xref: /openbmc/linux/fs/reiserfs/inode.c (revision 22fd411a)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 
25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int depth;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	depth = reiserfs_write_lock_once(inode->i_sb);
43 
44 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46 		reiserfs_delete_xattrs(inode);
47 
48 		if (journal_begin(&th, inode->i_sb, jbegin_count))
49 			goto out;
50 		reiserfs_update_inode_transaction(inode);
51 
52 		reiserfs_discard_prealloc(&th, inode);
53 
54 		err = reiserfs_delete_object(&th, inode);
55 
56 		/* Do quota update inside a transaction for journaled quotas. We must do that
57 		 * after delete_object so that quota updates go into the same transaction as
58 		 * stat data deletion */
59 		if (!err)
60 			dquot_free_inode(inode);
61 
62 		if (journal_end(&th, inode->i_sb, jbegin_count))
63 			goto out;
64 
65 		/* check return value from reiserfs_delete_object after
66 		 * ending the transaction
67 		 */
68 		if (err)
69 		    goto out;
70 
71 		/* all items of file are deleted, so we can remove "save" link */
72 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73 								 * about an error here */
74 	} else {
75 		/* no object items are in the tree */
76 		;
77 	}
78       out:
79 	end_writeback(inode);	/* note this must go after the journal_end to prevent deadlock */
80 	dquot_drop(inode);
81 	inode->i_blocks = 0;
82 	reiserfs_write_unlock_once(inode->i_sb, depth);
83 	return;
84 
85 no_delete:
86 	end_writeback(inode);
87 	dquot_drop(inode);
88 }
89 
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 			  __u32 objectid, loff_t offset, int type, int length)
92 {
93 	key->version = version;
94 
95 	key->on_disk_key.k_dir_id = dirid;
96 	key->on_disk_key.k_objectid = objectid;
97 	set_cpu_key_k_offset(key, offset);
98 	set_cpu_key_k_type(key, type);
99 	key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103    offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 		  int type, int length)
106 {
107 	_make_cpu_key(key, get_inode_item_key_version(inode),
108 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 		      length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 			      int version,
118 			      loff_t offset, int type, int length,
119 			      int entry_count /*or ih_free_space */ )
120 {
121 	if (key) {
122 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 		ih->ih_key.k_objectid =
124 		    cpu_to_le32(key->on_disk_key.k_objectid);
125 	}
126 	put_ih_version(ih, version);
127 	set_le_ih_k_offset(ih, offset);
128 	set_le_ih_k_type(ih, type);
129 	put_ih_item_len(ih, length);
130 	/*    set_ih_free_space (ih, 0); */
131 	// for directory items it is entry count, for directs and stat
132 	// datas - 0xffff, for indirects - 0
133 	put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh.  Not too eager for that....
140 //  I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in.  But, Vladimir has a really good idea here.  Think
145 ** about what happens for reading a file.  For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item.  This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right.  But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it.  So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers.  Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 	struct buffer_head *head, *next, *bh;
171 
172 	if (page && page_has_buffers(page)) {
173 		head = page_buffers(page);
174 		bh = head;
175 		do {
176 			next = bh->b_this_page;
177 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 				reiserfs_unmap_buffer(bh);
179 			}
180 			bh = next;
181 		} while (bh != head);
182 	}
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186    done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 				    struct item_head *ih,
189 				    __le32 * item, int pos_in_item)
190 {
191 	if (allocated)
192 		return 0;
193 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 	    get_block_num(item, pos_in_item))
195 		return 0;
196 	return 1;
197 }
198 
199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 					b_blocknr_t block, struct inode *inode)
206 {
207 	map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218 		return 1;
219 
220 	return 0;
221 }
222 
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 			       struct inode *inode, struct treepath *path)
225 {
226 	struct super_block *s = th->t_super;
227 	int len = th->t_blocks_allocated;
228 	int err;
229 
230 	BUG_ON(!th->t_trans_id);
231 	BUG_ON(!th->t_refcount);
232 
233 	pathrelse(path);
234 
235 	/* we cannot restart while nested */
236 	if (th->t_refcount > 1) {
237 		return 0;
238 	}
239 	reiserfs_update_sd(th, inode);
240 	err = journal_end(th, s, len);
241 	if (!err) {
242 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 		if (!err)
244 			reiserfs_update_inode_transaction(inode);
245 	}
246 	return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 			       struct buffer_head *bh_result, int args)
259 {
260 	INITIALIZE_PATH(path);
261 	struct cpu_key key;
262 	struct buffer_head *bh;
263 	struct item_head *ih, tmp_ih;
264 	b_blocknr_t blocknr;
265 	char *p = NULL;
266 	int chars;
267 	int ret;
268 	int result;
269 	int done = 0;
270 	unsigned long offset;
271 
272 	// prepare the key to look for the 'block'-th block of file
273 	make_cpu_key(&key, inode,
274 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 		     3);
276 
277 	result = search_for_position_by_key(inode->i_sb, &key, &path);
278 	if (result != POSITION_FOUND) {
279 		pathrelse(&path);
280 		if (p)
281 			kunmap(bh_result->b_page);
282 		if (result == IO_ERROR)
283 			return -EIO;
284 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 		// That there is some MMAPED data associated with it that is yet to be written to disk.
286 		if ((args & GET_BLOCK_NO_HOLE)
287 		    && !PageUptodate(bh_result->b_page)) {
288 			return -ENOENT;
289 		}
290 		return 0;
291 	}
292 	//
293 	bh = get_last_bh(&path);
294 	ih = get_ih(&path);
295 	if (is_indirect_le_ih(ih)) {
296 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298 		/* FIXME: here we could cache indirect item or part of it in
299 		   the inode to avoid search_by_key in case of subsequent
300 		   access to file */
301 		blocknr = get_block_num(ind_item, path.pos_in_item);
302 		ret = 0;
303 		if (blocknr) {
304 			map_bh(bh_result, inode->i_sb, blocknr);
305 			if (path.pos_in_item ==
306 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 				set_buffer_boundary(bh_result);
308 			}
309 		} else
310 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312 		if ((args & GET_BLOCK_NO_HOLE)
313 			    && !PageUptodate(bh_result->b_page)) {
314 			ret = -ENOENT;
315 		}
316 
317 		pathrelse(&path);
318 		if (p)
319 			kunmap(bh_result->b_page);
320 		return ret;
321 	}
322 	// requested data are in direct item(s)
323 	if (!(args & GET_BLOCK_READ_DIRECT)) {
324 		// we are called by bmap. FIXME: we can not map block of file
325 		// when it is stored in direct item(s)
326 		pathrelse(&path);
327 		if (p)
328 			kunmap(bh_result->b_page);
329 		return -ENOENT;
330 	}
331 
332 	/* if we've got a direct item, and the buffer or page was uptodate,
333 	 ** we don't want to pull data off disk again.  skip to the
334 	 ** end, where we map the buffer and return
335 	 */
336 	if (buffer_uptodate(bh_result)) {
337 		goto finished;
338 	} else
339 		/*
340 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 		 ** pages without any buffers.  If the page is up to date, we don't want
342 		 ** read old data off disk.  Set the up to date bit on the buffer instead
343 		 ** and jump to the end
344 		 */
345 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 		set_buffer_uptodate(bh_result);
347 		goto finished;
348 	}
349 	// read file tail into part of page
350 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 	copy_item_head(&tmp_ih, ih);
352 
353 	/* we only want to kmap if we are reading the tail into the page.
354 	 ** this is not the common case, so we don't kmap until we are
355 	 ** sure we need to.  But, this means the item might move if
356 	 ** kmap schedules
357 	 */
358 	if (!p)
359 		p = (char *)kmap(bh_result->b_page);
360 
361 	p += offset;
362 	memset(p, 0, inode->i_sb->s_blocksize);
363 	do {
364 		if (!is_direct_le_ih(ih)) {
365 			BUG();
366 		}
367 		/* make sure we don't read more bytes than actually exist in
368 		 ** the file.  This can happen in odd cases where i_size isn't
369 		 ** correct, and when direct item padding results in a few
370 		 ** extra bytes at the end of the direct item
371 		 */
372 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 			break;
374 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 			chars =
376 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377 			    path.pos_in_item;
378 			done = 1;
379 		} else {
380 			chars = ih_item_len(ih) - path.pos_in_item;
381 		}
382 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384 		if (done)
385 			break;
386 
387 		p += chars;
388 
389 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 			// we done, if read direct item is not the last item of
391 			// node FIXME: we could try to check right delimiting key
392 			// to see whether direct item continues in the right
393 			// neighbor or rely on i_size
394 			break;
395 
396 		// update key to look for the next piece
397 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 		result = search_for_position_by_key(inode->i_sb, &key, &path);
399 		if (result != POSITION_FOUND)
400 			// i/o error most likely
401 			break;
402 		bh = get_last_bh(&path);
403 		ih = get_ih(&path);
404 	} while (1);
405 
406 	flush_dcache_page(bh_result->b_page);
407 	kunmap(bh_result->b_page);
408 
409       finished:
410 	pathrelse(&path);
411 
412 	if (result == IO_ERROR)
413 		return -EIO;
414 
415 	/* this buffer has valid data, but isn't valid for io.  mapping it to
416 	 * block #0 tells the rest of reiserfs it just has a tail in it
417 	 */
418 	map_bh(bh_result, inode->i_sb, 0);
419 	set_buffer_uptodate(bh_result);
420 	return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 			 struct buffer_head *bh_result, int create)
427 {
428 	if (!file_capable(inode, block))
429 		return -EFBIG;
430 
431 	reiserfs_write_lock(inode->i_sb);
432 	/* do not read the direct item */
433 	_get_block_create_0(inode, block, bh_result, 0);
434 	reiserfs_write_unlock(inode->i_sb);
435 	return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now.  It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page.  Where it does not produce a valid page for holes, or past the
447 ** end of the file.  This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1.  If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 				       struct buffer_head *bh_result,
457 				       int create)
458 {
459 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463    direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 					 sector_t iblock,
466 					 struct buffer_head *bh_result,
467 					 int create)
468 {
469 	int ret;
470 
471 	bh_result->b_page = NULL;
472 
473 	/* We set the b_size before reiserfs_get_block call since it is
474 	   referenced in convert_tail_for_hole() that may be called from
475 	   reiserfs_get_block() */
476 	bh_result->b_size = (1 << inode->i_blkbits);
477 
478 	ret = reiserfs_get_block(inode, iblock, bh_result,
479 				 create | GET_BLOCK_NO_DANGLE);
480 	if (ret)
481 		goto out;
482 
483 	/* don't allow direct io onto tail pages */
484 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 		/* make sure future calls to the direct io funcs for this offset
486 		 ** in the file fail by unmapping the buffer
487 		 */
488 		clear_buffer_mapped(bh_result);
489 		ret = -EINVAL;
490 	}
491 	/* Possible unpacked tail. Flush the data before pages have
492 	   disappeared */
493 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 		int err;
495 
496 		reiserfs_write_lock(inode->i_sb);
497 
498 		err = reiserfs_commit_for_inode(inode);
499 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501 		reiserfs_write_unlock(inode->i_sb);
502 
503 		if (err < 0)
504 			ret = err;
505 	}
506       out:
507 	return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
520 static int convert_tail_for_hole(struct inode *inode,
521 				 struct buffer_head *bh_result,
522 				 loff_t tail_offset)
523 {
524 	unsigned long index;
525 	unsigned long tail_end;
526 	unsigned long tail_start;
527 	struct page *tail_page;
528 	struct page *hole_page = bh_result->b_page;
529 	int retval = 0;
530 
531 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 		return -EIO;
533 
534 	/* always try to read until the end of the block */
535 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538 	index = tail_offset >> PAGE_CACHE_SHIFT;
539 	/* hole_page can be zero in case of direct_io, we are sure
540 	   that we cannot get here if we write with O_DIRECT into
541 	   tail page */
542 	if (!hole_page || index != hole_page->index) {
543 		tail_page = grab_cache_page(inode->i_mapping, index);
544 		retval = -ENOMEM;
545 		if (!tail_page) {
546 			goto out;
547 		}
548 	} else {
549 		tail_page = hole_page;
550 	}
551 
552 	/* we don't have to make sure the conversion did not happen while
553 	 ** we were locking the page because anyone that could convert
554 	 ** must first take i_mutex.
555 	 **
556 	 ** We must fix the tail page for writing because it might have buffers
557 	 ** that are mapped, but have a block number of 0.  This indicates tail
558 	 ** data that has been read directly into the page, and
559 	 ** __block_write_begin won't trigger a get_block in this case.
560 	 */
561 	fix_tail_page_for_writing(tail_page);
562 	retval = __reiserfs_write_begin(tail_page, tail_start,
563 				      tail_end - tail_start);
564 	if (retval)
565 		goto unlock;
566 
567 	/* tail conversion might change the data in the page */
568 	flush_dcache_page(tail_page);
569 
570 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572       unlock:
573 	if (tail_page != hole_page) {
574 		unlock_page(tail_page);
575 		page_cache_release(tail_page);
576 	}
577       out:
578 	return retval;
579 }
580 
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 				  sector_t block,
583 				  struct inode *inode,
584 				  b_blocknr_t * allocated_block_nr,
585 				  struct treepath *path, int flags)
586 {
587 	BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590 	if (!(flags & GET_BLOCK_NO_IMUX)) {
591 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 						  path, block);
593 	}
594 #endif
595 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 					 block);
597 }
598 
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 		       struct buffer_head *bh_result, int create)
601 {
602 	int repeat, retval = 0;
603 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604 	INITIALIZE_PATH(path);
605 	int pos_in_item;
606 	struct cpu_key key;
607 	struct buffer_head *bh, *unbh = NULL;
608 	struct item_head *ih, tmp_ih;
609 	__le32 *item;
610 	int done;
611 	int fs_gen;
612 	int lock_depth;
613 	struct reiserfs_transaction_handle *th = NULL;
614 	/* space reserved in transaction batch:
615 	   . 3 balancings in direct->indirect conversion
616 	   . 1 block involved into reiserfs_update_sd()
617 	   XXX in practically impossible worst case direct2indirect()
618 	   can incur (much) more than 3 balancings.
619 	   quota update for user, group */
620 	int jbegin_count =
621 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 	int version;
624 	int dangle = 1;
625 	loff_t new_offset =
626 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 	version = get_inode_item_key_version(inode);
630 
631 	if (!file_capable(inode, block)) {
632 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 		return -EFBIG;
634 	}
635 
636 	/* if !create, we aren't changing the FS, so we don't need to
637 	 ** log anything, so we don't need to start a transaction
638 	 */
639 	if (!(create & GET_BLOCK_CREATE)) {
640 		int ret;
641 		/* find number of block-th logical block of the file */
642 		ret = _get_block_create_0(inode, block, bh_result,
643 					  create | GET_BLOCK_READ_DIRECT);
644 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 		return ret;
646 	}
647 	/*
648 	 * if we're already in a transaction, make sure to close
649 	 * any new transactions we start in this func
650 	 */
651 	if ((create & GET_BLOCK_NO_DANGLE) ||
652 	    reiserfs_transaction_running(inode->i_sb))
653 		dangle = 0;
654 
655 	/* If file is of such a size, that it might have a tail and tails are enabled
656 	 ** we should mark it as possibly needing tail packing on close
657 	 */
658 	if ((have_large_tails(inode->i_sb)
659 	     && inode->i_size < i_block_size(inode) * 4)
660 	    || (have_small_tails(inode->i_sb)
661 		&& inode->i_size < i_block_size(inode)))
662 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664 	/* set the key of the first byte in the 'block'-th block of file */
665 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 	      start_trans:
668 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 		if (!th) {
670 			retval = -ENOMEM;
671 			goto failure;
672 		}
673 		reiserfs_update_inode_transaction(inode);
674 	}
675       research:
676 
677 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 	if (retval == IO_ERROR) {
679 		retval = -EIO;
680 		goto failure;
681 	}
682 
683 	bh = get_last_bh(&path);
684 	ih = get_ih(&path);
685 	item = get_item(&path);
686 	pos_in_item = path.pos_in_item;
687 
688 	fs_gen = get_generation(inode->i_sb);
689 	copy_item_head(&tmp_ih, ih);
690 
691 	if (allocation_needed
692 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 		/* we have to allocate block for the unformatted node */
694 		if (!th) {
695 			pathrelse(&path);
696 			goto start_trans;
697 		}
698 
699 		repeat =
700 		    _allocate_block(th, block, inode, &allocated_block_nr,
701 				    &path, create);
702 
703 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 			/* restart the transaction to give the journal a chance to free
705 			 ** some blocks.  releases the path, so we have to go back to
706 			 ** research if we succeed on the second try
707 			 */
708 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 			retval = restart_transaction(th, inode, &path);
710 			if (retval)
711 				goto failure;
712 			repeat =
713 			    _allocate_block(th, block, inode,
714 					    &allocated_block_nr, NULL, create);
715 
716 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 				goto research;
718 			}
719 			if (repeat == QUOTA_EXCEEDED)
720 				retval = -EDQUOT;
721 			else
722 				retval = -ENOSPC;
723 			goto failure;
724 		}
725 
726 		if (fs_changed(fs_gen, inode->i_sb)
727 		    && item_moved(&tmp_ih, &path)) {
728 			goto research;
729 		}
730 	}
731 
732 	if (indirect_item_found(retval, ih)) {
733 		b_blocknr_t unfm_ptr;
734 		/* 'block'-th block is in the file already (there is
735 		   corresponding cell in some indirect item). But it may be
736 		   zero unformatted node pointer (hole) */
737 		unfm_ptr = get_block_num(item, pos_in_item);
738 		if (unfm_ptr == 0) {
739 			/* use allocated block to plug the hole */
740 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 			if (fs_changed(fs_gen, inode->i_sb)
742 			    && item_moved(&tmp_ih, &path)) {
743 				reiserfs_restore_prepared_buffer(inode->i_sb,
744 								 bh);
745 				goto research;
746 			}
747 			set_buffer_new(bh_result);
748 			if (buffer_dirty(bh_result)
749 			    && reiserfs_data_ordered(inode->i_sb))
750 				reiserfs_add_ordered_list(inode, bh_result);
751 			put_block_num(item, pos_in_item, allocated_block_nr);
752 			unfm_ptr = allocated_block_nr;
753 			journal_mark_dirty(th, inode->i_sb, bh);
754 			reiserfs_update_sd(th, inode);
755 		}
756 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 		pathrelse(&path);
758 		retval = 0;
759 		if (!dangle && th)
760 			retval = reiserfs_end_persistent_transaction(th);
761 
762 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764 		/* the item was found, so new blocks were not added to the file
765 		 ** there is no need to make sure the inode is updated with this
766 		 ** transaction
767 		 */
768 		return retval;
769 	}
770 
771 	if (!th) {
772 		pathrelse(&path);
773 		goto start_trans;
774 	}
775 
776 	/* desired position is not found or is in the direct item. We have
777 	   to append file with holes up to 'block'-th block converting
778 	   direct items to indirect one if necessary */
779 	done = 0;
780 	do {
781 		if (is_statdata_le_ih(ih)) {
782 			__le32 unp = 0;
783 			struct cpu_key tmp_key;
784 
785 			/* indirect item has to be inserted */
786 			make_le_item_head(&tmp_ih, &key, version, 1,
787 					  TYPE_INDIRECT, UNFM_P_SIZE,
788 					  0 /* free_space */ );
789 
790 			if (cpu_key_k_offset(&key) == 1) {
791 				/* we are going to add 'block'-th block to the file. Use
792 				   allocated block for that */
793 				unp = cpu_to_le32(allocated_block_nr);
794 				set_block_dev_mapped(bh_result,
795 						     allocated_block_nr, inode);
796 				set_buffer_new(bh_result);
797 				done = 1;
798 			}
799 			tmp_key = key;	// ;)
800 			set_cpu_key_k_offset(&tmp_key, 1);
801 			PATH_LAST_POSITION(&path)++;
802 
803 			retval =
804 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 						 inode, (char *)&unp);
806 			if (retval) {
807 				reiserfs_free_block(th, inode,
808 						    allocated_block_nr, 1);
809 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 			}
811 			//mark_tail_converted (inode);
812 		} else if (is_direct_le_ih(ih)) {
813 			/* direct item has to be converted */
814 			loff_t tail_offset;
815 
816 			tail_offset =
817 			    ((le_ih_k_offset(ih) -
818 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 			if (tail_offset == cpu_key_k_offset(&key)) {
820 				/* direct item we just found fits into block we have
821 				   to map. Convert it into unformatted node: use
822 				   bh_result for the conversion */
823 				set_block_dev_mapped(bh_result,
824 						     allocated_block_nr, inode);
825 				unbh = bh_result;
826 				done = 1;
827 			} else {
828 				/* we have to padd file tail stored in direct item(s)
829 				   up to block size and convert it to unformatted
830 				   node. FIXME: this should also get into page cache */
831 
832 				pathrelse(&path);
833 				/*
834 				 * ugly, but we can only end the transaction if
835 				 * we aren't nested
836 				 */
837 				BUG_ON(!th->t_refcount);
838 				if (th->t_refcount == 1) {
839 					retval =
840 					    reiserfs_end_persistent_transaction
841 					    (th);
842 					th = NULL;
843 					if (retval)
844 						goto failure;
845 				}
846 
847 				retval =
848 				    convert_tail_for_hole(inode, bh_result,
849 							  tail_offset);
850 				if (retval) {
851 					if (retval != -ENOSPC)
852 						reiserfs_error(inode->i_sb,
853 							"clm-6004",
854 							"convert tail failed "
855 							"inode %lu, error %d",
856 							inode->i_ino,
857 							retval);
858 					if (allocated_block_nr) {
859 						/* the bitmap, the super, and the stat data == 3 */
860 						if (!th)
861 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 						if (th)
863 							reiserfs_free_block(th,
864 									    inode,
865 									    allocated_block_nr,
866 									    1);
867 					}
868 					goto failure;
869 				}
870 				goto research;
871 			}
872 			retval =
873 			    direct2indirect(th, inode, &path, unbh,
874 					    tail_offset);
875 			if (retval) {
876 				reiserfs_unmap_buffer(unbh);
877 				reiserfs_free_block(th, inode,
878 						    allocated_block_nr, 1);
879 				goto failure;
880 			}
881 			/* it is important the set_buffer_uptodate is done after
882 			 ** the direct2indirect.  The buffer might contain valid
883 			 ** data newer than the data on disk (read by readpage, changed,
884 			 ** and then sent here by writepage).  direct2indirect needs
885 			 ** to know if unbh was already up to date, so it can decide
886 			 ** if the data in unbh needs to be replaced with data from
887 			 ** the disk
888 			 */
889 			set_buffer_uptodate(unbh);
890 
891 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 			   buffer will disappear shortly, so it should not be added to
893 			 */
894 			if (unbh->b_page) {
895 				/* we've converted the tail, so we must
896 				 ** flush unbh before the transaction commits
897 				 */
898 				reiserfs_add_tail_list(inode, unbh);
899 
900 				/* mark it dirty now to prevent commit_write from adding
901 				 ** this buffer to the inode's dirty buffer list
902 				 */
903 				/*
904 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 				 * It's still atomic, but it sets the page dirty too,
906 				 * which makes it eligible for writeback at any time by the
907 				 * VM (which was also the case with __mark_buffer_dirty())
908 				 */
909 				mark_buffer_dirty(unbh);
910 			}
911 		} else {
912 			/* append indirect item with holes if needed, when appending
913 			   pointer to 'block'-th block use block, which is already
914 			   allocated */
915 			struct cpu_key tmp_key;
916 			unp_t unf_single = 0;	// We use this in case we need to allocate only
917 			// one block which is a fastpath
918 			unp_t *un;
919 			__u64 max_to_insert =
920 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 			    UNFM_P_SIZE;
922 			__u64 blocks_needed;
923 
924 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 			       "vs-804: invalid position for append");
926 			/* indirect item has to be appended, set up key of that position */
927 			make_cpu_key(&tmp_key, inode,
928 				     le_key_k_offset(version,
929 						     &(ih->ih_key)) +
930 				     op_bytes_number(ih,
931 						     inode->i_sb->s_blocksize),
932 				     //pos_in_item * inode->i_sb->s_blocksize,
933 				     TYPE_INDIRECT, 3);	// key type is unimportant
934 
935 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 			       "green-805: invalid offset");
937 			blocks_needed =
938 			    1 +
939 			    ((cpu_key_k_offset(&key) -
940 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 			     s_blocksize_bits);
942 
943 			if (blocks_needed == 1) {
944 				un = &unf_single;
945 			} else {
946 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 				if (!un) {
948 					un = &unf_single;
949 					blocks_needed = 1;
950 					max_to_insert = 0;
951 				}
952 			}
953 			if (blocks_needed <= max_to_insert) {
954 				/* we are going to add target block to the file. Use allocated
955 				   block for that */
956 				un[blocks_needed - 1] =
957 				    cpu_to_le32(allocated_block_nr);
958 				set_block_dev_mapped(bh_result,
959 						     allocated_block_nr, inode);
960 				set_buffer_new(bh_result);
961 				done = 1;
962 			} else {
963 				/* paste hole to the indirect item */
964 				/* If kmalloc failed, max_to_insert becomes zero and it means we
965 				   only have space for one block */
966 				blocks_needed =
967 				    max_to_insert ? max_to_insert : 1;
968 			}
969 			retval =
970 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 						     (char *)un,
972 						     UNFM_P_SIZE *
973 						     blocks_needed);
974 
975 			if (blocks_needed != 1)
976 				kfree(un);
977 
978 			if (retval) {
979 				reiserfs_free_block(th, inode,
980 						    allocated_block_nr, 1);
981 				goto failure;
982 			}
983 			if (!done) {
984 				/* We need to mark new file size in case this function will be
985 				   interrupted/aborted later on. And we may do this only for
986 				   holes. */
987 				inode->i_size +=
988 				    inode->i_sb->s_blocksize * blocks_needed;
989 			}
990 		}
991 
992 		if (done == 1)
993 			break;
994 
995 		/* this loop could log more blocks than we had originally asked
996 		 ** for.  So, we have to allow the transaction to end if it is
997 		 ** too big or too full.  Update the inode so things are
998 		 ** consistent if we crash before the function returns
999 		 **
1000 		 ** release the path so that anybody waiting on the path before
1001 		 ** ending their transaction will be able to continue.
1002 		 */
1003 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 			retval = restart_transaction(th, inode, &path);
1005 			if (retval)
1006 				goto failure;
1007 		}
1008 		/*
1009 		 * inserting indirect pointers for a hole can take a
1010 		 * long time.  reschedule if needed and also release the write
1011 		 * lock for others.
1012 		 */
1013 		if (need_resched()) {
1014 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 			schedule();
1016 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 		}
1018 
1019 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 		if (retval == IO_ERROR) {
1021 			retval = -EIO;
1022 			goto failure;
1023 		}
1024 		if (retval == POSITION_FOUND) {
1025 			reiserfs_warning(inode->i_sb, "vs-825",
1026 					 "%K should not be found", &key);
1027 			retval = -EEXIST;
1028 			if (allocated_block_nr)
1029 				reiserfs_free_block(th, inode,
1030 						    allocated_block_nr, 1);
1031 			pathrelse(&path);
1032 			goto failure;
1033 		}
1034 		bh = get_last_bh(&path);
1035 		ih = get_ih(&path);
1036 		item = get_item(&path);
1037 		pos_in_item = path.pos_in_item;
1038 	} while (1);
1039 
1040 	retval = 0;
1041 
1042       failure:
1043 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 		int err;
1045 		if (th->t_trans_id)
1046 			reiserfs_update_sd(th, inode);
1047 		err = reiserfs_end_persistent_transaction(th);
1048 		if (err)
1049 			retval = err;
1050 	}
1051 
1052 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 	reiserfs_check_path(&path);
1054 	return retval;
1055 }
1056 
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 		   struct list_head *pages, unsigned nr_pages)
1060 {
1061 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 	int bytes;
1070 	loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 		return sd_size;
1074 
1075 	/* End of file is also in full block with indirect reference, so round
1076 	 ** up to the next block.
1077 	 **
1078 	 ** there is just no way to know if the tail is actually packed
1079 	 ** on the file, so we have to assume it isn't.  When we pack the
1080 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 	 ** node pointer
1082 	 */
1083 	bytes =
1084 	    ((inode->i_size +
1085 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 	    sd_size;
1087 	return bytes;
1088 }
1089 
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 					int sd_size)
1092 {
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		return inode->i_size +
1095 		    (loff_t) (real_space_diff(inode, sd_size));
1096 	}
1097 	return ((loff_t) real_space_diff(inode, sd_size)) +
1098 	    (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 	loff_t bytes = inode_get_bytes(inode);
1105 	loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107 	/* keeps fsck and non-quota versions of reiserfs happy */
1108 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 		bytes += (loff_t) 511;
1110 	}
1111 
1112 	/* files from before the quota patch might i_blocks such that
1113 	 ** bytes < real_space.  Deal with that here to prevent it from
1114 	 ** going negative.
1115 	 */
1116 	if (bytes < real_space)
1117 		return 0;
1118 	return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 	struct buffer_head *bh;
1132 	struct item_head *ih;
1133 	__u32 rdev;
1134 	//int version = ITEM_VERSION_1;
1135 
1136 	bh = PATH_PLAST_BUFFER(path);
1137 	ih = PATH_PITEM_HEAD(path);
1138 
1139 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 	REISERFS_I(inode)->i_flags = 0;
1143 	REISERFS_I(inode)->i_prealloc_block = 0;
1144 	REISERFS_I(inode)->i_prealloc_count = 0;
1145 	REISERFS_I(inode)->i_trans_id = 0;
1146 	REISERFS_I(inode)->i_jl = NULL;
1147 	reiserfs_init_xattr_rwsem(inode);
1148 
1149 	if (stat_data_v1(ih)) {
1150 		struct stat_data_v1 *sd =
1151 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 		unsigned long blocks;
1153 
1154 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 		set_inode_sd_version(inode, STAT_DATA_V1);
1156 		inode->i_mode = sd_v1_mode(sd);
1157 		inode->i_nlink = sd_v1_nlink(sd);
1158 		inode->i_uid = sd_v1_uid(sd);
1159 		inode->i_gid = sd_v1_gid(sd);
1160 		inode->i_size = sd_v1_size(sd);
1161 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 		inode->i_atime.tv_nsec = 0;
1165 		inode->i_ctime.tv_nsec = 0;
1166 		inode->i_mtime.tv_nsec = 0;
1167 
1168 		inode->i_blocks = sd_v1_blocks(sd);
1169 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 		blocks = (inode->i_size + 511) >> 9;
1171 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 		if (inode->i_blocks > blocks) {
1173 			// there was a bug in <=3.5.23 when i_blocks could take negative
1174 			// values. Starting from 3.5.17 this value could even be stored in
1175 			// stat data. For such files we set i_blocks based on file
1176 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 			// only updated if file's inode will ever change
1178 			inode->i_blocks = blocks;
1179 		}
1180 
1181 		rdev = sd_v1_rdev(sd);
1182 		REISERFS_I(inode)->i_first_direct_byte =
1183 		    sd_v1_first_direct_byte(sd);
1184 		/* an early bug in the quota code can give us an odd number for the
1185 		 ** block count.  This is incorrect, fix it here.
1186 		 */
1187 		if (inode->i_blocks & 1) {
1188 			inode->i_blocks++;
1189 		}
1190 		inode_set_bytes(inode,
1191 				to_real_used_space(inode, inode->i_blocks,
1192 						   SD_V1_SIZE));
1193 		/* nopack is initially zero for v1 objects. For v2 objects,
1194 		   nopack is initialised from sd_attrs */
1195 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 	} else {
1197 		// new stat data found, but object may have old items
1198 		// (directories and symlinks)
1199 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201 		inode->i_mode = sd_v2_mode(sd);
1202 		inode->i_nlink = sd_v2_nlink(sd);
1203 		inode->i_uid = sd_v2_uid(sd);
1204 		inode->i_size = sd_v2_size(sd);
1205 		inode->i_gid = sd_v2_gid(sd);
1206 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 		inode->i_ctime.tv_nsec = 0;
1210 		inode->i_mtime.tv_nsec = 0;
1211 		inode->i_atime.tv_nsec = 0;
1212 		inode->i_blocks = sd_v2_blocks(sd);
1213 		rdev = sd_v2_rdev(sd);
1214 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 			inode->i_generation =
1216 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 		else
1218 			inode->i_generation = sd_v2_generation(sd);
1219 
1220 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 		else
1223 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 		REISERFS_I(inode)->i_first_direct_byte = 0;
1225 		set_inode_sd_version(inode, STAT_DATA_V2);
1226 		inode_set_bytes(inode,
1227 				to_real_used_space(inode, inode->i_blocks,
1228 						   SD_V2_SIZE));
1229 		/* read persistent inode attributes from sd and initialise
1230 		   generic inode flags from them */
1231 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 	}
1234 
1235 	pathrelse(path);
1236 	if (S_ISREG(inode->i_mode)) {
1237 		inode->i_op = &reiserfs_file_inode_operations;
1238 		inode->i_fop = &reiserfs_file_operations;
1239 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 	} else if (S_ISDIR(inode->i_mode)) {
1241 		inode->i_op = &reiserfs_dir_inode_operations;
1242 		inode->i_fop = &reiserfs_dir_operations;
1243 	} else if (S_ISLNK(inode->i_mode)) {
1244 		inode->i_op = &reiserfs_symlink_inode_operations;
1245 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 	} else {
1247 		inode->i_blocks = 0;
1248 		inode->i_op = &reiserfs_special_inode_operations;
1249 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 	}
1251 }
1252 
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 	__u16 flags;
1258 
1259 	set_sd_v2_mode(sd_v2, inode->i_mode);
1260 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 	set_sd_v2_uid(sd_v2, inode->i_uid);
1262 	set_sd_v2_size(sd_v2, size);
1263 	set_sd_v2_gid(sd_v2, inode->i_gid);
1264 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 	else
1271 		set_sd_v2_generation(sd_v2, inode->i_generation);
1272 	flags = REISERFS_I(inode)->i_attrs;
1273 	i_attrs_to_sd_attrs(inode, &flags);
1274 	set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282 	set_sd_v1_mode(sd_v1, inode->i_mode);
1283 	set_sd_v1_uid(sd_v1, inode->i_uid);
1284 	set_sd_v1_gid(sd_v1, inode->i_gid);
1285 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 	set_sd_v1_size(sd_v1, size);
1287 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 	else
1294 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296 	// Sigh. i_first_direct_byte is back
1297 	set_sd_v1_first_direct_byte(sd_v1,
1298 				    REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 			     loff_t size)
1306 {
1307 	struct buffer_head *bh;
1308 	struct item_head *ih;
1309 
1310 	bh = PATH_PLAST_BUFFER(path);
1311 	ih = PATH_PITEM_HEAD(path);
1312 
1313 	if (!is_statdata_le_ih(ih))
1314 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 			       INODE_PKEY(inode), ih);
1316 
1317 	if (stat_data_v1(ih)) {
1318 		// path points to old stat data
1319 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 	} else {
1321 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 	}
1323 
1324 	return;
1325 }
1326 
1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 			     struct inode *inode, loff_t size)
1329 {
1330 	struct cpu_key key;
1331 	INITIALIZE_PATH(path);
1332 	struct buffer_head *bh;
1333 	int fs_gen;
1334 	struct item_head *ih, tmp_ih;
1335 	int retval;
1336 
1337 	BUG_ON(!th->t_trans_id);
1338 
1339 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340 
1341 	for (;;) {
1342 		int pos;
1343 		/* look for the object's stat data */
1344 		retval = search_item(inode->i_sb, &key, &path);
1345 		if (retval == IO_ERROR) {
1346 			reiserfs_error(inode->i_sb, "vs-13050",
1347 				       "i/o failure occurred trying to "
1348 				       "update %K stat data", &key);
1349 			return;
1350 		}
1351 		if (retval == ITEM_NOT_FOUND) {
1352 			pos = PATH_LAST_POSITION(&path);
1353 			pathrelse(&path);
1354 			if (inode->i_nlink == 0) {
1355 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 				return;
1357 			}
1358 			reiserfs_warning(inode->i_sb, "vs-13060",
1359 					 "stat data of object %k (nlink == %d) "
1360 					 "not found (pos %d)",
1361 					 INODE_PKEY(inode), inode->i_nlink,
1362 					 pos);
1363 			reiserfs_check_path(&path);
1364 			return;
1365 		}
1366 
1367 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368 		 ** FS might change.  We have to detect that, and loop back to the
1369 		 ** search if the stat data item has moved
1370 		 */
1371 		bh = get_last_bh(&path);
1372 		ih = get_ih(&path);
1373 		copy_item_head(&tmp_ih, ih);
1374 		fs_gen = get_generation(inode->i_sb);
1375 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 		if (fs_changed(fs_gen, inode->i_sb)
1377 		    && item_moved(&tmp_ih, &path)) {
1378 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 			continue;	/* Stat_data item has been moved after scheduling. */
1380 		}
1381 		break;
1382 	}
1383 	update_stat_data(&path, inode, size);
1384 	journal_mark_dirty(th, th->t_super, bh);
1385 	pathrelse(&path);
1386 	return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 	make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 	inode->i_ino = args->objectid;
1410 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 	return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415    inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 				struct reiserfs_iget_args *args)
1418 {
1419 	INITIALIZE_PATH(path_to_sd);
1420 	struct cpu_key key;
1421 	unsigned long dirino;
1422 	int retval;
1423 
1424 	dirino = args->dirid;
1425 
1426 	/* set version 1, version 2 could be used too, because stat data
1427 	   key is the same in both versions */
1428 	key.version = KEY_FORMAT_3_5;
1429 	key.on_disk_key.k_dir_id = dirino;
1430 	key.on_disk_key.k_objectid = inode->i_ino;
1431 	key.on_disk_key.k_offset = 0;
1432 	key.on_disk_key.k_type = 0;
1433 
1434 	/* look for the object's stat data */
1435 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 	if (retval == IO_ERROR) {
1437 		reiserfs_error(inode->i_sb, "vs-13070",
1438 			       "i/o failure occurred trying to find "
1439 			       "stat data of %K", &key);
1440 		reiserfs_make_bad_inode(inode);
1441 		return;
1442 	}
1443 	if (retval != ITEM_FOUND) {
1444 		/* a stale NFS handle can trigger this without it being an error */
1445 		pathrelse(&path_to_sd);
1446 		reiserfs_make_bad_inode(inode);
1447 		inode->i_nlink = 0;
1448 		return;
1449 	}
1450 
1451 	init_inode(inode, &path_to_sd);
1452 
1453 	/* It is possible that knfsd is trying to access inode of a file
1454 	   that is being removed from the disk by some other thread. As we
1455 	   update sd on unlink all that is required is to check for nlink
1456 	   here. This bug was first found by Sizif when debugging
1457 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459 
1460 	   More logical fix would require changes in fs/inode.c:iput() to
1461 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 	   in iget() to return NULL if I_FREEING inode is found in
1463 	   hash-table. */
1464 	/* Currently there is one place where it's ok to meet inode with
1465 	   nlink==0: processing of open-unlinked and half-truncated files
1466 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 	if ((inode->i_nlink == 0) &&
1468 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 		reiserfs_warning(inode->i_sb, "vs-13075",
1470 				 "dead inode read from disk %K. "
1471 				 "This is likely to be race with knfsd. Ignore",
1472 				 &key);
1473 		reiserfs_make_bad_inode(inode);
1474 	}
1475 
1476 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477 
1478 }
1479 
1480 /**
1481  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1482  *
1483  * @inode:    inode from hash table to check
1484  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1485  *
1486  * This function is called by iget5_locked() to distinguish reiserfs inodes
1487  * having the same inode numbers. Such inodes can only exist due to some
1488  * error condition. One of them should be bad. Inodes with identical
1489  * inode numbers (objectids) are distinguished by parent directory ids.
1490  *
1491  */
1492 int reiserfs_find_actor(struct inode *inode, void *opaque)
1493 {
1494 	struct reiserfs_iget_args *args;
1495 
1496 	args = opaque;
1497 	/* args is already in CPU order */
1498 	return (inode->i_ino == args->objectid) &&
1499 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1500 }
1501 
1502 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1503 {
1504 	struct inode *inode;
1505 	struct reiserfs_iget_args args;
1506 
1507 	args.objectid = key->on_disk_key.k_objectid;
1508 	args.dirid = key->on_disk_key.k_dir_id;
1509 	reiserfs_write_unlock(s);
1510 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1511 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1512 			     (void *)(&args));
1513 	reiserfs_write_lock(s);
1514 	if (!inode)
1515 		return ERR_PTR(-ENOMEM);
1516 
1517 	if (inode->i_state & I_NEW) {
1518 		reiserfs_read_locked_inode(inode, &args);
1519 		unlock_new_inode(inode);
1520 	}
1521 
1522 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1523 		/* either due to i/o error or a stale NFS handle */
1524 		iput(inode);
1525 		inode = NULL;
1526 	}
1527 	return inode;
1528 }
1529 
1530 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1531 	u32 objectid, u32 dir_id, u32 generation)
1532 
1533 {
1534 	struct cpu_key key;
1535 	struct inode *inode;
1536 
1537 	key.on_disk_key.k_objectid = objectid;
1538 	key.on_disk_key.k_dir_id = dir_id;
1539 	reiserfs_write_lock(sb);
1540 	inode = reiserfs_iget(sb, &key);
1541 	if (inode && !IS_ERR(inode) && generation != 0 &&
1542 	    generation != inode->i_generation) {
1543 		iput(inode);
1544 		inode = NULL;
1545 	}
1546 	reiserfs_write_unlock(sb);
1547 
1548 	return d_obtain_alias(inode);
1549 }
1550 
1551 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1552 		int fh_len, int fh_type)
1553 {
1554 	/* fhtype happens to reflect the number of u32s encoded.
1555 	 * due to a bug in earlier code, fhtype might indicate there
1556 	 * are more u32s then actually fitted.
1557 	 * so if fhtype seems to be more than len, reduce fhtype.
1558 	 * Valid types are:
1559 	 *   2 - objectid + dir_id - legacy support
1560 	 *   3 - objectid + dir_id + generation
1561 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1563 	 *   6 - as above plus generation of directory
1564 	 * 6 does not fit in NFSv2 handles
1565 	 */
1566 	if (fh_type > fh_len) {
1567 		if (fh_type != 6 || fh_len != 5)
1568 			reiserfs_warning(sb, "reiserfs-13077",
1569 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 				fh_type, fh_len);
1571 		fh_type = 5;
1572 	}
1573 
1574 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1575 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1576 }
1577 
1578 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1579 		int fh_len, int fh_type)
1580 {
1581 	if (fh_type < 4)
1582 		return NULL;
1583 
1584 	return reiserfs_get_dentry(sb,
1585 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1586 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1587 		(fh_type == 6) ? fid->raw[5] : 0);
1588 }
1589 
1590 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1591 		       int need_parent)
1592 {
1593 	struct inode *inode = dentry->d_inode;
1594 	int maxlen = *lenp;
1595 
1596 	if (maxlen < 3)
1597 		return 255;
1598 
1599 	data[0] = inode->i_ino;
1600 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1601 	data[2] = inode->i_generation;
1602 	*lenp = 3;
1603 	/* no room for directory info? return what we've stored so far */
1604 	if (maxlen < 5 || !need_parent)
1605 		return 3;
1606 
1607 	spin_lock(&dentry->d_lock);
1608 	inode = dentry->d_parent->d_inode;
1609 	data[3] = inode->i_ino;
1610 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1611 	*lenp = 5;
1612 	if (maxlen >= 6) {
1613 		data[5] = inode->i_generation;
1614 		*lenp = 6;
1615 	}
1616 	spin_unlock(&dentry->d_lock);
1617 	return *lenp;
1618 }
1619 
1620 /* looks for stat data, then copies fields to it, marks the buffer
1621    containing stat data as dirty */
1622 /* reiserfs inodes are never really dirty, since the dirty inode call
1623 ** always logs them.  This call allows the VFS inode marking routines
1624 ** to properly mark inodes for datasync and such, but only actually
1625 ** does something when called for a synchronous update.
1626 */
1627 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1628 {
1629 	struct reiserfs_transaction_handle th;
1630 	int jbegin_count = 1;
1631 
1632 	if (inode->i_sb->s_flags & MS_RDONLY)
1633 		return -EROFS;
1634 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1635 	 ** these cases are just when the system needs ram, not when the
1636 	 ** inode needs to reach disk for safety, and they can safely be
1637 	 ** ignored because the altered inode has already been logged.
1638 	 */
1639 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1640 		reiserfs_write_lock(inode->i_sb);
1641 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1642 			reiserfs_update_sd(&th, inode);
1643 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1644 		}
1645 		reiserfs_write_unlock(inode->i_sb);
1646 	}
1647 	return 0;
1648 }
1649 
1650 /* stat data of new object is inserted already, this inserts the item
1651    containing "." and ".." entries */
1652 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1653 				  struct inode *inode,
1654 				  struct item_head *ih, struct treepath *path,
1655 				  struct inode *dir)
1656 {
1657 	struct super_block *sb = th->t_super;
1658 	char empty_dir[EMPTY_DIR_SIZE];
1659 	char *body = empty_dir;
1660 	struct cpu_key key;
1661 	int retval;
1662 
1663 	BUG_ON(!th->t_trans_id);
1664 
1665 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1666 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1667 		      TYPE_DIRENTRY, 3 /*key length */ );
1668 
1669 	/* compose item head for new item. Directories consist of items of
1670 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1671 	   is done by reiserfs_new_inode */
1672 	if (old_format_only(sb)) {
1673 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1674 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1675 
1676 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1677 				       ih->ih_key.k_objectid,
1678 				       INODE_PKEY(dir)->k_dir_id,
1679 				       INODE_PKEY(dir)->k_objectid);
1680 	} else {
1681 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1683 
1684 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1685 				    ih->ih_key.k_objectid,
1686 				    INODE_PKEY(dir)->k_dir_id,
1687 				    INODE_PKEY(dir)->k_objectid);
1688 	}
1689 
1690 	/* look for place in the tree for new item */
1691 	retval = search_item(sb, &key, path);
1692 	if (retval == IO_ERROR) {
1693 		reiserfs_error(sb, "vs-13080",
1694 			       "i/o failure occurred creating new directory");
1695 		return -EIO;
1696 	}
1697 	if (retval == ITEM_FOUND) {
1698 		pathrelse(path);
1699 		reiserfs_warning(sb, "vs-13070",
1700 				 "object with this key exists (%k)",
1701 				 &(ih->ih_key));
1702 		return -EEXIST;
1703 	}
1704 
1705 	/* insert item, that is empty directory item */
1706 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1707 }
1708 
1709 /* stat data of object has been inserted, this inserts the item
1710    containing the body of symlink */
1711 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1712 				struct item_head *ih,
1713 				struct treepath *path, const char *symname,
1714 				int item_len)
1715 {
1716 	struct super_block *sb = th->t_super;
1717 	struct cpu_key key;
1718 	int retval;
1719 
1720 	BUG_ON(!th->t_trans_id);
1721 
1722 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1723 		      le32_to_cpu(ih->ih_key.k_dir_id),
1724 		      le32_to_cpu(ih->ih_key.k_objectid),
1725 		      1, TYPE_DIRECT, 3 /*key length */ );
1726 
1727 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1728 			  0 /*free_space */ );
1729 
1730 	/* look for place in the tree for new item */
1731 	retval = search_item(sb, &key, path);
1732 	if (retval == IO_ERROR) {
1733 		reiserfs_error(sb, "vs-13080",
1734 			       "i/o failure occurred creating new symlink");
1735 		return -EIO;
1736 	}
1737 	if (retval == ITEM_FOUND) {
1738 		pathrelse(path);
1739 		reiserfs_warning(sb, "vs-13080",
1740 				 "object with this key exists (%k)",
1741 				 &(ih->ih_key));
1742 		return -EEXIST;
1743 	}
1744 
1745 	/* insert item, that is body of symlink */
1746 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1747 }
1748 
1749 /* inserts the stat data into the tree, and then calls
1750    reiserfs_new_directory (to insert ".", ".." item if new object is
1751    directory) or reiserfs_new_symlink (to insert symlink body if new
1752    object is symlink) or nothing (if new object is regular file)
1753 
1754    NOTE! uid and gid must already be set in the inode.  If we return
1755    non-zero due to an error, we have to drop the quota previously allocated
1756    for the fresh inode.  This can only be done outside a transaction, so
1757    if we return non-zero, we also end the transaction.  */
1758 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1759 		       struct inode *dir, int mode, const char *symname,
1760 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1761 		          strlen (symname) for symlinks) */
1762 		       loff_t i_size, struct dentry *dentry,
1763 		       struct inode *inode,
1764 		       struct reiserfs_security_handle *security)
1765 {
1766 	struct super_block *sb;
1767 	struct reiserfs_iget_args args;
1768 	INITIALIZE_PATH(path_to_key);
1769 	struct cpu_key key;
1770 	struct item_head ih;
1771 	struct stat_data sd;
1772 	int retval;
1773 	int err;
1774 
1775 	BUG_ON(!th->t_trans_id);
1776 
1777 	dquot_initialize(inode);
1778 	err = dquot_alloc_inode(inode);
1779 	if (err)
1780 		goto out_end_trans;
1781 	if (!dir->i_nlink) {
1782 		err = -EPERM;
1783 		goto out_bad_inode;
1784 	}
1785 
1786 	sb = dir->i_sb;
1787 
1788 	/* item head of new item */
1789 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1790 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1791 	if (!ih.ih_key.k_objectid) {
1792 		err = -ENOMEM;
1793 		goto out_bad_inode;
1794 	}
1795 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1796 	if (old_format_only(sb))
1797 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1798 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1799 	else
1800 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1801 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1802 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1803 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1804 	if (insert_inode_locked4(inode, args.objectid,
1805 			     reiserfs_find_actor, &args) < 0) {
1806 		err = -EINVAL;
1807 		goto out_bad_inode;
1808 	}
1809 	if (old_format_only(sb))
1810 		/* not a perfect generation count, as object ids can be reused, but
1811 		 ** this is as good as reiserfs can do right now.
1812 		 ** note that the private part of inode isn't filled in yet, we have
1813 		 ** to use the directory.
1814 		 */
1815 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1816 	else
1817 #if defined( USE_INODE_GENERATION_COUNTER )
1818 		inode->i_generation =
1819 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1820 #else
1821 		inode->i_generation = ++event;
1822 #endif
1823 
1824 	/* fill stat data */
1825 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1826 
1827 	/* uid and gid must already be set by the caller for quota init */
1828 
1829 	/* symlink cannot be immutable or append only, right? */
1830 	if (S_ISLNK(inode->i_mode))
1831 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1832 
1833 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1834 	inode->i_size = i_size;
1835 	inode->i_blocks = 0;
1836 	inode->i_bytes = 0;
1837 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1838 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1839 
1840 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1841 	REISERFS_I(inode)->i_flags = 0;
1842 	REISERFS_I(inode)->i_prealloc_block = 0;
1843 	REISERFS_I(inode)->i_prealloc_count = 0;
1844 	REISERFS_I(inode)->i_trans_id = 0;
1845 	REISERFS_I(inode)->i_jl = NULL;
1846 	REISERFS_I(inode)->i_attrs =
1847 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1848 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1849 	reiserfs_init_xattr_rwsem(inode);
1850 
1851 	/* key to search for correct place for new stat data */
1852 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1853 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1854 		      TYPE_STAT_DATA, 3 /*key length */ );
1855 
1856 	/* find proper place for inserting of stat data */
1857 	retval = search_item(sb, &key, &path_to_key);
1858 	if (retval == IO_ERROR) {
1859 		err = -EIO;
1860 		goto out_bad_inode;
1861 	}
1862 	if (retval == ITEM_FOUND) {
1863 		pathrelse(&path_to_key);
1864 		err = -EEXIST;
1865 		goto out_bad_inode;
1866 	}
1867 	if (old_format_only(sb)) {
1868 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1869 			pathrelse(&path_to_key);
1870 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1871 			err = -EINVAL;
1872 			goto out_bad_inode;
1873 		}
1874 		inode2sd_v1(&sd, inode, inode->i_size);
1875 	} else {
1876 		inode2sd(&sd, inode, inode->i_size);
1877 	}
1878 	// store in in-core inode the key of stat data and version all
1879 	// object items will have (directory items will have old offset
1880 	// format, other new objects will consist of new items)
1881 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1882 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1883 	else
1884 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1885 	if (old_format_only(sb))
1886 		set_inode_sd_version(inode, STAT_DATA_V1);
1887 	else
1888 		set_inode_sd_version(inode, STAT_DATA_V2);
1889 
1890 	/* insert the stat data into the tree */
1891 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1892 	if (REISERFS_I(dir)->new_packing_locality)
1893 		th->displace_new_blocks = 1;
1894 #endif
1895 	retval =
1896 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1897 				 (char *)(&sd));
1898 	if (retval) {
1899 		err = retval;
1900 		reiserfs_check_path(&path_to_key);
1901 		goto out_bad_inode;
1902 	}
1903 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1904 	if (!th->displace_new_blocks)
1905 		REISERFS_I(dir)->new_packing_locality = 0;
1906 #endif
1907 	if (S_ISDIR(mode)) {
1908 		/* insert item with "." and ".." */
1909 		retval =
1910 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1911 	}
1912 
1913 	if (S_ISLNK(mode)) {
1914 		/* insert body of symlink */
1915 		if (!old_format_only(sb))
1916 			i_size = ROUND_UP(i_size);
1917 		retval =
1918 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1919 					 i_size);
1920 	}
1921 	if (retval) {
1922 		err = retval;
1923 		reiserfs_check_path(&path_to_key);
1924 		journal_end(th, th->t_super, th->t_blocks_allocated);
1925 		goto out_inserted_sd;
1926 	}
1927 
1928 	if (reiserfs_posixacl(inode->i_sb)) {
1929 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1930 		if (retval) {
1931 			err = retval;
1932 			reiserfs_check_path(&path_to_key);
1933 			journal_end(th, th->t_super, th->t_blocks_allocated);
1934 			goto out_inserted_sd;
1935 		}
1936 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1937 		reiserfs_warning(inode->i_sb, "jdm-13090",
1938 				 "ACLs aren't enabled in the fs, "
1939 				 "but vfs thinks they are!");
1940 	} else if (IS_PRIVATE(dir))
1941 		inode->i_flags |= S_PRIVATE;
1942 
1943 	if (security->name) {
1944 		retval = reiserfs_security_write(th, inode, security);
1945 		if (retval) {
1946 			err = retval;
1947 			reiserfs_check_path(&path_to_key);
1948 			retval = journal_end(th, th->t_super,
1949 					     th->t_blocks_allocated);
1950 			if (retval)
1951 				err = retval;
1952 			goto out_inserted_sd;
1953 		}
1954 	}
1955 
1956 	reiserfs_update_sd(th, inode);
1957 	reiserfs_check_path(&path_to_key);
1958 
1959 	return 0;
1960 
1961 /* it looks like you can easily compress these two goto targets into
1962  * one.  Keeping it like this doesn't actually hurt anything, and they
1963  * are place holders for what the quota code actually needs.
1964  */
1965       out_bad_inode:
1966 	/* Invalidate the object, nothing was inserted yet */
1967 	INODE_PKEY(inode)->k_objectid = 0;
1968 
1969 	/* Quota change must be inside a transaction for journaling */
1970 	dquot_free_inode(inode);
1971 
1972       out_end_trans:
1973 	journal_end(th, th->t_super, th->t_blocks_allocated);
1974 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1975 	dquot_drop(inode);
1976 	inode->i_flags |= S_NOQUOTA;
1977 	make_bad_inode(inode);
1978 
1979       out_inserted_sd:
1980 	inode->i_nlink = 0;
1981 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1982 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1983 	iput(inode);
1984 	return err;
1985 }
1986 
1987 /*
1988 ** finds the tail page in the page cache,
1989 ** reads the last block in.
1990 **
1991 ** On success, page_result is set to a locked, pinned page, and bh_result
1992 ** is set to an up to date buffer for the last block in the file.  returns 0.
1993 **
1994 ** tail conversion is not done, so bh_result might not be valid for writing
1995 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1996 ** trying to write the block.
1997 **
1998 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1999 */
2000 static int grab_tail_page(struct inode *inode,
2001 			  struct page **page_result,
2002 			  struct buffer_head **bh_result)
2003 {
2004 
2005 	/* we want the page with the last byte in the file,
2006 	 ** not the page that will hold the next byte for appending
2007 	 */
2008 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2009 	unsigned long pos = 0;
2010 	unsigned long start = 0;
2011 	unsigned long blocksize = inode->i_sb->s_blocksize;
2012 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2013 	struct buffer_head *bh;
2014 	struct buffer_head *head;
2015 	struct page *page;
2016 	int error;
2017 
2018 	/* we know that we are only called with inode->i_size > 0.
2019 	 ** we also know that a file tail can never be as big as a block
2020 	 ** If i_size % blocksize == 0, our file is currently block aligned
2021 	 ** and it won't need converting or zeroing after a truncate.
2022 	 */
2023 	if ((offset & (blocksize - 1)) == 0) {
2024 		return -ENOENT;
2025 	}
2026 	page = grab_cache_page(inode->i_mapping, index);
2027 	error = -ENOMEM;
2028 	if (!page) {
2029 		goto out;
2030 	}
2031 	/* start within the page of the last block in the file */
2032 	start = (offset / blocksize) * blocksize;
2033 
2034 	error = __block_write_begin(page, start, offset - start,
2035 				    reiserfs_get_block_create_0);
2036 	if (error)
2037 		goto unlock;
2038 
2039 	head = page_buffers(page);
2040 	bh = head;
2041 	do {
2042 		if (pos >= start) {
2043 			break;
2044 		}
2045 		bh = bh->b_this_page;
2046 		pos += blocksize;
2047 	} while (bh != head);
2048 
2049 	if (!buffer_uptodate(bh)) {
2050 		/* note, this should never happen, prepare_write should
2051 		 ** be taking care of this for us.  If the buffer isn't up to date,
2052 		 ** I've screwed up the code to find the buffer, or the code to
2053 		 ** call prepare_write
2054 		 */
2055 		reiserfs_error(inode->i_sb, "clm-6000",
2056 			       "error reading block %lu", bh->b_blocknr);
2057 		error = -EIO;
2058 		goto unlock;
2059 	}
2060 	*bh_result = bh;
2061 	*page_result = page;
2062 
2063       out:
2064 	return error;
2065 
2066       unlock:
2067 	unlock_page(page);
2068 	page_cache_release(page);
2069 	return error;
2070 }
2071 
2072 /*
2073 ** vfs version of truncate file.  Must NOT be called with
2074 ** a transaction already started.
2075 **
2076 ** some code taken from block_truncate_page
2077 */
2078 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2079 {
2080 	struct reiserfs_transaction_handle th;
2081 	/* we want the offset for the first byte after the end of the file */
2082 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2083 	unsigned blocksize = inode->i_sb->s_blocksize;
2084 	unsigned length;
2085 	struct page *page = NULL;
2086 	int error;
2087 	struct buffer_head *bh = NULL;
2088 	int err2;
2089 	int lock_depth;
2090 
2091 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2092 
2093 	if (inode->i_size > 0) {
2094 		error = grab_tail_page(inode, &page, &bh);
2095 		if (error) {
2096 			// -ENOENT means we truncated past the end of the file,
2097 			// and get_block_create_0 could not find a block to read in,
2098 			// which is ok.
2099 			if (error != -ENOENT)
2100 				reiserfs_error(inode->i_sb, "clm-6001",
2101 					       "grab_tail_page failed %d",
2102 					       error);
2103 			page = NULL;
2104 			bh = NULL;
2105 		}
2106 	}
2107 
2108 	/* so, if page != NULL, we have a buffer head for the offset at
2109 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2110 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2111 	 ** and no zeroing is required on disk.  We zero after the truncate,
2112 	 ** because the truncate might pack the item anyway
2113 	 ** (it will unmap bh if it packs).
2114 	 */
2115 	/* it is enough to reserve space in transaction for 2 balancings:
2116 	   one for "save" link adding and another for the first
2117 	   cut_from_item. 1 is for update_sd */
2118 	error = journal_begin(&th, inode->i_sb,
2119 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2120 	if (error)
2121 		goto out;
2122 	reiserfs_update_inode_transaction(inode);
2123 	if (update_timestamps)
2124 		/* we are doing real truncate: if the system crashes before the last
2125 		   transaction of truncating gets committed - on reboot the file
2126 		   either appears truncated properly or not truncated at all */
2127 		add_save_link(&th, inode, 1);
2128 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2129 	error =
2130 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2131 	if (error)
2132 		goto out;
2133 
2134 	/* check reiserfs_do_truncate after ending the transaction */
2135 	if (err2) {
2136 		error = err2;
2137   		goto out;
2138 	}
2139 
2140 	if (update_timestamps) {
2141 		error = remove_save_link(inode, 1 /* truncate */);
2142 		if (error)
2143 			goto out;
2144 	}
2145 
2146 	if (page) {
2147 		length = offset & (blocksize - 1);
2148 		/* if we are not on a block boundary */
2149 		if (length) {
2150 			length = blocksize - length;
2151 			zero_user(page, offset, length);
2152 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2153 				mark_buffer_dirty(bh);
2154 			}
2155 		}
2156 		unlock_page(page);
2157 		page_cache_release(page);
2158 	}
2159 
2160 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2161 
2162 	return 0;
2163       out:
2164 	if (page) {
2165 		unlock_page(page);
2166 		page_cache_release(page);
2167 	}
2168 
2169 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2170 
2171 	return error;
2172 }
2173 
2174 static int map_block_for_writepage(struct inode *inode,
2175 				   struct buffer_head *bh_result,
2176 				   unsigned long block)
2177 {
2178 	struct reiserfs_transaction_handle th;
2179 	int fs_gen;
2180 	struct item_head tmp_ih;
2181 	struct item_head *ih;
2182 	struct buffer_head *bh;
2183 	__le32 *item;
2184 	struct cpu_key key;
2185 	INITIALIZE_PATH(path);
2186 	int pos_in_item;
2187 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2188 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2189 	int retval;
2190 	int use_get_block = 0;
2191 	int bytes_copied = 0;
2192 	int copy_size;
2193 	int trans_running = 0;
2194 
2195 	/* catch places below that try to log something without starting a trans */
2196 	th.t_trans_id = 0;
2197 
2198 	if (!buffer_uptodate(bh_result)) {
2199 		return -EIO;
2200 	}
2201 
2202 	kmap(bh_result->b_page);
2203       start_over:
2204 	reiserfs_write_lock(inode->i_sb);
2205 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2206 
2207       research:
2208 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2209 	if (retval != POSITION_FOUND) {
2210 		use_get_block = 1;
2211 		goto out;
2212 	}
2213 
2214 	bh = get_last_bh(&path);
2215 	ih = get_ih(&path);
2216 	item = get_item(&path);
2217 	pos_in_item = path.pos_in_item;
2218 
2219 	/* we've found an unformatted node */
2220 	if (indirect_item_found(retval, ih)) {
2221 		if (bytes_copied > 0) {
2222 			reiserfs_warning(inode->i_sb, "clm-6002",
2223 					 "bytes_copied %d", bytes_copied);
2224 		}
2225 		if (!get_block_num(item, pos_in_item)) {
2226 			/* crap, we are writing to a hole */
2227 			use_get_block = 1;
2228 			goto out;
2229 		}
2230 		set_block_dev_mapped(bh_result,
2231 				     get_block_num(item, pos_in_item), inode);
2232 	} else if (is_direct_le_ih(ih)) {
2233 		char *p;
2234 		p = page_address(bh_result->b_page);
2235 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2236 		copy_size = ih_item_len(ih) - pos_in_item;
2237 
2238 		fs_gen = get_generation(inode->i_sb);
2239 		copy_item_head(&tmp_ih, ih);
2240 
2241 		if (!trans_running) {
2242 			/* vs-3050 is gone, no need to drop the path */
2243 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2244 			if (retval)
2245 				goto out;
2246 			reiserfs_update_inode_transaction(inode);
2247 			trans_running = 1;
2248 			if (fs_changed(fs_gen, inode->i_sb)
2249 			    && item_moved(&tmp_ih, &path)) {
2250 				reiserfs_restore_prepared_buffer(inode->i_sb,
2251 								 bh);
2252 				goto research;
2253 			}
2254 		}
2255 
2256 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2257 
2258 		if (fs_changed(fs_gen, inode->i_sb)
2259 		    && item_moved(&tmp_ih, &path)) {
2260 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2261 			goto research;
2262 		}
2263 
2264 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2265 		       copy_size);
2266 
2267 		journal_mark_dirty(&th, inode->i_sb, bh);
2268 		bytes_copied += copy_size;
2269 		set_block_dev_mapped(bh_result, 0, inode);
2270 
2271 		/* are there still bytes left? */
2272 		if (bytes_copied < bh_result->b_size &&
2273 		    (byte_offset + bytes_copied) < inode->i_size) {
2274 			set_cpu_key_k_offset(&key,
2275 					     cpu_key_k_offset(&key) +
2276 					     copy_size);
2277 			goto research;
2278 		}
2279 	} else {
2280 		reiserfs_warning(inode->i_sb, "clm-6003",
2281 				 "bad item inode %lu", inode->i_ino);
2282 		retval = -EIO;
2283 		goto out;
2284 	}
2285 	retval = 0;
2286 
2287       out:
2288 	pathrelse(&path);
2289 	if (trans_running) {
2290 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2291 		if (err)
2292 			retval = err;
2293 		trans_running = 0;
2294 	}
2295 	reiserfs_write_unlock(inode->i_sb);
2296 
2297 	/* this is where we fill in holes in the file. */
2298 	if (use_get_block) {
2299 		retval = reiserfs_get_block(inode, block, bh_result,
2300 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2301 					    | GET_BLOCK_NO_DANGLE);
2302 		if (!retval) {
2303 			if (!buffer_mapped(bh_result)
2304 			    || bh_result->b_blocknr == 0) {
2305 				/* get_block failed to find a mapped unformatted node. */
2306 				use_get_block = 0;
2307 				goto start_over;
2308 			}
2309 		}
2310 	}
2311 	kunmap(bh_result->b_page);
2312 
2313 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2314 		/* we've copied data from the page into the direct item, so the
2315 		 * buffer in the page is now clean, mark it to reflect that.
2316 		 */
2317 		lock_buffer(bh_result);
2318 		clear_buffer_dirty(bh_result);
2319 		unlock_buffer(bh_result);
2320 	}
2321 	return retval;
2322 }
2323 
2324 /*
2325  * mason@suse.com: updated in 2.5.54 to follow the same general io
2326  * start/recovery path as __block_write_full_page, along with special
2327  * code to handle reiserfs tails.
2328  */
2329 static int reiserfs_write_full_page(struct page *page,
2330 				    struct writeback_control *wbc)
2331 {
2332 	struct inode *inode = page->mapping->host;
2333 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2334 	int error = 0;
2335 	unsigned long block;
2336 	sector_t last_block;
2337 	struct buffer_head *head, *bh;
2338 	int partial = 0;
2339 	int nr = 0;
2340 	int checked = PageChecked(page);
2341 	struct reiserfs_transaction_handle th;
2342 	struct super_block *s = inode->i_sb;
2343 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2344 	th.t_trans_id = 0;
2345 
2346 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2347 	if (checked && (current->flags & PF_MEMALLOC)) {
2348 		redirty_page_for_writepage(wbc, page);
2349 		unlock_page(page);
2350 		return 0;
2351 	}
2352 
2353 	/* The page dirty bit is cleared before writepage is called, which
2354 	 * means we have to tell create_empty_buffers to make dirty buffers
2355 	 * The page really should be up to date at this point, so tossing
2356 	 * in the BH_Uptodate is just a sanity check.
2357 	 */
2358 	if (!page_has_buffers(page)) {
2359 		create_empty_buffers(page, s->s_blocksize,
2360 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2361 	}
2362 	head = page_buffers(page);
2363 
2364 	/* last page in the file, zero out any contents past the
2365 	 ** last byte in the file
2366 	 */
2367 	if (page->index >= end_index) {
2368 		unsigned last_offset;
2369 
2370 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2371 		/* no file contents in this page */
2372 		if (page->index >= end_index + 1 || !last_offset) {
2373 			unlock_page(page);
2374 			return 0;
2375 		}
2376 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2377 	}
2378 	bh = head;
2379 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2380 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2381 	/* first map all the buffers, logging any direct items we find */
2382 	do {
2383 		if (block > last_block) {
2384 			/*
2385 			 * This can happen when the block size is less than
2386 			 * the page size.  The corresponding bytes in the page
2387 			 * were zero filled above
2388 			 */
2389 			clear_buffer_dirty(bh);
2390 			set_buffer_uptodate(bh);
2391 		} else if ((checked || buffer_dirty(bh)) &&
2392 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2393 						       && bh->b_blocknr ==
2394 						       0))) {
2395 			/* not mapped yet, or it points to a direct item, search
2396 			 * the btree for the mapping info, and log any direct
2397 			 * items found
2398 			 */
2399 			if ((error = map_block_for_writepage(inode, bh, block))) {
2400 				goto fail;
2401 			}
2402 		}
2403 		bh = bh->b_this_page;
2404 		block++;
2405 	} while (bh != head);
2406 
2407 	/*
2408 	 * we start the transaction after map_block_for_writepage,
2409 	 * because it can create holes in the file (an unbounded operation).
2410 	 * starting it here, we can make a reliable estimate for how many
2411 	 * blocks we're going to log
2412 	 */
2413 	if (checked) {
2414 		ClearPageChecked(page);
2415 		reiserfs_write_lock(s);
2416 		error = journal_begin(&th, s, bh_per_page + 1);
2417 		if (error) {
2418 			reiserfs_write_unlock(s);
2419 			goto fail;
2420 		}
2421 		reiserfs_update_inode_transaction(inode);
2422 	}
2423 	/* now go through and lock any dirty buffers on the page */
2424 	do {
2425 		get_bh(bh);
2426 		if (!buffer_mapped(bh))
2427 			continue;
2428 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2429 			continue;
2430 
2431 		if (checked) {
2432 			reiserfs_prepare_for_journal(s, bh, 1);
2433 			journal_mark_dirty(&th, s, bh);
2434 			continue;
2435 		}
2436 		/* from this point on, we know the buffer is mapped to a
2437 		 * real block and not a direct item
2438 		 */
2439 		if (wbc->sync_mode != WB_SYNC_NONE) {
2440 			lock_buffer(bh);
2441 		} else {
2442 			if (!trylock_buffer(bh)) {
2443 				redirty_page_for_writepage(wbc, page);
2444 				continue;
2445 			}
2446 		}
2447 		if (test_clear_buffer_dirty(bh)) {
2448 			mark_buffer_async_write(bh);
2449 		} else {
2450 			unlock_buffer(bh);
2451 		}
2452 	} while ((bh = bh->b_this_page) != head);
2453 
2454 	if (checked) {
2455 		error = journal_end(&th, s, bh_per_page + 1);
2456 		reiserfs_write_unlock(s);
2457 		if (error)
2458 			goto fail;
2459 	}
2460 	BUG_ON(PageWriteback(page));
2461 	set_page_writeback(page);
2462 	unlock_page(page);
2463 
2464 	/*
2465 	 * since any buffer might be the only dirty buffer on the page,
2466 	 * the first submit_bh can bring the page out of writeback.
2467 	 * be careful with the buffers.
2468 	 */
2469 	do {
2470 		struct buffer_head *next = bh->b_this_page;
2471 		if (buffer_async_write(bh)) {
2472 			submit_bh(WRITE, bh);
2473 			nr++;
2474 		}
2475 		put_bh(bh);
2476 		bh = next;
2477 	} while (bh != head);
2478 
2479 	error = 0;
2480       done:
2481 	if (nr == 0) {
2482 		/*
2483 		 * if this page only had a direct item, it is very possible for
2484 		 * no io to be required without there being an error.  Or,
2485 		 * someone else could have locked them and sent them down the
2486 		 * pipe without locking the page
2487 		 */
2488 		bh = head;
2489 		do {
2490 			if (!buffer_uptodate(bh)) {
2491 				partial = 1;
2492 				break;
2493 			}
2494 			bh = bh->b_this_page;
2495 		} while (bh != head);
2496 		if (!partial)
2497 			SetPageUptodate(page);
2498 		end_page_writeback(page);
2499 	}
2500 	return error;
2501 
2502       fail:
2503 	/* catches various errors, we need to make sure any valid dirty blocks
2504 	 * get to the media.  The page is currently locked and not marked for
2505 	 * writeback
2506 	 */
2507 	ClearPageUptodate(page);
2508 	bh = head;
2509 	do {
2510 		get_bh(bh);
2511 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2512 			lock_buffer(bh);
2513 			mark_buffer_async_write(bh);
2514 		} else {
2515 			/*
2516 			 * clear any dirty bits that might have come from getting
2517 			 * attached to a dirty page
2518 			 */
2519 			clear_buffer_dirty(bh);
2520 		}
2521 		bh = bh->b_this_page;
2522 	} while (bh != head);
2523 	SetPageError(page);
2524 	BUG_ON(PageWriteback(page));
2525 	set_page_writeback(page);
2526 	unlock_page(page);
2527 	do {
2528 		struct buffer_head *next = bh->b_this_page;
2529 		if (buffer_async_write(bh)) {
2530 			clear_buffer_dirty(bh);
2531 			submit_bh(WRITE, bh);
2532 			nr++;
2533 		}
2534 		put_bh(bh);
2535 		bh = next;
2536 	} while (bh != head);
2537 	goto done;
2538 }
2539 
2540 static int reiserfs_readpage(struct file *f, struct page *page)
2541 {
2542 	return block_read_full_page(page, reiserfs_get_block);
2543 }
2544 
2545 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2546 {
2547 	struct inode *inode = page->mapping->host;
2548 	reiserfs_wait_on_write_block(inode->i_sb);
2549 	return reiserfs_write_full_page(page, wbc);
2550 }
2551 
2552 static void reiserfs_truncate_failed_write(struct inode *inode)
2553 {
2554 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2555 	reiserfs_truncate_file(inode, 0);
2556 }
2557 
2558 static int reiserfs_write_begin(struct file *file,
2559 				struct address_space *mapping,
2560 				loff_t pos, unsigned len, unsigned flags,
2561 				struct page **pagep, void **fsdata)
2562 {
2563 	struct inode *inode;
2564 	struct page *page;
2565 	pgoff_t index;
2566 	int ret;
2567 	int old_ref = 0;
2568 
2569  	inode = mapping->host;
2570 	*fsdata = 0;
2571  	if (flags & AOP_FLAG_CONT_EXPAND &&
2572  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2573  		pos ++;
2574 		*fsdata = (void *)(unsigned long)flags;
2575 	}
2576 
2577 	index = pos >> PAGE_CACHE_SHIFT;
2578 	page = grab_cache_page_write_begin(mapping, index, flags);
2579 	if (!page)
2580 		return -ENOMEM;
2581 	*pagep = page;
2582 
2583 	reiserfs_wait_on_write_block(inode->i_sb);
2584 	fix_tail_page_for_writing(page);
2585 	if (reiserfs_transaction_running(inode->i_sb)) {
2586 		struct reiserfs_transaction_handle *th;
2587 		th = (struct reiserfs_transaction_handle *)current->
2588 		    journal_info;
2589 		BUG_ON(!th->t_refcount);
2590 		BUG_ON(!th->t_trans_id);
2591 		old_ref = th->t_refcount;
2592 		th->t_refcount++;
2593 	}
2594 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2595 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2596 		struct reiserfs_transaction_handle *th = current->journal_info;
2597 		/* this gets a little ugly.  If reiserfs_get_block returned an
2598 		 * error and left a transacstion running, we've got to close it,
2599 		 * and we've got to free handle if it was a persistent transaction.
2600 		 *
2601 		 * But, if we had nested into an existing transaction, we need
2602 		 * to just drop the ref count on the handle.
2603 		 *
2604 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2605 		 * and it was a persistent trans.  Otherwise, it was nested above.
2606 		 */
2607 		if (th->t_refcount > old_ref) {
2608 			if (old_ref)
2609 				th->t_refcount--;
2610 			else {
2611 				int err;
2612 				reiserfs_write_lock(inode->i_sb);
2613 				err = reiserfs_end_persistent_transaction(th);
2614 				reiserfs_write_unlock(inode->i_sb);
2615 				if (err)
2616 					ret = err;
2617 			}
2618 		}
2619 	}
2620 	if (ret) {
2621 		unlock_page(page);
2622 		page_cache_release(page);
2623 		/* Truncate allocated blocks */
2624 		reiserfs_truncate_failed_write(inode);
2625 	}
2626 	return ret;
2627 }
2628 
2629 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2630 {
2631 	struct inode *inode = page->mapping->host;
2632 	int ret;
2633 	int old_ref = 0;
2634 
2635 	reiserfs_write_unlock(inode->i_sb);
2636 	reiserfs_wait_on_write_block(inode->i_sb);
2637 	reiserfs_write_lock(inode->i_sb);
2638 
2639 	fix_tail_page_for_writing(page);
2640 	if (reiserfs_transaction_running(inode->i_sb)) {
2641 		struct reiserfs_transaction_handle *th;
2642 		th = (struct reiserfs_transaction_handle *)current->
2643 		    journal_info;
2644 		BUG_ON(!th->t_refcount);
2645 		BUG_ON(!th->t_trans_id);
2646 		old_ref = th->t_refcount;
2647 		th->t_refcount++;
2648 	}
2649 
2650 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2651 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2652 		struct reiserfs_transaction_handle *th = current->journal_info;
2653 		/* this gets a little ugly.  If reiserfs_get_block returned an
2654 		 * error and left a transacstion running, we've got to close it,
2655 		 * and we've got to free handle if it was a persistent transaction.
2656 		 *
2657 		 * But, if we had nested into an existing transaction, we need
2658 		 * to just drop the ref count on the handle.
2659 		 *
2660 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2661 		 * and it was a persistent trans.  Otherwise, it was nested above.
2662 		 */
2663 		if (th->t_refcount > old_ref) {
2664 			if (old_ref)
2665 				th->t_refcount--;
2666 			else {
2667 				int err;
2668 				reiserfs_write_lock(inode->i_sb);
2669 				err = reiserfs_end_persistent_transaction(th);
2670 				reiserfs_write_unlock(inode->i_sb);
2671 				if (err)
2672 					ret = err;
2673 			}
2674 		}
2675 	}
2676 	return ret;
2677 
2678 }
2679 
2680 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2681 {
2682 	return generic_block_bmap(as, block, reiserfs_bmap);
2683 }
2684 
2685 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2686 			      loff_t pos, unsigned len, unsigned copied,
2687 			      struct page *page, void *fsdata)
2688 {
2689 	struct inode *inode = page->mapping->host;
2690 	int ret = 0;
2691 	int update_sd = 0;
2692 	struct reiserfs_transaction_handle *th;
2693 	unsigned start;
2694 	int lock_depth = 0;
2695 	bool locked = false;
2696 
2697 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2698 		pos ++;
2699 
2700 	reiserfs_wait_on_write_block(inode->i_sb);
2701 	if (reiserfs_transaction_running(inode->i_sb))
2702 		th = current->journal_info;
2703 	else
2704 		th = NULL;
2705 
2706 	start = pos & (PAGE_CACHE_SIZE - 1);
2707 	if (unlikely(copied < len)) {
2708 		if (!PageUptodate(page))
2709 			copied = 0;
2710 
2711 		page_zero_new_buffers(page, start + copied, start + len);
2712 	}
2713 	flush_dcache_page(page);
2714 
2715 	reiserfs_commit_page(inode, page, start, start + copied);
2716 
2717 	/* generic_commit_write does this for us, but does not update the
2718 	 ** transaction tracking stuff when the size changes.  So, we have
2719 	 ** to do the i_size updates here.
2720 	 */
2721 	if (pos + copied > inode->i_size) {
2722 		struct reiserfs_transaction_handle myth;
2723 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2724 		locked = true;
2725 		/* If the file have grown beyond the border where it
2726 		   can have a tail, unmark it as needing a tail
2727 		   packing */
2728 		if ((have_large_tails(inode->i_sb)
2729 		     && inode->i_size > i_block_size(inode) * 4)
2730 		    || (have_small_tails(inode->i_sb)
2731 			&& inode->i_size > i_block_size(inode)))
2732 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2733 
2734 		ret = journal_begin(&myth, inode->i_sb, 1);
2735 		if (ret)
2736 			goto journal_error;
2737 
2738 		reiserfs_update_inode_transaction(inode);
2739 		inode->i_size = pos + copied;
2740 		/*
2741 		 * this will just nest into our transaction.  It's important
2742 		 * to use mark_inode_dirty so the inode gets pushed around on the
2743 		 * dirty lists, and so that O_SYNC works as expected
2744 		 */
2745 		mark_inode_dirty(inode);
2746 		reiserfs_update_sd(&myth, inode);
2747 		update_sd = 1;
2748 		ret = journal_end(&myth, inode->i_sb, 1);
2749 		if (ret)
2750 			goto journal_error;
2751 	}
2752 	if (th) {
2753 		if (!locked) {
2754 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2755 			locked = true;
2756 		}
2757 		if (!update_sd)
2758 			mark_inode_dirty(inode);
2759 		ret = reiserfs_end_persistent_transaction(th);
2760 		if (ret)
2761 			goto out;
2762 	}
2763 
2764       out:
2765 	if (locked)
2766 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2767 	unlock_page(page);
2768 	page_cache_release(page);
2769 
2770 	if (pos + len > inode->i_size)
2771 		reiserfs_truncate_failed_write(inode);
2772 
2773 	return ret == 0 ? copied : ret;
2774 
2775       journal_error:
2776 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2777 	locked = false;
2778 	if (th) {
2779 		if (!update_sd)
2780 			reiserfs_update_sd(th, inode);
2781 		ret = reiserfs_end_persistent_transaction(th);
2782 	}
2783 	goto out;
2784 }
2785 
2786 int reiserfs_commit_write(struct file *f, struct page *page,
2787 			  unsigned from, unsigned to)
2788 {
2789 	struct inode *inode = page->mapping->host;
2790 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2791 	int ret = 0;
2792 	int update_sd = 0;
2793 	struct reiserfs_transaction_handle *th = NULL;
2794 
2795 	reiserfs_write_unlock(inode->i_sb);
2796 	reiserfs_wait_on_write_block(inode->i_sb);
2797 	reiserfs_write_lock(inode->i_sb);
2798 
2799 	if (reiserfs_transaction_running(inode->i_sb)) {
2800 		th = current->journal_info;
2801 	}
2802 	reiserfs_commit_page(inode, page, from, to);
2803 
2804 	/* generic_commit_write does this for us, but does not update the
2805 	 ** transaction tracking stuff when the size changes.  So, we have
2806 	 ** to do the i_size updates here.
2807 	 */
2808 	if (pos > inode->i_size) {
2809 		struct reiserfs_transaction_handle myth;
2810 		/* If the file have grown beyond the border where it
2811 		   can have a tail, unmark it as needing a tail
2812 		   packing */
2813 		if ((have_large_tails(inode->i_sb)
2814 		     && inode->i_size > i_block_size(inode) * 4)
2815 		    || (have_small_tails(inode->i_sb)
2816 			&& inode->i_size > i_block_size(inode)))
2817 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2818 
2819 		ret = journal_begin(&myth, inode->i_sb, 1);
2820 		if (ret)
2821 			goto journal_error;
2822 
2823 		reiserfs_update_inode_transaction(inode);
2824 		inode->i_size = pos;
2825 		/*
2826 		 * this will just nest into our transaction.  It's important
2827 		 * to use mark_inode_dirty so the inode gets pushed around on the
2828 		 * dirty lists, and so that O_SYNC works as expected
2829 		 */
2830 		mark_inode_dirty(inode);
2831 		reiserfs_update_sd(&myth, inode);
2832 		update_sd = 1;
2833 		ret = journal_end(&myth, inode->i_sb, 1);
2834 		if (ret)
2835 			goto journal_error;
2836 	}
2837 	if (th) {
2838 		if (!update_sd)
2839 			mark_inode_dirty(inode);
2840 		ret = reiserfs_end_persistent_transaction(th);
2841 		if (ret)
2842 			goto out;
2843 	}
2844 
2845       out:
2846 	return ret;
2847 
2848       journal_error:
2849 	if (th) {
2850 		if (!update_sd)
2851 			reiserfs_update_sd(th, inode);
2852 		ret = reiserfs_end_persistent_transaction(th);
2853 	}
2854 
2855 	return ret;
2856 }
2857 
2858 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2859 {
2860 	if (reiserfs_attrs(inode->i_sb)) {
2861 		if (sd_attrs & REISERFS_SYNC_FL)
2862 			inode->i_flags |= S_SYNC;
2863 		else
2864 			inode->i_flags &= ~S_SYNC;
2865 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2866 			inode->i_flags |= S_IMMUTABLE;
2867 		else
2868 			inode->i_flags &= ~S_IMMUTABLE;
2869 		if (sd_attrs & REISERFS_APPEND_FL)
2870 			inode->i_flags |= S_APPEND;
2871 		else
2872 			inode->i_flags &= ~S_APPEND;
2873 		if (sd_attrs & REISERFS_NOATIME_FL)
2874 			inode->i_flags |= S_NOATIME;
2875 		else
2876 			inode->i_flags &= ~S_NOATIME;
2877 		if (sd_attrs & REISERFS_NOTAIL_FL)
2878 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2879 		else
2880 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2881 	}
2882 }
2883 
2884 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2885 {
2886 	if (reiserfs_attrs(inode->i_sb)) {
2887 		if (inode->i_flags & S_IMMUTABLE)
2888 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2889 		else
2890 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2891 		if (inode->i_flags & S_SYNC)
2892 			*sd_attrs |= REISERFS_SYNC_FL;
2893 		else
2894 			*sd_attrs &= ~REISERFS_SYNC_FL;
2895 		if (inode->i_flags & S_NOATIME)
2896 			*sd_attrs |= REISERFS_NOATIME_FL;
2897 		else
2898 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2899 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2900 			*sd_attrs |= REISERFS_NOTAIL_FL;
2901 		else
2902 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2903 	}
2904 }
2905 
2906 /* decide if this buffer needs to stay around for data logging or ordered
2907 ** write purposes
2908 */
2909 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2910 {
2911 	int ret = 1;
2912 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2913 
2914 	lock_buffer(bh);
2915 	spin_lock(&j->j_dirty_buffers_lock);
2916 	if (!buffer_mapped(bh)) {
2917 		goto free_jh;
2918 	}
2919 	/* the page is locked, and the only places that log a data buffer
2920 	 * also lock the page.
2921 	 */
2922 	if (reiserfs_file_data_log(inode)) {
2923 		/*
2924 		 * very conservative, leave the buffer pinned if
2925 		 * anyone might need it.
2926 		 */
2927 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2928 			ret = 0;
2929 		}
2930 	} else  if (buffer_dirty(bh)) {
2931 		struct reiserfs_journal_list *jl;
2932 		struct reiserfs_jh *jh = bh->b_private;
2933 
2934 		/* why is this safe?
2935 		 * reiserfs_setattr updates i_size in the on disk
2936 		 * stat data before allowing vmtruncate to be called.
2937 		 *
2938 		 * If buffer was put onto the ordered list for this
2939 		 * transaction, we know for sure either this transaction
2940 		 * or an older one already has updated i_size on disk,
2941 		 * and this ordered data won't be referenced in the file
2942 		 * if we crash.
2943 		 *
2944 		 * if the buffer was put onto the ordered list for an older
2945 		 * transaction, we need to leave it around
2946 		 */
2947 		if (jh && (jl = jh->jl)
2948 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2949 			ret = 0;
2950 	}
2951       free_jh:
2952 	if (ret && bh->b_private) {
2953 		reiserfs_free_jh(bh);
2954 	}
2955 	spin_unlock(&j->j_dirty_buffers_lock);
2956 	unlock_buffer(bh);
2957 	return ret;
2958 }
2959 
2960 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2961 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2962 {
2963 	struct buffer_head *head, *bh, *next;
2964 	struct inode *inode = page->mapping->host;
2965 	unsigned int curr_off = 0;
2966 	int ret = 1;
2967 
2968 	BUG_ON(!PageLocked(page));
2969 
2970 	if (offset == 0)
2971 		ClearPageChecked(page);
2972 
2973 	if (!page_has_buffers(page))
2974 		goto out;
2975 
2976 	head = page_buffers(page);
2977 	bh = head;
2978 	do {
2979 		unsigned int next_off = curr_off + bh->b_size;
2980 		next = bh->b_this_page;
2981 
2982 		/*
2983 		 * is this block fully invalidated?
2984 		 */
2985 		if (offset <= curr_off) {
2986 			if (invalidatepage_can_drop(inode, bh))
2987 				reiserfs_unmap_buffer(bh);
2988 			else
2989 				ret = 0;
2990 		}
2991 		curr_off = next_off;
2992 		bh = next;
2993 	} while (bh != head);
2994 
2995 	/*
2996 	 * We release buffers only if the entire page is being invalidated.
2997 	 * The get_block cached value has been unconditionally invalidated,
2998 	 * so real IO is not possible anymore.
2999 	 */
3000 	if (!offset && ret) {
3001 		ret = try_to_release_page(page, 0);
3002 		/* maybe should BUG_ON(!ret); - neilb */
3003 	}
3004       out:
3005 	return;
3006 }
3007 
3008 static int reiserfs_set_page_dirty(struct page *page)
3009 {
3010 	struct inode *inode = page->mapping->host;
3011 	if (reiserfs_file_data_log(inode)) {
3012 		SetPageChecked(page);
3013 		return __set_page_dirty_nobuffers(page);
3014 	}
3015 	return __set_page_dirty_buffers(page);
3016 }
3017 
3018 /*
3019  * Returns 1 if the page's buffers were dropped.  The page is locked.
3020  *
3021  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3022  * in the buffers at page_buffers(page).
3023  *
3024  * even in -o notail mode, we can't be sure an old mount without -o notail
3025  * didn't create files with tails.
3026  */
3027 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3028 {
3029 	struct inode *inode = page->mapping->host;
3030 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3031 	struct buffer_head *head;
3032 	struct buffer_head *bh;
3033 	int ret = 1;
3034 
3035 	WARN_ON(PageChecked(page));
3036 	spin_lock(&j->j_dirty_buffers_lock);
3037 	head = page_buffers(page);
3038 	bh = head;
3039 	do {
3040 		if (bh->b_private) {
3041 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3042 				reiserfs_free_jh(bh);
3043 			} else {
3044 				ret = 0;
3045 				break;
3046 			}
3047 		}
3048 		bh = bh->b_this_page;
3049 	} while (bh != head);
3050 	if (ret)
3051 		ret = try_to_free_buffers(page);
3052 	spin_unlock(&j->j_dirty_buffers_lock);
3053 	return ret;
3054 }
3055 
3056 /* We thank Mingming Cao for helping us understand in great detail what
3057    to do in this section of the code. */
3058 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3059 				  const struct iovec *iov, loff_t offset,
3060 				  unsigned long nr_segs)
3061 {
3062 	struct file *file = iocb->ki_filp;
3063 	struct inode *inode = file->f_mapping->host;
3064 	ssize_t ret;
3065 
3066 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3067 				  offset, nr_segs,
3068 				  reiserfs_get_blocks_direct_io, NULL);
3069 
3070 	/*
3071 	 * In case of error extending write may have instantiated a few
3072 	 * blocks outside i_size. Trim these off again.
3073 	 */
3074 	if (unlikely((rw & WRITE) && ret < 0)) {
3075 		loff_t isize = i_size_read(inode);
3076 		loff_t end = offset + iov_length(iov, nr_segs);
3077 
3078 		if (end > isize)
3079 			vmtruncate(inode, isize);
3080 	}
3081 
3082 	return ret;
3083 }
3084 
3085 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3086 {
3087 	struct inode *inode = dentry->d_inode;
3088 	unsigned int ia_valid;
3089 	int depth;
3090 	int error;
3091 
3092 	error = inode_change_ok(inode, attr);
3093 	if (error)
3094 		return error;
3095 
3096 	/* must be turned off for recursive notify_change calls */
3097 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3098 
3099 	depth = reiserfs_write_lock_once(inode->i_sb);
3100 	if (is_quota_modification(inode, attr))
3101 		dquot_initialize(inode);
3102 
3103 	if (attr->ia_valid & ATTR_SIZE) {
3104 		/* version 2 items will be caught by the s_maxbytes check
3105 		 ** done for us in vmtruncate
3106 		 */
3107 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3108 		    attr->ia_size > MAX_NON_LFS) {
3109 			error = -EFBIG;
3110 			goto out;
3111 		}
3112 		/* fill in hole pointers in the expanding truncate case. */
3113 		if (attr->ia_size > inode->i_size) {
3114 			error = generic_cont_expand_simple(inode, attr->ia_size);
3115 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3116 				int err;
3117 				struct reiserfs_transaction_handle th;
3118 				/* we're changing at most 2 bitmaps, inode + super */
3119 				err = journal_begin(&th, inode->i_sb, 4);
3120 				if (!err) {
3121 					reiserfs_discard_prealloc(&th, inode);
3122 					err = journal_end(&th, inode->i_sb, 4);
3123 				}
3124 				if (err)
3125 					error = err;
3126 			}
3127 			if (error)
3128 				goto out;
3129 			/*
3130 			 * file size is changed, ctime and mtime are
3131 			 * to be updated
3132 			 */
3133 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3134 		}
3135 	}
3136 
3137 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3138 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3139 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3140 		/* stat data of format v3.5 has 16 bit uid and gid */
3141 		error = -EINVAL;
3142 		goto out;
3143 	}
3144 
3145 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3146 	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3147 		struct reiserfs_transaction_handle th;
3148 		int jbegin_count =
3149 		    2 *
3150 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3151 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3152 		    2;
3153 
3154 		error = reiserfs_chown_xattrs(inode, attr);
3155 
3156 		if (error)
3157 			return error;
3158 
3159 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3160 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3161 		if (error)
3162 			goto out;
3163 		error = dquot_transfer(inode, attr);
3164 		if (error) {
3165 			journal_end(&th, inode->i_sb, jbegin_count);
3166 			goto out;
3167 		}
3168 
3169 		/* Update corresponding info in inode so that everything is in
3170 		 * one transaction */
3171 		if (attr->ia_valid & ATTR_UID)
3172 			inode->i_uid = attr->ia_uid;
3173 		if (attr->ia_valid & ATTR_GID)
3174 			inode->i_gid = attr->ia_gid;
3175 		mark_inode_dirty(inode);
3176 		error = journal_end(&th, inode->i_sb, jbegin_count);
3177 		if (error)
3178 			goto out;
3179 	}
3180 
3181 	/*
3182 	 * Relax the lock here, as it might truncate the
3183 	 * inode pages and wait for inode pages locks.
3184 	 * To release such page lock, the owner needs the
3185 	 * reiserfs lock
3186 	 */
3187 	reiserfs_write_unlock_once(inode->i_sb, depth);
3188 	if ((attr->ia_valid & ATTR_SIZE) &&
3189 	    attr->ia_size != i_size_read(inode))
3190 		error = vmtruncate(inode, attr->ia_size);
3191 
3192 	if (!error) {
3193 		setattr_copy(inode, attr);
3194 		mark_inode_dirty(inode);
3195 	}
3196 	depth = reiserfs_write_lock_once(inode->i_sb);
3197 
3198 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3199 		if (attr->ia_valid & ATTR_MODE)
3200 			error = reiserfs_acl_chmod(inode);
3201 	}
3202 
3203       out:
3204 	reiserfs_write_unlock_once(inode->i_sb, depth);
3205 
3206 	return error;
3207 }
3208 
3209 const struct address_space_operations reiserfs_address_space_operations = {
3210 	.writepage = reiserfs_writepage,
3211 	.readpage = reiserfs_readpage,
3212 	.readpages = reiserfs_readpages,
3213 	.releasepage = reiserfs_releasepage,
3214 	.invalidatepage = reiserfs_invalidatepage,
3215 	.sync_page = block_sync_page,
3216 	.write_begin = reiserfs_write_begin,
3217 	.write_end = reiserfs_write_end,
3218 	.bmap = reiserfs_aop_bmap,
3219 	.direct_IO = reiserfs_direct_IO,
3220 	.set_page_dirty = reiserfs_set_page_dirty,
3221 };
3222