct inode *inode = page->mapping->host;
2995 	if (reiserfs_file_data_log(inode)) {
2996 		SetPageChecked(page);
2997 		return __set_page_dirty_nobuffers(page);
2998 	}
2999 	return __set_page_dirty_buffers(page);
3000 }
3001 
3002 /*
3003  * Returns 1 if the page's buffers were dropped.  The page is locked.
3004  *
3005  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3006  * in the buffers at page_buffers(page).
3007  *
3008  * even in -o notail mode, we can't be sure an old mount without -o notail
3009  * didn't create files with tails.
3010  */
3011 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3012 {
3013 	struct inode *inode = page->mapping->host;
3014 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3015 	struct buffer_head *head;
3016 	struct buffer_head *bh;
3017 	int ret = 1;
3018 
3019 	WARN_ON(PageChecked(page));
3020 	spin_lock(&j->j_dirty_buffers_lock);
3021 	head = page_buffers(page);
3022 	bh = head;
3023 	do {
3024 		if (bh->b_private) {
3025 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3026 				reiserfs_free_jh(bh);
3027 			} else {
3028 				ret = 0;
3029 				break;
3030 			}
3031 		}
3032 		bh = bh->b_this_page;
3033 	} while (bh != head);
3034 	if (ret)
3035 		ret = try_to_free_buffers(page);
3036 	spin_unlock(&j->j_dirty_buffers_lock);
3037 	return ret;
3038 }
3039 
3040 /* We thank Mingming Cao for helping us understand in great detail what
3041    to do in this section of the code. */
3042 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3043 				  const struct iovec *iov, loff_t offset,
3044 				  unsigned long nr_segs)
3045 {
3046 	struct file *file = iocb->ki_filp;
3047 	struct inode *inode = file->f_mapping->host;
3048 
3049 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3050 				  offset, nr_segs,
3051 				  reiserfs_get_blocks_direct_io, NULL);
3052 }
3053 
3054 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3055 {
3056 	struct inode *inode = dentry->d_inode;
3057 	int error;
3058 	unsigned int ia_valid;
3059 
3060 	/* must be turned off for recursive notify_change calls */
3061 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3062 
3063 	reiserfs_write_lock(inode->i_sb);
3064 	if (attr->ia_valid & ATTR_SIZE) {
3065 		/* version 2 items will be caught by the s_maxbytes check
3066 		 ** done for us in vmtruncate
3067 		 */
3068 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3069 		    attr->ia_size > MAX_NON_LFS) {
3070 			error = -EFBIG;
3071 			goto out;
3072 		}
3073 		/* fill in hole pointers in the expanding truncate case. */
3074 		if (attr->ia_size > inode->i_size) {
3075 			error = generic_cont_expand_simple(inode, attr->ia_size);
3076 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3077 				int err;
3078 				struct reiserfs_transaction_handle th;
3079 				/* we're changing at most 2 bitmaps, inode + super */
3080 				err = journal_begin(&th, inode->i_sb, 4);
3081 				if (!err) {
3082 					reiserfs_discard_prealloc(&th, inode);
3083 					err = journal_end(&th, inode->i_sb, 4);
3084 				}
3085 				if (err)
3086 					error = err;
3087 			}
3088 			if (error)
3089 				goto out;
3090 			/*
3091 			 * file size is changed, ctime and mtime are
3092 			 * to be updated
3093 			 */
3094 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3095 		}
3096 	}
3097 
3098 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3099 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3100 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3101 		/* stat data of format v3.5 has 16 bit uid and gid */
3102 		error = -EINVAL;
3103 		goto out;
3104 	}
3105 
3106 	error = inode_change_ok(inode, attr);
3107 	if (!error) {
3108 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3109 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3110 			error = reiserfs_chown_xattrs(inode, attr);
3111 
3112 			if (!error) {
3113 				struct reiserfs_transaction_handle th;
3114 				int jbegin_count =
3115 				    2 *
3116 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3117 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3118 				    2;
3119 
3120 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3121 				error =
3122 				    journal_begin(&th, inode->i_sb,
3123 						  jbegin_count);
3124 				if (error)
3125 					goto out;
3126 				error =
3127 				    DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3128 				if (error) {
3129 					journal_end(&th, inode->i_sb,
3130 						    jbegin_count);
3131 					goto out;
3132 				}
3133 				/* Update corresponding info in inode so that everything is in
3134 				 * one transaction */
3135 				if (attr->ia_valid & ATTR_UID)
3136 					inode->i_uid = attr->ia_uid;
3137 				if (attr->ia_valid & ATTR_GID)
3138 					inode->i_gid = attr->ia_gid;
3139 				mark_inode_dirty(inode);
3140 				error =
3141 				    journal_end(&th, inode->i_sb, jbegin_count);
3142 			}
3143 		}
3144 		if (!error)
3145 			error = inode_setattr(inode, attr);
3146 	}
3147 
3148 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3149 		if (attr->ia_valid & ATTR_MODE)
3150 			error = reiserfs_acl_chmod(inode);
3151 	}
3152 
3153       out:
3154 	reiserfs_write_unlock(inode->i_sb);
3155 	return error;
3156 }
3157 
3158 const struct address_space_operations reiserfs_address_space_operations = {
3159 	.writepage = reiserfs_writepage,
3160 	.readpage = reiserfs_readpage,
3161 	.readpages = reiserfs_readpages,
3162 	.releasepage = reiserfs_releasepage,
3163 	.invalidatepage = reiserfs_invalidatepage,
3164 	.sync_page = block_sync_page,
3165 	.write_begin = reiserfs_write_begin,
3166 	.write_end = reiserfs_write_end,
3167 	.bmap = reiserfs_aop_bmap,
3168 	.direct_IO = reiserfs_direct_IO,
3169 	.set_page_dirty = reiserfs_set_page_dirty,
3170 };
3171