1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_xattr.h> 10 #include <linux/exportfs.h> 11 #include <linux/smp_lock.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 22 int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 int reiserfs_prepare_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_delete_inode(struct inode *inode) 28 { 29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 int jbegin_count = 31 JOURNAL_PER_BALANCE_CNT * 2 + 32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 struct reiserfs_transaction_handle th; 34 int err; 35 36 truncate_inode_pages(&inode->i_data, 0); 37 38 reiserfs_write_lock(inode->i_sb); 39 40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 42 reiserfs_delete_xattrs(inode); 43 44 if (journal_begin(&th, inode->i_sb, jbegin_count)) 45 goto out; 46 reiserfs_update_inode_transaction(inode); 47 48 reiserfs_discard_prealloc(&th, inode); 49 50 err = reiserfs_delete_object(&th, inode); 51 52 /* Do quota update inside a transaction for journaled quotas. We must do that 53 * after delete_object so that quota updates go into the same transaction as 54 * stat data deletion */ 55 if (!err) 56 DQUOT_FREE_INODE(inode); 57 58 if (journal_end(&th, inode->i_sb, jbegin_count)) 59 goto out; 60 61 /* check return value from reiserfs_delete_object after 62 * ending the transaction 63 */ 64 if (err) 65 goto out; 66 67 /* all items of file are deleted, so we can remove "save" link */ 68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 69 * about an error here */ 70 } else { 71 /* no object items are in the tree */ 72 ; 73 } 74 out: 75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 76 inode->i_blocks = 0; 77 reiserfs_write_unlock(inode->i_sb); 78 } 79 80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 81 __u32 objectid, loff_t offset, int type, int length) 82 { 83 key->version = version; 84 85 key->on_disk_key.k_dir_id = dirid; 86 key->on_disk_key.k_objectid = objectid; 87 set_cpu_key_k_offset(key, offset); 88 set_cpu_key_k_type(key, type); 89 key->key_length = length; 90 } 91 92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 93 offset and type of key */ 94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 95 int type, int length) 96 { 97 _make_cpu_key(key, get_inode_item_key_version(inode), 98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 100 length); 101 } 102 103 // 104 // when key is 0, do not set version and short key 105 // 106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 107 int version, 108 loff_t offset, int type, int length, 109 int entry_count /*or ih_free_space */ ) 110 { 111 if (key) { 112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 113 ih->ih_key.k_objectid = 114 cpu_to_le32(key->on_disk_key.k_objectid); 115 } 116 put_ih_version(ih, version); 117 set_le_ih_k_offset(ih, offset); 118 set_le_ih_k_type(ih, type); 119 put_ih_item_len(ih, length); 120 /* set_ih_free_space (ih, 0); */ 121 // for directory items it is entry count, for directs and stat 122 // datas - 0xffff, for indirects - 0 123 put_ih_entry_count(ih, entry_count); 124 } 125 126 // 127 // FIXME: we might cache recently accessed indirect item 128 129 // Ugh. Not too eager for that.... 130 // I cut the code until such time as I see a convincing argument (benchmark). 131 // I don't want a bloated inode struct..., and I don't like code complexity.... 132 133 /* cutting the code is fine, since it really isn't in use yet and is easy 134 ** to add back in. But, Vladimir has a really good idea here. Think 135 ** about what happens for reading a file. For each page, 136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 137 ** an indirect item. This indirect item has X number of pointers, where 138 ** X is a big number if we've done the block allocation right. But, 139 ** we only use one or two of these pointers during each call to readpage, 140 ** needlessly researching again later on. 141 ** 142 ** The size of the cache could be dynamic based on the size of the file. 143 ** 144 ** I'd also like to see us cache the location the stat data item, since 145 ** we are needlessly researching for that frequently. 146 ** 147 ** --chris 148 */ 149 150 /* If this page has a file tail in it, and 151 ** it was read in by get_block_create_0, the page data is valid, 152 ** but tail is still sitting in a direct item, and we can't write to 153 ** it. So, look through this page, and check all the mapped buffers 154 ** to make sure they have valid block numbers. Any that don't need 155 ** to be unmapped, so that block_prepare_write will correctly call 156 ** reiserfs_get_block to convert the tail into an unformatted node 157 */ 158 static inline void fix_tail_page_for_writing(struct page *page) 159 { 160 struct buffer_head *head, *next, *bh; 161 162 if (page && page_has_buffers(page)) { 163 head = page_buffers(page); 164 bh = head; 165 do { 166 next = bh->b_this_page; 167 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 168 reiserfs_unmap_buffer(bh); 169 } 170 bh = next; 171 } while (bh != head); 172 } 173 } 174 175 /* reiserfs_get_block does not need to allocate a block only if it has been 176 done already or non-hole position has been found in the indirect item */ 177 static inline int allocation_needed(int retval, b_blocknr_t allocated, 178 struct item_head *ih, 179 __le32 * item, int pos_in_item) 180 { 181 if (allocated) 182 return 0; 183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 184 get_block_num(item, pos_in_item)) 185 return 0; 186 return 1; 187 } 188 189 static inline int indirect_item_found(int retval, struct item_head *ih) 190 { 191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 192 } 193 194 static inline void set_block_dev_mapped(struct buffer_head *bh, 195 b_blocknr_t block, struct inode *inode) 196 { 197 map_bh(bh, inode->i_sb, block); 198 } 199 200 // 201 // files which were created in the earlier version can not be longer, 202 // than 2 gb 203 // 204 static int file_capable(struct inode *inode, sector_t block) 205 { 206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 208 return 1; 209 210 return 0; 211 } 212 213 static int restart_transaction(struct reiserfs_transaction_handle *th, 214 struct inode *inode, struct treepath *path) 215 { 216 struct super_block *s = th->t_super; 217 int len = th->t_blocks_allocated; 218 int err; 219 220 BUG_ON(!th->t_trans_id); 221 BUG_ON(!th->t_refcount); 222 223 pathrelse(path); 224 225 /* we cannot restart while nested */ 226 if (th->t_refcount > 1) { 227 return 0; 228 } 229 reiserfs_update_sd(th, inode); 230 err = journal_end(th, s, len); 231 if (!err) { 232 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 233 if (!err) 234 reiserfs_update_inode_transaction(inode); 235 } 236 return err; 237 } 238 239 // it is called by get_block when create == 0. Returns block number 240 // for 'block'-th logical block of file. When it hits direct item it 241 // returns 0 (being called from bmap) or read direct item into piece 242 // of page (bh_result) 243 244 // Please improve the english/clarity in the comment above, as it is 245 // hard to understand. 246 247 static int _get_block_create_0(struct inode *inode, sector_t block, 248 struct buffer_head *bh_result, int args) 249 { 250 INITIALIZE_PATH(path); 251 struct cpu_key key; 252 struct buffer_head *bh; 253 struct item_head *ih, tmp_ih; 254 int fs_gen; 255 b_blocknr_t blocknr; 256 char *p = NULL; 257 int chars; 258 int ret; 259 int result; 260 int done = 0; 261 unsigned long offset; 262 263 // prepare the key to look for the 'block'-th block of file 264 make_cpu_key(&key, inode, 265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 266 3); 267 268 research: 269 result = search_for_position_by_key(inode->i_sb, &key, &path); 270 if (result != POSITION_FOUND) { 271 pathrelse(&path); 272 if (p) 273 kunmap(bh_result->b_page); 274 if (result == IO_ERROR) 275 return -EIO; 276 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 277 // That there is some MMAPED data associated with it that is yet to be written to disk. 278 if ((args & GET_BLOCK_NO_HOLE) 279 && !PageUptodate(bh_result->b_page)) { 280 return -ENOENT; 281 } 282 return 0; 283 } 284 // 285 bh = get_last_bh(&path); 286 ih = get_ih(&path); 287 if (is_indirect_le_ih(ih)) { 288 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 289 290 /* FIXME: here we could cache indirect item or part of it in 291 the inode to avoid search_by_key in case of subsequent 292 access to file */ 293 blocknr = get_block_num(ind_item, path.pos_in_item); 294 ret = 0; 295 if (blocknr) { 296 map_bh(bh_result, inode->i_sb, blocknr); 297 if (path.pos_in_item == 298 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 299 set_buffer_boundary(bh_result); 300 } 301 } else 302 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 303 // That there is some MMAPED data associated with it that is yet to be written to disk. 304 if ((args & GET_BLOCK_NO_HOLE) 305 && !PageUptodate(bh_result->b_page)) { 306 ret = -ENOENT; 307 } 308 309 pathrelse(&path); 310 if (p) 311 kunmap(bh_result->b_page); 312 return ret; 313 } 314 // requested data are in direct item(s) 315 if (!(args & GET_BLOCK_READ_DIRECT)) { 316 // we are called by bmap. FIXME: we can not map block of file 317 // when it is stored in direct item(s) 318 pathrelse(&path); 319 if (p) 320 kunmap(bh_result->b_page); 321 return -ENOENT; 322 } 323 324 /* if we've got a direct item, and the buffer or page was uptodate, 325 ** we don't want to pull data off disk again. skip to the 326 ** end, where we map the buffer and return 327 */ 328 if (buffer_uptodate(bh_result)) { 329 goto finished; 330 } else 331 /* 332 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 333 ** pages without any buffers. If the page is up to date, we don't want 334 ** read old data off disk. Set the up to date bit on the buffer instead 335 ** and jump to the end 336 */ 337 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 338 set_buffer_uptodate(bh_result); 339 goto finished; 340 } 341 // read file tail into part of page 342 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 343 fs_gen = get_generation(inode->i_sb); 344 copy_item_head(&tmp_ih, ih); 345 346 /* we only want to kmap if we are reading the tail into the page. 347 ** this is not the common case, so we don't kmap until we are 348 ** sure we need to. But, this means the item might move if 349 ** kmap schedules 350 */ 351 if (!p) { 352 p = (char *)kmap(bh_result->b_page); 353 if (fs_changed(fs_gen, inode->i_sb) 354 && item_moved(&tmp_ih, &path)) { 355 goto research; 356 } 357 } 358 p += offset; 359 memset(p, 0, inode->i_sb->s_blocksize); 360 do { 361 if (!is_direct_le_ih(ih)) { 362 BUG(); 363 } 364 /* make sure we don't read more bytes than actually exist in 365 ** the file. This can happen in odd cases where i_size isn't 366 ** correct, and when direct item padding results in a few 367 ** extra bytes at the end of the direct item 368 */ 369 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 370 break; 371 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 372 chars = 373 inode->i_size - (le_ih_k_offset(ih) - 1) - 374 path.pos_in_item; 375 done = 1; 376 } else { 377 chars = ih_item_len(ih) - path.pos_in_item; 378 } 379 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 380 381 if (done) 382 break; 383 384 p += chars; 385 386 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 387 // we done, if read direct item is not the last item of 388 // node FIXME: we could try to check right delimiting key 389 // to see whether direct item continues in the right 390 // neighbor or rely on i_size 391 break; 392 393 // update key to look for the next piece 394 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 395 result = search_for_position_by_key(inode->i_sb, &key, &path); 396 if (result != POSITION_FOUND) 397 // i/o error most likely 398 break; 399 bh = get_last_bh(&path); 400 ih = get_ih(&path); 401 } while (1); 402 403 flush_dcache_page(bh_result->b_page); 404 kunmap(bh_result->b_page); 405 406 finished: 407 pathrelse(&path); 408 409 if (result == IO_ERROR) 410 return -EIO; 411 412 /* this buffer has valid data, but isn't valid for io. mapping it to 413 * block #0 tells the rest of reiserfs it just has a tail in it 414 */ 415 map_bh(bh_result, inode->i_sb, 0); 416 set_buffer_uptodate(bh_result); 417 return 0; 418 } 419 420 // this is called to create file map. So, _get_block_create_0 will not 421 // read direct item 422 static int reiserfs_bmap(struct inode *inode, sector_t block, 423 struct buffer_head *bh_result, int create) 424 { 425 if (!file_capable(inode, block)) 426 return -EFBIG; 427 428 reiserfs_write_lock(inode->i_sb); 429 /* do not read the direct item */ 430 _get_block_create_0(inode, block, bh_result, 0); 431 reiserfs_write_unlock(inode->i_sb); 432 return 0; 433 } 434 435 /* special version of get_block that is only used by grab_tail_page right 436 ** now. It is sent to block_prepare_write, and when you try to get a 437 ** block past the end of the file (or a block from a hole) it returns 438 ** -ENOENT instead of a valid buffer. block_prepare_write expects to 439 ** be able to do i/o on the buffers returned, unless an error value 440 ** is also returned. 441 ** 442 ** So, this allows block_prepare_write to be used for reading a single block 443 ** in a page. Where it does not produce a valid page for holes, or past the 444 ** end of the file. This turns out to be exactly what we need for reading 445 ** tails for conversion. 446 ** 447 ** The point of the wrapper is forcing a certain value for create, even 448 ** though the VFS layer is calling this function with create==1. If you 449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 450 ** don't use this function. 451 */ 452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 453 struct buffer_head *bh_result, 454 int create) 455 { 456 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 457 } 458 459 /* This is special helper for reiserfs_get_block in case we are executing 460 direct_IO request. */ 461 static int reiserfs_get_blocks_direct_io(struct inode *inode, 462 sector_t iblock, 463 struct buffer_head *bh_result, 464 int create) 465 { 466 int ret; 467 468 bh_result->b_page = NULL; 469 470 /* We set the b_size before reiserfs_get_block call since it is 471 referenced in convert_tail_for_hole() that may be called from 472 reiserfs_get_block() */ 473 bh_result->b_size = (1 << inode->i_blkbits); 474 475 ret = reiserfs_get_block(inode, iblock, bh_result, 476 create | GET_BLOCK_NO_DANGLE); 477 if (ret) 478 goto out; 479 480 /* don't allow direct io onto tail pages */ 481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 482 /* make sure future calls to the direct io funcs for this offset 483 ** in the file fail by unmapping the buffer 484 */ 485 clear_buffer_mapped(bh_result); 486 ret = -EINVAL; 487 } 488 /* Possible unpacked tail. Flush the data before pages have 489 disappeared */ 490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 491 int err; 492 lock_kernel(); 493 err = reiserfs_commit_for_inode(inode); 494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 495 unlock_kernel(); 496 if (err < 0) 497 ret = err; 498 } 499 out: 500 return ret; 501 } 502 503 /* 504 ** helper function for when reiserfs_get_block is called for a hole 505 ** but the file tail is still in a direct item 506 ** bh_result is the buffer head for the hole 507 ** tail_offset is the offset of the start of the tail in the file 508 ** 509 ** This calls prepare_write, which will start a new transaction 510 ** you should not be in a transaction, or have any paths held when you 511 ** call this. 512 */ 513 static int convert_tail_for_hole(struct inode *inode, 514 struct buffer_head *bh_result, 515 loff_t tail_offset) 516 { 517 unsigned long index; 518 unsigned long tail_end; 519 unsigned long tail_start; 520 struct page *tail_page; 521 struct page *hole_page = bh_result->b_page; 522 int retval = 0; 523 524 if ((tail_offset & (bh_result->b_size - 1)) != 1) 525 return -EIO; 526 527 /* always try to read until the end of the block */ 528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 530 531 index = tail_offset >> PAGE_CACHE_SHIFT; 532 /* hole_page can be zero in case of direct_io, we are sure 533 that we cannot get here if we write with O_DIRECT into 534 tail page */ 535 if (!hole_page || index != hole_page->index) { 536 tail_page = grab_cache_page(inode->i_mapping, index); 537 retval = -ENOMEM; 538 if (!tail_page) { 539 goto out; 540 } 541 } else { 542 tail_page = hole_page; 543 } 544 545 /* we don't have to make sure the conversion did not happen while 546 ** we were locking the page because anyone that could convert 547 ** must first take i_mutex. 548 ** 549 ** We must fix the tail page for writing because it might have buffers 550 ** that are mapped, but have a block number of 0. This indicates tail 551 ** data that has been read directly into the page, and block_prepare_write 552 ** won't trigger a get_block in this case. 553 */ 554 fix_tail_page_for_writing(tail_page); 555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 556 if (retval) 557 goto unlock; 558 559 /* tail conversion might change the data in the page */ 560 flush_dcache_page(tail_page); 561 562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 563 564 unlock: 565 if (tail_page != hole_page) { 566 unlock_page(tail_page); 567 page_cache_release(tail_page); 568 } 569 out: 570 return retval; 571 } 572 573 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 574 sector_t block, 575 struct inode *inode, 576 b_blocknr_t * allocated_block_nr, 577 struct treepath *path, int flags) 578 { 579 BUG_ON(!th->t_trans_id); 580 581 #ifdef REISERFS_PREALLOCATE 582 if (!(flags & GET_BLOCK_NO_IMUX)) { 583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 584 path, block); 585 } 586 #endif 587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 588 block); 589 } 590 591 int reiserfs_get_block(struct inode *inode, sector_t block, 592 struct buffer_head *bh_result, int create) 593 { 594 int repeat, retval = 0; 595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 596 INITIALIZE_PATH(path); 597 int pos_in_item; 598 struct cpu_key key; 599 struct buffer_head *bh, *unbh = NULL; 600 struct item_head *ih, tmp_ih; 601 __le32 *item; 602 int done; 603 int fs_gen; 604 struct reiserfs_transaction_handle *th = NULL; 605 /* space reserved in transaction batch: 606 . 3 balancings in direct->indirect conversion 607 . 1 block involved into reiserfs_update_sd() 608 XXX in practically impossible worst case direct2indirect() 609 can incur (much) more than 3 balancings. 610 quota update for user, group */ 611 int jbegin_count = 612 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 614 int version; 615 int dangle = 1; 616 loff_t new_offset = 617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 618 619 /* bad.... */ 620 reiserfs_write_lock(inode->i_sb); 621 version = get_inode_item_key_version(inode); 622 623 if (!file_capable(inode, block)) { 624 reiserfs_write_unlock(inode->i_sb); 625 return -EFBIG; 626 } 627 628 /* if !create, we aren't changing the FS, so we don't need to 629 ** log anything, so we don't need to start a transaction 630 */ 631 if (!(create & GET_BLOCK_CREATE)) { 632 int ret; 633 /* find number of block-th logical block of the file */ 634 ret = _get_block_create_0(inode, block, bh_result, 635 create | GET_BLOCK_READ_DIRECT); 636 reiserfs_write_unlock(inode->i_sb); 637 return ret; 638 } 639 /* 640 * if we're already in a transaction, make sure to close 641 * any new transactions we start in this func 642 */ 643 if ((create & GET_BLOCK_NO_DANGLE) || 644 reiserfs_transaction_running(inode->i_sb)) 645 dangle = 0; 646 647 /* If file is of such a size, that it might have a tail and tails are enabled 648 ** we should mark it as possibly needing tail packing on close 649 */ 650 if ((have_large_tails(inode->i_sb) 651 && inode->i_size < i_block_size(inode) * 4) 652 || (have_small_tails(inode->i_sb) 653 && inode->i_size < i_block_size(inode))) 654 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 655 656 /* set the key of the first byte in the 'block'-th block of file */ 657 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 658 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 659 start_trans: 660 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 661 if (!th) { 662 retval = -ENOMEM; 663 goto failure; 664 } 665 reiserfs_update_inode_transaction(inode); 666 } 667 research: 668 669 retval = search_for_position_by_key(inode->i_sb, &key, &path); 670 if (retval == IO_ERROR) { 671 retval = -EIO; 672 goto failure; 673 } 674 675 bh = get_last_bh(&path); 676 ih = get_ih(&path); 677 item = get_item(&path); 678 pos_in_item = path.pos_in_item; 679 680 fs_gen = get_generation(inode->i_sb); 681 copy_item_head(&tmp_ih, ih); 682 683 if (allocation_needed 684 (retval, allocated_block_nr, ih, item, pos_in_item)) { 685 /* we have to allocate block for the unformatted node */ 686 if (!th) { 687 pathrelse(&path); 688 goto start_trans; 689 } 690 691 repeat = 692 _allocate_block(th, block, inode, &allocated_block_nr, 693 &path, create); 694 695 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 696 /* restart the transaction to give the journal a chance to free 697 ** some blocks. releases the path, so we have to go back to 698 ** research if we succeed on the second try 699 */ 700 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 701 retval = restart_transaction(th, inode, &path); 702 if (retval) 703 goto failure; 704 repeat = 705 _allocate_block(th, block, inode, 706 &allocated_block_nr, NULL, create); 707 708 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 709 goto research; 710 } 711 if (repeat == QUOTA_EXCEEDED) 712 retval = -EDQUOT; 713 else 714 retval = -ENOSPC; 715 goto failure; 716 } 717 718 if (fs_changed(fs_gen, inode->i_sb) 719 && item_moved(&tmp_ih, &path)) { 720 goto research; 721 } 722 } 723 724 if (indirect_item_found(retval, ih)) { 725 b_blocknr_t unfm_ptr; 726 /* 'block'-th block is in the file already (there is 727 corresponding cell in some indirect item). But it may be 728 zero unformatted node pointer (hole) */ 729 unfm_ptr = get_block_num(item, pos_in_item); 730 if (unfm_ptr == 0) { 731 /* use allocated block to plug the hole */ 732 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 733 if (fs_changed(fs_gen, inode->i_sb) 734 && item_moved(&tmp_ih, &path)) { 735 reiserfs_restore_prepared_buffer(inode->i_sb, 736 bh); 737 goto research; 738 } 739 set_buffer_new(bh_result); 740 if (buffer_dirty(bh_result) 741 && reiserfs_data_ordered(inode->i_sb)) 742 reiserfs_add_ordered_list(inode, bh_result); 743 put_block_num(item, pos_in_item, allocated_block_nr); 744 unfm_ptr = allocated_block_nr; 745 journal_mark_dirty(th, inode->i_sb, bh); 746 reiserfs_update_sd(th, inode); 747 } 748 set_block_dev_mapped(bh_result, unfm_ptr, inode); 749 pathrelse(&path); 750 retval = 0; 751 if (!dangle && th) 752 retval = reiserfs_end_persistent_transaction(th); 753 754 reiserfs_write_unlock(inode->i_sb); 755 756 /* the item was found, so new blocks were not added to the file 757 ** there is no need to make sure the inode is updated with this 758 ** transaction 759 */ 760 return retval; 761 } 762 763 if (!th) { 764 pathrelse(&path); 765 goto start_trans; 766 } 767 768 /* desired position is not found or is in the direct item. We have 769 to append file with holes up to 'block'-th block converting 770 direct items to indirect one if necessary */ 771 done = 0; 772 do { 773 if (is_statdata_le_ih(ih)) { 774 __le32 unp = 0; 775 struct cpu_key tmp_key; 776 777 /* indirect item has to be inserted */ 778 make_le_item_head(&tmp_ih, &key, version, 1, 779 TYPE_INDIRECT, UNFM_P_SIZE, 780 0 /* free_space */ ); 781 782 if (cpu_key_k_offset(&key) == 1) { 783 /* we are going to add 'block'-th block to the file. Use 784 allocated block for that */ 785 unp = cpu_to_le32(allocated_block_nr); 786 set_block_dev_mapped(bh_result, 787 allocated_block_nr, inode); 788 set_buffer_new(bh_result); 789 done = 1; 790 } 791 tmp_key = key; // ;) 792 set_cpu_key_k_offset(&tmp_key, 1); 793 PATH_LAST_POSITION(&path)++; 794 795 retval = 796 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 797 inode, (char *)&unp); 798 if (retval) { 799 reiserfs_free_block(th, inode, 800 allocated_block_nr, 1); 801 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 802 } 803 //mark_tail_converted (inode); 804 } else if (is_direct_le_ih(ih)) { 805 /* direct item has to be converted */ 806 loff_t tail_offset; 807 808 tail_offset = 809 ((le_ih_k_offset(ih) - 810 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 811 if (tail_offset == cpu_key_k_offset(&key)) { 812 /* direct item we just found fits into block we have 813 to map. Convert it into unformatted node: use 814 bh_result for the conversion */ 815 set_block_dev_mapped(bh_result, 816 allocated_block_nr, inode); 817 unbh = bh_result; 818 done = 1; 819 } else { 820 /* we have to padd file tail stored in direct item(s) 821 up to block size and convert it to unformatted 822 node. FIXME: this should also get into page cache */ 823 824 pathrelse(&path); 825 /* 826 * ugly, but we can only end the transaction if 827 * we aren't nested 828 */ 829 BUG_ON(!th->t_refcount); 830 if (th->t_refcount == 1) { 831 retval = 832 reiserfs_end_persistent_transaction 833 (th); 834 th = NULL; 835 if (retval) 836 goto failure; 837 } 838 839 retval = 840 convert_tail_for_hole(inode, bh_result, 841 tail_offset); 842 if (retval) { 843 if (retval != -ENOSPC) 844 reiserfs_warning(inode->i_sb, 845 "clm-6004: convert tail failed inode %lu, error %d", 846 inode->i_ino, 847 retval); 848 if (allocated_block_nr) { 849 /* the bitmap, the super, and the stat data == 3 */ 850 if (!th) 851 th = reiserfs_persistent_transaction(inode->i_sb, 3); 852 if (th) 853 reiserfs_free_block(th, 854 inode, 855 allocated_block_nr, 856 1); 857 } 858 goto failure; 859 } 860 goto research; 861 } 862 retval = 863 direct2indirect(th, inode, &path, unbh, 864 tail_offset); 865 if (retval) { 866 reiserfs_unmap_buffer(unbh); 867 reiserfs_free_block(th, inode, 868 allocated_block_nr, 1); 869 goto failure; 870 } 871 /* it is important the set_buffer_uptodate is done after 872 ** the direct2indirect. The buffer might contain valid 873 ** data newer than the data on disk (read by readpage, changed, 874 ** and then sent here by writepage). direct2indirect needs 875 ** to know if unbh was already up to date, so it can decide 876 ** if the data in unbh needs to be replaced with data from 877 ** the disk 878 */ 879 set_buffer_uptodate(unbh); 880 881 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 882 buffer will disappear shortly, so it should not be added to 883 */ 884 if (unbh->b_page) { 885 /* we've converted the tail, so we must 886 ** flush unbh before the transaction commits 887 */ 888 reiserfs_add_tail_list(inode, unbh); 889 890 /* mark it dirty now to prevent commit_write from adding 891 ** this buffer to the inode's dirty buffer list 892 */ 893 /* 894 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 895 * It's still atomic, but it sets the page dirty too, 896 * which makes it eligible for writeback at any time by the 897 * VM (which was also the case with __mark_buffer_dirty()) 898 */ 899 mark_buffer_dirty(unbh); 900 } 901 } else { 902 /* append indirect item with holes if needed, when appending 903 pointer to 'block'-th block use block, which is already 904 allocated */ 905 struct cpu_key tmp_key; 906 unp_t unf_single = 0; // We use this in case we need to allocate only 907 // one block which is a fastpath 908 unp_t *un; 909 __u64 max_to_insert = 910 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 911 UNFM_P_SIZE; 912 __u64 blocks_needed; 913 914 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 915 "vs-804: invalid position for append"); 916 /* indirect item has to be appended, set up key of that position */ 917 make_cpu_key(&tmp_key, inode, 918 le_key_k_offset(version, 919 &(ih->ih_key)) + 920 op_bytes_number(ih, 921 inode->i_sb->s_blocksize), 922 //pos_in_item * inode->i_sb->s_blocksize, 923 TYPE_INDIRECT, 3); // key type is unimportant 924 925 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 926 "green-805: invalid offset"); 927 blocks_needed = 928 1 + 929 ((cpu_key_k_offset(&key) - 930 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 931 s_blocksize_bits); 932 933 if (blocks_needed == 1) { 934 un = &unf_single; 935 } else { 936 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 937 if (!un) { 938 un = &unf_single; 939 blocks_needed = 1; 940 max_to_insert = 0; 941 } 942 } 943 if (blocks_needed <= max_to_insert) { 944 /* we are going to add target block to the file. Use allocated 945 block for that */ 946 un[blocks_needed - 1] = 947 cpu_to_le32(allocated_block_nr); 948 set_block_dev_mapped(bh_result, 949 allocated_block_nr, inode); 950 set_buffer_new(bh_result); 951 done = 1; 952 } else { 953 /* paste hole to the indirect item */ 954 /* If kmalloc failed, max_to_insert becomes zero and it means we 955 only have space for one block */ 956 blocks_needed = 957 max_to_insert ? max_to_insert : 1; 958 } 959 retval = 960 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 961 (char *)un, 962 UNFM_P_SIZE * 963 blocks_needed); 964 965 if (blocks_needed != 1) 966 kfree(un); 967 968 if (retval) { 969 reiserfs_free_block(th, inode, 970 allocated_block_nr, 1); 971 goto failure; 972 } 973 if (!done) { 974 /* We need to mark new file size in case this function will be 975 interrupted/aborted later on. And we may do this only for 976 holes. */ 977 inode->i_size += 978 inode->i_sb->s_blocksize * blocks_needed; 979 } 980 } 981 982 if (done == 1) 983 break; 984 985 /* this loop could log more blocks than we had originally asked 986 ** for. So, we have to allow the transaction to end if it is 987 ** too big or too full. Update the inode so things are 988 ** consistent if we crash before the function returns 989 ** 990 ** release the path so that anybody waiting on the path before 991 ** ending their transaction will be able to continue. 992 */ 993 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 994 retval = restart_transaction(th, inode, &path); 995 if (retval) 996 goto failure; 997 } 998 /* inserting indirect pointers for a hole can take a 999 ** long time. reschedule if needed 1000 */ 1001 cond_resched(); 1002 1003 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1004 if (retval == IO_ERROR) { 1005 retval = -EIO; 1006 goto failure; 1007 } 1008 if (retval == POSITION_FOUND) { 1009 reiserfs_warning(inode->i_sb, 1010 "vs-825: reiserfs_get_block: " 1011 "%K should not be found", &key); 1012 retval = -EEXIST; 1013 if (allocated_block_nr) 1014 reiserfs_free_block(th, inode, 1015 allocated_block_nr, 1); 1016 pathrelse(&path); 1017 goto failure; 1018 } 1019 bh = get_last_bh(&path); 1020 ih = get_ih(&path); 1021 item = get_item(&path); 1022 pos_in_item = path.pos_in_item; 1023 } while (1); 1024 1025 retval = 0; 1026 1027 failure: 1028 if (th && (!dangle || (retval && !th->t_trans_id))) { 1029 int err; 1030 if (th->t_trans_id) 1031 reiserfs_update_sd(th, inode); 1032 err = reiserfs_end_persistent_transaction(th); 1033 if (err) 1034 retval = err; 1035 } 1036 1037 reiserfs_write_unlock(inode->i_sb); 1038 reiserfs_check_path(&path); 1039 return retval; 1040 } 1041 1042 static int 1043 reiserfs_readpages(struct file *file, struct address_space *mapping, 1044 struct list_head *pages, unsigned nr_pages) 1045 { 1046 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1047 } 1048 1049 /* Compute real number of used bytes by file 1050 * Following three functions can go away when we'll have enough space in stat item 1051 */ 1052 static int real_space_diff(struct inode *inode, int sd_size) 1053 { 1054 int bytes; 1055 loff_t blocksize = inode->i_sb->s_blocksize; 1056 1057 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1058 return sd_size; 1059 1060 /* End of file is also in full block with indirect reference, so round 1061 ** up to the next block. 1062 ** 1063 ** there is just no way to know if the tail is actually packed 1064 ** on the file, so we have to assume it isn't. When we pack the 1065 ** tail, we add 4 bytes to pretend there really is an unformatted 1066 ** node pointer 1067 */ 1068 bytes = 1069 ((inode->i_size + 1070 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1071 sd_size; 1072 return bytes; 1073 } 1074 1075 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1076 int sd_size) 1077 { 1078 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1079 return inode->i_size + 1080 (loff_t) (real_space_diff(inode, sd_size)); 1081 } 1082 return ((loff_t) real_space_diff(inode, sd_size)) + 1083 (((loff_t) blocks) << 9); 1084 } 1085 1086 /* Compute number of blocks used by file in ReiserFS counting */ 1087 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1088 { 1089 loff_t bytes = inode_get_bytes(inode); 1090 loff_t real_space = real_space_diff(inode, sd_size); 1091 1092 /* keeps fsck and non-quota versions of reiserfs happy */ 1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1094 bytes += (loff_t) 511; 1095 } 1096 1097 /* files from before the quota patch might i_blocks such that 1098 ** bytes < real_space. Deal with that here to prevent it from 1099 ** going negative. 1100 */ 1101 if (bytes < real_space) 1102 return 0; 1103 return (bytes - real_space) >> 9; 1104 } 1105 1106 // 1107 // BAD: new directories have stat data of new type and all other items 1108 // of old type. Version stored in the inode says about body items, so 1109 // in update_stat_data we can not rely on inode, but have to check 1110 // item version directly 1111 // 1112 1113 // called by read_locked_inode 1114 static void init_inode(struct inode *inode, struct treepath *path) 1115 { 1116 struct buffer_head *bh; 1117 struct item_head *ih; 1118 __u32 rdev; 1119 //int version = ITEM_VERSION_1; 1120 1121 bh = PATH_PLAST_BUFFER(path); 1122 ih = PATH_PITEM_HEAD(path); 1123 1124 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1125 1126 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1127 REISERFS_I(inode)->i_flags = 0; 1128 REISERFS_I(inode)->i_prealloc_block = 0; 1129 REISERFS_I(inode)->i_prealloc_count = 0; 1130 REISERFS_I(inode)->i_trans_id = 0; 1131 REISERFS_I(inode)->i_jl = NULL; 1132 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1133 reiserfs_init_acl_access(inode); 1134 reiserfs_init_acl_default(inode); 1135 reiserfs_init_xattr_rwsem(inode); 1136 1137 if (stat_data_v1(ih)) { 1138 struct stat_data_v1 *sd = 1139 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1140 unsigned long blocks; 1141 1142 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1143 set_inode_sd_version(inode, STAT_DATA_V1); 1144 inode->i_mode = sd_v1_mode(sd); 1145 inode->i_nlink = sd_v1_nlink(sd); 1146 inode->i_uid = sd_v1_uid(sd); 1147 inode->i_gid = sd_v1_gid(sd); 1148 inode->i_size = sd_v1_size(sd); 1149 inode->i_atime.tv_sec = sd_v1_atime(sd); 1150 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1151 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1152 inode->i_atime.tv_nsec = 0; 1153 inode->i_ctime.tv_nsec = 0; 1154 inode->i_mtime.tv_nsec = 0; 1155 1156 inode->i_blocks = sd_v1_blocks(sd); 1157 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1158 blocks = (inode->i_size + 511) >> 9; 1159 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1160 if (inode->i_blocks > blocks) { 1161 // there was a bug in <=3.5.23 when i_blocks could take negative 1162 // values. Starting from 3.5.17 this value could even be stored in 1163 // stat data. For such files we set i_blocks based on file 1164 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1165 // only updated if file's inode will ever change 1166 inode->i_blocks = blocks; 1167 } 1168 1169 rdev = sd_v1_rdev(sd); 1170 REISERFS_I(inode)->i_first_direct_byte = 1171 sd_v1_first_direct_byte(sd); 1172 /* an early bug in the quota code can give us an odd number for the 1173 ** block count. This is incorrect, fix it here. 1174 */ 1175 if (inode->i_blocks & 1) { 1176 inode->i_blocks++; 1177 } 1178 inode_set_bytes(inode, 1179 to_real_used_space(inode, inode->i_blocks, 1180 SD_V1_SIZE)); 1181 /* nopack is initially zero for v1 objects. For v2 objects, 1182 nopack is initialised from sd_attrs */ 1183 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1184 } else { 1185 // new stat data found, but object may have old items 1186 // (directories and symlinks) 1187 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1188 1189 inode->i_mode = sd_v2_mode(sd); 1190 inode->i_nlink = sd_v2_nlink(sd); 1191 inode->i_uid = sd_v2_uid(sd); 1192 inode->i_size = sd_v2_size(sd); 1193 inode->i_gid = sd_v2_gid(sd); 1194 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1195 inode->i_atime.tv_sec = sd_v2_atime(sd); 1196 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1197 inode->i_ctime.tv_nsec = 0; 1198 inode->i_mtime.tv_nsec = 0; 1199 inode->i_atime.tv_nsec = 0; 1200 inode->i_blocks = sd_v2_blocks(sd); 1201 rdev = sd_v2_rdev(sd); 1202 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1203 inode->i_generation = 1204 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1205 else 1206 inode->i_generation = sd_v2_generation(sd); 1207 1208 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1209 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1210 else 1211 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1212 REISERFS_I(inode)->i_first_direct_byte = 0; 1213 set_inode_sd_version(inode, STAT_DATA_V2); 1214 inode_set_bytes(inode, 1215 to_real_used_space(inode, inode->i_blocks, 1216 SD_V2_SIZE)); 1217 /* read persistent inode attributes from sd and initalise 1218 generic inode flags from them */ 1219 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1220 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1221 } 1222 1223 pathrelse(path); 1224 if (S_ISREG(inode->i_mode)) { 1225 inode->i_op = &reiserfs_file_inode_operations; 1226 inode->i_fop = &reiserfs_file_operations; 1227 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1228 } else if (S_ISDIR(inode->i_mode)) { 1229 inode->i_op = &reiserfs_dir_inode_operations; 1230 inode->i_fop = &reiserfs_dir_operations; 1231 } else if (S_ISLNK(inode->i_mode)) { 1232 inode->i_op = &reiserfs_symlink_inode_operations; 1233 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1234 } else { 1235 inode->i_blocks = 0; 1236 inode->i_op = &reiserfs_special_inode_operations; 1237 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1238 } 1239 } 1240 1241 // update new stat data with inode fields 1242 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1243 { 1244 struct stat_data *sd_v2 = (struct stat_data *)sd; 1245 __u16 flags; 1246 1247 set_sd_v2_mode(sd_v2, inode->i_mode); 1248 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1249 set_sd_v2_uid(sd_v2, inode->i_uid); 1250 set_sd_v2_size(sd_v2, size); 1251 set_sd_v2_gid(sd_v2, inode->i_gid); 1252 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1253 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1254 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1255 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1256 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1257 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1258 else 1259 set_sd_v2_generation(sd_v2, inode->i_generation); 1260 flags = REISERFS_I(inode)->i_attrs; 1261 i_attrs_to_sd_attrs(inode, &flags); 1262 set_sd_v2_attrs(sd_v2, flags); 1263 } 1264 1265 // used to copy inode's fields to old stat data 1266 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1267 { 1268 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1269 1270 set_sd_v1_mode(sd_v1, inode->i_mode); 1271 set_sd_v1_uid(sd_v1, inode->i_uid); 1272 set_sd_v1_gid(sd_v1, inode->i_gid); 1273 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1274 set_sd_v1_size(sd_v1, size); 1275 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1276 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1277 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1278 1279 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1280 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1281 else 1282 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1283 1284 // Sigh. i_first_direct_byte is back 1285 set_sd_v1_first_direct_byte(sd_v1, 1286 REISERFS_I(inode)->i_first_direct_byte); 1287 } 1288 1289 /* NOTE, you must prepare the buffer head before sending it here, 1290 ** and then log it after the call 1291 */ 1292 static void update_stat_data(struct treepath *path, struct inode *inode, 1293 loff_t size) 1294 { 1295 struct buffer_head *bh; 1296 struct item_head *ih; 1297 1298 bh = PATH_PLAST_BUFFER(path); 1299 ih = PATH_PITEM_HEAD(path); 1300 1301 if (!is_statdata_le_ih(ih)) 1302 reiserfs_panic(inode->i_sb, 1303 "vs-13065: update_stat_data: key %k, found item %h", 1304 INODE_PKEY(inode), ih); 1305 1306 if (stat_data_v1(ih)) { 1307 // path points to old stat data 1308 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1309 } else { 1310 inode2sd(B_I_PITEM(bh, ih), inode, size); 1311 } 1312 1313 return; 1314 } 1315 1316 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1317 struct inode *inode, loff_t size) 1318 { 1319 struct cpu_key key; 1320 INITIALIZE_PATH(path); 1321 struct buffer_head *bh; 1322 int fs_gen; 1323 struct item_head *ih, tmp_ih; 1324 int retval; 1325 1326 BUG_ON(!th->t_trans_id); 1327 1328 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1329 1330 for (;;) { 1331 int pos; 1332 /* look for the object's stat data */ 1333 retval = search_item(inode->i_sb, &key, &path); 1334 if (retval == IO_ERROR) { 1335 reiserfs_warning(inode->i_sb, 1336 "vs-13050: reiserfs_update_sd: " 1337 "i/o failure occurred trying to update %K stat data", 1338 &key); 1339 return; 1340 } 1341 if (retval == ITEM_NOT_FOUND) { 1342 pos = PATH_LAST_POSITION(&path); 1343 pathrelse(&path); 1344 if (inode->i_nlink == 0) { 1345 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1346 return; 1347 } 1348 reiserfs_warning(inode->i_sb, 1349 "vs-13060: reiserfs_update_sd: " 1350 "stat data of object %k (nlink == %d) not found (pos %d)", 1351 INODE_PKEY(inode), inode->i_nlink, 1352 pos); 1353 reiserfs_check_path(&path); 1354 return; 1355 } 1356 1357 /* sigh, prepare_for_journal might schedule. When it schedules the 1358 ** FS might change. We have to detect that, and loop back to the 1359 ** search if the stat data item has moved 1360 */ 1361 bh = get_last_bh(&path); 1362 ih = get_ih(&path); 1363 copy_item_head(&tmp_ih, ih); 1364 fs_gen = get_generation(inode->i_sb); 1365 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1366 if (fs_changed(fs_gen, inode->i_sb) 1367 && item_moved(&tmp_ih, &path)) { 1368 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1369 continue; /* Stat_data item has been moved after scheduling. */ 1370 } 1371 break; 1372 } 1373 update_stat_data(&path, inode, size); 1374 journal_mark_dirty(th, th->t_super, bh); 1375 pathrelse(&path); 1376 return; 1377 } 1378 1379 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1380 ** does a make_bad_inode when things go wrong. But, we need to make sure 1381 ** and clear the key in the private portion of the inode, otherwise a 1382 ** corresponding iput might try to delete whatever object the inode last 1383 ** represented. 1384 */ 1385 static void reiserfs_make_bad_inode(struct inode *inode) 1386 { 1387 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1388 make_bad_inode(inode); 1389 } 1390 1391 // 1392 // initially this function was derived from minix or ext2's analog and 1393 // evolved as the prototype did 1394 // 1395 1396 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1397 { 1398 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1399 inode->i_ino = args->objectid; 1400 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1401 return 0; 1402 } 1403 1404 /* looks for stat data in the tree, and fills up the fields of in-core 1405 inode stat data fields */ 1406 void reiserfs_read_locked_inode(struct inode *inode, 1407 struct reiserfs_iget_args *args) 1408 { 1409 INITIALIZE_PATH(path_to_sd); 1410 struct cpu_key key; 1411 unsigned long dirino; 1412 int retval; 1413 1414 dirino = args->dirid; 1415 1416 /* set version 1, version 2 could be used too, because stat data 1417 key is the same in both versions */ 1418 key.version = KEY_FORMAT_3_5; 1419 key.on_disk_key.k_dir_id = dirino; 1420 key.on_disk_key.k_objectid = inode->i_ino; 1421 key.on_disk_key.k_offset = 0; 1422 key.on_disk_key.k_type = 0; 1423 1424 /* look for the object's stat data */ 1425 retval = search_item(inode->i_sb, &key, &path_to_sd); 1426 if (retval == IO_ERROR) { 1427 reiserfs_warning(inode->i_sb, 1428 "vs-13070: reiserfs_read_locked_inode: " 1429 "i/o failure occurred trying to find stat data of %K", 1430 &key); 1431 reiserfs_make_bad_inode(inode); 1432 return; 1433 } 1434 if (retval != ITEM_FOUND) { 1435 /* a stale NFS handle can trigger this without it being an error */ 1436 pathrelse(&path_to_sd); 1437 reiserfs_make_bad_inode(inode); 1438 inode->i_nlink = 0; 1439 return; 1440 } 1441 1442 init_inode(inode, &path_to_sd); 1443 1444 /* It is possible that knfsd is trying to access inode of a file 1445 that is being removed from the disk by some other thread. As we 1446 update sd on unlink all that is required is to check for nlink 1447 here. This bug was first found by Sizif when debugging 1448 SquidNG/Butterfly, forgotten, and found again after Philippe 1449 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1450 1451 More logical fix would require changes in fs/inode.c:iput() to 1452 remove inode from hash-table _after_ fs cleaned disk stuff up and 1453 in iget() to return NULL if I_FREEING inode is found in 1454 hash-table. */ 1455 /* Currently there is one place where it's ok to meet inode with 1456 nlink==0: processing of open-unlinked and half-truncated files 1457 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1458 if ((inode->i_nlink == 0) && 1459 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1460 reiserfs_warning(inode->i_sb, 1461 "vs-13075: reiserfs_read_locked_inode: " 1462 "dead inode read from disk %K. " 1463 "This is likely to be race with knfsd. Ignore", 1464 &key); 1465 reiserfs_make_bad_inode(inode); 1466 } 1467 1468 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1469 1470 } 1471 1472 /** 1473 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1474 * 1475 * @inode: inode from hash table to check 1476 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1477 * 1478 * This function is called by iget5_locked() to distinguish reiserfs inodes 1479 * having the same inode numbers. Such inodes can only exist due to some 1480 * error condition. One of them should be bad. Inodes with identical 1481 * inode numbers (objectids) are distinguished by parent directory ids. 1482 * 1483 */ 1484 int reiserfs_find_actor(struct inode *inode, void *opaque) 1485 { 1486 struct reiserfs_iget_args *args; 1487 1488 args = opaque; 1489 /* args is already in CPU order */ 1490 return (inode->i_ino == args->objectid) && 1491 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1492 } 1493 1494 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1495 { 1496 struct inode *inode; 1497 struct reiserfs_iget_args args; 1498 1499 args.objectid = key->on_disk_key.k_objectid; 1500 args.dirid = key->on_disk_key.k_dir_id; 1501 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1502 reiserfs_find_actor, reiserfs_init_locked_inode, 1503 (void *)(&args)); 1504 if (!inode) 1505 return ERR_PTR(-ENOMEM); 1506 1507 if (inode->i_state & I_NEW) { 1508 reiserfs_read_locked_inode(inode, &args); 1509 unlock_new_inode(inode); 1510 } 1511 1512 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1513 /* either due to i/o error or a stale NFS handle */ 1514 iput(inode); 1515 inode = NULL; 1516 } 1517 return inode; 1518 } 1519 1520 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1521 u32 objectid, u32 dir_id, u32 generation) 1522 1523 { 1524 struct cpu_key key; 1525 struct inode *inode; 1526 1527 key.on_disk_key.k_objectid = objectid; 1528 key.on_disk_key.k_dir_id = dir_id; 1529 reiserfs_write_lock(sb); 1530 inode = reiserfs_iget(sb, &key); 1531 if (inode && !IS_ERR(inode) && generation != 0 && 1532 generation != inode->i_generation) { 1533 iput(inode); 1534 inode = NULL; 1535 } 1536 reiserfs_write_unlock(sb); 1537 1538 return d_obtain_alias(inode); 1539 } 1540 1541 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1542 int fh_len, int fh_type) 1543 { 1544 /* fhtype happens to reflect the number of u32s encoded. 1545 * due to a bug in earlier code, fhtype might indicate there 1546 * are more u32s then actually fitted. 1547 * so if fhtype seems to be more than len, reduce fhtype. 1548 * Valid types are: 1549 * 2 - objectid + dir_id - legacy support 1550 * 3 - objectid + dir_id + generation 1551 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1552 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1553 * 6 - as above plus generation of directory 1554 * 6 does not fit in NFSv2 handles 1555 */ 1556 if (fh_type > fh_len) { 1557 if (fh_type != 6 || fh_len != 5) 1558 reiserfs_warning(sb, 1559 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1560 fh_type, fh_len); 1561 fh_type = 5; 1562 } 1563 1564 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1565 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1566 } 1567 1568 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1569 int fh_len, int fh_type) 1570 { 1571 if (fh_type < 4) 1572 return NULL; 1573 1574 return reiserfs_get_dentry(sb, 1575 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1576 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1577 (fh_type == 6) ? fid->raw[5] : 0); 1578 } 1579 1580 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1581 int need_parent) 1582 { 1583 struct inode *inode = dentry->d_inode; 1584 int maxlen = *lenp; 1585 1586 if (maxlen < 3) 1587 return 255; 1588 1589 data[0] = inode->i_ino; 1590 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1591 data[2] = inode->i_generation; 1592 *lenp = 3; 1593 /* no room for directory info? return what we've stored so far */ 1594 if (maxlen < 5 || !need_parent) 1595 return 3; 1596 1597 spin_lock(&dentry->d_lock); 1598 inode = dentry->d_parent->d_inode; 1599 data[3] = inode->i_ino; 1600 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1601 *lenp = 5; 1602 if (maxlen >= 6) { 1603 data[5] = inode->i_generation; 1604 *lenp = 6; 1605 } 1606 spin_unlock(&dentry->d_lock); 1607 return *lenp; 1608 } 1609 1610 /* looks for stat data, then copies fields to it, marks the buffer 1611 containing stat data as dirty */ 1612 /* reiserfs inodes are never really dirty, since the dirty inode call 1613 ** always logs them. This call allows the VFS inode marking routines 1614 ** to properly mark inodes for datasync and such, but only actually 1615 ** does something when called for a synchronous update. 1616 */ 1617 int reiserfs_write_inode(struct inode *inode, int do_sync) 1618 { 1619 struct reiserfs_transaction_handle th; 1620 int jbegin_count = 1; 1621 1622 if (inode->i_sb->s_flags & MS_RDONLY) 1623 return -EROFS; 1624 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1625 ** these cases are just when the system needs ram, not when the 1626 ** inode needs to reach disk for safety, and they can safely be 1627 ** ignored because the altered inode has already been logged. 1628 */ 1629 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1630 reiserfs_write_lock(inode->i_sb); 1631 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1632 reiserfs_update_sd(&th, inode); 1633 journal_end_sync(&th, inode->i_sb, jbegin_count); 1634 } 1635 reiserfs_write_unlock(inode->i_sb); 1636 } 1637 return 0; 1638 } 1639 1640 /* stat data of new object is inserted already, this inserts the item 1641 containing "." and ".." entries */ 1642 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1643 struct inode *inode, 1644 struct item_head *ih, struct treepath *path, 1645 struct inode *dir) 1646 { 1647 struct super_block *sb = th->t_super; 1648 char empty_dir[EMPTY_DIR_SIZE]; 1649 char *body = empty_dir; 1650 struct cpu_key key; 1651 int retval; 1652 1653 BUG_ON(!th->t_trans_id); 1654 1655 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1656 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1657 TYPE_DIRENTRY, 3 /*key length */ ); 1658 1659 /* compose item head for new item. Directories consist of items of 1660 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1661 is done by reiserfs_new_inode */ 1662 if (old_format_only(sb)) { 1663 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1664 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1665 1666 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1667 ih->ih_key.k_objectid, 1668 INODE_PKEY(dir)->k_dir_id, 1669 INODE_PKEY(dir)->k_objectid); 1670 } else { 1671 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1672 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1673 1674 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1675 ih->ih_key.k_objectid, 1676 INODE_PKEY(dir)->k_dir_id, 1677 INODE_PKEY(dir)->k_objectid); 1678 } 1679 1680 /* look for place in the tree for new item */ 1681 retval = search_item(sb, &key, path); 1682 if (retval == IO_ERROR) { 1683 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: " 1684 "i/o failure occurred creating new directory"); 1685 return -EIO; 1686 } 1687 if (retval == ITEM_FOUND) { 1688 pathrelse(path); 1689 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: " 1690 "object with this key exists (%k)", 1691 &(ih->ih_key)); 1692 return -EEXIST; 1693 } 1694 1695 /* insert item, that is empty directory item */ 1696 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1697 } 1698 1699 /* stat data of object has been inserted, this inserts the item 1700 containing the body of symlink */ 1701 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1702 struct item_head *ih, 1703 struct treepath *path, const char *symname, 1704 int item_len) 1705 { 1706 struct super_block *sb = th->t_super; 1707 struct cpu_key key; 1708 int retval; 1709 1710 BUG_ON(!th->t_trans_id); 1711 1712 _make_cpu_key(&key, KEY_FORMAT_3_5, 1713 le32_to_cpu(ih->ih_key.k_dir_id), 1714 le32_to_cpu(ih->ih_key.k_objectid), 1715 1, TYPE_DIRECT, 3 /*key length */ ); 1716 1717 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1718 0 /*free_space */ ); 1719 1720 /* look for place in the tree for new item */ 1721 retval = search_item(sb, &key, path); 1722 if (retval == IO_ERROR) { 1723 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: " 1724 "i/o failure occurred creating new symlink"); 1725 return -EIO; 1726 } 1727 if (retval == ITEM_FOUND) { 1728 pathrelse(path); 1729 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: " 1730 "object with this key exists (%k)", 1731 &(ih->ih_key)); 1732 return -EEXIST; 1733 } 1734 1735 /* insert item, that is body of symlink */ 1736 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1737 } 1738 1739 /* inserts the stat data into the tree, and then calls 1740 reiserfs_new_directory (to insert ".", ".." item if new object is 1741 directory) or reiserfs_new_symlink (to insert symlink body if new 1742 object is symlink) or nothing (if new object is regular file) 1743 1744 NOTE! uid and gid must already be set in the inode. If we return 1745 non-zero due to an error, we have to drop the quota previously allocated 1746 for the fresh inode. This can only be done outside a transaction, so 1747 if we return non-zero, we also end the transaction. */ 1748 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1749 struct inode *dir, int mode, const char *symname, 1750 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1751 strlen (symname) for symlinks) */ 1752 loff_t i_size, struct dentry *dentry, 1753 struct inode *inode) 1754 { 1755 struct super_block *sb; 1756 INITIALIZE_PATH(path_to_key); 1757 struct cpu_key key; 1758 struct item_head ih; 1759 struct stat_data sd; 1760 int retval; 1761 int err; 1762 1763 BUG_ON(!th->t_trans_id); 1764 1765 if (DQUOT_ALLOC_INODE(inode)) { 1766 err = -EDQUOT; 1767 goto out_end_trans; 1768 } 1769 if (!dir->i_nlink) { 1770 err = -EPERM; 1771 goto out_bad_inode; 1772 } 1773 1774 sb = dir->i_sb; 1775 1776 /* item head of new item */ 1777 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1778 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1779 if (!ih.ih_key.k_objectid) { 1780 err = -ENOMEM; 1781 goto out_bad_inode; 1782 } 1783 if (old_format_only(sb)) 1784 /* not a perfect generation count, as object ids can be reused, but 1785 ** this is as good as reiserfs can do right now. 1786 ** note that the private part of inode isn't filled in yet, we have 1787 ** to use the directory. 1788 */ 1789 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1790 else 1791 #if defined( USE_INODE_GENERATION_COUNTER ) 1792 inode->i_generation = 1793 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1794 #else 1795 inode->i_generation = ++event; 1796 #endif 1797 1798 /* fill stat data */ 1799 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1800 1801 /* uid and gid must already be set by the caller for quota init */ 1802 1803 /* symlink cannot be immutable or append only, right? */ 1804 if (S_ISLNK(inode->i_mode)) 1805 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1806 1807 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1808 inode->i_size = i_size; 1809 inode->i_blocks = 0; 1810 inode->i_bytes = 0; 1811 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1812 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1813 1814 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1815 REISERFS_I(inode)->i_flags = 0; 1816 REISERFS_I(inode)->i_prealloc_block = 0; 1817 REISERFS_I(inode)->i_prealloc_count = 0; 1818 REISERFS_I(inode)->i_trans_id = 0; 1819 REISERFS_I(inode)->i_jl = NULL; 1820 REISERFS_I(inode)->i_attrs = 1821 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1822 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1823 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1824 reiserfs_init_acl_access(inode); 1825 reiserfs_init_acl_default(inode); 1826 reiserfs_init_xattr_rwsem(inode); 1827 1828 if (old_format_only(sb)) 1829 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1830 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1831 else 1832 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1833 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1834 1835 /* key to search for correct place for new stat data */ 1836 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1837 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1838 TYPE_STAT_DATA, 3 /*key length */ ); 1839 1840 /* find proper place for inserting of stat data */ 1841 retval = search_item(sb, &key, &path_to_key); 1842 if (retval == IO_ERROR) { 1843 err = -EIO; 1844 goto out_bad_inode; 1845 } 1846 if (retval == ITEM_FOUND) { 1847 pathrelse(&path_to_key); 1848 err = -EEXIST; 1849 goto out_bad_inode; 1850 } 1851 if (old_format_only(sb)) { 1852 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1853 pathrelse(&path_to_key); 1854 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1855 err = -EINVAL; 1856 goto out_bad_inode; 1857 } 1858 inode2sd_v1(&sd, inode, inode->i_size); 1859 } else { 1860 inode2sd(&sd, inode, inode->i_size); 1861 } 1862 // these do not go to on-disk stat data 1863 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1864 1865 // store in in-core inode the key of stat data and version all 1866 // object items will have (directory items will have old offset 1867 // format, other new objects will consist of new items) 1868 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1869 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1870 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1871 else 1872 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1873 if (old_format_only(sb)) 1874 set_inode_sd_version(inode, STAT_DATA_V1); 1875 else 1876 set_inode_sd_version(inode, STAT_DATA_V2); 1877 1878 /* insert the stat data into the tree */ 1879 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1880 if (REISERFS_I(dir)->new_packing_locality) 1881 th->displace_new_blocks = 1; 1882 #endif 1883 retval = 1884 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1885 (char *)(&sd)); 1886 if (retval) { 1887 err = retval; 1888 reiserfs_check_path(&path_to_key); 1889 goto out_bad_inode; 1890 } 1891 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1892 if (!th->displace_new_blocks) 1893 REISERFS_I(dir)->new_packing_locality = 0; 1894 #endif 1895 if (S_ISDIR(mode)) { 1896 /* insert item with "." and ".." */ 1897 retval = 1898 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1899 } 1900 1901 if (S_ISLNK(mode)) { 1902 /* insert body of symlink */ 1903 if (!old_format_only(sb)) 1904 i_size = ROUND_UP(i_size); 1905 retval = 1906 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1907 i_size); 1908 } 1909 if (retval) { 1910 err = retval; 1911 reiserfs_check_path(&path_to_key); 1912 journal_end(th, th->t_super, th->t_blocks_allocated); 1913 goto out_inserted_sd; 1914 } 1915 1916 /* XXX CHECK THIS */ 1917 if (reiserfs_posixacl(inode->i_sb)) { 1918 retval = reiserfs_inherit_default_acl(dir, dentry, inode); 1919 if (retval) { 1920 err = retval; 1921 reiserfs_check_path(&path_to_key); 1922 journal_end(th, th->t_super, th->t_blocks_allocated); 1923 goto out_inserted_sd; 1924 } 1925 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1926 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, " 1927 "but vfs thinks they are!"); 1928 } else if (is_reiserfs_priv_object(dir)) { 1929 reiserfs_mark_inode_private(inode); 1930 } 1931 1932 insert_inode_hash(inode); 1933 reiserfs_update_sd(th, inode); 1934 reiserfs_check_path(&path_to_key); 1935 1936 return 0; 1937 1938 /* it looks like you can easily compress these two goto targets into 1939 * one. Keeping it like this doesn't actually hurt anything, and they 1940 * are place holders for what the quota code actually needs. 1941 */ 1942 out_bad_inode: 1943 /* Invalidate the object, nothing was inserted yet */ 1944 INODE_PKEY(inode)->k_objectid = 0; 1945 1946 /* Quota change must be inside a transaction for journaling */ 1947 DQUOT_FREE_INODE(inode); 1948 1949 out_end_trans: 1950 journal_end(th, th->t_super, th->t_blocks_allocated); 1951 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1952 DQUOT_DROP(inode); 1953 inode->i_flags |= S_NOQUOTA; 1954 make_bad_inode(inode); 1955 1956 out_inserted_sd: 1957 inode->i_nlink = 0; 1958 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1959 1960 /* If we were inheriting an ACL, we need to release the lock so that 1961 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking 1962 * code really needs to be reworked, but this will take care of it 1963 * for now. -jeffm */ 1964 #ifdef CONFIG_REISERFS_FS_POSIX_ACL 1965 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) { 1966 reiserfs_write_unlock_xattrs(dir->i_sb); 1967 iput(inode); 1968 reiserfs_write_lock_xattrs(dir->i_sb); 1969 } else 1970 #endif 1971 iput(inode); 1972 return err; 1973 } 1974 1975 /* 1976 ** finds the tail page in the page cache, 1977 ** reads the last block in. 1978 ** 1979 ** On success, page_result is set to a locked, pinned page, and bh_result 1980 ** is set to an up to date buffer for the last block in the file. returns 0. 1981 ** 1982 ** tail conversion is not done, so bh_result might not be valid for writing 1983 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1984 ** trying to write the block. 1985 ** 1986 ** on failure, nonzero is returned, page_result and bh_result are untouched. 1987 */ 1988 static int grab_tail_page(struct inode *p_s_inode, 1989 struct page **page_result, 1990 struct buffer_head **bh_result) 1991 { 1992 1993 /* we want the page with the last byte in the file, 1994 ** not the page that will hold the next byte for appending 1995 */ 1996 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1997 unsigned long pos = 0; 1998 unsigned long start = 0; 1999 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2000 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2001 struct buffer_head *bh; 2002 struct buffer_head *head; 2003 struct page *page; 2004 int error; 2005 2006 /* we know that we are only called with inode->i_size > 0. 2007 ** we also know that a file tail can never be as big as a block 2008 ** If i_size % blocksize == 0, our file is currently block aligned 2009 ** and it won't need converting or zeroing after a truncate. 2010 */ 2011 if ((offset & (blocksize - 1)) == 0) { 2012 return -ENOENT; 2013 } 2014 page = grab_cache_page(p_s_inode->i_mapping, index); 2015 error = -ENOMEM; 2016 if (!page) { 2017 goto out; 2018 } 2019 /* start within the page of the last block in the file */ 2020 start = (offset / blocksize) * blocksize; 2021 2022 error = block_prepare_write(page, start, offset, 2023 reiserfs_get_block_create_0); 2024 if (error) 2025 goto unlock; 2026 2027 head = page_buffers(page); 2028 bh = head; 2029 do { 2030 if (pos >= start) { 2031 break; 2032 } 2033 bh = bh->b_this_page; 2034 pos += blocksize; 2035 } while (bh != head); 2036 2037 if (!buffer_uptodate(bh)) { 2038 /* note, this should never happen, prepare_write should 2039 ** be taking care of this for us. If the buffer isn't up to date, 2040 ** I've screwed up the code to find the buffer, or the code to 2041 ** call prepare_write 2042 */ 2043 reiserfs_warning(p_s_inode->i_sb, 2044 "clm-6000: error reading block %lu on dev %s", 2045 bh->b_blocknr, 2046 reiserfs_bdevname(p_s_inode->i_sb)); 2047 error = -EIO; 2048 goto unlock; 2049 } 2050 *bh_result = bh; 2051 *page_result = page; 2052 2053 out: 2054 return error; 2055 2056 unlock: 2057 unlock_page(page); 2058 page_cache_release(page); 2059 return error; 2060 } 2061 2062 /* 2063 ** vfs version of truncate file. Must NOT be called with 2064 ** a transaction already started. 2065 ** 2066 ** some code taken from block_truncate_page 2067 */ 2068 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2069 { 2070 struct reiserfs_transaction_handle th; 2071 /* we want the offset for the first byte after the end of the file */ 2072 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2073 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2074 unsigned length; 2075 struct page *page = NULL; 2076 int error; 2077 struct buffer_head *bh = NULL; 2078 int err2; 2079 2080 reiserfs_write_lock(p_s_inode->i_sb); 2081 2082 if (p_s_inode->i_size > 0) { 2083 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2084 // -ENOENT means we truncated past the end of the file, 2085 // and get_block_create_0 could not find a block to read in, 2086 // which is ok. 2087 if (error != -ENOENT) 2088 reiserfs_warning(p_s_inode->i_sb, 2089 "clm-6001: grab_tail_page failed %d", 2090 error); 2091 page = NULL; 2092 bh = NULL; 2093 } 2094 } 2095 2096 /* so, if page != NULL, we have a buffer head for the offset at 2097 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2098 ** then we have an unformatted node. Otherwise, we have a direct item, 2099 ** and no zeroing is required on disk. We zero after the truncate, 2100 ** because the truncate might pack the item anyway 2101 ** (it will unmap bh if it packs). 2102 */ 2103 /* it is enough to reserve space in transaction for 2 balancings: 2104 one for "save" link adding and another for the first 2105 cut_from_item. 1 is for update_sd */ 2106 error = journal_begin(&th, p_s_inode->i_sb, 2107 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2108 if (error) 2109 goto out; 2110 reiserfs_update_inode_transaction(p_s_inode); 2111 if (update_timestamps) 2112 /* we are doing real truncate: if the system crashes before the last 2113 transaction of truncating gets committed - on reboot the file 2114 either appears truncated properly or not truncated at all */ 2115 add_save_link(&th, p_s_inode, 1); 2116 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2117 error = 2118 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2119 if (error) 2120 goto out; 2121 2122 /* check reiserfs_do_truncate after ending the transaction */ 2123 if (err2) { 2124 error = err2; 2125 goto out; 2126 } 2127 2128 if (update_timestamps) { 2129 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2130 if (error) 2131 goto out; 2132 } 2133 2134 if (page) { 2135 length = offset & (blocksize - 1); 2136 /* if we are not on a block boundary */ 2137 if (length) { 2138 length = blocksize - length; 2139 zero_user(page, offset, length); 2140 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2141 mark_buffer_dirty(bh); 2142 } 2143 } 2144 unlock_page(page); 2145 page_cache_release(page); 2146 } 2147 2148 reiserfs_write_unlock(p_s_inode->i_sb); 2149 return 0; 2150 out: 2151 if (page) { 2152 unlock_page(page); 2153 page_cache_release(page); 2154 } 2155 reiserfs_write_unlock(p_s_inode->i_sb); 2156 return error; 2157 } 2158 2159 static int map_block_for_writepage(struct inode *inode, 2160 struct buffer_head *bh_result, 2161 unsigned long block) 2162 { 2163 struct reiserfs_transaction_handle th; 2164 int fs_gen; 2165 struct item_head tmp_ih; 2166 struct item_head *ih; 2167 struct buffer_head *bh; 2168 __le32 *item; 2169 struct cpu_key key; 2170 INITIALIZE_PATH(path); 2171 int pos_in_item; 2172 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2173 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2174 int retval; 2175 int use_get_block = 0; 2176 int bytes_copied = 0; 2177 int copy_size; 2178 int trans_running = 0; 2179 2180 /* catch places below that try to log something without starting a trans */ 2181 th.t_trans_id = 0; 2182 2183 if (!buffer_uptodate(bh_result)) { 2184 return -EIO; 2185 } 2186 2187 kmap(bh_result->b_page); 2188 start_over: 2189 reiserfs_write_lock(inode->i_sb); 2190 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2191 2192 research: 2193 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2194 if (retval != POSITION_FOUND) { 2195 use_get_block = 1; 2196 goto out; 2197 } 2198 2199 bh = get_last_bh(&path); 2200 ih = get_ih(&path); 2201 item = get_item(&path); 2202 pos_in_item = path.pos_in_item; 2203 2204 /* we've found an unformatted node */ 2205 if (indirect_item_found(retval, ih)) { 2206 if (bytes_copied > 0) { 2207 reiserfs_warning(inode->i_sb, 2208 "clm-6002: bytes_copied %d", 2209 bytes_copied); 2210 } 2211 if (!get_block_num(item, pos_in_item)) { 2212 /* crap, we are writing to a hole */ 2213 use_get_block = 1; 2214 goto out; 2215 } 2216 set_block_dev_mapped(bh_result, 2217 get_block_num(item, pos_in_item), inode); 2218 } else if (is_direct_le_ih(ih)) { 2219 char *p; 2220 p = page_address(bh_result->b_page); 2221 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2222 copy_size = ih_item_len(ih) - pos_in_item; 2223 2224 fs_gen = get_generation(inode->i_sb); 2225 copy_item_head(&tmp_ih, ih); 2226 2227 if (!trans_running) { 2228 /* vs-3050 is gone, no need to drop the path */ 2229 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2230 if (retval) 2231 goto out; 2232 reiserfs_update_inode_transaction(inode); 2233 trans_running = 1; 2234 if (fs_changed(fs_gen, inode->i_sb) 2235 && item_moved(&tmp_ih, &path)) { 2236 reiserfs_restore_prepared_buffer(inode->i_sb, 2237 bh); 2238 goto research; 2239 } 2240 } 2241 2242 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2243 2244 if (fs_changed(fs_gen, inode->i_sb) 2245 && item_moved(&tmp_ih, &path)) { 2246 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2247 goto research; 2248 } 2249 2250 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2251 copy_size); 2252 2253 journal_mark_dirty(&th, inode->i_sb, bh); 2254 bytes_copied += copy_size; 2255 set_block_dev_mapped(bh_result, 0, inode); 2256 2257 /* are there still bytes left? */ 2258 if (bytes_copied < bh_result->b_size && 2259 (byte_offset + bytes_copied) < inode->i_size) { 2260 set_cpu_key_k_offset(&key, 2261 cpu_key_k_offset(&key) + 2262 copy_size); 2263 goto research; 2264 } 2265 } else { 2266 reiserfs_warning(inode->i_sb, 2267 "clm-6003: bad item inode %lu, device %s", 2268 inode->i_ino, reiserfs_bdevname(inode->i_sb)); 2269 retval = -EIO; 2270 goto out; 2271 } 2272 retval = 0; 2273 2274 out: 2275 pathrelse(&path); 2276 if (trans_running) { 2277 int err = journal_end(&th, inode->i_sb, jbegin_count); 2278 if (err) 2279 retval = err; 2280 trans_running = 0; 2281 } 2282 reiserfs_write_unlock(inode->i_sb); 2283 2284 /* this is where we fill in holes in the file. */ 2285 if (use_get_block) { 2286 retval = reiserfs_get_block(inode, block, bh_result, 2287 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2288 | GET_BLOCK_NO_DANGLE); 2289 if (!retval) { 2290 if (!buffer_mapped(bh_result) 2291 || bh_result->b_blocknr == 0) { 2292 /* get_block failed to find a mapped unformatted node. */ 2293 use_get_block = 0; 2294 goto start_over; 2295 } 2296 } 2297 } 2298 kunmap(bh_result->b_page); 2299 2300 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2301 /* we've copied data from the page into the direct item, so the 2302 * buffer in the page is now clean, mark it to reflect that. 2303 */ 2304 lock_buffer(bh_result); 2305 clear_buffer_dirty(bh_result); 2306 unlock_buffer(bh_result); 2307 } 2308 return retval; 2309 } 2310 2311 /* 2312 * mason@suse.com: updated in 2.5.54 to follow the same general io 2313 * start/recovery path as __block_write_full_page, along with special 2314 * code to handle reiserfs tails. 2315 */ 2316 static int reiserfs_write_full_page(struct page *page, 2317 struct writeback_control *wbc) 2318 { 2319 struct inode *inode = page->mapping->host; 2320 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2321 int error = 0; 2322 unsigned long block; 2323 sector_t last_block; 2324 struct buffer_head *head, *bh; 2325 int partial = 0; 2326 int nr = 0; 2327 int checked = PageChecked(page); 2328 struct reiserfs_transaction_handle th; 2329 struct super_block *s = inode->i_sb; 2330 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2331 th.t_trans_id = 0; 2332 2333 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2334 if (checked && (current->flags & PF_MEMALLOC)) { 2335 redirty_page_for_writepage(wbc, page); 2336 unlock_page(page); 2337 return 0; 2338 } 2339 2340 /* The page dirty bit is cleared before writepage is called, which 2341 * means we have to tell create_empty_buffers to make dirty buffers 2342 * The page really should be up to date at this point, so tossing 2343 * in the BH_Uptodate is just a sanity check. 2344 */ 2345 if (!page_has_buffers(page)) { 2346 create_empty_buffers(page, s->s_blocksize, 2347 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2348 } 2349 head = page_buffers(page); 2350 2351 /* last page in the file, zero out any contents past the 2352 ** last byte in the file 2353 */ 2354 if (page->index >= end_index) { 2355 unsigned last_offset; 2356 2357 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2358 /* no file contents in this page */ 2359 if (page->index >= end_index + 1 || !last_offset) { 2360 unlock_page(page); 2361 return 0; 2362 } 2363 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE); 2364 } 2365 bh = head; 2366 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2367 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2368 /* first map all the buffers, logging any direct items we find */ 2369 do { 2370 if (block > last_block) { 2371 /* 2372 * This can happen when the block size is less than 2373 * the page size. The corresponding bytes in the page 2374 * were zero filled above 2375 */ 2376 clear_buffer_dirty(bh); 2377 set_buffer_uptodate(bh); 2378 } else if ((checked || buffer_dirty(bh)) && 2379 (!buffer_mapped(bh) || (buffer_mapped(bh) 2380 && bh->b_blocknr == 2381 0))) { 2382 /* not mapped yet, or it points to a direct item, search 2383 * the btree for the mapping info, and log any direct 2384 * items found 2385 */ 2386 if ((error = map_block_for_writepage(inode, bh, block))) { 2387 goto fail; 2388 } 2389 } 2390 bh = bh->b_this_page; 2391 block++; 2392 } while (bh != head); 2393 2394 /* 2395 * we start the transaction after map_block_for_writepage, 2396 * because it can create holes in the file (an unbounded operation). 2397 * starting it here, we can make a reliable estimate for how many 2398 * blocks we're going to log 2399 */ 2400 if (checked) { 2401 ClearPageChecked(page); 2402 reiserfs_write_lock(s); 2403 error = journal_begin(&th, s, bh_per_page + 1); 2404 if (error) { 2405 reiserfs_write_unlock(s); 2406 goto fail; 2407 } 2408 reiserfs_update_inode_transaction(inode); 2409 } 2410 /* now go through and lock any dirty buffers on the page */ 2411 do { 2412 get_bh(bh); 2413 if (!buffer_mapped(bh)) 2414 continue; 2415 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2416 continue; 2417 2418 if (checked) { 2419 reiserfs_prepare_for_journal(s, bh, 1); 2420 journal_mark_dirty(&th, s, bh); 2421 continue; 2422 } 2423 /* from this point on, we know the buffer is mapped to a 2424 * real block and not a direct item 2425 */ 2426 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2427 lock_buffer(bh); 2428 } else { 2429 if (!trylock_buffer(bh)) { 2430 redirty_page_for_writepage(wbc, page); 2431 continue; 2432 } 2433 } 2434 if (test_clear_buffer_dirty(bh)) { 2435 mark_buffer_async_write(bh); 2436 } else { 2437 unlock_buffer(bh); 2438 } 2439 } while ((bh = bh->b_this_page) != head); 2440 2441 if (checked) { 2442 error = journal_end(&th, s, bh_per_page + 1); 2443 reiserfs_write_unlock(s); 2444 if (error) 2445 goto fail; 2446 } 2447 BUG_ON(PageWriteback(page)); 2448 set_page_writeback(page); 2449 unlock_page(page); 2450 2451 /* 2452 * since any buffer might be the only dirty buffer on the page, 2453 * the first submit_bh can bring the page out of writeback. 2454 * be careful with the buffers. 2455 */ 2456 do { 2457 struct buffer_head *next = bh->b_this_page; 2458 if (buffer_async_write(bh)) { 2459 submit_bh(WRITE, bh); 2460 nr++; 2461 } 2462 put_bh(bh); 2463 bh = next; 2464 } while (bh != head); 2465 2466 error = 0; 2467 done: 2468 if (nr == 0) { 2469 /* 2470 * if this page only had a direct item, it is very possible for 2471 * no io to be required without there being an error. Or, 2472 * someone else could have locked them and sent them down the 2473 * pipe without locking the page 2474 */ 2475 bh = head; 2476 do { 2477 if (!buffer_uptodate(bh)) { 2478 partial = 1; 2479 break; 2480 } 2481 bh = bh->b_this_page; 2482 } while (bh != head); 2483 if (!partial) 2484 SetPageUptodate(page); 2485 end_page_writeback(page); 2486 } 2487 return error; 2488 2489 fail: 2490 /* catches various errors, we need to make sure any valid dirty blocks 2491 * get to the media. The page is currently locked and not marked for 2492 * writeback 2493 */ 2494 ClearPageUptodate(page); 2495 bh = head; 2496 do { 2497 get_bh(bh); 2498 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2499 lock_buffer(bh); 2500 mark_buffer_async_write(bh); 2501 } else { 2502 /* 2503 * clear any dirty bits that might have come from getting 2504 * attached to a dirty page 2505 */ 2506 clear_buffer_dirty(bh); 2507 } 2508 bh = bh->b_this_page; 2509 } while (bh != head); 2510 SetPageError(page); 2511 BUG_ON(PageWriteback(page)); 2512 set_page_writeback(page); 2513 unlock_page(page); 2514 do { 2515 struct buffer_head *next = bh->b_this_page; 2516 if (buffer_async_write(bh)) { 2517 clear_buffer_dirty(bh); 2518 submit_bh(WRITE, bh); 2519 nr++; 2520 } 2521 put_bh(bh); 2522 bh = next; 2523 } while (bh != head); 2524 goto done; 2525 } 2526 2527 static int reiserfs_readpage(struct file *f, struct page *page) 2528 { 2529 return block_read_full_page(page, reiserfs_get_block); 2530 } 2531 2532 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2533 { 2534 struct inode *inode = page->mapping->host; 2535 reiserfs_wait_on_write_block(inode->i_sb); 2536 return reiserfs_write_full_page(page, wbc); 2537 } 2538 2539 static int reiserfs_write_begin(struct file *file, 2540 struct address_space *mapping, 2541 loff_t pos, unsigned len, unsigned flags, 2542 struct page **pagep, void **fsdata) 2543 { 2544 struct inode *inode; 2545 struct page *page; 2546 pgoff_t index; 2547 int ret; 2548 int old_ref = 0; 2549 2550 inode = mapping->host; 2551 *fsdata = 0; 2552 if (flags & AOP_FLAG_CONT_EXPAND && 2553 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2554 pos ++; 2555 *fsdata = (void *)(unsigned long)flags; 2556 } 2557 2558 index = pos >> PAGE_CACHE_SHIFT; 2559 page = __grab_cache_page(mapping, index); 2560 if (!page) 2561 return -ENOMEM; 2562 *pagep = page; 2563 2564 reiserfs_wait_on_write_block(inode->i_sb); 2565 fix_tail_page_for_writing(page); 2566 if (reiserfs_transaction_running(inode->i_sb)) { 2567 struct reiserfs_transaction_handle *th; 2568 th = (struct reiserfs_transaction_handle *)current-> 2569 journal_info; 2570 BUG_ON(!th->t_refcount); 2571 BUG_ON(!th->t_trans_id); 2572 old_ref = th->t_refcount; 2573 th->t_refcount++; 2574 } 2575 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2576 reiserfs_get_block); 2577 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2578 struct reiserfs_transaction_handle *th = current->journal_info; 2579 /* this gets a little ugly. If reiserfs_get_block returned an 2580 * error and left a transacstion running, we've got to close it, 2581 * and we've got to free handle if it was a persistent transaction. 2582 * 2583 * But, if we had nested into an existing transaction, we need 2584 * to just drop the ref count on the handle. 2585 * 2586 * If old_ref == 0, the transaction is from reiserfs_get_block, 2587 * and it was a persistent trans. Otherwise, it was nested above. 2588 */ 2589 if (th->t_refcount > old_ref) { 2590 if (old_ref) 2591 th->t_refcount--; 2592 else { 2593 int err; 2594 reiserfs_write_lock(inode->i_sb); 2595 err = reiserfs_end_persistent_transaction(th); 2596 reiserfs_write_unlock(inode->i_sb); 2597 if (err) 2598 ret = err; 2599 } 2600 } 2601 } 2602 if (ret) { 2603 unlock_page(page); 2604 page_cache_release(page); 2605 } 2606 return ret; 2607 } 2608 2609 int reiserfs_prepare_write(struct file *f, struct page *page, 2610 unsigned from, unsigned to) 2611 { 2612 struct inode *inode = page->mapping->host; 2613 int ret; 2614 int old_ref = 0; 2615 2616 reiserfs_wait_on_write_block(inode->i_sb); 2617 fix_tail_page_for_writing(page); 2618 if (reiserfs_transaction_running(inode->i_sb)) { 2619 struct reiserfs_transaction_handle *th; 2620 th = (struct reiserfs_transaction_handle *)current-> 2621 journal_info; 2622 BUG_ON(!th->t_refcount); 2623 BUG_ON(!th->t_trans_id); 2624 old_ref = th->t_refcount; 2625 th->t_refcount++; 2626 } 2627 2628 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2629 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2630 struct reiserfs_transaction_handle *th = current->journal_info; 2631 /* this gets a little ugly. If reiserfs_get_block returned an 2632 * error and left a transacstion running, we've got to close it, 2633 * and we've got to free handle if it was a persistent transaction. 2634 * 2635 * But, if we had nested into an existing transaction, we need 2636 * to just drop the ref count on the handle. 2637 * 2638 * If old_ref == 0, the transaction is from reiserfs_get_block, 2639 * and it was a persistent trans. Otherwise, it was nested above. 2640 */ 2641 if (th->t_refcount > old_ref) { 2642 if (old_ref) 2643 th->t_refcount--; 2644 else { 2645 int err; 2646 reiserfs_write_lock(inode->i_sb); 2647 err = reiserfs_end_persistent_transaction(th); 2648 reiserfs_write_unlock(inode->i_sb); 2649 if (err) 2650 ret = err; 2651 } 2652 } 2653 } 2654 return ret; 2655 2656 } 2657 2658 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2659 { 2660 return generic_block_bmap(as, block, reiserfs_bmap); 2661 } 2662 2663 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2664 loff_t pos, unsigned len, unsigned copied, 2665 struct page *page, void *fsdata) 2666 { 2667 struct inode *inode = page->mapping->host; 2668 int ret = 0; 2669 int update_sd = 0; 2670 struct reiserfs_transaction_handle *th; 2671 unsigned start; 2672 2673 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2674 pos ++; 2675 2676 reiserfs_wait_on_write_block(inode->i_sb); 2677 if (reiserfs_transaction_running(inode->i_sb)) 2678 th = current->journal_info; 2679 else 2680 th = NULL; 2681 2682 start = pos & (PAGE_CACHE_SIZE - 1); 2683 if (unlikely(copied < len)) { 2684 if (!PageUptodate(page)) 2685 copied = 0; 2686 2687 page_zero_new_buffers(page, start + copied, start + len); 2688 } 2689 flush_dcache_page(page); 2690 2691 reiserfs_commit_page(inode, page, start, start + copied); 2692 2693 /* generic_commit_write does this for us, but does not update the 2694 ** transaction tracking stuff when the size changes. So, we have 2695 ** to do the i_size updates here. 2696 */ 2697 pos += copied; 2698 if (pos > inode->i_size) { 2699 struct reiserfs_transaction_handle myth; 2700 reiserfs_write_lock(inode->i_sb); 2701 /* If the file have grown beyond the border where it 2702 can have a tail, unmark it as needing a tail 2703 packing */ 2704 if ((have_large_tails(inode->i_sb) 2705 && inode->i_size > i_block_size(inode) * 4) 2706 || (have_small_tails(inode->i_sb) 2707 && inode->i_size > i_block_size(inode))) 2708 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2709 2710 ret = journal_begin(&myth, inode->i_sb, 1); 2711 if (ret) { 2712 reiserfs_write_unlock(inode->i_sb); 2713 goto journal_error; 2714 } 2715 reiserfs_update_inode_transaction(inode); 2716 inode->i_size = pos; 2717 /* 2718 * this will just nest into our transaction. It's important 2719 * to use mark_inode_dirty so the inode gets pushed around on the 2720 * dirty lists, and so that O_SYNC works as expected 2721 */ 2722 mark_inode_dirty(inode); 2723 reiserfs_update_sd(&myth, inode); 2724 update_sd = 1; 2725 ret = journal_end(&myth, inode->i_sb, 1); 2726 reiserfs_write_unlock(inode->i_sb); 2727 if (ret) 2728 goto journal_error; 2729 } 2730 if (th) { 2731 reiserfs_write_lock(inode->i_sb); 2732 if (!update_sd) 2733 mark_inode_dirty(inode); 2734 ret = reiserfs_end_persistent_transaction(th); 2735 reiserfs_write_unlock(inode->i_sb); 2736 if (ret) 2737 goto out; 2738 } 2739 2740 out: 2741 unlock_page(page); 2742 page_cache_release(page); 2743 return ret == 0 ? copied : ret; 2744 2745 journal_error: 2746 if (th) { 2747 reiserfs_write_lock(inode->i_sb); 2748 if (!update_sd) 2749 reiserfs_update_sd(th, inode); 2750 ret = reiserfs_end_persistent_transaction(th); 2751 reiserfs_write_unlock(inode->i_sb); 2752 } 2753 2754 goto out; 2755 } 2756 2757 int reiserfs_commit_write(struct file *f, struct page *page, 2758 unsigned from, unsigned to) 2759 { 2760 struct inode *inode = page->mapping->host; 2761 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2762 int ret = 0; 2763 int update_sd = 0; 2764 struct reiserfs_transaction_handle *th = NULL; 2765 2766 reiserfs_wait_on_write_block(inode->i_sb); 2767 if (reiserfs_transaction_running(inode->i_sb)) { 2768 th = current->journal_info; 2769 } 2770 reiserfs_commit_page(inode, page, from, to); 2771 2772 /* generic_commit_write does this for us, but does not update the 2773 ** transaction tracking stuff when the size changes. So, we have 2774 ** to do the i_size updates here. 2775 */ 2776 if (pos > inode->i_size) { 2777 struct reiserfs_transaction_handle myth; 2778 reiserfs_write_lock(inode->i_sb); 2779 /* If the file have grown beyond the border where it 2780 can have a tail, unmark it as needing a tail 2781 packing */ 2782 if ((have_large_tails(inode->i_sb) 2783 && inode->i_size > i_block_size(inode) * 4) 2784 || (have_small_tails(inode->i_sb) 2785 && inode->i_size > i_block_size(inode))) 2786 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2787 2788 ret = journal_begin(&myth, inode->i_sb, 1); 2789 if (ret) { 2790 reiserfs_write_unlock(inode->i_sb); 2791 goto journal_error; 2792 } 2793 reiserfs_update_inode_transaction(inode); 2794 inode->i_size = pos; 2795 /* 2796 * this will just nest into our transaction. It's important 2797 * to use mark_inode_dirty so the inode gets pushed around on the 2798 * dirty lists, and so that O_SYNC works as expected 2799 */ 2800 mark_inode_dirty(inode); 2801 reiserfs_update_sd(&myth, inode); 2802 update_sd = 1; 2803 ret = journal_end(&myth, inode->i_sb, 1); 2804 reiserfs_write_unlock(inode->i_sb); 2805 if (ret) 2806 goto journal_error; 2807 } 2808 if (th) { 2809 reiserfs_write_lock(inode->i_sb); 2810 if (!update_sd) 2811 mark_inode_dirty(inode); 2812 ret = reiserfs_end_persistent_transaction(th); 2813 reiserfs_write_unlock(inode->i_sb); 2814 if (ret) 2815 goto out; 2816 } 2817 2818 out: 2819 return ret; 2820 2821 journal_error: 2822 if (th) { 2823 reiserfs_write_lock(inode->i_sb); 2824 if (!update_sd) 2825 reiserfs_update_sd(th, inode); 2826 ret = reiserfs_end_persistent_transaction(th); 2827 reiserfs_write_unlock(inode->i_sb); 2828 } 2829 2830 return ret; 2831 } 2832 2833 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2834 { 2835 if (reiserfs_attrs(inode->i_sb)) { 2836 if (sd_attrs & REISERFS_SYNC_FL) 2837 inode->i_flags |= S_SYNC; 2838 else 2839 inode->i_flags &= ~S_SYNC; 2840 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2841 inode->i_flags |= S_IMMUTABLE; 2842 else 2843 inode->i_flags &= ~S_IMMUTABLE; 2844 if (sd_attrs & REISERFS_APPEND_FL) 2845 inode->i_flags |= S_APPEND; 2846 else 2847 inode->i_flags &= ~S_APPEND; 2848 if (sd_attrs & REISERFS_NOATIME_FL) 2849 inode->i_flags |= S_NOATIME; 2850 else 2851 inode->i_flags &= ~S_NOATIME; 2852 if (sd_attrs & REISERFS_NOTAIL_FL) 2853 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2854 else 2855 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2856 } 2857 } 2858 2859 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2860 { 2861 if (reiserfs_attrs(inode->i_sb)) { 2862 if (inode->i_flags & S_IMMUTABLE) 2863 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2864 else 2865 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2866 if (inode->i_flags & S_SYNC) 2867 *sd_attrs |= REISERFS_SYNC_FL; 2868 else 2869 *sd_attrs &= ~REISERFS_SYNC_FL; 2870 if (inode->i_flags & S_NOATIME) 2871 *sd_attrs |= REISERFS_NOATIME_FL; 2872 else 2873 *sd_attrs &= ~REISERFS_NOATIME_FL; 2874 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2875 *sd_attrs |= REISERFS_NOTAIL_FL; 2876 else 2877 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2878 } 2879 } 2880 2881 /* decide if this buffer needs to stay around for data logging or ordered 2882 ** write purposes 2883 */ 2884 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2885 { 2886 int ret = 1; 2887 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2888 2889 lock_buffer(bh); 2890 spin_lock(&j->j_dirty_buffers_lock); 2891 if (!buffer_mapped(bh)) { 2892 goto free_jh; 2893 } 2894 /* the page is locked, and the only places that log a data buffer 2895 * also lock the page. 2896 */ 2897 if (reiserfs_file_data_log(inode)) { 2898 /* 2899 * very conservative, leave the buffer pinned if 2900 * anyone might need it. 2901 */ 2902 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2903 ret = 0; 2904 } 2905 } else if (buffer_dirty(bh)) { 2906 struct reiserfs_journal_list *jl; 2907 struct reiserfs_jh *jh = bh->b_private; 2908 2909 /* why is this safe? 2910 * reiserfs_setattr updates i_size in the on disk 2911 * stat data before allowing vmtruncate to be called. 2912 * 2913 * If buffer was put onto the ordered list for this 2914 * transaction, we know for sure either this transaction 2915 * or an older one already has updated i_size on disk, 2916 * and this ordered data won't be referenced in the file 2917 * if we crash. 2918 * 2919 * if the buffer was put onto the ordered list for an older 2920 * transaction, we need to leave it around 2921 */ 2922 if (jh && (jl = jh->jl) 2923 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2924 ret = 0; 2925 } 2926 free_jh: 2927 if (ret && bh->b_private) { 2928 reiserfs_free_jh(bh); 2929 } 2930 spin_unlock(&j->j_dirty_buffers_lock); 2931 unlock_buffer(bh); 2932 return ret; 2933 } 2934 2935 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2936 static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2937 { 2938 struct buffer_head *head, *bh, *next; 2939 struct inode *inode = page->mapping->host; 2940 unsigned int curr_off = 0; 2941 int ret = 1; 2942 2943 BUG_ON(!PageLocked(page)); 2944 2945 if (offset == 0) 2946 ClearPageChecked(page); 2947 2948 if (!page_has_buffers(page)) 2949 goto out; 2950 2951 head = page_buffers(page); 2952 bh = head; 2953 do { 2954 unsigned int next_off = curr_off + bh->b_size; 2955 next = bh->b_this_page; 2956 2957 /* 2958 * is this block fully invalidated? 2959 */ 2960 if (offset <= curr_off) { 2961 if (invalidatepage_can_drop(inode, bh)) 2962 reiserfs_unmap_buffer(bh); 2963 else 2964 ret = 0; 2965 } 2966 curr_off = next_off; 2967 bh = next; 2968 } while (bh != head); 2969 2970 /* 2971 * We release buffers only if the entire page is being invalidated. 2972 * The get_block cached value has been unconditionally invalidated, 2973 * so real IO is not possible anymore. 2974 */ 2975 if (!offset && ret) { 2976 ret = try_to_release_page(page, 0); 2977 /* maybe should BUG_ON(!ret); - neilb */ 2978 } 2979 out: 2980 return; 2981 } 2982 2983 static int reiserfs_set_page_dirty(struct page *page) 2984 { 2985 struct inode *inode = page->mapping->host; 2986 if (reiserfs_file_data_log(inode)) { 2987 SetPageChecked(page); 2988 return __set_page_dirty_nobuffers(page); 2989 } 2990 return __set_page_dirty_buffers(page); 2991 } 2992 2993 /* 2994 * Returns 1 if the page's buffers were dropped. The page is locked. 2995 * 2996 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 2997 * in the buffers at page_buffers(page). 2998 * 2999 * even in -o notail mode, we can't be sure an old mount without -o notail 3000 * didn't create files with tails. 3001 */ 3002 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3003 { 3004 struct inode *inode = page->mapping->host; 3005 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3006 struct buffer_head *head; 3007 struct buffer_head *bh; 3008 int ret = 1; 3009 3010 WARN_ON(PageChecked(page)); 3011 spin_lock(&j->j_dirty_buffers_lock); 3012 head = page_buffers(page); 3013 bh = head; 3014 do { 3015 if (bh->b_private) { 3016 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3017 reiserfs_free_jh(bh); 3018 } else { 3019 ret = 0; 3020 break; 3021 } 3022 } 3023 bh = bh->b_this_page; 3024 } while (bh != head); 3025 if (ret) 3026 ret = try_to_free_buffers(page); 3027 spin_unlock(&j->j_dirty_buffers_lock); 3028 return ret; 3029 } 3030 3031 /* We thank Mingming Cao for helping us understand in great detail what 3032 to do in this section of the code. */ 3033 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3034 const struct iovec *iov, loff_t offset, 3035 unsigned long nr_segs) 3036 { 3037 struct file *file = iocb->ki_filp; 3038 struct inode *inode = file->f_mapping->host; 3039 3040 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3041 offset, nr_segs, 3042 reiserfs_get_blocks_direct_io, NULL); 3043 } 3044 3045 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3046 { 3047 struct inode *inode = dentry->d_inode; 3048 int error; 3049 unsigned int ia_valid; 3050 3051 /* must be turned off for recursive notify_change calls */ 3052 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3053 3054 reiserfs_write_lock(inode->i_sb); 3055 if (attr->ia_valid & ATTR_SIZE) { 3056 /* version 2 items will be caught by the s_maxbytes check 3057 ** done for us in vmtruncate 3058 */ 3059 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3060 attr->ia_size > MAX_NON_LFS) { 3061 error = -EFBIG; 3062 goto out; 3063 } 3064 /* fill in hole pointers in the expanding truncate case. */ 3065 if (attr->ia_size > inode->i_size) { 3066 error = generic_cont_expand_simple(inode, attr->ia_size); 3067 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3068 int err; 3069 struct reiserfs_transaction_handle th; 3070 /* we're changing at most 2 bitmaps, inode + super */ 3071 err = journal_begin(&th, inode->i_sb, 4); 3072 if (!err) { 3073 reiserfs_discard_prealloc(&th, inode); 3074 err = journal_end(&th, inode->i_sb, 4); 3075 } 3076 if (err) 3077 error = err; 3078 } 3079 if (error) 3080 goto out; 3081 /* 3082 * file size is changed, ctime and mtime are 3083 * to be updated 3084 */ 3085 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3086 } 3087 } 3088 3089 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3090 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3091 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3092 /* stat data of format v3.5 has 16 bit uid and gid */ 3093 error = -EINVAL; 3094 goto out; 3095 } 3096 3097 error = inode_change_ok(inode, attr); 3098 if (!error) { 3099 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3100 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3101 error = reiserfs_chown_xattrs(inode, attr); 3102 3103 if (!error) { 3104 struct reiserfs_transaction_handle th; 3105 int jbegin_count = 3106 2 * 3107 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3108 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3109 2; 3110 3111 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3112 error = 3113 journal_begin(&th, inode->i_sb, 3114 jbegin_count); 3115 if (error) 3116 goto out; 3117 error = 3118 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3119 if (error) { 3120 journal_end(&th, inode->i_sb, 3121 jbegin_count); 3122 goto out; 3123 } 3124 /* Update corresponding info in inode so that everything is in 3125 * one transaction */ 3126 if (attr->ia_valid & ATTR_UID) 3127 inode->i_uid = attr->ia_uid; 3128 if (attr->ia_valid & ATTR_GID) 3129 inode->i_gid = attr->ia_gid; 3130 mark_inode_dirty(inode); 3131 error = 3132 journal_end(&th, inode->i_sb, jbegin_count); 3133 } 3134 } 3135 if (!error) 3136 error = inode_setattr(inode, attr); 3137 } 3138 3139 if (!error && reiserfs_posixacl(inode->i_sb)) { 3140 if (attr->ia_valid & ATTR_MODE) 3141 error = reiserfs_acl_chmod(inode); 3142 } 3143 3144 out: 3145 reiserfs_write_unlock(inode->i_sb); 3146 return error; 3147 } 3148 3149 const struct address_space_operations reiserfs_address_space_operations = { 3150 .writepage = reiserfs_writepage, 3151 .readpage = reiserfs_readpage, 3152 .readpages = reiserfs_readpages, 3153 .releasepage = reiserfs_releasepage, 3154 .invalidatepage = reiserfs_invalidatepage, 3155 .sync_page = block_sync_page, 3156 .write_begin = reiserfs_write_begin, 3157 .write_end = reiserfs_write_end, 3158 .bmap = reiserfs_aop_bmap, 3159 .direct_IO = reiserfs_direct_IO, 3160 .set_page_dirty = reiserfs_set_page_dirty, 3161 }; 3162