xref: /openbmc/linux/fs/reiserfs/inode.c (revision 367b8112)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 			   unsigned from, unsigned to);
26 
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 	int jbegin_count =
31 	    JOURNAL_PER_BALANCE_CNT * 2 +
32 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 	struct reiserfs_transaction_handle th;
34 	int err;
35 
36 	truncate_inode_pages(&inode->i_data, 0);
37 
38 	reiserfs_write_lock(inode->i_sb);
39 
40 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
42 		reiserfs_delete_xattrs(inode);
43 
44 		if (journal_begin(&th, inode->i_sb, jbegin_count))
45 			goto out;
46 		reiserfs_update_inode_transaction(inode);
47 
48 		reiserfs_discard_prealloc(&th, inode);
49 
50 		err = reiserfs_delete_object(&th, inode);
51 
52 		/* Do quota update inside a transaction for journaled quotas. We must do that
53 		 * after delete_object so that quota updates go into the same transaction as
54 		 * stat data deletion */
55 		if (!err)
56 			DQUOT_FREE_INODE(inode);
57 
58 		if (journal_end(&th, inode->i_sb, jbegin_count))
59 			goto out;
60 
61 		/* check return value from reiserfs_delete_object after
62 		 * ending the transaction
63 		 */
64 		if (err)
65 		    goto out;
66 
67 		/* all items of file are deleted, so we can remove "save" link */
68 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
69 								 * about an error here */
70 	} else {
71 		/* no object items are in the tree */
72 		;
73 	}
74       out:
75 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
76 	inode->i_blocks = 0;
77 	reiserfs_write_unlock(inode->i_sb);
78 }
79 
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 			  __u32 objectid, loff_t offset, int type, int length)
82 {
83 	key->version = version;
84 
85 	key->on_disk_key.k_dir_id = dirid;
86 	key->on_disk_key.k_objectid = objectid;
87 	set_cpu_key_k_offset(key, offset);
88 	set_cpu_key_k_type(key, type);
89 	key->key_length = length;
90 }
91 
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93    offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 		  int type, int length)
96 {
97 	_make_cpu_key(key, get_inode_item_key_version(inode),
98 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 		      length);
101 }
102 
103 //
104 // when key is 0, do not set version and short key
105 //
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 			      int version,
108 			      loff_t offset, int type, int length,
109 			      int entry_count /*or ih_free_space */ )
110 {
111 	if (key) {
112 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 		ih->ih_key.k_objectid =
114 		    cpu_to_le32(key->on_disk_key.k_objectid);
115 	}
116 	put_ih_version(ih, version);
117 	set_le_ih_k_offset(ih, offset);
118 	set_le_ih_k_type(ih, type);
119 	put_ih_item_len(ih, length);
120 	/*    set_ih_free_space (ih, 0); */
121 	// for directory items it is entry count, for directs and stat
122 	// datas - 0xffff, for indirects - 0
123 	put_ih_entry_count(ih, entry_count);
124 }
125 
126 //
127 // FIXME: we might cache recently accessed indirect item
128 
129 // Ugh.  Not too eager for that....
130 //  I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
132 
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in.  But, Vladimir has a really good idea here.  Think
135 ** about what happens for reading a file.  For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item.  This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right.  But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
141 **
142 ** The size of the cache could be dynamic based on the size of the file.
143 **
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
146 **
147 ** --chris
148 */
149 
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it.  So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers.  Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
157 */
158 static inline void fix_tail_page_for_writing(struct page *page)
159 {
160 	struct buffer_head *head, *next, *bh;
161 
162 	if (page && page_has_buffers(page)) {
163 		head = page_buffers(page);
164 		bh = head;
165 		do {
166 			next = bh->b_this_page;
167 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 				reiserfs_unmap_buffer(bh);
169 			}
170 			bh = next;
171 		} while (bh != head);
172 	}
173 }
174 
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176    done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 				    struct item_head *ih,
179 				    __le32 * item, int pos_in_item)
180 {
181 	if (allocated)
182 		return 0;
183 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 	    get_block_num(item, pos_in_item))
185 		return 0;
186 	return 1;
187 }
188 
189 static inline int indirect_item_found(int retval, struct item_head *ih)
190 {
191 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 }
193 
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 					b_blocknr_t block, struct inode *inode)
196 {
197 	map_bh(bh, inode->i_sb, block);
198 }
199 
200 //
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
203 //
204 static int file_capable(struct inode *inode, sector_t block)
205 {
206 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
207 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
208 		return 1;
209 
210 	return 0;
211 }
212 
213 static int restart_transaction(struct reiserfs_transaction_handle *th,
214 			       struct inode *inode, struct treepath *path)
215 {
216 	struct super_block *s = th->t_super;
217 	int len = th->t_blocks_allocated;
218 	int err;
219 
220 	BUG_ON(!th->t_trans_id);
221 	BUG_ON(!th->t_refcount);
222 
223 	pathrelse(path);
224 
225 	/* we cannot restart while nested */
226 	if (th->t_refcount > 1) {
227 		return 0;
228 	}
229 	reiserfs_update_sd(th, inode);
230 	err = journal_end(th, s, len);
231 	if (!err) {
232 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
233 		if (!err)
234 			reiserfs_update_inode_transaction(inode);
235 	}
236 	return err;
237 }
238 
239 // it is called by get_block when create == 0. Returns block number
240 // for 'block'-th logical block of file. When it hits direct item it
241 // returns 0 (being called from bmap) or read direct item into piece
242 // of page (bh_result)
243 
244 // Please improve the english/clarity in the comment above, as it is
245 // hard to understand.
246 
247 static int _get_block_create_0(struct inode *inode, sector_t block,
248 			       struct buffer_head *bh_result, int args)
249 {
250 	INITIALIZE_PATH(path);
251 	struct cpu_key key;
252 	struct buffer_head *bh;
253 	struct item_head *ih, tmp_ih;
254 	int fs_gen;
255 	b_blocknr_t blocknr;
256 	char *p = NULL;
257 	int chars;
258 	int ret;
259 	int result;
260 	int done = 0;
261 	unsigned long offset;
262 
263 	// prepare the key to look for the 'block'-th block of file
264 	make_cpu_key(&key, inode,
265 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
266 		     3);
267 
268       research:
269 	result = search_for_position_by_key(inode->i_sb, &key, &path);
270 	if (result != POSITION_FOUND) {
271 		pathrelse(&path);
272 		if (p)
273 			kunmap(bh_result->b_page);
274 		if (result == IO_ERROR)
275 			return -EIO;
276 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
277 		// That there is some MMAPED data associated with it that is yet to be written to disk.
278 		if ((args & GET_BLOCK_NO_HOLE)
279 		    && !PageUptodate(bh_result->b_page)) {
280 			return -ENOENT;
281 		}
282 		return 0;
283 	}
284 	//
285 	bh = get_last_bh(&path);
286 	ih = get_ih(&path);
287 	if (is_indirect_le_ih(ih)) {
288 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
289 
290 		/* FIXME: here we could cache indirect item or part of it in
291 		   the inode to avoid search_by_key in case of subsequent
292 		   access to file */
293 		blocknr = get_block_num(ind_item, path.pos_in_item);
294 		ret = 0;
295 		if (blocknr) {
296 			map_bh(bh_result, inode->i_sb, blocknr);
297 			if (path.pos_in_item ==
298 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
299 				set_buffer_boundary(bh_result);
300 			}
301 		} else
302 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
303 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
304 		if ((args & GET_BLOCK_NO_HOLE)
305 			    && !PageUptodate(bh_result->b_page)) {
306 			ret = -ENOENT;
307 		}
308 
309 		pathrelse(&path);
310 		if (p)
311 			kunmap(bh_result->b_page);
312 		return ret;
313 	}
314 	// requested data are in direct item(s)
315 	if (!(args & GET_BLOCK_READ_DIRECT)) {
316 		// we are called by bmap. FIXME: we can not map block of file
317 		// when it is stored in direct item(s)
318 		pathrelse(&path);
319 		if (p)
320 			kunmap(bh_result->b_page);
321 		return -ENOENT;
322 	}
323 
324 	/* if we've got a direct item, and the buffer or page was uptodate,
325 	 ** we don't want to pull data off disk again.  skip to the
326 	 ** end, where we map the buffer and return
327 	 */
328 	if (buffer_uptodate(bh_result)) {
329 		goto finished;
330 	} else
331 		/*
332 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
333 		 ** pages without any buffers.  If the page is up to date, we don't want
334 		 ** read old data off disk.  Set the up to date bit on the buffer instead
335 		 ** and jump to the end
336 		 */
337 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
338 		set_buffer_uptodate(bh_result);
339 		goto finished;
340 	}
341 	// read file tail into part of page
342 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
343 	fs_gen = get_generation(inode->i_sb);
344 	copy_item_head(&tmp_ih, ih);
345 
346 	/* we only want to kmap if we are reading the tail into the page.
347 	 ** this is not the common case, so we don't kmap until we are
348 	 ** sure we need to.  But, this means the item might move if
349 	 ** kmap schedules
350 	 */
351 	if (!p) {
352 		p = (char *)kmap(bh_result->b_page);
353 		if (fs_changed(fs_gen, inode->i_sb)
354 		    && item_moved(&tmp_ih, &path)) {
355 			goto research;
356 		}
357 	}
358 	p += offset;
359 	memset(p, 0, inode->i_sb->s_blocksize);
360 	do {
361 		if (!is_direct_le_ih(ih)) {
362 			BUG();
363 		}
364 		/* make sure we don't read more bytes than actually exist in
365 		 ** the file.  This can happen in odd cases where i_size isn't
366 		 ** correct, and when direct item padding results in a few
367 		 ** extra bytes at the end of the direct item
368 		 */
369 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
370 			break;
371 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
372 			chars =
373 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
374 			    path.pos_in_item;
375 			done = 1;
376 		} else {
377 			chars = ih_item_len(ih) - path.pos_in_item;
378 		}
379 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
380 
381 		if (done)
382 			break;
383 
384 		p += chars;
385 
386 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
387 			// we done, if read direct item is not the last item of
388 			// node FIXME: we could try to check right delimiting key
389 			// to see whether direct item continues in the right
390 			// neighbor or rely on i_size
391 			break;
392 
393 		// update key to look for the next piece
394 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
395 		result = search_for_position_by_key(inode->i_sb, &key, &path);
396 		if (result != POSITION_FOUND)
397 			// i/o error most likely
398 			break;
399 		bh = get_last_bh(&path);
400 		ih = get_ih(&path);
401 	} while (1);
402 
403 	flush_dcache_page(bh_result->b_page);
404 	kunmap(bh_result->b_page);
405 
406       finished:
407 	pathrelse(&path);
408 
409 	if (result == IO_ERROR)
410 		return -EIO;
411 
412 	/* this buffer has valid data, but isn't valid for io.  mapping it to
413 	 * block #0 tells the rest of reiserfs it just has a tail in it
414 	 */
415 	map_bh(bh_result, inode->i_sb, 0);
416 	set_buffer_uptodate(bh_result);
417 	return 0;
418 }
419 
420 // this is called to create file map. So, _get_block_create_0 will not
421 // read direct item
422 static int reiserfs_bmap(struct inode *inode, sector_t block,
423 			 struct buffer_head *bh_result, int create)
424 {
425 	if (!file_capable(inode, block))
426 		return -EFBIG;
427 
428 	reiserfs_write_lock(inode->i_sb);
429 	/* do not read the direct item */
430 	_get_block_create_0(inode, block, bh_result, 0);
431 	reiserfs_write_unlock(inode->i_sb);
432 	return 0;
433 }
434 
435 /* special version of get_block that is only used by grab_tail_page right
436 ** now.  It is sent to block_prepare_write, and when you try to get a
437 ** block past the end of the file (or a block from a hole) it returns
438 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
439 ** be able to do i/o on the buffers returned, unless an error value
440 ** is also returned.
441 **
442 ** So, this allows block_prepare_write to be used for reading a single block
443 ** in a page.  Where it does not produce a valid page for holes, or past the
444 ** end of the file.  This turns out to be exactly what we need for reading
445 ** tails for conversion.
446 **
447 ** The point of the wrapper is forcing a certain value for create, even
448 ** though the VFS layer is calling this function with create==1.  If you
449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
450 ** don't use this function.
451 */
452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
453 				       struct buffer_head *bh_result,
454 				       int create)
455 {
456 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
457 }
458 
459 /* This is special helper for reiserfs_get_block in case we are executing
460    direct_IO request. */
461 static int reiserfs_get_blocks_direct_io(struct inode *inode,
462 					 sector_t iblock,
463 					 struct buffer_head *bh_result,
464 					 int create)
465 {
466 	int ret;
467 
468 	bh_result->b_page = NULL;
469 
470 	/* We set the b_size before reiserfs_get_block call since it is
471 	   referenced in convert_tail_for_hole() that may be called from
472 	   reiserfs_get_block() */
473 	bh_result->b_size = (1 << inode->i_blkbits);
474 
475 	ret = reiserfs_get_block(inode, iblock, bh_result,
476 				 create | GET_BLOCK_NO_DANGLE);
477 	if (ret)
478 		goto out;
479 
480 	/* don't allow direct io onto tail pages */
481 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 		/* make sure future calls to the direct io funcs for this offset
483 		 ** in the file fail by unmapping the buffer
484 		 */
485 		clear_buffer_mapped(bh_result);
486 		ret = -EINVAL;
487 	}
488 	/* Possible unpacked tail. Flush the data before pages have
489 	   disappeared */
490 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 		int err;
492 		lock_kernel();
493 		err = reiserfs_commit_for_inode(inode);
494 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 		unlock_kernel();
496 		if (err < 0)
497 			ret = err;
498 	}
499       out:
500 	return ret;
501 }
502 
503 /*
504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file
508 **
509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you
511 ** call this.
512 */
513 static int convert_tail_for_hole(struct inode *inode,
514 				 struct buffer_head *bh_result,
515 				 loff_t tail_offset)
516 {
517 	unsigned long index;
518 	unsigned long tail_end;
519 	unsigned long tail_start;
520 	struct page *tail_page;
521 	struct page *hole_page = bh_result->b_page;
522 	int retval = 0;
523 
524 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 		return -EIO;
526 
527 	/* always try to read until the end of the block */
528 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
530 
531 	index = tail_offset >> PAGE_CACHE_SHIFT;
532 	/* hole_page can be zero in case of direct_io, we are sure
533 	   that we cannot get here if we write with O_DIRECT into
534 	   tail page */
535 	if (!hole_page || index != hole_page->index) {
536 		tail_page = grab_cache_page(inode->i_mapping, index);
537 		retval = -ENOMEM;
538 		if (!tail_page) {
539 			goto out;
540 		}
541 	} else {
542 		tail_page = hole_page;
543 	}
544 
545 	/* we don't have to make sure the conversion did not happen while
546 	 ** we were locking the page because anyone that could convert
547 	 ** must first take i_mutex.
548 	 **
549 	 ** We must fix the tail page for writing because it might have buffers
550 	 ** that are mapped, but have a block number of 0.  This indicates tail
551 	 ** data that has been read directly into the page, and block_prepare_write
552 	 ** won't trigger a get_block in this case.
553 	 */
554 	fix_tail_page_for_writing(tail_page);
555 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 	if (retval)
557 		goto unlock;
558 
559 	/* tail conversion might change the data in the page */
560 	flush_dcache_page(tail_page);
561 
562 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
563 
564       unlock:
565 	if (tail_page != hole_page) {
566 		unlock_page(tail_page);
567 		page_cache_release(tail_page);
568 	}
569       out:
570 	return retval;
571 }
572 
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 				  sector_t block,
575 				  struct inode *inode,
576 				  b_blocknr_t * allocated_block_nr,
577 				  struct treepath *path, int flags)
578 {
579 	BUG_ON(!th->t_trans_id);
580 
581 #ifdef REISERFS_PREALLOCATE
582 	if (!(flags & GET_BLOCK_NO_IMUX)) {
583 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 						  path, block);
585 	}
586 #endif
587 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 					 block);
589 }
590 
591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 		       struct buffer_head *bh_result, int create)
593 {
594 	int repeat, retval = 0;
595 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
596 	INITIALIZE_PATH(path);
597 	int pos_in_item;
598 	struct cpu_key key;
599 	struct buffer_head *bh, *unbh = NULL;
600 	struct item_head *ih, tmp_ih;
601 	__le32 *item;
602 	int done;
603 	int fs_gen;
604 	struct reiserfs_transaction_handle *th = NULL;
605 	/* space reserved in transaction batch:
606 	   . 3 balancings in direct->indirect conversion
607 	   . 1 block involved into reiserfs_update_sd()
608 	   XXX in practically impossible worst case direct2indirect()
609 	   can incur (much) more than 3 balancings.
610 	   quota update for user, group */
611 	int jbegin_count =
612 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 	int version;
615 	int dangle = 1;
616 	loff_t new_offset =
617 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
618 
619 	/* bad.... */
620 	reiserfs_write_lock(inode->i_sb);
621 	version = get_inode_item_key_version(inode);
622 
623 	if (!file_capable(inode, block)) {
624 		reiserfs_write_unlock(inode->i_sb);
625 		return -EFBIG;
626 	}
627 
628 	/* if !create, we aren't changing the FS, so we don't need to
629 	 ** log anything, so we don't need to start a transaction
630 	 */
631 	if (!(create & GET_BLOCK_CREATE)) {
632 		int ret;
633 		/* find number of block-th logical block of the file */
634 		ret = _get_block_create_0(inode, block, bh_result,
635 					  create | GET_BLOCK_READ_DIRECT);
636 		reiserfs_write_unlock(inode->i_sb);
637 		return ret;
638 	}
639 	/*
640 	 * if we're already in a transaction, make sure to close
641 	 * any new transactions we start in this func
642 	 */
643 	if ((create & GET_BLOCK_NO_DANGLE) ||
644 	    reiserfs_transaction_running(inode->i_sb))
645 		dangle = 0;
646 
647 	/* If file is of such a size, that it might have a tail and tails are enabled
648 	 ** we should mark it as possibly needing tail packing on close
649 	 */
650 	if ((have_large_tails(inode->i_sb)
651 	     && inode->i_size < i_block_size(inode) * 4)
652 	    || (have_small_tails(inode->i_sb)
653 		&& inode->i_size < i_block_size(inode)))
654 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
655 
656 	/* set the key of the first byte in the 'block'-th block of file */
657 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
658 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
659 	      start_trans:
660 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
661 		if (!th) {
662 			retval = -ENOMEM;
663 			goto failure;
664 		}
665 		reiserfs_update_inode_transaction(inode);
666 	}
667       research:
668 
669 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
670 	if (retval == IO_ERROR) {
671 		retval = -EIO;
672 		goto failure;
673 	}
674 
675 	bh = get_last_bh(&path);
676 	ih = get_ih(&path);
677 	item = get_item(&path);
678 	pos_in_item = path.pos_in_item;
679 
680 	fs_gen = get_generation(inode->i_sb);
681 	copy_item_head(&tmp_ih, ih);
682 
683 	if (allocation_needed
684 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
685 		/* we have to allocate block for the unformatted node */
686 		if (!th) {
687 			pathrelse(&path);
688 			goto start_trans;
689 		}
690 
691 		repeat =
692 		    _allocate_block(th, block, inode, &allocated_block_nr,
693 				    &path, create);
694 
695 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
696 			/* restart the transaction to give the journal a chance to free
697 			 ** some blocks.  releases the path, so we have to go back to
698 			 ** research if we succeed on the second try
699 			 */
700 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
701 			retval = restart_transaction(th, inode, &path);
702 			if (retval)
703 				goto failure;
704 			repeat =
705 			    _allocate_block(th, block, inode,
706 					    &allocated_block_nr, NULL, create);
707 
708 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
709 				goto research;
710 			}
711 			if (repeat == QUOTA_EXCEEDED)
712 				retval = -EDQUOT;
713 			else
714 				retval = -ENOSPC;
715 			goto failure;
716 		}
717 
718 		if (fs_changed(fs_gen, inode->i_sb)
719 		    && item_moved(&tmp_ih, &path)) {
720 			goto research;
721 		}
722 	}
723 
724 	if (indirect_item_found(retval, ih)) {
725 		b_blocknr_t unfm_ptr;
726 		/* 'block'-th block is in the file already (there is
727 		   corresponding cell in some indirect item). But it may be
728 		   zero unformatted node pointer (hole) */
729 		unfm_ptr = get_block_num(item, pos_in_item);
730 		if (unfm_ptr == 0) {
731 			/* use allocated block to plug the hole */
732 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
733 			if (fs_changed(fs_gen, inode->i_sb)
734 			    && item_moved(&tmp_ih, &path)) {
735 				reiserfs_restore_prepared_buffer(inode->i_sb,
736 								 bh);
737 				goto research;
738 			}
739 			set_buffer_new(bh_result);
740 			if (buffer_dirty(bh_result)
741 			    && reiserfs_data_ordered(inode->i_sb))
742 				reiserfs_add_ordered_list(inode, bh_result);
743 			put_block_num(item, pos_in_item, allocated_block_nr);
744 			unfm_ptr = allocated_block_nr;
745 			journal_mark_dirty(th, inode->i_sb, bh);
746 			reiserfs_update_sd(th, inode);
747 		}
748 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
749 		pathrelse(&path);
750 		retval = 0;
751 		if (!dangle && th)
752 			retval = reiserfs_end_persistent_transaction(th);
753 
754 		reiserfs_write_unlock(inode->i_sb);
755 
756 		/* the item was found, so new blocks were not added to the file
757 		 ** there is no need to make sure the inode is updated with this
758 		 ** transaction
759 		 */
760 		return retval;
761 	}
762 
763 	if (!th) {
764 		pathrelse(&path);
765 		goto start_trans;
766 	}
767 
768 	/* desired position is not found or is in the direct item. We have
769 	   to append file with holes up to 'block'-th block converting
770 	   direct items to indirect one if necessary */
771 	done = 0;
772 	do {
773 		if (is_statdata_le_ih(ih)) {
774 			__le32 unp = 0;
775 			struct cpu_key tmp_key;
776 
777 			/* indirect item has to be inserted */
778 			make_le_item_head(&tmp_ih, &key, version, 1,
779 					  TYPE_INDIRECT, UNFM_P_SIZE,
780 					  0 /* free_space */ );
781 
782 			if (cpu_key_k_offset(&key) == 1) {
783 				/* we are going to add 'block'-th block to the file. Use
784 				   allocated block for that */
785 				unp = cpu_to_le32(allocated_block_nr);
786 				set_block_dev_mapped(bh_result,
787 						     allocated_block_nr, inode);
788 				set_buffer_new(bh_result);
789 				done = 1;
790 			}
791 			tmp_key = key;	// ;)
792 			set_cpu_key_k_offset(&tmp_key, 1);
793 			PATH_LAST_POSITION(&path)++;
794 
795 			retval =
796 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
797 						 inode, (char *)&unp);
798 			if (retval) {
799 				reiserfs_free_block(th, inode,
800 						    allocated_block_nr, 1);
801 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
802 			}
803 			//mark_tail_converted (inode);
804 		} else if (is_direct_le_ih(ih)) {
805 			/* direct item has to be converted */
806 			loff_t tail_offset;
807 
808 			tail_offset =
809 			    ((le_ih_k_offset(ih) -
810 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
811 			if (tail_offset == cpu_key_k_offset(&key)) {
812 				/* direct item we just found fits into block we have
813 				   to map. Convert it into unformatted node: use
814 				   bh_result for the conversion */
815 				set_block_dev_mapped(bh_result,
816 						     allocated_block_nr, inode);
817 				unbh = bh_result;
818 				done = 1;
819 			} else {
820 				/* we have to padd file tail stored in direct item(s)
821 				   up to block size and convert it to unformatted
822 				   node. FIXME: this should also get into page cache */
823 
824 				pathrelse(&path);
825 				/*
826 				 * ugly, but we can only end the transaction if
827 				 * we aren't nested
828 				 */
829 				BUG_ON(!th->t_refcount);
830 				if (th->t_refcount == 1) {
831 					retval =
832 					    reiserfs_end_persistent_transaction
833 					    (th);
834 					th = NULL;
835 					if (retval)
836 						goto failure;
837 				}
838 
839 				retval =
840 				    convert_tail_for_hole(inode, bh_result,
841 							  tail_offset);
842 				if (retval) {
843 					if (retval != -ENOSPC)
844 						reiserfs_warning(inode->i_sb,
845 								 "clm-6004: convert tail failed inode %lu, error %d",
846 								 inode->i_ino,
847 								 retval);
848 					if (allocated_block_nr) {
849 						/* the bitmap, the super, and the stat data == 3 */
850 						if (!th)
851 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
852 						if (th)
853 							reiserfs_free_block(th,
854 									    inode,
855 									    allocated_block_nr,
856 									    1);
857 					}
858 					goto failure;
859 				}
860 				goto research;
861 			}
862 			retval =
863 			    direct2indirect(th, inode, &path, unbh,
864 					    tail_offset);
865 			if (retval) {
866 				reiserfs_unmap_buffer(unbh);
867 				reiserfs_free_block(th, inode,
868 						    allocated_block_nr, 1);
869 				goto failure;
870 			}
871 			/* it is important the set_buffer_uptodate is done after
872 			 ** the direct2indirect.  The buffer might contain valid
873 			 ** data newer than the data on disk (read by readpage, changed,
874 			 ** and then sent here by writepage).  direct2indirect needs
875 			 ** to know if unbh was already up to date, so it can decide
876 			 ** if the data in unbh needs to be replaced with data from
877 			 ** the disk
878 			 */
879 			set_buffer_uptodate(unbh);
880 
881 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
882 			   buffer will disappear shortly, so it should not be added to
883 			 */
884 			if (unbh->b_page) {
885 				/* we've converted the tail, so we must
886 				 ** flush unbh before the transaction commits
887 				 */
888 				reiserfs_add_tail_list(inode, unbh);
889 
890 				/* mark it dirty now to prevent commit_write from adding
891 				 ** this buffer to the inode's dirty buffer list
892 				 */
893 				/*
894 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
895 				 * It's still atomic, but it sets the page dirty too,
896 				 * which makes it eligible for writeback at any time by the
897 				 * VM (which was also the case with __mark_buffer_dirty())
898 				 */
899 				mark_buffer_dirty(unbh);
900 			}
901 		} else {
902 			/* append indirect item with holes if needed, when appending
903 			   pointer to 'block'-th block use block, which is already
904 			   allocated */
905 			struct cpu_key tmp_key;
906 			unp_t unf_single = 0;	// We use this in case we need to allocate only
907 			// one block which is a fastpath
908 			unp_t *un;
909 			__u64 max_to_insert =
910 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
911 			    UNFM_P_SIZE;
912 			__u64 blocks_needed;
913 
914 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
915 			       "vs-804: invalid position for append");
916 			/* indirect item has to be appended, set up key of that position */
917 			make_cpu_key(&tmp_key, inode,
918 				     le_key_k_offset(version,
919 						     &(ih->ih_key)) +
920 				     op_bytes_number(ih,
921 						     inode->i_sb->s_blocksize),
922 				     //pos_in_item * inode->i_sb->s_blocksize,
923 				     TYPE_INDIRECT, 3);	// key type is unimportant
924 
925 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
926 			       "green-805: invalid offset");
927 			blocks_needed =
928 			    1 +
929 			    ((cpu_key_k_offset(&key) -
930 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
931 			     s_blocksize_bits);
932 
933 			if (blocks_needed == 1) {
934 				un = &unf_single;
935 			} else {
936 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
937 				if (!un) {
938 					un = &unf_single;
939 					blocks_needed = 1;
940 					max_to_insert = 0;
941 				}
942 			}
943 			if (blocks_needed <= max_to_insert) {
944 				/* we are going to add target block to the file. Use allocated
945 				   block for that */
946 				un[blocks_needed - 1] =
947 				    cpu_to_le32(allocated_block_nr);
948 				set_block_dev_mapped(bh_result,
949 						     allocated_block_nr, inode);
950 				set_buffer_new(bh_result);
951 				done = 1;
952 			} else {
953 				/* paste hole to the indirect item */
954 				/* If kmalloc failed, max_to_insert becomes zero and it means we
955 				   only have space for one block */
956 				blocks_needed =
957 				    max_to_insert ? max_to_insert : 1;
958 			}
959 			retval =
960 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
961 						     (char *)un,
962 						     UNFM_P_SIZE *
963 						     blocks_needed);
964 
965 			if (blocks_needed != 1)
966 				kfree(un);
967 
968 			if (retval) {
969 				reiserfs_free_block(th, inode,
970 						    allocated_block_nr, 1);
971 				goto failure;
972 			}
973 			if (!done) {
974 				/* We need to mark new file size in case this function will be
975 				   interrupted/aborted later on. And we may do this only for
976 				   holes. */
977 				inode->i_size +=
978 				    inode->i_sb->s_blocksize * blocks_needed;
979 			}
980 		}
981 
982 		if (done == 1)
983 			break;
984 
985 		/* this loop could log more blocks than we had originally asked
986 		 ** for.  So, we have to allow the transaction to end if it is
987 		 ** too big or too full.  Update the inode so things are
988 		 ** consistent if we crash before the function returns
989 		 **
990 		 ** release the path so that anybody waiting on the path before
991 		 ** ending their transaction will be able to continue.
992 		 */
993 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
994 			retval = restart_transaction(th, inode, &path);
995 			if (retval)
996 				goto failure;
997 		}
998 		/* inserting indirect pointers for a hole can take a
999 		 ** long time.  reschedule if needed
1000 		 */
1001 		cond_resched();
1002 
1003 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1004 		if (retval == IO_ERROR) {
1005 			retval = -EIO;
1006 			goto failure;
1007 		}
1008 		if (retval == POSITION_FOUND) {
1009 			reiserfs_warning(inode->i_sb,
1010 					 "vs-825: reiserfs_get_block: "
1011 					 "%K should not be found", &key);
1012 			retval = -EEXIST;
1013 			if (allocated_block_nr)
1014 				reiserfs_free_block(th, inode,
1015 						    allocated_block_nr, 1);
1016 			pathrelse(&path);
1017 			goto failure;
1018 		}
1019 		bh = get_last_bh(&path);
1020 		ih = get_ih(&path);
1021 		item = get_item(&path);
1022 		pos_in_item = path.pos_in_item;
1023 	} while (1);
1024 
1025 	retval = 0;
1026 
1027       failure:
1028 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1029 		int err;
1030 		if (th->t_trans_id)
1031 			reiserfs_update_sd(th, inode);
1032 		err = reiserfs_end_persistent_transaction(th);
1033 		if (err)
1034 			retval = err;
1035 	}
1036 
1037 	reiserfs_write_unlock(inode->i_sb);
1038 	reiserfs_check_path(&path);
1039 	return retval;
1040 }
1041 
1042 static int
1043 reiserfs_readpages(struct file *file, struct address_space *mapping,
1044 		   struct list_head *pages, unsigned nr_pages)
1045 {
1046 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1047 }
1048 
1049 /* Compute real number of used bytes by file
1050  * Following three functions can go away when we'll have enough space in stat item
1051  */
1052 static int real_space_diff(struct inode *inode, int sd_size)
1053 {
1054 	int bytes;
1055 	loff_t blocksize = inode->i_sb->s_blocksize;
1056 
1057 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1058 		return sd_size;
1059 
1060 	/* End of file is also in full block with indirect reference, so round
1061 	 ** up to the next block.
1062 	 **
1063 	 ** there is just no way to know if the tail is actually packed
1064 	 ** on the file, so we have to assume it isn't.  When we pack the
1065 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1066 	 ** node pointer
1067 	 */
1068 	bytes =
1069 	    ((inode->i_size +
1070 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1071 	    sd_size;
1072 	return bytes;
1073 }
1074 
1075 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1076 					int sd_size)
1077 {
1078 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1079 		return inode->i_size +
1080 		    (loff_t) (real_space_diff(inode, sd_size));
1081 	}
1082 	return ((loff_t) real_space_diff(inode, sd_size)) +
1083 	    (((loff_t) blocks) << 9);
1084 }
1085 
1086 /* Compute number of blocks used by file in ReiserFS counting */
1087 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1088 {
1089 	loff_t bytes = inode_get_bytes(inode);
1090 	loff_t real_space = real_space_diff(inode, sd_size);
1091 
1092 	/* keeps fsck and non-quota versions of reiserfs happy */
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		bytes += (loff_t) 511;
1095 	}
1096 
1097 	/* files from before the quota patch might i_blocks such that
1098 	 ** bytes < real_space.  Deal with that here to prevent it from
1099 	 ** going negative.
1100 	 */
1101 	if (bytes < real_space)
1102 		return 0;
1103 	return (bytes - real_space) >> 9;
1104 }
1105 
1106 //
1107 // BAD: new directories have stat data of new type and all other items
1108 // of old type. Version stored in the inode says about body items, so
1109 // in update_stat_data we can not rely on inode, but have to check
1110 // item version directly
1111 //
1112 
1113 // called by read_locked_inode
1114 static void init_inode(struct inode *inode, struct treepath *path)
1115 {
1116 	struct buffer_head *bh;
1117 	struct item_head *ih;
1118 	__u32 rdev;
1119 	//int version = ITEM_VERSION_1;
1120 
1121 	bh = PATH_PLAST_BUFFER(path);
1122 	ih = PATH_PITEM_HEAD(path);
1123 
1124 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1125 
1126 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1127 	REISERFS_I(inode)->i_flags = 0;
1128 	REISERFS_I(inode)->i_prealloc_block = 0;
1129 	REISERFS_I(inode)->i_prealloc_count = 0;
1130 	REISERFS_I(inode)->i_trans_id = 0;
1131 	REISERFS_I(inode)->i_jl = NULL;
1132 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1133 	reiserfs_init_acl_access(inode);
1134 	reiserfs_init_acl_default(inode);
1135 	reiserfs_init_xattr_rwsem(inode);
1136 
1137 	if (stat_data_v1(ih)) {
1138 		struct stat_data_v1 *sd =
1139 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1140 		unsigned long blocks;
1141 
1142 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1143 		set_inode_sd_version(inode, STAT_DATA_V1);
1144 		inode->i_mode = sd_v1_mode(sd);
1145 		inode->i_nlink = sd_v1_nlink(sd);
1146 		inode->i_uid = sd_v1_uid(sd);
1147 		inode->i_gid = sd_v1_gid(sd);
1148 		inode->i_size = sd_v1_size(sd);
1149 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1150 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1151 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1152 		inode->i_atime.tv_nsec = 0;
1153 		inode->i_ctime.tv_nsec = 0;
1154 		inode->i_mtime.tv_nsec = 0;
1155 
1156 		inode->i_blocks = sd_v1_blocks(sd);
1157 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1158 		blocks = (inode->i_size + 511) >> 9;
1159 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1160 		if (inode->i_blocks > blocks) {
1161 			// there was a bug in <=3.5.23 when i_blocks could take negative
1162 			// values. Starting from 3.5.17 this value could even be stored in
1163 			// stat data. For such files we set i_blocks based on file
1164 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1165 			// only updated if file's inode will ever change
1166 			inode->i_blocks = blocks;
1167 		}
1168 
1169 		rdev = sd_v1_rdev(sd);
1170 		REISERFS_I(inode)->i_first_direct_byte =
1171 		    sd_v1_first_direct_byte(sd);
1172 		/* an early bug in the quota code can give us an odd number for the
1173 		 ** block count.  This is incorrect, fix it here.
1174 		 */
1175 		if (inode->i_blocks & 1) {
1176 			inode->i_blocks++;
1177 		}
1178 		inode_set_bytes(inode,
1179 				to_real_used_space(inode, inode->i_blocks,
1180 						   SD_V1_SIZE));
1181 		/* nopack is initially zero for v1 objects. For v2 objects,
1182 		   nopack is initialised from sd_attrs */
1183 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1184 	} else {
1185 		// new stat data found, but object may have old items
1186 		// (directories and symlinks)
1187 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1188 
1189 		inode->i_mode = sd_v2_mode(sd);
1190 		inode->i_nlink = sd_v2_nlink(sd);
1191 		inode->i_uid = sd_v2_uid(sd);
1192 		inode->i_size = sd_v2_size(sd);
1193 		inode->i_gid = sd_v2_gid(sd);
1194 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1195 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1196 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1197 		inode->i_ctime.tv_nsec = 0;
1198 		inode->i_mtime.tv_nsec = 0;
1199 		inode->i_atime.tv_nsec = 0;
1200 		inode->i_blocks = sd_v2_blocks(sd);
1201 		rdev = sd_v2_rdev(sd);
1202 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1203 			inode->i_generation =
1204 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1205 		else
1206 			inode->i_generation = sd_v2_generation(sd);
1207 
1208 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1209 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1210 		else
1211 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1212 		REISERFS_I(inode)->i_first_direct_byte = 0;
1213 		set_inode_sd_version(inode, STAT_DATA_V2);
1214 		inode_set_bytes(inode,
1215 				to_real_used_space(inode, inode->i_blocks,
1216 						   SD_V2_SIZE));
1217 		/* read persistent inode attributes from sd and initalise
1218 		   generic inode flags from them */
1219 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1220 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1221 	}
1222 
1223 	pathrelse(path);
1224 	if (S_ISREG(inode->i_mode)) {
1225 		inode->i_op = &reiserfs_file_inode_operations;
1226 		inode->i_fop = &reiserfs_file_operations;
1227 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1228 	} else if (S_ISDIR(inode->i_mode)) {
1229 		inode->i_op = &reiserfs_dir_inode_operations;
1230 		inode->i_fop = &reiserfs_dir_operations;
1231 	} else if (S_ISLNK(inode->i_mode)) {
1232 		inode->i_op = &reiserfs_symlink_inode_operations;
1233 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1234 	} else {
1235 		inode->i_blocks = 0;
1236 		inode->i_op = &reiserfs_special_inode_operations;
1237 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1238 	}
1239 }
1240 
1241 // update new stat data with inode fields
1242 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1243 {
1244 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1245 	__u16 flags;
1246 
1247 	set_sd_v2_mode(sd_v2, inode->i_mode);
1248 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1249 	set_sd_v2_uid(sd_v2, inode->i_uid);
1250 	set_sd_v2_size(sd_v2, size);
1251 	set_sd_v2_gid(sd_v2, inode->i_gid);
1252 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1253 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1254 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1255 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1256 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1257 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1258 	else
1259 		set_sd_v2_generation(sd_v2, inode->i_generation);
1260 	flags = REISERFS_I(inode)->i_attrs;
1261 	i_attrs_to_sd_attrs(inode, &flags);
1262 	set_sd_v2_attrs(sd_v2, flags);
1263 }
1264 
1265 // used to copy inode's fields to old stat data
1266 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1267 {
1268 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1269 
1270 	set_sd_v1_mode(sd_v1, inode->i_mode);
1271 	set_sd_v1_uid(sd_v1, inode->i_uid);
1272 	set_sd_v1_gid(sd_v1, inode->i_gid);
1273 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1274 	set_sd_v1_size(sd_v1, size);
1275 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1276 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1277 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1278 
1279 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1280 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1281 	else
1282 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1283 
1284 	// Sigh. i_first_direct_byte is back
1285 	set_sd_v1_first_direct_byte(sd_v1,
1286 				    REISERFS_I(inode)->i_first_direct_byte);
1287 }
1288 
1289 /* NOTE, you must prepare the buffer head before sending it here,
1290 ** and then log it after the call
1291 */
1292 static void update_stat_data(struct treepath *path, struct inode *inode,
1293 			     loff_t size)
1294 {
1295 	struct buffer_head *bh;
1296 	struct item_head *ih;
1297 
1298 	bh = PATH_PLAST_BUFFER(path);
1299 	ih = PATH_PITEM_HEAD(path);
1300 
1301 	if (!is_statdata_le_ih(ih))
1302 		reiserfs_panic(inode->i_sb,
1303 			       "vs-13065: update_stat_data: key %k, found item %h",
1304 			       INODE_PKEY(inode), ih);
1305 
1306 	if (stat_data_v1(ih)) {
1307 		// path points to old stat data
1308 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1309 	} else {
1310 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1311 	}
1312 
1313 	return;
1314 }
1315 
1316 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1317 			     struct inode *inode, loff_t size)
1318 {
1319 	struct cpu_key key;
1320 	INITIALIZE_PATH(path);
1321 	struct buffer_head *bh;
1322 	int fs_gen;
1323 	struct item_head *ih, tmp_ih;
1324 	int retval;
1325 
1326 	BUG_ON(!th->t_trans_id);
1327 
1328 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1329 
1330 	for (;;) {
1331 		int pos;
1332 		/* look for the object's stat data */
1333 		retval = search_item(inode->i_sb, &key, &path);
1334 		if (retval == IO_ERROR) {
1335 			reiserfs_warning(inode->i_sb,
1336 					 "vs-13050: reiserfs_update_sd: "
1337 					 "i/o failure occurred trying to update %K stat data",
1338 					 &key);
1339 			return;
1340 		}
1341 		if (retval == ITEM_NOT_FOUND) {
1342 			pos = PATH_LAST_POSITION(&path);
1343 			pathrelse(&path);
1344 			if (inode->i_nlink == 0) {
1345 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1346 				return;
1347 			}
1348 			reiserfs_warning(inode->i_sb,
1349 					 "vs-13060: reiserfs_update_sd: "
1350 					 "stat data of object %k (nlink == %d) not found (pos %d)",
1351 					 INODE_PKEY(inode), inode->i_nlink,
1352 					 pos);
1353 			reiserfs_check_path(&path);
1354 			return;
1355 		}
1356 
1357 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1358 		 ** FS might change.  We have to detect that, and loop back to the
1359 		 ** search if the stat data item has moved
1360 		 */
1361 		bh = get_last_bh(&path);
1362 		ih = get_ih(&path);
1363 		copy_item_head(&tmp_ih, ih);
1364 		fs_gen = get_generation(inode->i_sb);
1365 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1366 		if (fs_changed(fs_gen, inode->i_sb)
1367 		    && item_moved(&tmp_ih, &path)) {
1368 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1369 			continue;	/* Stat_data item has been moved after scheduling. */
1370 		}
1371 		break;
1372 	}
1373 	update_stat_data(&path, inode, size);
1374 	journal_mark_dirty(th, th->t_super, bh);
1375 	pathrelse(&path);
1376 	return;
1377 }
1378 
1379 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1380 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1381 ** and clear the key in the private portion of the inode, otherwise a
1382 ** corresponding iput might try to delete whatever object the inode last
1383 ** represented.
1384 */
1385 static void reiserfs_make_bad_inode(struct inode *inode)
1386 {
1387 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1388 	make_bad_inode(inode);
1389 }
1390 
1391 //
1392 // initially this function was derived from minix or ext2's analog and
1393 // evolved as the prototype did
1394 //
1395 
1396 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1397 {
1398 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1399 	inode->i_ino = args->objectid;
1400 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1401 	return 0;
1402 }
1403 
1404 /* looks for stat data in the tree, and fills up the fields of in-core
1405    inode stat data fields */
1406 void reiserfs_read_locked_inode(struct inode *inode,
1407 				struct reiserfs_iget_args *args)
1408 {
1409 	INITIALIZE_PATH(path_to_sd);
1410 	struct cpu_key key;
1411 	unsigned long dirino;
1412 	int retval;
1413 
1414 	dirino = args->dirid;
1415 
1416 	/* set version 1, version 2 could be used too, because stat data
1417 	   key is the same in both versions */
1418 	key.version = KEY_FORMAT_3_5;
1419 	key.on_disk_key.k_dir_id = dirino;
1420 	key.on_disk_key.k_objectid = inode->i_ino;
1421 	key.on_disk_key.k_offset = 0;
1422 	key.on_disk_key.k_type = 0;
1423 
1424 	/* look for the object's stat data */
1425 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1426 	if (retval == IO_ERROR) {
1427 		reiserfs_warning(inode->i_sb,
1428 				 "vs-13070: reiserfs_read_locked_inode: "
1429 				 "i/o failure occurred trying to find stat data of %K",
1430 				 &key);
1431 		reiserfs_make_bad_inode(inode);
1432 		return;
1433 	}
1434 	if (retval != ITEM_FOUND) {
1435 		/* a stale NFS handle can trigger this without it being an error */
1436 		pathrelse(&path_to_sd);
1437 		reiserfs_make_bad_inode(inode);
1438 		inode->i_nlink = 0;
1439 		return;
1440 	}
1441 
1442 	init_inode(inode, &path_to_sd);
1443 
1444 	/* It is possible that knfsd is trying to access inode of a file
1445 	   that is being removed from the disk by some other thread. As we
1446 	   update sd on unlink all that is required is to check for nlink
1447 	   here. This bug was first found by Sizif when debugging
1448 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1449 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1450 
1451 	   More logical fix would require changes in fs/inode.c:iput() to
1452 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1453 	   in iget() to return NULL if I_FREEING inode is found in
1454 	   hash-table. */
1455 	/* Currently there is one place where it's ok to meet inode with
1456 	   nlink==0: processing of open-unlinked and half-truncated files
1457 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1458 	if ((inode->i_nlink == 0) &&
1459 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1460 		reiserfs_warning(inode->i_sb,
1461 				 "vs-13075: reiserfs_read_locked_inode: "
1462 				 "dead inode read from disk %K. "
1463 				 "This is likely to be race with knfsd. Ignore",
1464 				 &key);
1465 		reiserfs_make_bad_inode(inode);
1466 	}
1467 
1468 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1469 
1470 }
1471 
1472 /**
1473  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1474  *
1475  * @inode:    inode from hash table to check
1476  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1477  *
1478  * This function is called by iget5_locked() to distinguish reiserfs inodes
1479  * having the same inode numbers. Such inodes can only exist due to some
1480  * error condition. One of them should be bad. Inodes with identical
1481  * inode numbers (objectids) are distinguished by parent directory ids.
1482  *
1483  */
1484 int reiserfs_find_actor(struct inode *inode, void *opaque)
1485 {
1486 	struct reiserfs_iget_args *args;
1487 
1488 	args = opaque;
1489 	/* args is already in CPU order */
1490 	return (inode->i_ino == args->objectid) &&
1491 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1492 }
1493 
1494 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1495 {
1496 	struct inode *inode;
1497 	struct reiserfs_iget_args args;
1498 
1499 	args.objectid = key->on_disk_key.k_objectid;
1500 	args.dirid = key->on_disk_key.k_dir_id;
1501 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1502 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1503 			     (void *)(&args));
1504 	if (!inode)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	if (inode->i_state & I_NEW) {
1508 		reiserfs_read_locked_inode(inode, &args);
1509 		unlock_new_inode(inode);
1510 	}
1511 
1512 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1513 		/* either due to i/o error or a stale NFS handle */
1514 		iput(inode);
1515 		inode = NULL;
1516 	}
1517 	return inode;
1518 }
1519 
1520 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1521 	u32 objectid, u32 dir_id, u32 generation)
1522 
1523 {
1524 	struct cpu_key key;
1525 	struct inode *inode;
1526 
1527 	key.on_disk_key.k_objectid = objectid;
1528 	key.on_disk_key.k_dir_id = dir_id;
1529 	reiserfs_write_lock(sb);
1530 	inode = reiserfs_iget(sb, &key);
1531 	if (inode && !IS_ERR(inode) && generation != 0 &&
1532 	    generation != inode->i_generation) {
1533 		iput(inode);
1534 		inode = NULL;
1535 	}
1536 	reiserfs_write_unlock(sb);
1537 
1538 	return d_obtain_alias(inode);
1539 }
1540 
1541 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1542 		int fh_len, int fh_type)
1543 {
1544 	/* fhtype happens to reflect the number of u32s encoded.
1545 	 * due to a bug in earlier code, fhtype might indicate there
1546 	 * are more u32s then actually fitted.
1547 	 * so if fhtype seems to be more than len, reduce fhtype.
1548 	 * Valid types are:
1549 	 *   2 - objectid + dir_id - legacy support
1550 	 *   3 - objectid + dir_id + generation
1551 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1552 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1553 	 *   6 - as above plus generation of directory
1554 	 * 6 does not fit in NFSv2 handles
1555 	 */
1556 	if (fh_type > fh_len) {
1557 		if (fh_type != 6 || fh_len != 5)
1558 			reiserfs_warning(sb,
1559 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1560 				fh_type, fh_len);
1561 		fh_type = 5;
1562 	}
1563 
1564 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1565 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1566 }
1567 
1568 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1569 		int fh_len, int fh_type)
1570 {
1571 	if (fh_type < 4)
1572 		return NULL;
1573 
1574 	return reiserfs_get_dentry(sb,
1575 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1576 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1577 		(fh_type == 6) ? fid->raw[5] : 0);
1578 }
1579 
1580 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1581 		       int need_parent)
1582 {
1583 	struct inode *inode = dentry->d_inode;
1584 	int maxlen = *lenp;
1585 
1586 	if (maxlen < 3)
1587 		return 255;
1588 
1589 	data[0] = inode->i_ino;
1590 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1591 	data[2] = inode->i_generation;
1592 	*lenp = 3;
1593 	/* no room for directory info? return what we've stored so far */
1594 	if (maxlen < 5 || !need_parent)
1595 		return 3;
1596 
1597 	spin_lock(&dentry->d_lock);
1598 	inode = dentry->d_parent->d_inode;
1599 	data[3] = inode->i_ino;
1600 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1601 	*lenp = 5;
1602 	if (maxlen >= 6) {
1603 		data[5] = inode->i_generation;
1604 		*lenp = 6;
1605 	}
1606 	spin_unlock(&dentry->d_lock);
1607 	return *lenp;
1608 }
1609 
1610 /* looks for stat data, then copies fields to it, marks the buffer
1611    containing stat data as dirty */
1612 /* reiserfs inodes are never really dirty, since the dirty inode call
1613 ** always logs them.  This call allows the VFS inode marking routines
1614 ** to properly mark inodes for datasync and such, but only actually
1615 ** does something when called for a synchronous update.
1616 */
1617 int reiserfs_write_inode(struct inode *inode, int do_sync)
1618 {
1619 	struct reiserfs_transaction_handle th;
1620 	int jbegin_count = 1;
1621 
1622 	if (inode->i_sb->s_flags & MS_RDONLY)
1623 		return -EROFS;
1624 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1625 	 ** these cases are just when the system needs ram, not when the
1626 	 ** inode needs to reach disk for safety, and they can safely be
1627 	 ** ignored because the altered inode has already been logged.
1628 	 */
1629 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1630 		reiserfs_write_lock(inode->i_sb);
1631 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1632 			reiserfs_update_sd(&th, inode);
1633 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1634 		}
1635 		reiserfs_write_unlock(inode->i_sb);
1636 	}
1637 	return 0;
1638 }
1639 
1640 /* stat data of new object is inserted already, this inserts the item
1641    containing "." and ".." entries */
1642 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1643 				  struct inode *inode,
1644 				  struct item_head *ih, struct treepath *path,
1645 				  struct inode *dir)
1646 {
1647 	struct super_block *sb = th->t_super;
1648 	char empty_dir[EMPTY_DIR_SIZE];
1649 	char *body = empty_dir;
1650 	struct cpu_key key;
1651 	int retval;
1652 
1653 	BUG_ON(!th->t_trans_id);
1654 
1655 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1656 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1657 		      TYPE_DIRENTRY, 3 /*key length */ );
1658 
1659 	/* compose item head for new item. Directories consist of items of
1660 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1661 	   is done by reiserfs_new_inode */
1662 	if (old_format_only(sb)) {
1663 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1664 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1665 
1666 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1667 				       ih->ih_key.k_objectid,
1668 				       INODE_PKEY(dir)->k_dir_id,
1669 				       INODE_PKEY(dir)->k_objectid);
1670 	} else {
1671 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1672 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1673 
1674 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1675 				    ih->ih_key.k_objectid,
1676 				    INODE_PKEY(dir)->k_dir_id,
1677 				    INODE_PKEY(dir)->k_objectid);
1678 	}
1679 
1680 	/* look for place in the tree for new item */
1681 	retval = search_item(sb, &key, path);
1682 	if (retval == IO_ERROR) {
1683 		reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1684 				 "i/o failure occurred creating new directory");
1685 		return -EIO;
1686 	}
1687 	if (retval == ITEM_FOUND) {
1688 		pathrelse(path);
1689 		reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1690 				 "object with this key exists (%k)",
1691 				 &(ih->ih_key));
1692 		return -EEXIST;
1693 	}
1694 
1695 	/* insert item, that is empty directory item */
1696 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1697 }
1698 
1699 /* stat data of object has been inserted, this inserts the item
1700    containing the body of symlink */
1701 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1702 				struct item_head *ih,
1703 				struct treepath *path, const char *symname,
1704 				int item_len)
1705 {
1706 	struct super_block *sb = th->t_super;
1707 	struct cpu_key key;
1708 	int retval;
1709 
1710 	BUG_ON(!th->t_trans_id);
1711 
1712 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1713 		      le32_to_cpu(ih->ih_key.k_dir_id),
1714 		      le32_to_cpu(ih->ih_key.k_objectid),
1715 		      1, TYPE_DIRECT, 3 /*key length */ );
1716 
1717 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1718 			  0 /*free_space */ );
1719 
1720 	/* look for place in the tree for new item */
1721 	retval = search_item(sb, &key, path);
1722 	if (retval == IO_ERROR) {
1723 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1724 				 "i/o failure occurred creating new symlink");
1725 		return -EIO;
1726 	}
1727 	if (retval == ITEM_FOUND) {
1728 		pathrelse(path);
1729 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1730 				 "object with this key exists (%k)",
1731 				 &(ih->ih_key));
1732 		return -EEXIST;
1733 	}
1734 
1735 	/* insert item, that is body of symlink */
1736 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1737 }
1738 
1739 /* inserts the stat data into the tree, and then calls
1740    reiserfs_new_directory (to insert ".", ".." item if new object is
1741    directory) or reiserfs_new_symlink (to insert symlink body if new
1742    object is symlink) or nothing (if new object is regular file)
1743 
1744    NOTE! uid and gid must already be set in the inode.  If we return
1745    non-zero due to an error, we have to drop the quota previously allocated
1746    for the fresh inode.  This can only be done outside a transaction, so
1747    if we return non-zero, we also end the transaction.  */
1748 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1749 		       struct inode *dir, int mode, const char *symname,
1750 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1751 		          strlen (symname) for symlinks) */
1752 		       loff_t i_size, struct dentry *dentry,
1753 		       struct inode *inode)
1754 {
1755 	struct super_block *sb;
1756 	INITIALIZE_PATH(path_to_key);
1757 	struct cpu_key key;
1758 	struct item_head ih;
1759 	struct stat_data sd;
1760 	int retval;
1761 	int err;
1762 
1763 	BUG_ON(!th->t_trans_id);
1764 
1765 	if (DQUOT_ALLOC_INODE(inode)) {
1766 		err = -EDQUOT;
1767 		goto out_end_trans;
1768 	}
1769 	if (!dir->i_nlink) {
1770 		err = -EPERM;
1771 		goto out_bad_inode;
1772 	}
1773 
1774 	sb = dir->i_sb;
1775 
1776 	/* item head of new item */
1777 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1778 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1779 	if (!ih.ih_key.k_objectid) {
1780 		err = -ENOMEM;
1781 		goto out_bad_inode;
1782 	}
1783 	if (old_format_only(sb))
1784 		/* not a perfect generation count, as object ids can be reused, but
1785 		 ** this is as good as reiserfs can do right now.
1786 		 ** note that the private part of inode isn't filled in yet, we have
1787 		 ** to use the directory.
1788 		 */
1789 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1790 	else
1791 #if defined( USE_INODE_GENERATION_COUNTER )
1792 		inode->i_generation =
1793 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1794 #else
1795 		inode->i_generation = ++event;
1796 #endif
1797 
1798 	/* fill stat data */
1799 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1800 
1801 	/* uid and gid must already be set by the caller for quota init */
1802 
1803 	/* symlink cannot be immutable or append only, right? */
1804 	if (S_ISLNK(inode->i_mode))
1805 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1806 
1807 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1808 	inode->i_size = i_size;
1809 	inode->i_blocks = 0;
1810 	inode->i_bytes = 0;
1811 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1812 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1813 
1814 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1815 	REISERFS_I(inode)->i_flags = 0;
1816 	REISERFS_I(inode)->i_prealloc_block = 0;
1817 	REISERFS_I(inode)->i_prealloc_count = 0;
1818 	REISERFS_I(inode)->i_trans_id = 0;
1819 	REISERFS_I(inode)->i_jl = NULL;
1820 	REISERFS_I(inode)->i_attrs =
1821 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1822 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1823 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1824 	reiserfs_init_acl_access(inode);
1825 	reiserfs_init_acl_default(inode);
1826 	reiserfs_init_xattr_rwsem(inode);
1827 
1828 	if (old_format_only(sb))
1829 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1830 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1831 	else
1832 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1833 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1834 
1835 	/* key to search for correct place for new stat data */
1836 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1837 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1838 		      TYPE_STAT_DATA, 3 /*key length */ );
1839 
1840 	/* find proper place for inserting of stat data */
1841 	retval = search_item(sb, &key, &path_to_key);
1842 	if (retval == IO_ERROR) {
1843 		err = -EIO;
1844 		goto out_bad_inode;
1845 	}
1846 	if (retval == ITEM_FOUND) {
1847 		pathrelse(&path_to_key);
1848 		err = -EEXIST;
1849 		goto out_bad_inode;
1850 	}
1851 	if (old_format_only(sb)) {
1852 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1853 			pathrelse(&path_to_key);
1854 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1855 			err = -EINVAL;
1856 			goto out_bad_inode;
1857 		}
1858 		inode2sd_v1(&sd, inode, inode->i_size);
1859 	} else {
1860 		inode2sd(&sd, inode, inode->i_size);
1861 	}
1862 	// these do not go to on-disk stat data
1863 	inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1864 
1865 	// store in in-core inode the key of stat data and version all
1866 	// object items will have (directory items will have old offset
1867 	// format, other new objects will consist of new items)
1868 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1869 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1870 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1871 	else
1872 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1873 	if (old_format_only(sb))
1874 		set_inode_sd_version(inode, STAT_DATA_V1);
1875 	else
1876 		set_inode_sd_version(inode, STAT_DATA_V2);
1877 
1878 	/* insert the stat data into the tree */
1879 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1880 	if (REISERFS_I(dir)->new_packing_locality)
1881 		th->displace_new_blocks = 1;
1882 #endif
1883 	retval =
1884 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1885 				 (char *)(&sd));
1886 	if (retval) {
1887 		err = retval;
1888 		reiserfs_check_path(&path_to_key);
1889 		goto out_bad_inode;
1890 	}
1891 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1892 	if (!th->displace_new_blocks)
1893 		REISERFS_I(dir)->new_packing_locality = 0;
1894 #endif
1895 	if (S_ISDIR(mode)) {
1896 		/* insert item with "." and ".." */
1897 		retval =
1898 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1899 	}
1900 
1901 	if (S_ISLNK(mode)) {
1902 		/* insert body of symlink */
1903 		if (!old_format_only(sb))
1904 			i_size = ROUND_UP(i_size);
1905 		retval =
1906 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1907 					 i_size);
1908 	}
1909 	if (retval) {
1910 		err = retval;
1911 		reiserfs_check_path(&path_to_key);
1912 		journal_end(th, th->t_super, th->t_blocks_allocated);
1913 		goto out_inserted_sd;
1914 	}
1915 
1916 	/* XXX CHECK THIS */
1917 	if (reiserfs_posixacl(inode->i_sb)) {
1918 		retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1919 		if (retval) {
1920 			err = retval;
1921 			reiserfs_check_path(&path_to_key);
1922 			journal_end(th, th->t_super, th->t_blocks_allocated);
1923 			goto out_inserted_sd;
1924 		}
1925 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1926 		reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1927 				 "but vfs thinks they are!");
1928 	} else if (is_reiserfs_priv_object(dir)) {
1929 		reiserfs_mark_inode_private(inode);
1930 	}
1931 
1932 	insert_inode_hash(inode);
1933 	reiserfs_update_sd(th, inode);
1934 	reiserfs_check_path(&path_to_key);
1935 
1936 	return 0;
1937 
1938 /* it looks like you can easily compress these two goto targets into
1939  * one.  Keeping it like this doesn't actually hurt anything, and they
1940  * are place holders for what the quota code actually needs.
1941  */
1942       out_bad_inode:
1943 	/* Invalidate the object, nothing was inserted yet */
1944 	INODE_PKEY(inode)->k_objectid = 0;
1945 
1946 	/* Quota change must be inside a transaction for journaling */
1947 	DQUOT_FREE_INODE(inode);
1948 
1949       out_end_trans:
1950 	journal_end(th, th->t_super, th->t_blocks_allocated);
1951 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1952 	DQUOT_DROP(inode);
1953 	inode->i_flags |= S_NOQUOTA;
1954 	make_bad_inode(inode);
1955 
1956       out_inserted_sd:
1957 	inode->i_nlink = 0;
1958 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1959 
1960 	/* If we were inheriting an ACL, we need to release the lock so that
1961 	 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1962 	 * code really needs to be reworked, but this will take care of it
1963 	 * for now. -jeffm */
1964 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1965 	if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1966 		reiserfs_write_unlock_xattrs(dir->i_sb);
1967 		iput(inode);
1968 		reiserfs_write_lock_xattrs(dir->i_sb);
1969 	} else
1970 #endif
1971 		iput(inode);
1972 	return err;
1973 }
1974 
1975 /*
1976 ** finds the tail page in the page cache,
1977 ** reads the last block in.
1978 **
1979 ** On success, page_result is set to a locked, pinned page, and bh_result
1980 ** is set to an up to date buffer for the last block in the file.  returns 0.
1981 **
1982 ** tail conversion is not done, so bh_result might not be valid for writing
1983 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1984 ** trying to write the block.
1985 **
1986 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1987 */
1988 static int grab_tail_page(struct inode *p_s_inode,
1989 			  struct page **page_result,
1990 			  struct buffer_head **bh_result)
1991 {
1992 
1993 	/* we want the page with the last byte in the file,
1994 	 ** not the page that will hold the next byte for appending
1995 	 */
1996 	unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1997 	unsigned long pos = 0;
1998 	unsigned long start = 0;
1999 	unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2000 	unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2001 	struct buffer_head *bh;
2002 	struct buffer_head *head;
2003 	struct page *page;
2004 	int error;
2005 
2006 	/* we know that we are only called with inode->i_size > 0.
2007 	 ** we also know that a file tail can never be as big as a block
2008 	 ** If i_size % blocksize == 0, our file is currently block aligned
2009 	 ** and it won't need converting or zeroing after a truncate.
2010 	 */
2011 	if ((offset & (blocksize - 1)) == 0) {
2012 		return -ENOENT;
2013 	}
2014 	page = grab_cache_page(p_s_inode->i_mapping, index);
2015 	error = -ENOMEM;
2016 	if (!page) {
2017 		goto out;
2018 	}
2019 	/* start within the page of the last block in the file */
2020 	start = (offset / blocksize) * blocksize;
2021 
2022 	error = block_prepare_write(page, start, offset,
2023 				    reiserfs_get_block_create_0);
2024 	if (error)
2025 		goto unlock;
2026 
2027 	head = page_buffers(page);
2028 	bh = head;
2029 	do {
2030 		if (pos >= start) {
2031 			break;
2032 		}
2033 		bh = bh->b_this_page;
2034 		pos += blocksize;
2035 	} while (bh != head);
2036 
2037 	if (!buffer_uptodate(bh)) {
2038 		/* note, this should never happen, prepare_write should
2039 		 ** be taking care of this for us.  If the buffer isn't up to date,
2040 		 ** I've screwed up the code to find the buffer, or the code to
2041 		 ** call prepare_write
2042 		 */
2043 		reiserfs_warning(p_s_inode->i_sb,
2044 				 "clm-6000: error reading block %lu on dev %s",
2045 				 bh->b_blocknr,
2046 				 reiserfs_bdevname(p_s_inode->i_sb));
2047 		error = -EIO;
2048 		goto unlock;
2049 	}
2050 	*bh_result = bh;
2051 	*page_result = page;
2052 
2053       out:
2054 	return error;
2055 
2056       unlock:
2057 	unlock_page(page);
2058 	page_cache_release(page);
2059 	return error;
2060 }
2061 
2062 /*
2063 ** vfs version of truncate file.  Must NOT be called with
2064 ** a transaction already started.
2065 **
2066 ** some code taken from block_truncate_page
2067 */
2068 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2069 {
2070 	struct reiserfs_transaction_handle th;
2071 	/* we want the offset for the first byte after the end of the file */
2072 	unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2073 	unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2074 	unsigned length;
2075 	struct page *page = NULL;
2076 	int error;
2077 	struct buffer_head *bh = NULL;
2078 	int err2;
2079 
2080 	reiserfs_write_lock(p_s_inode->i_sb);
2081 
2082 	if (p_s_inode->i_size > 0) {
2083 		if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2084 			// -ENOENT means we truncated past the end of the file,
2085 			// and get_block_create_0 could not find a block to read in,
2086 			// which is ok.
2087 			if (error != -ENOENT)
2088 				reiserfs_warning(p_s_inode->i_sb,
2089 						 "clm-6001: grab_tail_page failed %d",
2090 						 error);
2091 			page = NULL;
2092 			bh = NULL;
2093 		}
2094 	}
2095 
2096 	/* so, if page != NULL, we have a buffer head for the offset at
2097 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2098 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2099 	 ** and no zeroing is required on disk.  We zero after the truncate,
2100 	 ** because the truncate might pack the item anyway
2101 	 ** (it will unmap bh if it packs).
2102 	 */
2103 	/* it is enough to reserve space in transaction for 2 balancings:
2104 	   one for "save" link adding and another for the first
2105 	   cut_from_item. 1 is for update_sd */
2106 	error = journal_begin(&th, p_s_inode->i_sb,
2107 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2108 	if (error)
2109 		goto out;
2110 	reiserfs_update_inode_transaction(p_s_inode);
2111 	if (update_timestamps)
2112 		/* we are doing real truncate: if the system crashes before the last
2113 		   transaction of truncating gets committed - on reboot the file
2114 		   either appears truncated properly or not truncated at all */
2115 		add_save_link(&th, p_s_inode, 1);
2116 	err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2117 	error =
2118 	    journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2119 	if (error)
2120 		goto out;
2121 
2122 	/* check reiserfs_do_truncate after ending the transaction */
2123 	if (err2) {
2124 		error = err2;
2125   		goto out;
2126 	}
2127 
2128 	if (update_timestamps) {
2129 		error = remove_save_link(p_s_inode, 1 /* truncate */ );
2130 		if (error)
2131 			goto out;
2132 	}
2133 
2134 	if (page) {
2135 		length = offset & (blocksize - 1);
2136 		/* if we are not on a block boundary */
2137 		if (length) {
2138 			length = blocksize - length;
2139 			zero_user(page, offset, length);
2140 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2141 				mark_buffer_dirty(bh);
2142 			}
2143 		}
2144 		unlock_page(page);
2145 		page_cache_release(page);
2146 	}
2147 
2148 	reiserfs_write_unlock(p_s_inode->i_sb);
2149 	return 0;
2150       out:
2151 	if (page) {
2152 		unlock_page(page);
2153 		page_cache_release(page);
2154 	}
2155 	reiserfs_write_unlock(p_s_inode->i_sb);
2156 	return error;
2157 }
2158 
2159 static int map_block_for_writepage(struct inode *inode,
2160 				   struct buffer_head *bh_result,
2161 				   unsigned long block)
2162 {
2163 	struct reiserfs_transaction_handle th;
2164 	int fs_gen;
2165 	struct item_head tmp_ih;
2166 	struct item_head *ih;
2167 	struct buffer_head *bh;
2168 	__le32 *item;
2169 	struct cpu_key key;
2170 	INITIALIZE_PATH(path);
2171 	int pos_in_item;
2172 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2173 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2174 	int retval;
2175 	int use_get_block = 0;
2176 	int bytes_copied = 0;
2177 	int copy_size;
2178 	int trans_running = 0;
2179 
2180 	/* catch places below that try to log something without starting a trans */
2181 	th.t_trans_id = 0;
2182 
2183 	if (!buffer_uptodate(bh_result)) {
2184 		return -EIO;
2185 	}
2186 
2187 	kmap(bh_result->b_page);
2188       start_over:
2189 	reiserfs_write_lock(inode->i_sb);
2190 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2191 
2192       research:
2193 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2194 	if (retval != POSITION_FOUND) {
2195 		use_get_block = 1;
2196 		goto out;
2197 	}
2198 
2199 	bh = get_last_bh(&path);
2200 	ih = get_ih(&path);
2201 	item = get_item(&path);
2202 	pos_in_item = path.pos_in_item;
2203 
2204 	/* we've found an unformatted node */
2205 	if (indirect_item_found(retval, ih)) {
2206 		if (bytes_copied > 0) {
2207 			reiserfs_warning(inode->i_sb,
2208 					 "clm-6002: bytes_copied %d",
2209 					 bytes_copied);
2210 		}
2211 		if (!get_block_num(item, pos_in_item)) {
2212 			/* crap, we are writing to a hole */
2213 			use_get_block = 1;
2214 			goto out;
2215 		}
2216 		set_block_dev_mapped(bh_result,
2217 				     get_block_num(item, pos_in_item), inode);
2218 	} else if (is_direct_le_ih(ih)) {
2219 		char *p;
2220 		p = page_address(bh_result->b_page);
2221 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2222 		copy_size = ih_item_len(ih) - pos_in_item;
2223 
2224 		fs_gen = get_generation(inode->i_sb);
2225 		copy_item_head(&tmp_ih, ih);
2226 
2227 		if (!trans_running) {
2228 			/* vs-3050 is gone, no need to drop the path */
2229 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2230 			if (retval)
2231 				goto out;
2232 			reiserfs_update_inode_transaction(inode);
2233 			trans_running = 1;
2234 			if (fs_changed(fs_gen, inode->i_sb)
2235 			    && item_moved(&tmp_ih, &path)) {
2236 				reiserfs_restore_prepared_buffer(inode->i_sb,
2237 								 bh);
2238 				goto research;
2239 			}
2240 		}
2241 
2242 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2243 
2244 		if (fs_changed(fs_gen, inode->i_sb)
2245 		    && item_moved(&tmp_ih, &path)) {
2246 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2247 			goto research;
2248 		}
2249 
2250 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2251 		       copy_size);
2252 
2253 		journal_mark_dirty(&th, inode->i_sb, bh);
2254 		bytes_copied += copy_size;
2255 		set_block_dev_mapped(bh_result, 0, inode);
2256 
2257 		/* are there still bytes left? */
2258 		if (bytes_copied < bh_result->b_size &&
2259 		    (byte_offset + bytes_copied) < inode->i_size) {
2260 			set_cpu_key_k_offset(&key,
2261 					     cpu_key_k_offset(&key) +
2262 					     copy_size);
2263 			goto research;
2264 		}
2265 	} else {
2266 		reiserfs_warning(inode->i_sb,
2267 				 "clm-6003: bad item inode %lu, device %s",
2268 				 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2269 		retval = -EIO;
2270 		goto out;
2271 	}
2272 	retval = 0;
2273 
2274       out:
2275 	pathrelse(&path);
2276 	if (trans_running) {
2277 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2278 		if (err)
2279 			retval = err;
2280 		trans_running = 0;
2281 	}
2282 	reiserfs_write_unlock(inode->i_sb);
2283 
2284 	/* this is where we fill in holes in the file. */
2285 	if (use_get_block) {
2286 		retval = reiserfs_get_block(inode, block, bh_result,
2287 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2288 					    | GET_BLOCK_NO_DANGLE);
2289 		if (!retval) {
2290 			if (!buffer_mapped(bh_result)
2291 			    || bh_result->b_blocknr == 0) {
2292 				/* get_block failed to find a mapped unformatted node. */
2293 				use_get_block = 0;
2294 				goto start_over;
2295 			}
2296 		}
2297 	}
2298 	kunmap(bh_result->b_page);
2299 
2300 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2301 		/* we've copied data from the page into the direct item, so the
2302 		 * buffer in the page is now clean, mark it to reflect that.
2303 		 */
2304 		lock_buffer(bh_result);
2305 		clear_buffer_dirty(bh_result);
2306 		unlock_buffer(bh_result);
2307 	}
2308 	return retval;
2309 }
2310 
2311 /*
2312  * mason@suse.com: updated in 2.5.54 to follow the same general io
2313  * start/recovery path as __block_write_full_page, along with special
2314  * code to handle reiserfs tails.
2315  */
2316 static int reiserfs_write_full_page(struct page *page,
2317 				    struct writeback_control *wbc)
2318 {
2319 	struct inode *inode = page->mapping->host;
2320 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2321 	int error = 0;
2322 	unsigned long block;
2323 	sector_t last_block;
2324 	struct buffer_head *head, *bh;
2325 	int partial = 0;
2326 	int nr = 0;
2327 	int checked = PageChecked(page);
2328 	struct reiserfs_transaction_handle th;
2329 	struct super_block *s = inode->i_sb;
2330 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2331 	th.t_trans_id = 0;
2332 
2333 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2334 	if (checked && (current->flags & PF_MEMALLOC)) {
2335 		redirty_page_for_writepage(wbc, page);
2336 		unlock_page(page);
2337 		return 0;
2338 	}
2339 
2340 	/* The page dirty bit is cleared before writepage is called, which
2341 	 * means we have to tell create_empty_buffers to make dirty buffers
2342 	 * The page really should be up to date at this point, so tossing
2343 	 * in the BH_Uptodate is just a sanity check.
2344 	 */
2345 	if (!page_has_buffers(page)) {
2346 		create_empty_buffers(page, s->s_blocksize,
2347 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2348 	}
2349 	head = page_buffers(page);
2350 
2351 	/* last page in the file, zero out any contents past the
2352 	 ** last byte in the file
2353 	 */
2354 	if (page->index >= end_index) {
2355 		unsigned last_offset;
2356 
2357 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2358 		/* no file contents in this page */
2359 		if (page->index >= end_index + 1 || !last_offset) {
2360 			unlock_page(page);
2361 			return 0;
2362 		}
2363 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2364 	}
2365 	bh = head;
2366 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2367 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2368 	/* first map all the buffers, logging any direct items we find */
2369 	do {
2370 		if (block > last_block) {
2371 			/*
2372 			 * This can happen when the block size is less than
2373 			 * the page size.  The corresponding bytes in the page
2374 			 * were zero filled above
2375 			 */
2376 			clear_buffer_dirty(bh);
2377 			set_buffer_uptodate(bh);
2378 		} else if ((checked || buffer_dirty(bh)) &&
2379 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2380 						       && bh->b_blocknr ==
2381 						       0))) {
2382 			/* not mapped yet, or it points to a direct item, search
2383 			 * the btree for the mapping info, and log any direct
2384 			 * items found
2385 			 */
2386 			if ((error = map_block_for_writepage(inode, bh, block))) {
2387 				goto fail;
2388 			}
2389 		}
2390 		bh = bh->b_this_page;
2391 		block++;
2392 	} while (bh != head);
2393 
2394 	/*
2395 	 * we start the transaction after map_block_for_writepage,
2396 	 * because it can create holes in the file (an unbounded operation).
2397 	 * starting it here, we can make a reliable estimate for how many
2398 	 * blocks we're going to log
2399 	 */
2400 	if (checked) {
2401 		ClearPageChecked(page);
2402 		reiserfs_write_lock(s);
2403 		error = journal_begin(&th, s, bh_per_page + 1);
2404 		if (error) {
2405 			reiserfs_write_unlock(s);
2406 			goto fail;
2407 		}
2408 		reiserfs_update_inode_transaction(inode);
2409 	}
2410 	/* now go through and lock any dirty buffers on the page */
2411 	do {
2412 		get_bh(bh);
2413 		if (!buffer_mapped(bh))
2414 			continue;
2415 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2416 			continue;
2417 
2418 		if (checked) {
2419 			reiserfs_prepare_for_journal(s, bh, 1);
2420 			journal_mark_dirty(&th, s, bh);
2421 			continue;
2422 		}
2423 		/* from this point on, we know the buffer is mapped to a
2424 		 * real block and not a direct item
2425 		 */
2426 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2427 			lock_buffer(bh);
2428 		} else {
2429 			if (!trylock_buffer(bh)) {
2430 				redirty_page_for_writepage(wbc, page);
2431 				continue;
2432 			}
2433 		}
2434 		if (test_clear_buffer_dirty(bh)) {
2435 			mark_buffer_async_write(bh);
2436 		} else {
2437 			unlock_buffer(bh);
2438 		}
2439 	} while ((bh = bh->b_this_page) != head);
2440 
2441 	if (checked) {
2442 		error = journal_end(&th, s, bh_per_page + 1);
2443 		reiserfs_write_unlock(s);
2444 		if (error)
2445 			goto fail;
2446 	}
2447 	BUG_ON(PageWriteback(page));
2448 	set_page_writeback(page);
2449 	unlock_page(page);
2450 
2451 	/*
2452 	 * since any buffer might be the only dirty buffer on the page,
2453 	 * the first submit_bh can bring the page out of writeback.
2454 	 * be careful with the buffers.
2455 	 */
2456 	do {
2457 		struct buffer_head *next = bh->b_this_page;
2458 		if (buffer_async_write(bh)) {
2459 			submit_bh(WRITE, bh);
2460 			nr++;
2461 		}
2462 		put_bh(bh);
2463 		bh = next;
2464 	} while (bh != head);
2465 
2466 	error = 0;
2467       done:
2468 	if (nr == 0) {
2469 		/*
2470 		 * if this page only had a direct item, it is very possible for
2471 		 * no io to be required without there being an error.  Or,
2472 		 * someone else could have locked them and sent them down the
2473 		 * pipe without locking the page
2474 		 */
2475 		bh = head;
2476 		do {
2477 			if (!buffer_uptodate(bh)) {
2478 				partial = 1;
2479 				break;
2480 			}
2481 			bh = bh->b_this_page;
2482 		} while (bh != head);
2483 		if (!partial)
2484 			SetPageUptodate(page);
2485 		end_page_writeback(page);
2486 	}
2487 	return error;
2488 
2489       fail:
2490 	/* catches various errors, we need to make sure any valid dirty blocks
2491 	 * get to the media.  The page is currently locked and not marked for
2492 	 * writeback
2493 	 */
2494 	ClearPageUptodate(page);
2495 	bh = head;
2496 	do {
2497 		get_bh(bh);
2498 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2499 			lock_buffer(bh);
2500 			mark_buffer_async_write(bh);
2501 		} else {
2502 			/*
2503 			 * clear any dirty bits that might have come from getting
2504 			 * attached to a dirty page
2505 			 */
2506 			clear_buffer_dirty(bh);
2507 		}
2508 		bh = bh->b_this_page;
2509 	} while (bh != head);
2510 	SetPageError(page);
2511 	BUG_ON(PageWriteback(page));
2512 	set_page_writeback(page);
2513 	unlock_page(page);
2514 	do {
2515 		struct buffer_head *next = bh->b_this_page;
2516 		if (buffer_async_write(bh)) {
2517 			clear_buffer_dirty(bh);
2518 			submit_bh(WRITE, bh);
2519 			nr++;
2520 		}
2521 		put_bh(bh);
2522 		bh = next;
2523 	} while (bh != head);
2524 	goto done;
2525 }
2526 
2527 static int reiserfs_readpage(struct file *f, struct page *page)
2528 {
2529 	return block_read_full_page(page, reiserfs_get_block);
2530 }
2531 
2532 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2533 {
2534 	struct inode *inode = page->mapping->host;
2535 	reiserfs_wait_on_write_block(inode->i_sb);
2536 	return reiserfs_write_full_page(page, wbc);
2537 }
2538 
2539 static int reiserfs_write_begin(struct file *file,
2540 				struct address_space *mapping,
2541 				loff_t pos, unsigned len, unsigned flags,
2542 				struct page **pagep, void **fsdata)
2543 {
2544 	struct inode *inode;
2545 	struct page *page;
2546 	pgoff_t index;
2547 	int ret;
2548 	int old_ref = 0;
2549 
2550  	inode = mapping->host;
2551 	*fsdata = 0;
2552  	if (flags & AOP_FLAG_CONT_EXPAND &&
2553  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2554  		pos ++;
2555 		*fsdata = (void *)(unsigned long)flags;
2556 	}
2557 
2558 	index = pos >> PAGE_CACHE_SHIFT;
2559 	page = __grab_cache_page(mapping, index);
2560 	if (!page)
2561 		return -ENOMEM;
2562 	*pagep = page;
2563 
2564 	reiserfs_wait_on_write_block(inode->i_sb);
2565 	fix_tail_page_for_writing(page);
2566 	if (reiserfs_transaction_running(inode->i_sb)) {
2567 		struct reiserfs_transaction_handle *th;
2568 		th = (struct reiserfs_transaction_handle *)current->
2569 		    journal_info;
2570 		BUG_ON(!th->t_refcount);
2571 		BUG_ON(!th->t_trans_id);
2572 		old_ref = th->t_refcount;
2573 		th->t_refcount++;
2574 	}
2575 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2576 				reiserfs_get_block);
2577 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2578 		struct reiserfs_transaction_handle *th = current->journal_info;
2579 		/* this gets a little ugly.  If reiserfs_get_block returned an
2580 		 * error and left a transacstion running, we've got to close it,
2581 		 * and we've got to free handle if it was a persistent transaction.
2582 		 *
2583 		 * But, if we had nested into an existing transaction, we need
2584 		 * to just drop the ref count on the handle.
2585 		 *
2586 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2587 		 * and it was a persistent trans.  Otherwise, it was nested above.
2588 		 */
2589 		if (th->t_refcount > old_ref) {
2590 			if (old_ref)
2591 				th->t_refcount--;
2592 			else {
2593 				int err;
2594 				reiserfs_write_lock(inode->i_sb);
2595 				err = reiserfs_end_persistent_transaction(th);
2596 				reiserfs_write_unlock(inode->i_sb);
2597 				if (err)
2598 					ret = err;
2599 			}
2600 		}
2601 	}
2602 	if (ret) {
2603 		unlock_page(page);
2604 		page_cache_release(page);
2605 	}
2606 	return ret;
2607 }
2608 
2609 int reiserfs_prepare_write(struct file *f, struct page *page,
2610 			   unsigned from, unsigned to)
2611 {
2612 	struct inode *inode = page->mapping->host;
2613 	int ret;
2614 	int old_ref = 0;
2615 
2616 	reiserfs_wait_on_write_block(inode->i_sb);
2617 	fix_tail_page_for_writing(page);
2618 	if (reiserfs_transaction_running(inode->i_sb)) {
2619 		struct reiserfs_transaction_handle *th;
2620 		th = (struct reiserfs_transaction_handle *)current->
2621 		    journal_info;
2622 		BUG_ON(!th->t_refcount);
2623 		BUG_ON(!th->t_trans_id);
2624 		old_ref = th->t_refcount;
2625 		th->t_refcount++;
2626 	}
2627 
2628 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2629 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2630 		struct reiserfs_transaction_handle *th = current->journal_info;
2631 		/* this gets a little ugly.  If reiserfs_get_block returned an
2632 		 * error and left a transacstion running, we've got to close it,
2633 		 * and we've got to free handle if it was a persistent transaction.
2634 		 *
2635 		 * But, if we had nested into an existing transaction, we need
2636 		 * to just drop the ref count on the handle.
2637 		 *
2638 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2639 		 * and it was a persistent trans.  Otherwise, it was nested above.
2640 		 */
2641 		if (th->t_refcount > old_ref) {
2642 			if (old_ref)
2643 				th->t_refcount--;
2644 			else {
2645 				int err;
2646 				reiserfs_write_lock(inode->i_sb);
2647 				err = reiserfs_end_persistent_transaction(th);
2648 				reiserfs_write_unlock(inode->i_sb);
2649 				if (err)
2650 					ret = err;
2651 			}
2652 		}
2653 	}
2654 	return ret;
2655 
2656 }
2657 
2658 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2659 {
2660 	return generic_block_bmap(as, block, reiserfs_bmap);
2661 }
2662 
2663 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2664 			      loff_t pos, unsigned len, unsigned copied,
2665 			      struct page *page, void *fsdata)
2666 {
2667 	struct inode *inode = page->mapping->host;
2668 	int ret = 0;
2669 	int update_sd = 0;
2670 	struct reiserfs_transaction_handle *th;
2671 	unsigned start;
2672 
2673 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2674 		pos ++;
2675 
2676 	reiserfs_wait_on_write_block(inode->i_sb);
2677 	if (reiserfs_transaction_running(inode->i_sb))
2678 		th = current->journal_info;
2679 	else
2680 		th = NULL;
2681 
2682 	start = pos & (PAGE_CACHE_SIZE - 1);
2683 	if (unlikely(copied < len)) {
2684 		if (!PageUptodate(page))
2685 			copied = 0;
2686 
2687 		page_zero_new_buffers(page, start + copied, start + len);
2688 	}
2689 	flush_dcache_page(page);
2690 
2691 	reiserfs_commit_page(inode, page, start, start + copied);
2692 
2693 	/* generic_commit_write does this for us, but does not update the
2694 	 ** transaction tracking stuff when the size changes.  So, we have
2695 	 ** to do the i_size updates here.
2696 	 */
2697 	pos += copied;
2698 	if (pos > inode->i_size) {
2699 		struct reiserfs_transaction_handle myth;
2700 		reiserfs_write_lock(inode->i_sb);
2701 		/* If the file have grown beyond the border where it
2702 		   can have a tail, unmark it as needing a tail
2703 		   packing */
2704 		if ((have_large_tails(inode->i_sb)
2705 		     && inode->i_size > i_block_size(inode) * 4)
2706 		    || (have_small_tails(inode->i_sb)
2707 			&& inode->i_size > i_block_size(inode)))
2708 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2709 
2710 		ret = journal_begin(&myth, inode->i_sb, 1);
2711 		if (ret) {
2712 			reiserfs_write_unlock(inode->i_sb);
2713 			goto journal_error;
2714 		}
2715 		reiserfs_update_inode_transaction(inode);
2716 		inode->i_size = pos;
2717 		/*
2718 		 * this will just nest into our transaction.  It's important
2719 		 * to use mark_inode_dirty so the inode gets pushed around on the
2720 		 * dirty lists, and so that O_SYNC works as expected
2721 		 */
2722 		mark_inode_dirty(inode);
2723 		reiserfs_update_sd(&myth, inode);
2724 		update_sd = 1;
2725 		ret = journal_end(&myth, inode->i_sb, 1);
2726 		reiserfs_write_unlock(inode->i_sb);
2727 		if (ret)
2728 			goto journal_error;
2729 	}
2730 	if (th) {
2731 		reiserfs_write_lock(inode->i_sb);
2732 		if (!update_sd)
2733 			mark_inode_dirty(inode);
2734 		ret = reiserfs_end_persistent_transaction(th);
2735 		reiserfs_write_unlock(inode->i_sb);
2736 		if (ret)
2737 			goto out;
2738 	}
2739 
2740       out:
2741 	unlock_page(page);
2742 	page_cache_release(page);
2743 	return ret == 0 ? copied : ret;
2744 
2745       journal_error:
2746 	if (th) {
2747 		reiserfs_write_lock(inode->i_sb);
2748 		if (!update_sd)
2749 			reiserfs_update_sd(th, inode);
2750 		ret = reiserfs_end_persistent_transaction(th);
2751 		reiserfs_write_unlock(inode->i_sb);
2752 	}
2753 
2754 	goto out;
2755 }
2756 
2757 int reiserfs_commit_write(struct file *f, struct page *page,
2758 			  unsigned from, unsigned to)
2759 {
2760 	struct inode *inode = page->mapping->host;
2761 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2762 	int ret = 0;
2763 	int update_sd = 0;
2764 	struct reiserfs_transaction_handle *th = NULL;
2765 
2766 	reiserfs_wait_on_write_block(inode->i_sb);
2767 	if (reiserfs_transaction_running(inode->i_sb)) {
2768 		th = current->journal_info;
2769 	}
2770 	reiserfs_commit_page(inode, page, from, to);
2771 
2772 	/* generic_commit_write does this for us, but does not update the
2773 	 ** transaction tracking stuff when the size changes.  So, we have
2774 	 ** to do the i_size updates here.
2775 	 */
2776 	if (pos > inode->i_size) {
2777 		struct reiserfs_transaction_handle myth;
2778 		reiserfs_write_lock(inode->i_sb);
2779 		/* If the file have grown beyond the border where it
2780 		   can have a tail, unmark it as needing a tail
2781 		   packing */
2782 		if ((have_large_tails(inode->i_sb)
2783 		     && inode->i_size > i_block_size(inode) * 4)
2784 		    || (have_small_tails(inode->i_sb)
2785 			&& inode->i_size > i_block_size(inode)))
2786 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2787 
2788 		ret = journal_begin(&myth, inode->i_sb, 1);
2789 		if (ret) {
2790 			reiserfs_write_unlock(inode->i_sb);
2791 			goto journal_error;
2792 		}
2793 		reiserfs_update_inode_transaction(inode);
2794 		inode->i_size = pos;
2795 		/*
2796 		 * this will just nest into our transaction.  It's important
2797 		 * to use mark_inode_dirty so the inode gets pushed around on the
2798 		 * dirty lists, and so that O_SYNC works as expected
2799 		 */
2800 		mark_inode_dirty(inode);
2801 		reiserfs_update_sd(&myth, inode);
2802 		update_sd = 1;
2803 		ret = journal_end(&myth, inode->i_sb, 1);
2804 		reiserfs_write_unlock(inode->i_sb);
2805 		if (ret)
2806 			goto journal_error;
2807 	}
2808 	if (th) {
2809 		reiserfs_write_lock(inode->i_sb);
2810 		if (!update_sd)
2811 			mark_inode_dirty(inode);
2812 		ret = reiserfs_end_persistent_transaction(th);
2813 		reiserfs_write_unlock(inode->i_sb);
2814 		if (ret)
2815 			goto out;
2816 	}
2817 
2818       out:
2819 	return ret;
2820 
2821       journal_error:
2822 	if (th) {
2823 		reiserfs_write_lock(inode->i_sb);
2824 		if (!update_sd)
2825 			reiserfs_update_sd(th, inode);
2826 		ret = reiserfs_end_persistent_transaction(th);
2827 		reiserfs_write_unlock(inode->i_sb);
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2834 {
2835 	if (reiserfs_attrs(inode->i_sb)) {
2836 		if (sd_attrs & REISERFS_SYNC_FL)
2837 			inode->i_flags |= S_SYNC;
2838 		else
2839 			inode->i_flags &= ~S_SYNC;
2840 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2841 			inode->i_flags |= S_IMMUTABLE;
2842 		else
2843 			inode->i_flags &= ~S_IMMUTABLE;
2844 		if (sd_attrs & REISERFS_APPEND_FL)
2845 			inode->i_flags |= S_APPEND;
2846 		else
2847 			inode->i_flags &= ~S_APPEND;
2848 		if (sd_attrs & REISERFS_NOATIME_FL)
2849 			inode->i_flags |= S_NOATIME;
2850 		else
2851 			inode->i_flags &= ~S_NOATIME;
2852 		if (sd_attrs & REISERFS_NOTAIL_FL)
2853 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2854 		else
2855 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2856 	}
2857 }
2858 
2859 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2860 {
2861 	if (reiserfs_attrs(inode->i_sb)) {
2862 		if (inode->i_flags & S_IMMUTABLE)
2863 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2864 		else
2865 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2866 		if (inode->i_flags & S_SYNC)
2867 			*sd_attrs |= REISERFS_SYNC_FL;
2868 		else
2869 			*sd_attrs &= ~REISERFS_SYNC_FL;
2870 		if (inode->i_flags & S_NOATIME)
2871 			*sd_attrs |= REISERFS_NOATIME_FL;
2872 		else
2873 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2874 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2875 			*sd_attrs |= REISERFS_NOTAIL_FL;
2876 		else
2877 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2878 	}
2879 }
2880 
2881 /* decide if this buffer needs to stay around for data logging or ordered
2882 ** write purposes
2883 */
2884 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2885 {
2886 	int ret = 1;
2887 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2888 
2889 	lock_buffer(bh);
2890 	spin_lock(&j->j_dirty_buffers_lock);
2891 	if (!buffer_mapped(bh)) {
2892 		goto free_jh;
2893 	}
2894 	/* the page is locked, and the only places that log a data buffer
2895 	 * also lock the page.
2896 	 */
2897 	if (reiserfs_file_data_log(inode)) {
2898 		/*
2899 		 * very conservative, leave the buffer pinned if
2900 		 * anyone might need it.
2901 		 */
2902 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2903 			ret = 0;
2904 		}
2905 	} else  if (buffer_dirty(bh)) {
2906 		struct reiserfs_journal_list *jl;
2907 		struct reiserfs_jh *jh = bh->b_private;
2908 
2909 		/* why is this safe?
2910 		 * reiserfs_setattr updates i_size in the on disk
2911 		 * stat data before allowing vmtruncate to be called.
2912 		 *
2913 		 * If buffer was put onto the ordered list for this
2914 		 * transaction, we know for sure either this transaction
2915 		 * or an older one already has updated i_size on disk,
2916 		 * and this ordered data won't be referenced in the file
2917 		 * if we crash.
2918 		 *
2919 		 * if the buffer was put onto the ordered list for an older
2920 		 * transaction, we need to leave it around
2921 		 */
2922 		if (jh && (jl = jh->jl)
2923 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2924 			ret = 0;
2925 	}
2926       free_jh:
2927 	if (ret && bh->b_private) {
2928 		reiserfs_free_jh(bh);
2929 	}
2930 	spin_unlock(&j->j_dirty_buffers_lock);
2931 	unlock_buffer(bh);
2932 	return ret;
2933 }
2934 
2935 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2936 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2937 {
2938 	struct buffer_head *head, *bh, *next;
2939 	struct inode *inode = page->mapping->host;
2940 	unsigned int curr_off = 0;
2941 	int ret = 1;
2942 
2943 	BUG_ON(!PageLocked(page));
2944 
2945 	if (offset == 0)
2946 		ClearPageChecked(page);
2947 
2948 	if (!page_has_buffers(page))
2949 		goto out;
2950 
2951 	head = page_buffers(page);
2952 	bh = head;
2953 	do {
2954 		unsigned int next_off = curr_off + bh->b_size;
2955 		next = bh->b_this_page;
2956 
2957 		/*
2958 		 * is this block fully invalidated?
2959 		 */
2960 		if (offset <= curr_off) {
2961 			if (invalidatepage_can_drop(inode, bh))
2962 				reiserfs_unmap_buffer(bh);
2963 			else
2964 				ret = 0;
2965 		}
2966 		curr_off = next_off;
2967 		bh = next;
2968 	} while (bh != head);
2969 
2970 	/*
2971 	 * We release buffers only if the entire page is being invalidated.
2972 	 * The get_block cached value has been unconditionally invalidated,
2973 	 * so real IO is not possible anymore.
2974 	 */
2975 	if (!offset && ret) {
2976 		ret = try_to_release_page(page, 0);
2977 		/* maybe should BUG_ON(!ret); - neilb */
2978 	}
2979       out:
2980 	return;
2981 }
2982 
2983 static int reiserfs_set_page_dirty(struct page *page)
2984 {
2985 	struct inode *inode = page->mapping->host;
2986 	if (reiserfs_file_data_log(inode)) {
2987 		SetPageChecked(page);
2988 		return __set_page_dirty_nobuffers(page);
2989 	}
2990 	return __set_page_dirty_buffers(page);
2991 }
2992 
2993 /*
2994  * Returns 1 if the page's buffers were dropped.  The page is locked.
2995  *
2996  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2997  * in the buffers at page_buffers(page).
2998  *
2999  * even in -o notail mode, we can't be sure an old mount without -o notail
3000  * didn't create files with tails.
3001  */
3002 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3003 {
3004 	struct inode *inode = page->mapping->host;
3005 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3006 	struct buffer_head *head;
3007 	struct buffer_head *bh;
3008 	int ret = 1;
3009 
3010 	WARN_ON(PageChecked(page));
3011 	spin_lock(&j->j_dirty_buffers_lock);
3012 	head = page_buffers(page);
3013 	bh = head;
3014 	do {
3015 		if (bh->b_private) {
3016 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3017 				reiserfs_free_jh(bh);
3018 			} else {
3019 				ret = 0;
3020 				break;
3021 			}
3022 		}
3023 		bh = bh->b_this_page;
3024 	} while (bh != head);
3025 	if (ret)
3026 		ret = try_to_free_buffers(page);
3027 	spin_unlock(&j->j_dirty_buffers_lock);
3028 	return ret;
3029 }
3030 
3031 /* We thank Mingming Cao for helping us understand in great detail what
3032    to do in this section of the code. */
3033 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3034 				  const struct iovec *iov, loff_t offset,
3035 				  unsigned long nr_segs)
3036 {
3037 	struct file *file = iocb->ki_filp;
3038 	struct inode *inode = file->f_mapping->host;
3039 
3040 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3041 				  offset, nr_segs,
3042 				  reiserfs_get_blocks_direct_io, NULL);
3043 }
3044 
3045 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3046 {
3047 	struct inode *inode = dentry->d_inode;
3048 	int error;
3049 	unsigned int ia_valid;
3050 
3051 	/* must be turned off for recursive notify_change calls */
3052 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3053 
3054 	reiserfs_write_lock(inode->i_sb);
3055 	if (attr->ia_valid & ATTR_SIZE) {
3056 		/* version 2 items will be caught by the s_maxbytes check
3057 		 ** done for us in vmtruncate
3058 		 */
3059 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3060 		    attr->ia_size > MAX_NON_LFS) {
3061 			error = -EFBIG;
3062 			goto out;
3063 		}
3064 		/* fill in hole pointers in the expanding truncate case. */
3065 		if (attr->ia_size > inode->i_size) {
3066 			error = generic_cont_expand_simple(inode, attr->ia_size);
3067 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3068 				int err;
3069 				struct reiserfs_transaction_handle th;
3070 				/* we're changing at most 2 bitmaps, inode + super */
3071 				err = journal_begin(&th, inode->i_sb, 4);
3072 				if (!err) {
3073 					reiserfs_discard_prealloc(&th, inode);
3074 					err = journal_end(&th, inode->i_sb, 4);
3075 				}
3076 				if (err)
3077 					error = err;
3078 			}
3079 			if (error)
3080 				goto out;
3081 			/*
3082 			 * file size is changed, ctime and mtime are
3083 			 * to be updated
3084 			 */
3085 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3086 		}
3087 	}
3088 
3089 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3090 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3091 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3092 		/* stat data of format v3.5 has 16 bit uid and gid */
3093 		error = -EINVAL;
3094 		goto out;
3095 	}
3096 
3097 	error = inode_change_ok(inode, attr);
3098 	if (!error) {
3099 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3100 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3101 			error = reiserfs_chown_xattrs(inode, attr);
3102 
3103 			if (!error) {
3104 				struct reiserfs_transaction_handle th;
3105 				int jbegin_count =
3106 				    2 *
3107 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3108 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3109 				    2;
3110 
3111 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3112 				error =
3113 				    journal_begin(&th, inode->i_sb,
3114 						  jbegin_count);
3115 				if (error)
3116 					goto out;
3117 				error =
3118 				    DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3119 				if (error) {
3120 					journal_end(&th, inode->i_sb,
3121 						    jbegin_count);
3122 					goto out;
3123 				}
3124 				/* Update corresponding info in inode so that everything is in
3125 				 * one transaction */
3126 				if (attr->ia_valid & ATTR_UID)
3127 					inode->i_uid = attr->ia_uid;
3128 				if (attr->ia_valid & ATTR_GID)
3129 					inode->i_gid = attr->ia_gid;
3130 				mark_inode_dirty(inode);
3131 				error =
3132 				    journal_end(&th, inode->i_sb, jbegin_count);
3133 			}
3134 		}
3135 		if (!error)
3136 			error = inode_setattr(inode, attr);
3137 	}
3138 
3139 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3140 		if (attr->ia_valid & ATTR_MODE)
3141 			error = reiserfs_acl_chmod(inode);
3142 	}
3143 
3144       out:
3145 	reiserfs_write_unlock(inode->i_sb);
3146 	return error;
3147 }
3148 
3149 const struct address_space_operations reiserfs_address_space_operations = {
3150 	.writepage = reiserfs_writepage,
3151 	.readpage = reiserfs_readpage,
3152 	.readpages = reiserfs_readpages,
3153 	.releasepage = reiserfs_releasepage,
3154 	.invalidatepage = reiserfs_invalidatepage,
3155 	.sync_page = block_sync_page,
3156 	.write_begin = reiserfs_write_begin,
3157 	.write_end = reiserfs_write_end,
3158 	.bmap = reiserfs_aop_bmap,
3159 	.direct_IO = reiserfs_direct_IO,
3160 	.set_page_dirty = reiserfs_set_page_dirty,
3161 };
3162