xref: /openbmc/linux/fs/reiserfs/inode.c (revision 089a49b6)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/aio.h>
22 
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 			  unsigned from, unsigned to);
25 
26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 	int jbegin_count =
30 	    JOURNAL_PER_BALANCE_CNT * 2 +
31 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 	struct reiserfs_transaction_handle th;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
43 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
44 
45 		reiserfs_delete_xattrs(inode);
46 
47 		reiserfs_write_lock(inode->i_sb);
48 
49 		if (journal_begin(&th, inode->i_sb, jbegin_count))
50 			goto out;
51 		reiserfs_update_inode_transaction(inode);
52 
53 		reiserfs_discard_prealloc(&th, inode);
54 
55 		err = reiserfs_delete_object(&th, inode);
56 
57 		/* Do quota update inside a transaction for journaled quotas. We must do that
58 		 * after delete_object so that quota updates go into the same transaction as
59 		 * stat data deletion */
60 		if (!err) {
61 			int depth = reiserfs_write_unlock_nested(inode->i_sb);
62 			dquot_free_inode(inode);
63 			reiserfs_write_lock_nested(inode->i_sb, depth);
64 		}
65 
66 		if (journal_end(&th, inode->i_sb, jbegin_count))
67 			goto out;
68 
69 		/* check return value from reiserfs_delete_object after
70 		 * ending the transaction
71 		 */
72 		if (err)
73 		    goto out;
74 
75 		/* all items of file are deleted, so we can remove "save" link */
76 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
77 								 * about an error here */
78 out:
79 		reiserfs_write_unlock(inode->i_sb);
80 	} else {
81 		/* no object items are in the tree */
82 		;
83 	}
84 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
85 	dquot_drop(inode);
86 	inode->i_blocks = 0;
87 	return;
88 
89 no_delete:
90 	clear_inode(inode);
91 	dquot_drop(inode);
92 }
93 
94 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
95 			  __u32 objectid, loff_t offset, int type, int length)
96 {
97 	key->version = version;
98 
99 	key->on_disk_key.k_dir_id = dirid;
100 	key->on_disk_key.k_objectid = objectid;
101 	set_cpu_key_k_offset(key, offset);
102 	set_cpu_key_k_type(key, type);
103 	key->key_length = length;
104 }
105 
106 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
107    offset and type of key */
108 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
109 		  int type, int length)
110 {
111 	_make_cpu_key(key, get_inode_item_key_version(inode),
112 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
113 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
114 		      length);
115 }
116 
117 //
118 // when key is 0, do not set version and short key
119 //
120 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
121 			      int version,
122 			      loff_t offset, int type, int length,
123 			      int entry_count /*or ih_free_space */ )
124 {
125 	if (key) {
126 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
127 		ih->ih_key.k_objectid =
128 		    cpu_to_le32(key->on_disk_key.k_objectid);
129 	}
130 	put_ih_version(ih, version);
131 	set_le_ih_k_offset(ih, offset);
132 	set_le_ih_k_type(ih, type);
133 	put_ih_item_len(ih, length);
134 	/*    set_ih_free_space (ih, 0); */
135 	// for directory items it is entry count, for directs and stat
136 	// datas - 0xffff, for indirects - 0
137 	put_ih_entry_count(ih, entry_count);
138 }
139 
140 //
141 // FIXME: we might cache recently accessed indirect item
142 
143 // Ugh.  Not too eager for that....
144 //  I cut the code until such time as I see a convincing argument (benchmark).
145 // I don't want a bloated inode struct..., and I don't like code complexity....
146 
147 /* cutting the code is fine, since it really isn't in use yet and is easy
148 ** to add back in.  But, Vladimir has a really good idea here.  Think
149 ** about what happens for reading a file.  For each page,
150 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
151 ** an indirect item.  This indirect item has X number of pointers, where
152 ** X is a big number if we've done the block allocation right.  But,
153 ** we only use one or two of these pointers during each call to readpage,
154 ** needlessly researching again later on.
155 **
156 ** The size of the cache could be dynamic based on the size of the file.
157 **
158 ** I'd also like to see us cache the location the stat data item, since
159 ** we are needlessly researching for that frequently.
160 **
161 ** --chris
162 */
163 
164 /* If this page has a file tail in it, and
165 ** it was read in by get_block_create_0, the page data is valid,
166 ** but tail is still sitting in a direct item, and we can't write to
167 ** it.  So, look through this page, and check all the mapped buffers
168 ** to make sure they have valid block numbers.  Any that don't need
169 ** to be unmapped, so that __block_write_begin will correctly call
170 ** reiserfs_get_block to convert the tail into an unformatted node
171 */
172 static inline void fix_tail_page_for_writing(struct page *page)
173 {
174 	struct buffer_head *head, *next, *bh;
175 
176 	if (page && page_has_buffers(page)) {
177 		head = page_buffers(page);
178 		bh = head;
179 		do {
180 			next = bh->b_this_page;
181 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
182 				reiserfs_unmap_buffer(bh);
183 			}
184 			bh = next;
185 		} while (bh != head);
186 	}
187 }
188 
189 /* reiserfs_get_block does not need to allocate a block only if it has been
190    done already or non-hole position has been found in the indirect item */
191 static inline int allocation_needed(int retval, b_blocknr_t allocated,
192 				    struct item_head *ih,
193 				    __le32 * item, int pos_in_item)
194 {
195 	if (allocated)
196 		return 0;
197 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
198 	    get_block_num(item, pos_in_item))
199 		return 0;
200 	return 1;
201 }
202 
203 static inline int indirect_item_found(int retval, struct item_head *ih)
204 {
205 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
206 }
207 
208 static inline void set_block_dev_mapped(struct buffer_head *bh,
209 					b_blocknr_t block, struct inode *inode)
210 {
211 	map_bh(bh, inode->i_sb, block);
212 }
213 
214 //
215 // files which were created in the earlier version can not be longer,
216 // than 2 gb
217 //
218 static int file_capable(struct inode *inode, sector_t block)
219 {
220 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
221 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
222 		return 1;
223 
224 	return 0;
225 }
226 
227 static int restart_transaction(struct reiserfs_transaction_handle *th,
228 			       struct inode *inode, struct treepath *path)
229 {
230 	struct super_block *s = th->t_super;
231 	int len = th->t_blocks_allocated;
232 	int err;
233 
234 	BUG_ON(!th->t_trans_id);
235 	BUG_ON(!th->t_refcount);
236 
237 	pathrelse(path);
238 
239 	/* we cannot restart while nested */
240 	if (th->t_refcount > 1) {
241 		return 0;
242 	}
243 	reiserfs_update_sd(th, inode);
244 	err = journal_end(th, s, len);
245 	if (!err) {
246 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
247 		if (!err)
248 			reiserfs_update_inode_transaction(inode);
249 	}
250 	return err;
251 }
252 
253 // it is called by get_block when create == 0. Returns block number
254 // for 'block'-th logical block of file. When it hits direct item it
255 // returns 0 (being called from bmap) or read direct item into piece
256 // of page (bh_result)
257 
258 // Please improve the english/clarity in the comment above, as it is
259 // hard to understand.
260 
261 static int _get_block_create_0(struct inode *inode, sector_t block,
262 			       struct buffer_head *bh_result, int args)
263 {
264 	INITIALIZE_PATH(path);
265 	struct cpu_key key;
266 	struct buffer_head *bh;
267 	struct item_head *ih, tmp_ih;
268 	b_blocknr_t blocknr;
269 	char *p = NULL;
270 	int chars;
271 	int ret;
272 	int result;
273 	int done = 0;
274 	unsigned long offset;
275 
276 	// prepare the key to look for the 'block'-th block of file
277 	make_cpu_key(&key, inode,
278 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
279 		     3);
280 
281 	result = search_for_position_by_key(inode->i_sb, &key, &path);
282 	if (result != POSITION_FOUND) {
283 		pathrelse(&path);
284 		if (p)
285 			kunmap(bh_result->b_page);
286 		if (result == IO_ERROR)
287 			return -EIO;
288 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
289 		// That there is some MMAPED data associated with it that is yet to be written to disk.
290 		if ((args & GET_BLOCK_NO_HOLE)
291 		    && !PageUptodate(bh_result->b_page)) {
292 			return -ENOENT;
293 		}
294 		return 0;
295 	}
296 	//
297 	bh = get_last_bh(&path);
298 	ih = get_ih(&path);
299 	if (is_indirect_le_ih(ih)) {
300 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
301 
302 		/* FIXME: here we could cache indirect item or part of it in
303 		   the inode to avoid search_by_key in case of subsequent
304 		   access to file */
305 		blocknr = get_block_num(ind_item, path.pos_in_item);
306 		ret = 0;
307 		if (blocknr) {
308 			map_bh(bh_result, inode->i_sb, blocknr);
309 			if (path.pos_in_item ==
310 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
311 				set_buffer_boundary(bh_result);
312 			}
313 		} else
314 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
315 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
316 		if ((args & GET_BLOCK_NO_HOLE)
317 			    && !PageUptodate(bh_result->b_page)) {
318 			ret = -ENOENT;
319 		}
320 
321 		pathrelse(&path);
322 		if (p)
323 			kunmap(bh_result->b_page);
324 		return ret;
325 	}
326 	// requested data are in direct item(s)
327 	if (!(args & GET_BLOCK_READ_DIRECT)) {
328 		// we are called by bmap. FIXME: we can not map block of file
329 		// when it is stored in direct item(s)
330 		pathrelse(&path);
331 		if (p)
332 			kunmap(bh_result->b_page);
333 		return -ENOENT;
334 	}
335 
336 	/* if we've got a direct item, and the buffer or page was uptodate,
337 	 ** we don't want to pull data off disk again.  skip to the
338 	 ** end, where we map the buffer and return
339 	 */
340 	if (buffer_uptodate(bh_result)) {
341 		goto finished;
342 	} else
343 		/*
344 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
345 		 ** pages without any buffers.  If the page is up to date, we don't want
346 		 ** read old data off disk.  Set the up to date bit on the buffer instead
347 		 ** and jump to the end
348 		 */
349 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
350 		set_buffer_uptodate(bh_result);
351 		goto finished;
352 	}
353 	// read file tail into part of page
354 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
355 	copy_item_head(&tmp_ih, ih);
356 
357 	/* we only want to kmap if we are reading the tail into the page.
358 	 ** this is not the common case, so we don't kmap until we are
359 	 ** sure we need to.  But, this means the item might move if
360 	 ** kmap schedules
361 	 */
362 	if (!p)
363 		p = (char *)kmap(bh_result->b_page);
364 
365 	p += offset;
366 	memset(p, 0, inode->i_sb->s_blocksize);
367 	do {
368 		if (!is_direct_le_ih(ih)) {
369 			BUG();
370 		}
371 		/* make sure we don't read more bytes than actually exist in
372 		 ** the file.  This can happen in odd cases where i_size isn't
373 		 ** correct, and when direct item padding results in a few
374 		 ** extra bytes at the end of the direct item
375 		 */
376 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
377 			break;
378 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
379 			chars =
380 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
381 			    path.pos_in_item;
382 			done = 1;
383 		} else {
384 			chars = ih_item_len(ih) - path.pos_in_item;
385 		}
386 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
387 
388 		if (done)
389 			break;
390 
391 		p += chars;
392 
393 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
394 			// we done, if read direct item is not the last item of
395 			// node FIXME: we could try to check right delimiting key
396 			// to see whether direct item continues in the right
397 			// neighbor or rely on i_size
398 			break;
399 
400 		// update key to look for the next piece
401 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
402 		result = search_for_position_by_key(inode->i_sb, &key, &path);
403 		if (result != POSITION_FOUND)
404 			// i/o error most likely
405 			break;
406 		bh = get_last_bh(&path);
407 		ih = get_ih(&path);
408 	} while (1);
409 
410 	flush_dcache_page(bh_result->b_page);
411 	kunmap(bh_result->b_page);
412 
413       finished:
414 	pathrelse(&path);
415 
416 	if (result == IO_ERROR)
417 		return -EIO;
418 
419 	/* this buffer has valid data, but isn't valid for io.  mapping it to
420 	 * block #0 tells the rest of reiserfs it just has a tail in it
421 	 */
422 	map_bh(bh_result, inode->i_sb, 0);
423 	set_buffer_uptodate(bh_result);
424 	return 0;
425 }
426 
427 // this is called to create file map. So, _get_block_create_0 will not
428 // read direct item
429 static int reiserfs_bmap(struct inode *inode, sector_t block,
430 			 struct buffer_head *bh_result, int create)
431 {
432 	if (!file_capable(inode, block))
433 		return -EFBIG;
434 
435 	reiserfs_write_lock(inode->i_sb);
436 	/* do not read the direct item */
437 	_get_block_create_0(inode, block, bh_result, 0);
438 	reiserfs_write_unlock(inode->i_sb);
439 	return 0;
440 }
441 
442 /* special version of get_block that is only used by grab_tail_page right
443 ** now.  It is sent to __block_write_begin, and when you try to get a
444 ** block past the end of the file (or a block from a hole) it returns
445 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
446 ** be able to do i/o on the buffers returned, unless an error value
447 ** is also returned.
448 **
449 ** So, this allows __block_write_begin to be used for reading a single block
450 ** in a page.  Where it does not produce a valid page for holes, or past the
451 ** end of the file.  This turns out to be exactly what we need for reading
452 ** tails for conversion.
453 **
454 ** The point of the wrapper is forcing a certain value for create, even
455 ** though the VFS layer is calling this function with create==1.  If you
456 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
457 ** don't use this function.
458 */
459 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
460 				       struct buffer_head *bh_result,
461 				       int create)
462 {
463 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
464 }
465 
466 /* This is special helper for reiserfs_get_block in case we are executing
467    direct_IO request. */
468 static int reiserfs_get_blocks_direct_io(struct inode *inode,
469 					 sector_t iblock,
470 					 struct buffer_head *bh_result,
471 					 int create)
472 {
473 	int ret;
474 
475 	bh_result->b_page = NULL;
476 
477 	/* We set the b_size before reiserfs_get_block call since it is
478 	   referenced in convert_tail_for_hole() that may be called from
479 	   reiserfs_get_block() */
480 	bh_result->b_size = (1 << inode->i_blkbits);
481 
482 	ret = reiserfs_get_block(inode, iblock, bh_result,
483 				 create | GET_BLOCK_NO_DANGLE);
484 	if (ret)
485 		goto out;
486 
487 	/* don't allow direct io onto tail pages */
488 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
489 		/* make sure future calls to the direct io funcs for this offset
490 		 ** in the file fail by unmapping the buffer
491 		 */
492 		clear_buffer_mapped(bh_result);
493 		ret = -EINVAL;
494 	}
495 	/* Possible unpacked tail. Flush the data before pages have
496 	   disappeared */
497 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
498 		int err;
499 
500 		reiserfs_write_lock(inode->i_sb);
501 
502 		err = reiserfs_commit_for_inode(inode);
503 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
504 
505 		reiserfs_write_unlock(inode->i_sb);
506 
507 		if (err < 0)
508 			ret = err;
509 	}
510       out:
511 	return ret;
512 }
513 
514 /*
515 ** helper function for when reiserfs_get_block is called for a hole
516 ** but the file tail is still in a direct item
517 ** bh_result is the buffer head for the hole
518 ** tail_offset is the offset of the start of the tail in the file
519 **
520 ** This calls prepare_write, which will start a new transaction
521 ** you should not be in a transaction, or have any paths held when you
522 ** call this.
523 */
524 static int convert_tail_for_hole(struct inode *inode,
525 				 struct buffer_head *bh_result,
526 				 loff_t tail_offset)
527 {
528 	unsigned long index;
529 	unsigned long tail_end;
530 	unsigned long tail_start;
531 	struct page *tail_page;
532 	struct page *hole_page = bh_result->b_page;
533 	int retval = 0;
534 
535 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
536 		return -EIO;
537 
538 	/* always try to read until the end of the block */
539 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
540 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
541 
542 	index = tail_offset >> PAGE_CACHE_SHIFT;
543 	/* hole_page can be zero in case of direct_io, we are sure
544 	   that we cannot get here if we write with O_DIRECT into
545 	   tail page */
546 	if (!hole_page || index != hole_page->index) {
547 		tail_page = grab_cache_page(inode->i_mapping, index);
548 		retval = -ENOMEM;
549 		if (!tail_page) {
550 			goto out;
551 		}
552 	} else {
553 		tail_page = hole_page;
554 	}
555 
556 	/* we don't have to make sure the conversion did not happen while
557 	 ** we were locking the page because anyone that could convert
558 	 ** must first take i_mutex.
559 	 **
560 	 ** We must fix the tail page for writing because it might have buffers
561 	 ** that are mapped, but have a block number of 0.  This indicates tail
562 	 ** data that has been read directly into the page, and
563 	 ** __block_write_begin won't trigger a get_block in this case.
564 	 */
565 	fix_tail_page_for_writing(tail_page);
566 	retval = __reiserfs_write_begin(tail_page, tail_start,
567 				      tail_end - tail_start);
568 	if (retval)
569 		goto unlock;
570 
571 	/* tail conversion might change the data in the page */
572 	flush_dcache_page(tail_page);
573 
574 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
575 
576       unlock:
577 	if (tail_page != hole_page) {
578 		unlock_page(tail_page);
579 		page_cache_release(tail_page);
580 	}
581       out:
582 	return retval;
583 }
584 
585 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
586 				  sector_t block,
587 				  struct inode *inode,
588 				  b_blocknr_t * allocated_block_nr,
589 				  struct treepath *path, int flags)
590 {
591 	BUG_ON(!th->t_trans_id);
592 
593 #ifdef REISERFS_PREALLOCATE
594 	if (!(flags & GET_BLOCK_NO_IMUX)) {
595 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
596 						  path, block);
597 	}
598 #endif
599 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
600 					 block);
601 }
602 
603 int reiserfs_get_block(struct inode *inode, sector_t block,
604 		       struct buffer_head *bh_result, int create)
605 {
606 	int repeat, retval = 0;
607 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
608 	INITIALIZE_PATH(path);
609 	int pos_in_item;
610 	struct cpu_key key;
611 	struct buffer_head *bh, *unbh = NULL;
612 	struct item_head *ih, tmp_ih;
613 	__le32 *item;
614 	int done;
615 	int fs_gen;
616 	struct reiserfs_transaction_handle *th = NULL;
617 	/* space reserved in transaction batch:
618 	   . 3 balancings in direct->indirect conversion
619 	   . 1 block involved into reiserfs_update_sd()
620 	   XXX in practically impossible worst case direct2indirect()
621 	   can incur (much) more than 3 balancings.
622 	   quota update for user, group */
623 	int jbegin_count =
624 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
625 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
626 	int version;
627 	int dangle = 1;
628 	loff_t new_offset =
629 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
630 
631 	reiserfs_write_lock(inode->i_sb);
632 	version = get_inode_item_key_version(inode);
633 
634 	if (!file_capable(inode, block)) {
635 		reiserfs_write_unlock(inode->i_sb);
636 		return -EFBIG;
637 	}
638 
639 	/* if !create, we aren't changing the FS, so we don't need to
640 	 ** log anything, so we don't need to start a transaction
641 	 */
642 	if (!(create & GET_BLOCK_CREATE)) {
643 		int ret;
644 		/* find number of block-th logical block of the file */
645 		ret = _get_block_create_0(inode, block, bh_result,
646 					  create | GET_BLOCK_READ_DIRECT);
647 		reiserfs_write_unlock(inode->i_sb);
648 		return ret;
649 	}
650 	/*
651 	 * if we're already in a transaction, make sure to close
652 	 * any new transactions we start in this func
653 	 */
654 	if ((create & GET_BLOCK_NO_DANGLE) ||
655 	    reiserfs_transaction_running(inode->i_sb))
656 		dangle = 0;
657 
658 	/* If file is of such a size, that it might have a tail and tails are enabled
659 	 ** we should mark it as possibly needing tail packing on close
660 	 */
661 	if ((have_large_tails(inode->i_sb)
662 	     && inode->i_size < i_block_size(inode) * 4)
663 	    || (have_small_tails(inode->i_sb)
664 		&& inode->i_size < i_block_size(inode)))
665 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
666 
667 	/* set the key of the first byte in the 'block'-th block of file */
668 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
669 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
670 	      start_trans:
671 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
672 		if (!th) {
673 			retval = -ENOMEM;
674 			goto failure;
675 		}
676 		reiserfs_update_inode_transaction(inode);
677 	}
678       research:
679 
680 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
681 	if (retval == IO_ERROR) {
682 		retval = -EIO;
683 		goto failure;
684 	}
685 
686 	bh = get_last_bh(&path);
687 	ih = get_ih(&path);
688 	item = get_item(&path);
689 	pos_in_item = path.pos_in_item;
690 
691 	fs_gen = get_generation(inode->i_sb);
692 	copy_item_head(&tmp_ih, ih);
693 
694 	if (allocation_needed
695 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
696 		/* we have to allocate block for the unformatted node */
697 		if (!th) {
698 			pathrelse(&path);
699 			goto start_trans;
700 		}
701 
702 		repeat =
703 		    _allocate_block(th, block, inode, &allocated_block_nr,
704 				    &path, create);
705 
706 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
707 			/* restart the transaction to give the journal a chance to free
708 			 ** some blocks.  releases the path, so we have to go back to
709 			 ** research if we succeed on the second try
710 			 */
711 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
712 			retval = restart_transaction(th, inode, &path);
713 			if (retval)
714 				goto failure;
715 			repeat =
716 			    _allocate_block(th, block, inode,
717 					    &allocated_block_nr, NULL, create);
718 
719 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
720 				goto research;
721 			}
722 			if (repeat == QUOTA_EXCEEDED)
723 				retval = -EDQUOT;
724 			else
725 				retval = -ENOSPC;
726 			goto failure;
727 		}
728 
729 		if (fs_changed(fs_gen, inode->i_sb)
730 		    && item_moved(&tmp_ih, &path)) {
731 			goto research;
732 		}
733 	}
734 
735 	if (indirect_item_found(retval, ih)) {
736 		b_blocknr_t unfm_ptr;
737 		/* 'block'-th block is in the file already (there is
738 		   corresponding cell in some indirect item). But it may be
739 		   zero unformatted node pointer (hole) */
740 		unfm_ptr = get_block_num(item, pos_in_item);
741 		if (unfm_ptr == 0) {
742 			/* use allocated block to plug the hole */
743 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
744 			if (fs_changed(fs_gen, inode->i_sb)
745 			    && item_moved(&tmp_ih, &path)) {
746 				reiserfs_restore_prepared_buffer(inode->i_sb,
747 								 bh);
748 				goto research;
749 			}
750 			set_buffer_new(bh_result);
751 			if (buffer_dirty(bh_result)
752 			    && reiserfs_data_ordered(inode->i_sb))
753 				reiserfs_add_ordered_list(inode, bh_result);
754 			put_block_num(item, pos_in_item, allocated_block_nr);
755 			unfm_ptr = allocated_block_nr;
756 			journal_mark_dirty(th, inode->i_sb, bh);
757 			reiserfs_update_sd(th, inode);
758 		}
759 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
760 		pathrelse(&path);
761 		retval = 0;
762 		if (!dangle && th)
763 			retval = reiserfs_end_persistent_transaction(th);
764 
765 		reiserfs_write_unlock(inode->i_sb);
766 
767 		/* the item was found, so new blocks were not added to the file
768 		 ** there is no need to make sure the inode is updated with this
769 		 ** transaction
770 		 */
771 		return retval;
772 	}
773 
774 	if (!th) {
775 		pathrelse(&path);
776 		goto start_trans;
777 	}
778 
779 	/* desired position is not found or is in the direct item. We have
780 	   to append file with holes up to 'block'-th block converting
781 	   direct items to indirect one if necessary */
782 	done = 0;
783 	do {
784 		if (is_statdata_le_ih(ih)) {
785 			__le32 unp = 0;
786 			struct cpu_key tmp_key;
787 
788 			/* indirect item has to be inserted */
789 			make_le_item_head(&tmp_ih, &key, version, 1,
790 					  TYPE_INDIRECT, UNFM_P_SIZE,
791 					  0 /* free_space */ );
792 
793 			if (cpu_key_k_offset(&key) == 1) {
794 				/* we are going to add 'block'-th block to the file. Use
795 				   allocated block for that */
796 				unp = cpu_to_le32(allocated_block_nr);
797 				set_block_dev_mapped(bh_result,
798 						     allocated_block_nr, inode);
799 				set_buffer_new(bh_result);
800 				done = 1;
801 			}
802 			tmp_key = key;	// ;)
803 			set_cpu_key_k_offset(&tmp_key, 1);
804 			PATH_LAST_POSITION(&path)++;
805 
806 			retval =
807 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
808 						 inode, (char *)&unp);
809 			if (retval) {
810 				reiserfs_free_block(th, inode,
811 						    allocated_block_nr, 1);
812 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
813 			}
814 			//mark_tail_converted (inode);
815 		} else if (is_direct_le_ih(ih)) {
816 			/* direct item has to be converted */
817 			loff_t tail_offset;
818 
819 			tail_offset =
820 			    ((le_ih_k_offset(ih) -
821 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
822 			if (tail_offset == cpu_key_k_offset(&key)) {
823 				/* direct item we just found fits into block we have
824 				   to map. Convert it into unformatted node: use
825 				   bh_result for the conversion */
826 				set_block_dev_mapped(bh_result,
827 						     allocated_block_nr, inode);
828 				unbh = bh_result;
829 				done = 1;
830 			} else {
831 				/* we have to padd file tail stored in direct item(s)
832 				   up to block size and convert it to unformatted
833 				   node. FIXME: this should also get into page cache */
834 
835 				pathrelse(&path);
836 				/*
837 				 * ugly, but we can only end the transaction if
838 				 * we aren't nested
839 				 */
840 				BUG_ON(!th->t_refcount);
841 				if (th->t_refcount == 1) {
842 					retval =
843 					    reiserfs_end_persistent_transaction
844 					    (th);
845 					th = NULL;
846 					if (retval)
847 						goto failure;
848 				}
849 
850 				retval =
851 				    convert_tail_for_hole(inode, bh_result,
852 							  tail_offset);
853 				if (retval) {
854 					if (retval != -ENOSPC)
855 						reiserfs_error(inode->i_sb,
856 							"clm-6004",
857 							"convert tail failed "
858 							"inode %lu, error %d",
859 							inode->i_ino,
860 							retval);
861 					if (allocated_block_nr) {
862 						/* the bitmap, the super, and the stat data == 3 */
863 						if (!th)
864 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
865 						if (th)
866 							reiserfs_free_block(th,
867 									    inode,
868 									    allocated_block_nr,
869 									    1);
870 					}
871 					goto failure;
872 				}
873 				goto research;
874 			}
875 			retval =
876 			    direct2indirect(th, inode, &path, unbh,
877 					    tail_offset);
878 			if (retval) {
879 				reiserfs_unmap_buffer(unbh);
880 				reiserfs_free_block(th, inode,
881 						    allocated_block_nr, 1);
882 				goto failure;
883 			}
884 			/* it is important the set_buffer_uptodate is done after
885 			 ** the direct2indirect.  The buffer might contain valid
886 			 ** data newer than the data on disk (read by readpage, changed,
887 			 ** and then sent here by writepage).  direct2indirect needs
888 			 ** to know if unbh was already up to date, so it can decide
889 			 ** if the data in unbh needs to be replaced with data from
890 			 ** the disk
891 			 */
892 			set_buffer_uptodate(unbh);
893 
894 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
895 			   buffer will disappear shortly, so it should not be added to
896 			 */
897 			if (unbh->b_page) {
898 				/* we've converted the tail, so we must
899 				 ** flush unbh before the transaction commits
900 				 */
901 				reiserfs_add_tail_list(inode, unbh);
902 
903 				/* mark it dirty now to prevent commit_write from adding
904 				 ** this buffer to the inode's dirty buffer list
905 				 */
906 				/*
907 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
908 				 * It's still atomic, but it sets the page dirty too,
909 				 * which makes it eligible for writeback at any time by the
910 				 * VM (which was also the case with __mark_buffer_dirty())
911 				 */
912 				mark_buffer_dirty(unbh);
913 			}
914 		} else {
915 			/* append indirect item with holes if needed, when appending
916 			   pointer to 'block'-th block use block, which is already
917 			   allocated */
918 			struct cpu_key tmp_key;
919 			unp_t unf_single = 0;	// We use this in case we need to allocate only
920 			// one block which is a fastpath
921 			unp_t *un;
922 			__u64 max_to_insert =
923 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
924 			    UNFM_P_SIZE;
925 			__u64 blocks_needed;
926 
927 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
928 			       "vs-804: invalid position for append");
929 			/* indirect item has to be appended, set up key of that position */
930 			make_cpu_key(&tmp_key, inode,
931 				     le_key_k_offset(version,
932 						     &(ih->ih_key)) +
933 				     op_bytes_number(ih,
934 						     inode->i_sb->s_blocksize),
935 				     //pos_in_item * inode->i_sb->s_blocksize,
936 				     TYPE_INDIRECT, 3);	// key type is unimportant
937 
938 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
939 			       "green-805: invalid offset");
940 			blocks_needed =
941 			    1 +
942 			    ((cpu_key_k_offset(&key) -
943 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
944 			     s_blocksize_bits);
945 
946 			if (blocks_needed == 1) {
947 				un = &unf_single;
948 			} else {
949 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
950 				if (!un) {
951 					un = &unf_single;
952 					blocks_needed = 1;
953 					max_to_insert = 0;
954 				}
955 			}
956 			if (blocks_needed <= max_to_insert) {
957 				/* we are going to add target block to the file. Use allocated
958 				   block for that */
959 				un[blocks_needed - 1] =
960 				    cpu_to_le32(allocated_block_nr);
961 				set_block_dev_mapped(bh_result,
962 						     allocated_block_nr, inode);
963 				set_buffer_new(bh_result);
964 				done = 1;
965 			} else {
966 				/* paste hole to the indirect item */
967 				/* If kmalloc failed, max_to_insert becomes zero and it means we
968 				   only have space for one block */
969 				blocks_needed =
970 				    max_to_insert ? max_to_insert : 1;
971 			}
972 			retval =
973 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
974 						     (char *)un,
975 						     UNFM_P_SIZE *
976 						     blocks_needed);
977 
978 			if (blocks_needed != 1)
979 				kfree(un);
980 
981 			if (retval) {
982 				reiserfs_free_block(th, inode,
983 						    allocated_block_nr, 1);
984 				goto failure;
985 			}
986 			if (!done) {
987 				/* We need to mark new file size in case this function will be
988 				   interrupted/aborted later on. And we may do this only for
989 				   holes. */
990 				inode->i_size +=
991 				    inode->i_sb->s_blocksize * blocks_needed;
992 			}
993 		}
994 
995 		if (done == 1)
996 			break;
997 
998 		/* this loop could log more blocks than we had originally asked
999 		 ** for.  So, we have to allow the transaction to end if it is
1000 		 ** too big or too full.  Update the inode so things are
1001 		 ** consistent if we crash before the function returns
1002 		 **
1003 		 ** release the path so that anybody waiting on the path before
1004 		 ** ending their transaction will be able to continue.
1005 		 */
1006 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1007 			retval = restart_transaction(th, inode, &path);
1008 			if (retval)
1009 				goto failure;
1010 		}
1011 		/*
1012 		 * inserting indirect pointers for a hole can take a
1013 		 * long time.  reschedule if needed and also release the write
1014 		 * lock for others.
1015 		 */
1016 		reiserfs_cond_resched(inode->i_sb);
1017 
1018 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1019 		if (retval == IO_ERROR) {
1020 			retval = -EIO;
1021 			goto failure;
1022 		}
1023 		if (retval == POSITION_FOUND) {
1024 			reiserfs_warning(inode->i_sb, "vs-825",
1025 					 "%K should not be found", &key);
1026 			retval = -EEXIST;
1027 			if (allocated_block_nr)
1028 				reiserfs_free_block(th, inode,
1029 						    allocated_block_nr, 1);
1030 			pathrelse(&path);
1031 			goto failure;
1032 		}
1033 		bh = get_last_bh(&path);
1034 		ih = get_ih(&path);
1035 		item = get_item(&path);
1036 		pos_in_item = path.pos_in_item;
1037 	} while (1);
1038 
1039 	retval = 0;
1040 
1041       failure:
1042 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1043 		int err;
1044 		if (th->t_trans_id)
1045 			reiserfs_update_sd(th, inode);
1046 		err = reiserfs_end_persistent_transaction(th);
1047 		if (err)
1048 			retval = err;
1049 	}
1050 
1051 	reiserfs_write_unlock(inode->i_sb);
1052 	reiserfs_check_path(&path);
1053 	return retval;
1054 }
1055 
1056 static int
1057 reiserfs_readpages(struct file *file, struct address_space *mapping,
1058 		   struct list_head *pages, unsigned nr_pages)
1059 {
1060 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1061 }
1062 
1063 /* Compute real number of used bytes by file
1064  * Following three functions can go away when we'll have enough space in stat item
1065  */
1066 static int real_space_diff(struct inode *inode, int sd_size)
1067 {
1068 	int bytes;
1069 	loff_t blocksize = inode->i_sb->s_blocksize;
1070 
1071 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1072 		return sd_size;
1073 
1074 	/* End of file is also in full block with indirect reference, so round
1075 	 ** up to the next block.
1076 	 **
1077 	 ** there is just no way to know if the tail is actually packed
1078 	 ** on the file, so we have to assume it isn't.  When we pack the
1079 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1080 	 ** node pointer
1081 	 */
1082 	bytes =
1083 	    ((inode->i_size +
1084 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1085 	    sd_size;
1086 	return bytes;
1087 }
1088 
1089 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1090 					int sd_size)
1091 {
1092 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1093 		return inode->i_size +
1094 		    (loff_t) (real_space_diff(inode, sd_size));
1095 	}
1096 	return ((loff_t) real_space_diff(inode, sd_size)) +
1097 	    (((loff_t) blocks) << 9);
1098 }
1099 
1100 /* Compute number of blocks used by file in ReiserFS counting */
1101 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1102 {
1103 	loff_t bytes = inode_get_bytes(inode);
1104 	loff_t real_space = real_space_diff(inode, sd_size);
1105 
1106 	/* keeps fsck and non-quota versions of reiserfs happy */
1107 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1108 		bytes += (loff_t) 511;
1109 	}
1110 
1111 	/* files from before the quota patch might i_blocks such that
1112 	 ** bytes < real_space.  Deal with that here to prevent it from
1113 	 ** going negative.
1114 	 */
1115 	if (bytes < real_space)
1116 		return 0;
1117 	return (bytes - real_space) >> 9;
1118 }
1119 
1120 //
1121 // BAD: new directories have stat data of new type and all other items
1122 // of old type. Version stored in the inode says about body items, so
1123 // in update_stat_data we can not rely on inode, but have to check
1124 // item version directly
1125 //
1126 
1127 // called by read_locked_inode
1128 static void init_inode(struct inode *inode, struct treepath *path)
1129 {
1130 	struct buffer_head *bh;
1131 	struct item_head *ih;
1132 	__u32 rdev;
1133 	//int version = ITEM_VERSION_1;
1134 
1135 	bh = PATH_PLAST_BUFFER(path);
1136 	ih = PATH_PITEM_HEAD(path);
1137 
1138 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1139 
1140 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1141 	REISERFS_I(inode)->i_flags = 0;
1142 	REISERFS_I(inode)->i_prealloc_block = 0;
1143 	REISERFS_I(inode)->i_prealloc_count = 0;
1144 	REISERFS_I(inode)->i_trans_id = 0;
1145 	REISERFS_I(inode)->i_jl = NULL;
1146 	reiserfs_init_xattr_rwsem(inode);
1147 
1148 	if (stat_data_v1(ih)) {
1149 		struct stat_data_v1 *sd =
1150 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1151 		unsigned long blocks;
1152 
1153 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1154 		set_inode_sd_version(inode, STAT_DATA_V1);
1155 		inode->i_mode = sd_v1_mode(sd);
1156 		set_nlink(inode, sd_v1_nlink(sd));
1157 		i_uid_write(inode, sd_v1_uid(sd));
1158 		i_gid_write(inode, sd_v1_gid(sd));
1159 		inode->i_size = sd_v1_size(sd);
1160 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1161 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1162 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1163 		inode->i_atime.tv_nsec = 0;
1164 		inode->i_ctime.tv_nsec = 0;
1165 		inode->i_mtime.tv_nsec = 0;
1166 
1167 		inode->i_blocks = sd_v1_blocks(sd);
1168 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1169 		blocks = (inode->i_size + 511) >> 9;
1170 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1171 		if (inode->i_blocks > blocks) {
1172 			// there was a bug in <=3.5.23 when i_blocks could take negative
1173 			// values. Starting from 3.5.17 this value could even be stored in
1174 			// stat data. For such files we set i_blocks based on file
1175 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1176 			// only updated if file's inode will ever change
1177 			inode->i_blocks = blocks;
1178 		}
1179 
1180 		rdev = sd_v1_rdev(sd);
1181 		REISERFS_I(inode)->i_first_direct_byte =
1182 		    sd_v1_first_direct_byte(sd);
1183 		/* an early bug in the quota code can give us an odd number for the
1184 		 ** block count.  This is incorrect, fix it here.
1185 		 */
1186 		if (inode->i_blocks & 1) {
1187 			inode->i_blocks++;
1188 		}
1189 		inode_set_bytes(inode,
1190 				to_real_used_space(inode, inode->i_blocks,
1191 						   SD_V1_SIZE));
1192 		/* nopack is initially zero for v1 objects. For v2 objects,
1193 		   nopack is initialised from sd_attrs */
1194 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1195 	} else {
1196 		// new stat data found, but object may have old items
1197 		// (directories and symlinks)
1198 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1199 
1200 		inode->i_mode = sd_v2_mode(sd);
1201 		set_nlink(inode, sd_v2_nlink(sd));
1202 		i_uid_write(inode, sd_v2_uid(sd));
1203 		inode->i_size = sd_v2_size(sd);
1204 		i_gid_write(inode, sd_v2_gid(sd));
1205 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1206 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1207 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1208 		inode->i_ctime.tv_nsec = 0;
1209 		inode->i_mtime.tv_nsec = 0;
1210 		inode->i_atime.tv_nsec = 0;
1211 		inode->i_blocks = sd_v2_blocks(sd);
1212 		rdev = sd_v2_rdev(sd);
1213 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1214 			inode->i_generation =
1215 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1216 		else
1217 			inode->i_generation = sd_v2_generation(sd);
1218 
1219 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1220 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1221 		else
1222 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1223 		REISERFS_I(inode)->i_first_direct_byte = 0;
1224 		set_inode_sd_version(inode, STAT_DATA_V2);
1225 		inode_set_bytes(inode,
1226 				to_real_used_space(inode, inode->i_blocks,
1227 						   SD_V2_SIZE));
1228 		/* read persistent inode attributes from sd and initialise
1229 		   generic inode flags from them */
1230 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1231 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1232 	}
1233 
1234 	pathrelse(path);
1235 	if (S_ISREG(inode->i_mode)) {
1236 		inode->i_op = &reiserfs_file_inode_operations;
1237 		inode->i_fop = &reiserfs_file_operations;
1238 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1239 	} else if (S_ISDIR(inode->i_mode)) {
1240 		inode->i_op = &reiserfs_dir_inode_operations;
1241 		inode->i_fop = &reiserfs_dir_operations;
1242 	} else if (S_ISLNK(inode->i_mode)) {
1243 		inode->i_op = &reiserfs_symlink_inode_operations;
1244 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1245 	} else {
1246 		inode->i_blocks = 0;
1247 		inode->i_op = &reiserfs_special_inode_operations;
1248 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1249 	}
1250 }
1251 
1252 // update new stat data with inode fields
1253 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1254 {
1255 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1256 	__u16 flags;
1257 
1258 	set_sd_v2_mode(sd_v2, inode->i_mode);
1259 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1260 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1261 	set_sd_v2_size(sd_v2, size);
1262 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1263 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1264 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1265 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1266 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1267 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1268 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1269 	else
1270 		set_sd_v2_generation(sd_v2, inode->i_generation);
1271 	flags = REISERFS_I(inode)->i_attrs;
1272 	i_attrs_to_sd_attrs(inode, &flags);
1273 	set_sd_v2_attrs(sd_v2, flags);
1274 }
1275 
1276 // used to copy inode's fields to old stat data
1277 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1278 {
1279 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1280 
1281 	set_sd_v1_mode(sd_v1, inode->i_mode);
1282 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1283 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1284 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1285 	set_sd_v1_size(sd_v1, size);
1286 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1287 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1288 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1289 
1290 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1291 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1292 	else
1293 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1294 
1295 	// Sigh. i_first_direct_byte is back
1296 	set_sd_v1_first_direct_byte(sd_v1,
1297 				    REISERFS_I(inode)->i_first_direct_byte);
1298 }
1299 
1300 /* NOTE, you must prepare the buffer head before sending it here,
1301 ** and then log it after the call
1302 */
1303 static void update_stat_data(struct treepath *path, struct inode *inode,
1304 			     loff_t size)
1305 {
1306 	struct buffer_head *bh;
1307 	struct item_head *ih;
1308 
1309 	bh = PATH_PLAST_BUFFER(path);
1310 	ih = PATH_PITEM_HEAD(path);
1311 
1312 	if (!is_statdata_le_ih(ih))
1313 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1314 			       INODE_PKEY(inode), ih);
1315 
1316 	if (stat_data_v1(ih)) {
1317 		// path points to old stat data
1318 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1319 	} else {
1320 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1321 	}
1322 
1323 	return;
1324 }
1325 
1326 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1327 			     struct inode *inode, loff_t size)
1328 {
1329 	struct cpu_key key;
1330 	INITIALIZE_PATH(path);
1331 	struct buffer_head *bh;
1332 	int fs_gen;
1333 	struct item_head *ih, tmp_ih;
1334 	int retval;
1335 
1336 	BUG_ON(!th->t_trans_id);
1337 
1338 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1339 
1340 	for (;;) {
1341 		int pos;
1342 		/* look for the object's stat data */
1343 		retval = search_item(inode->i_sb, &key, &path);
1344 		if (retval == IO_ERROR) {
1345 			reiserfs_error(inode->i_sb, "vs-13050",
1346 				       "i/o failure occurred trying to "
1347 				       "update %K stat data", &key);
1348 			return;
1349 		}
1350 		if (retval == ITEM_NOT_FOUND) {
1351 			pos = PATH_LAST_POSITION(&path);
1352 			pathrelse(&path);
1353 			if (inode->i_nlink == 0) {
1354 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1355 				return;
1356 			}
1357 			reiserfs_warning(inode->i_sb, "vs-13060",
1358 					 "stat data of object %k (nlink == %d) "
1359 					 "not found (pos %d)",
1360 					 INODE_PKEY(inode), inode->i_nlink,
1361 					 pos);
1362 			reiserfs_check_path(&path);
1363 			return;
1364 		}
1365 
1366 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1367 		 ** FS might change.  We have to detect that, and loop back to the
1368 		 ** search if the stat data item has moved
1369 		 */
1370 		bh = get_last_bh(&path);
1371 		ih = get_ih(&path);
1372 		copy_item_head(&tmp_ih, ih);
1373 		fs_gen = get_generation(inode->i_sb);
1374 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1375 		if (fs_changed(fs_gen, inode->i_sb)
1376 		    && item_moved(&tmp_ih, &path)) {
1377 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1378 			continue;	/* Stat_data item has been moved after scheduling. */
1379 		}
1380 		break;
1381 	}
1382 	update_stat_data(&path, inode, size);
1383 	journal_mark_dirty(th, th->t_super, bh);
1384 	pathrelse(&path);
1385 	return;
1386 }
1387 
1388 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1389 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1390 ** and clear the key in the private portion of the inode, otherwise a
1391 ** corresponding iput might try to delete whatever object the inode last
1392 ** represented.
1393 */
1394 static void reiserfs_make_bad_inode(struct inode *inode)
1395 {
1396 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1397 	make_bad_inode(inode);
1398 }
1399 
1400 //
1401 // initially this function was derived from minix or ext2's analog and
1402 // evolved as the prototype did
1403 //
1404 
1405 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1406 {
1407 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1408 	inode->i_ino = args->objectid;
1409 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1410 	return 0;
1411 }
1412 
1413 /* looks for stat data in the tree, and fills up the fields of in-core
1414    inode stat data fields */
1415 void reiserfs_read_locked_inode(struct inode *inode,
1416 				struct reiserfs_iget_args *args)
1417 {
1418 	INITIALIZE_PATH(path_to_sd);
1419 	struct cpu_key key;
1420 	unsigned long dirino;
1421 	int retval;
1422 
1423 	dirino = args->dirid;
1424 
1425 	/* set version 1, version 2 could be used too, because stat data
1426 	   key is the same in both versions */
1427 	key.version = KEY_FORMAT_3_5;
1428 	key.on_disk_key.k_dir_id = dirino;
1429 	key.on_disk_key.k_objectid = inode->i_ino;
1430 	key.on_disk_key.k_offset = 0;
1431 	key.on_disk_key.k_type = 0;
1432 
1433 	/* look for the object's stat data */
1434 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1435 	if (retval == IO_ERROR) {
1436 		reiserfs_error(inode->i_sb, "vs-13070",
1437 			       "i/o failure occurred trying to find "
1438 			       "stat data of %K", &key);
1439 		reiserfs_make_bad_inode(inode);
1440 		return;
1441 	}
1442 	if (retval != ITEM_FOUND) {
1443 		/* a stale NFS handle can trigger this without it being an error */
1444 		pathrelse(&path_to_sd);
1445 		reiserfs_make_bad_inode(inode);
1446 		clear_nlink(inode);
1447 		return;
1448 	}
1449 
1450 	init_inode(inode, &path_to_sd);
1451 
1452 	/* It is possible that knfsd is trying to access inode of a file
1453 	   that is being removed from the disk by some other thread. As we
1454 	   update sd on unlink all that is required is to check for nlink
1455 	   here. This bug was first found by Sizif when debugging
1456 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1457 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1458 
1459 	   More logical fix would require changes in fs/inode.c:iput() to
1460 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1461 	   in iget() to return NULL if I_FREEING inode is found in
1462 	   hash-table. */
1463 	/* Currently there is one place where it's ok to meet inode with
1464 	   nlink==0: processing of open-unlinked and half-truncated files
1465 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1466 	if ((inode->i_nlink == 0) &&
1467 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1468 		reiserfs_warning(inode->i_sb, "vs-13075",
1469 				 "dead inode read from disk %K. "
1470 				 "This is likely to be race with knfsd. Ignore",
1471 				 &key);
1472 		reiserfs_make_bad_inode(inode);
1473 	}
1474 
1475 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1476 
1477 	/*
1478 	 * Stat data v1 doesn't support ACLs.
1479 	 */
1480 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1481 		cache_no_acl(inode);
1482 }
1483 
1484 /**
1485  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1486  *
1487  * @inode:    inode from hash table to check
1488  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1489  *
1490  * This function is called by iget5_locked() to distinguish reiserfs inodes
1491  * having the same inode numbers. Such inodes can only exist due to some
1492  * error condition. One of them should be bad. Inodes with identical
1493  * inode numbers (objectids) are distinguished by parent directory ids.
1494  *
1495  */
1496 int reiserfs_find_actor(struct inode *inode, void *opaque)
1497 {
1498 	struct reiserfs_iget_args *args;
1499 
1500 	args = opaque;
1501 	/* args is already in CPU order */
1502 	return (inode->i_ino == args->objectid) &&
1503 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1504 }
1505 
1506 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1507 {
1508 	struct inode *inode;
1509 	struct reiserfs_iget_args args;
1510 	int depth;
1511 
1512 	args.objectid = key->on_disk_key.k_objectid;
1513 	args.dirid = key->on_disk_key.k_dir_id;
1514 	depth = reiserfs_write_unlock_nested(s);
1515 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517 			     (void *)(&args));
1518 	reiserfs_write_lock_nested(s, depth);
1519 	if (!inode)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	if (inode->i_state & I_NEW) {
1523 		reiserfs_read_locked_inode(inode, &args);
1524 		unlock_new_inode(inode);
1525 	}
1526 
1527 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 		/* either due to i/o error or a stale NFS handle */
1529 		iput(inode);
1530 		inode = NULL;
1531 	}
1532 	return inode;
1533 }
1534 
1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 	u32 objectid, u32 dir_id, u32 generation)
1537 
1538 {
1539 	struct cpu_key key;
1540 	struct inode *inode;
1541 
1542 	key.on_disk_key.k_objectid = objectid;
1543 	key.on_disk_key.k_dir_id = dir_id;
1544 	reiserfs_write_lock(sb);
1545 	inode = reiserfs_iget(sb, &key);
1546 	if (inode && !IS_ERR(inode) && generation != 0 &&
1547 	    generation != inode->i_generation) {
1548 		iput(inode);
1549 		inode = NULL;
1550 	}
1551 	reiserfs_write_unlock(sb);
1552 
1553 	return d_obtain_alias(inode);
1554 }
1555 
1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 		int fh_len, int fh_type)
1558 {
1559 	/* fhtype happens to reflect the number of u32s encoded.
1560 	 * due to a bug in earlier code, fhtype might indicate there
1561 	 * are more u32s then actually fitted.
1562 	 * so if fhtype seems to be more than len, reduce fhtype.
1563 	 * Valid types are:
1564 	 *   2 - objectid + dir_id - legacy support
1565 	 *   3 - objectid + dir_id + generation
1566 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568 	 *   6 - as above plus generation of directory
1569 	 * 6 does not fit in NFSv2 handles
1570 	 */
1571 	if (fh_type > fh_len) {
1572 		if (fh_type != 6 || fh_len != 5)
1573 			reiserfs_warning(sb, "reiserfs-13077",
1574 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 				fh_type, fh_len);
1576 		fh_type = fh_len;
1577 	}
1578 	if (fh_len < 2)
1579 		return NULL;
1580 
1581 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583 }
1584 
1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586 		int fh_len, int fh_type)
1587 {
1588 	if (fh_type > fh_len)
1589 		fh_type = fh_len;
1590 	if (fh_type < 4)
1591 		return NULL;
1592 
1593 	return reiserfs_get_dentry(sb,
1594 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596 		(fh_type == 6) ? fid->raw[5] : 0);
1597 }
1598 
1599 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600 		       struct inode *parent)
1601 {
1602 	int maxlen = *lenp;
1603 
1604 	if (parent && (maxlen < 5)) {
1605 		*lenp = 5;
1606 		return FILEID_INVALID;
1607 	} else if (maxlen < 3) {
1608 		*lenp = 3;
1609 		return FILEID_INVALID;
1610 	}
1611 
1612 	data[0] = inode->i_ino;
1613 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614 	data[2] = inode->i_generation;
1615 	*lenp = 3;
1616 	if (parent) {
1617 		data[3] = parent->i_ino;
1618 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619 		*lenp = 5;
1620 		if (maxlen >= 6) {
1621 			data[5] = parent->i_generation;
1622 			*lenp = 6;
1623 		}
1624 	}
1625 	return *lenp;
1626 }
1627 
1628 /* looks for stat data, then copies fields to it, marks the buffer
1629    containing stat data as dirty */
1630 /* reiserfs inodes are never really dirty, since the dirty inode call
1631 ** always logs them.  This call allows the VFS inode marking routines
1632 ** to properly mark inodes for datasync and such, but only actually
1633 ** does something when called for a synchronous update.
1634 */
1635 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1636 {
1637 	struct reiserfs_transaction_handle th;
1638 	int jbegin_count = 1;
1639 
1640 	if (inode->i_sb->s_flags & MS_RDONLY)
1641 		return -EROFS;
1642 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643 	 ** these cases are just when the system needs ram, not when the
1644 	 ** inode needs to reach disk for safety, and they can safely be
1645 	 ** ignored because the altered inode has already been logged.
1646 	 */
1647 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648 		reiserfs_write_lock(inode->i_sb);
1649 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650 			reiserfs_update_sd(&th, inode);
1651 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1652 		}
1653 		reiserfs_write_unlock(inode->i_sb);
1654 	}
1655 	return 0;
1656 }
1657 
1658 /* stat data of new object is inserted already, this inserts the item
1659    containing "." and ".." entries */
1660 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661 				  struct inode *inode,
1662 				  struct item_head *ih, struct treepath *path,
1663 				  struct inode *dir)
1664 {
1665 	struct super_block *sb = th->t_super;
1666 	char empty_dir[EMPTY_DIR_SIZE];
1667 	char *body = empty_dir;
1668 	struct cpu_key key;
1669 	int retval;
1670 
1671 	BUG_ON(!th->t_trans_id);
1672 
1673 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675 		      TYPE_DIRENTRY, 3 /*key length */ );
1676 
1677 	/* compose item head for new item. Directories consist of items of
1678 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679 	   is done by reiserfs_new_inode */
1680 	if (old_format_only(sb)) {
1681 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1683 
1684 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685 				       ih->ih_key.k_objectid,
1686 				       INODE_PKEY(dir)->k_dir_id,
1687 				       INODE_PKEY(dir)->k_objectid);
1688 	} else {
1689 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1690 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1691 
1692 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693 				    ih->ih_key.k_objectid,
1694 				    INODE_PKEY(dir)->k_dir_id,
1695 				    INODE_PKEY(dir)->k_objectid);
1696 	}
1697 
1698 	/* look for place in the tree for new item */
1699 	retval = search_item(sb, &key, path);
1700 	if (retval == IO_ERROR) {
1701 		reiserfs_error(sb, "vs-13080",
1702 			       "i/o failure occurred creating new directory");
1703 		return -EIO;
1704 	}
1705 	if (retval == ITEM_FOUND) {
1706 		pathrelse(path);
1707 		reiserfs_warning(sb, "vs-13070",
1708 				 "object with this key exists (%k)",
1709 				 &(ih->ih_key));
1710 		return -EEXIST;
1711 	}
1712 
1713 	/* insert item, that is empty directory item */
1714 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1715 }
1716 
1717 /* stat data of object has been inserted, this inserts the item
1718    containing the body of symlink */
1719 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1720 				struct item_head *ih,
1721 				struct treepath *path, const char *symname,
1722 				int item_len)
1723 {
1724 	struct super_block *sb = th->t_super;
1725 	struct cpu_key key;
1726 	int retval;
1727 
1728 	BUG_ON(!th->t_trans_id);
1729 
1730 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1731 		      le32_to_cpu(ih->ih_key.k_dir_id),
1732 		      le32_to_cpu(ih->ih_key.k_objectid),
1733 		      1, TYPE_DIRECT, 3 /*key length */ );
1734 
1735 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736 			  0 /*free_space */ );
1737 
1738 	/* look for place in the tree for new item */
1739 	retval = search_item(sb, &key, path);
1740 	if (retval == IO_ERROR) {
1741 		reiserfs_error(sb, "vs-13080",
1742 			       "i/o failure occurred creating new symlink");
1743 		return -EIO;
1744 	}
1745 	if (retval == ITEM_FOUND) {
1746 		pathrelse(path);
1747 		reiserfs_warning(sb, "vs-13080",
1748 				 "object with this key exists (%k)",
1749 				 &(ih->ih_key));
1750 		return -EEXIST;
1751 	}
1752 
1753 	/* insert item, that is body of symlink */
1754 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1755 }
1756 
1757 /* inserts the stat data into the tree, and then calls
1758    reiserfs_new_directory (to insert ".", ".." item if new object is
1759    directory) or reiserfs_new_symlink (to insert symlink body if new
1760    object is symlink) or nothing (if new object is regular file)
1761 
1762    NOTE! uid and gid must already be set in the inode.  If we return
1763    non-zero due to an error, we have to drop the quota previously allocated
1764    for the fresh inode.  This can only be done outside a transaction, so
1765    if we return non-zero, we also end the transaction.  */
1766 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1767 		       struct inode *dir, umode_t mode, const char *symname,
1768 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769 		          strlen (symname) for symlinks) */
1770 		       loff_t i_size, struct dentry *dentry,
1771 		       struct inode *inode,
1772 		       struct reiserfs_security_handle *security)
1773 {
1774 	struct super_block *sb = dir->i_sb;
1775 	struct reiserfs_iget_args args;
1776 	INITIALIZE_PATH(path_to_key);
1777 	struct cpu_key key;
1778 	struct item_head ih;
1779 	struct stat_data sd;
1780 	int retval;
1781 	int err;
1782 	int depth;
1783 
1784 	BUG_ON(!th->t_trans_id);
1785 
1786 	depth = reiserfs_write_unlock_nested(sb);
1787 	err = dquot_alloc_inode(inode);
1788 	reiserfs_write_lock_nested(sb, depth);
1789 	if (err)
1790 		goto out_end_trans;
1791 	if (!dir->i_nlink) {
1792 		err = -EPERM;
1793 		goto out_bad_inode;
1794 	}
1795 
1796 	/* item head of new item */
1797 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1798 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1799 	if (!ih.ih_key.k_objectid) {
1800 		err = -ENOMEM;
1801 		goto out_bad_inode;
1802 	}
1803 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1804 	if (old_format_only(sb))
1805 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1806 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1807 	else
1808 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1809 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1810 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1811 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1812 
1813 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1814 	err = insert_inode_locked4(inode, args.objectid,
1815 			     reiserfs_find_actor, &args);
1816 	reiserfs_write_lock_nested(inode->i_sb, depth);
1817 	if (err) {
1818 		err = -EINVAL;
1819 		goto out_bad_inode;
1820 	}
1821 
1822 	if (old_format_only(sb))
1823 		/* not a perfect generation count, as object ids can be reused, but
1824 		 ** this is as good as reiserfs can do right now.
1825 		 ** note that the private part of inode isn't filled in yet, we have
1826 		 ** to use the directory.
1827 		 */
1828 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1829 	else
1830 #if defined( USE_INODE_GENERATION_COUNTER )
1831 		inode->i_generation =
1832 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1833 #else
1834 		inode->i_generation = ++event;
1835 #endif
1836 
1837 	/* fill stat data */
1838 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1839 
1840 	/* uid and gid must already be set by the caller for quota init */
1841 
1842 	/* symlink cannot be immutable or append only, right? */
1843 	if (S_ISLNK(inode->i_mode))
1844 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1845 
1846 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1847 	inode->i_size = i_size;
1848 	inode->i_blocks = 0;
1849 	inode->i_bytes = 0;
1850 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1851 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1852 
1853 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1854 	REISERFS_I(inode)->i_flags = 0;
1855 	REISERFS_I(inode)->i_prealloc_block = 0;
1856 	REISERFS_I(inode)->i_prealloc_count = 0;
1857 	REISERFS_I(inode)->i_trans_id = 0;
1858 	REISERFS_I(inode)->i_jl = NULL;
1859 	REISERFS_I(inode)->i_attrs =
1860 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1861 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1862 	reiserfs_init_xattr_rwsem(inode);
1863 
1864 	/* key to search for correct place for new stat data */
1865 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1866 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1867 		      TYPE_STAT_DATA, 3 /*key length */ );
1868 
1869 	/* find proper place for inserting of stat data */
1870 	retval = search_item(sb, &key, &path_to_key);
1871 	if (retval == IO_ERROR) {
1872 		err = -EIO;
1873 		goto out_bad_inode;
1874 	}
1875 	if (retval == ITEM_FOUND) {
1876 		pathrelse(&path_to_key);
1877 		err = -EEXIST;
1878 		goto out_bad_inode;
1879 	}
1880 	if (old_format_only(sb)) {
1881 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1882 			pathrelse(&path_to_key);
1883 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1884 			err = -EINVAL;
1885 			goto out_bad_inode;
1886 		}
1887 		inode2sd_v1(&sd, inode, inode->i_size);
1888 	} else {
1889 		inode2sd(&sd, inode, inode->i_size);
1890 	}
1891 	// store in in-core inode the key of stat data and version all
1892 	// object items will have (directory items will have old offset
1893 	// format, other new objects will consist of new items)
1894 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1895 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1896 	else
1897 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1898 	if (old_format_only(sb))
1899 		set_inode_sd_version(inode, STAT_DATA_V1);
1900 	else
1901 		set_inode_sd_version(inode, STAT_DATA_V2);
1902 
1903 	/* insert the stat data into the tree */
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 	if (REISERFS_I(dir)->new_packing_locality)
1906 		th->displace_new_blocks = 1;
1907 #endif
1908 	retval =
1909 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1910 				 (char *)(&sd));
1911 	if (retval) {
1912 		err = retval;
1913 		reiserfs_check_path(&path_to_key);
1914 		goto out_bad_inode;
1915 	}
1916 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1917 	if (!th->displace_new_blocks)
1918 		REISERFS_I(dir)->new_packing_locality = 0;
1919 #endif
1920 	if (S_ISDIR(mode)) {
1921 		/* insert item with "." and ".." */
1922 		retval =
1923 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1924 	}
1925 
1926 	if (S_ISLNK(mode)) {
1927 		/* insert body of symlink */
1928 		if (!old_format_only(sb))
1929 			i_size = ROUND_UP(i_size);
1930 		retval =
1931 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1932 					 i_size);
1933 	}
1934 	if (retval) {
1935 		err = retval;
1936 		reiserfs_check_path(&path_to_key);
1937 		journal_end(th, th->t_super, th->t_blocks_allocated);
1938 		goto out_inserted_sd;
1939 	}
1940 
1941 	if (reiserfs_posixacl(inode->i_sb)) {
1942 		reiserfs_write_unlock(inode->i_sb);
1943 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1944 		reiserfs_write_lock(inode->i_sb);
1945 		if (retval) {
1946 			err = retval;
1947 			reiserfs_check_path(&path_to_key);
1948 			journal_end(th, th->t_super, th->t_blocks_allocated);
1949 			goto out_inserted_sd;
1950 		}
1951 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952 		reiserfs_warning(inode->i_sb, "jdm-13090",
1953 				 "ACLs aren't enabled in the fs, "
1954 				 "but vfs thinks they are!");
1955 	} else if (IS_PRIVATE(dir))
1956 		inode->i_flags |= S_PRIVATE;
1957 
1958 	if (security->name) {
1959 		reiserfs_write_unlock(inode->i_sb);
1960 		retval = reiserfs_security_write(th, inode, security);
1961 		reiserfs_write_lock(inode->i_sb);
1962 		if (retval) {
1963 			err = retval;
1964 			reiserfs_check_path(&path_to_key);
1965 			retval = journal_end(th, th->t_super,
1966 					     th->t_blocks_allocated);
1967 			if (retval)
1968 				err = retval;
1969 			goto out_inserted_sd;
1970 		}
1971 	}
1972 
1973 	reiserfs_update_sd(th, inode);
1974 	reiserfs_check_path(&path_to_key);
1975 
1976 	return 0;
1977 
1978 /* it looks like you can easily compress these two goto targets into
1979  * one.  Keeping it like this doesn't actually hurt anything, and they
1980  * are place holders for what the quota code actually needs.
1981  */
1982       out_bad_inode:
1983 	/* Invalidate the object, nothing was inserted yet */
1984 	INODE_PKEY(inode)->k_objectid = 0;
1985 
1986 	/* Quota change must be inside a transaction for journaling */
1987 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1988 	dquot_free_inode(inode);
1989 	reiserfs_write_lock_nested(inode->i_sb, depth);
1990 
1991       out_end_trans:
1992 	journal_end(th, th->t_super, th->t_blocks_allocated);
1993 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1994 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1995 	dquot_drop(inode);
1996 	reiserfs_write_lock_nested(inode->i_sb, depth);
1997 	inode->i_flags |= S_NOQUOTA;
1998 	make_bad_inode(inode);
1999 
2000       out_inserted_sd:
2001 	clear_nlink(inode);
2002 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2003 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2004 	iput(inode);
2005 	return err;
2006 }
2007 
2008 /*
2009 ** finds the tail page in the page cache,
2010 ** reads the last block in.
2011 **
2012 ** On success, page_result is set to a locked, pinned page, and bh_result
2013 ** is set to an up to date buffer for the last block in the file.  returns 0.
2014 **
2015 ** tail conversion is not done, so bh_result might not be valid for writing
2016 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2017 ** trying to write the block.
2018 **
2019 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2020 */
2021 static int grab_tail_page(struct inode *inode,
2022 			  struct page **page_result,
2023 			  struct buffer_head **bh_result)
2024 {
2025 
2026 	/* we want the page with the last byte in the file,
2027 	 ** not the page that will hold the next byte for appending
2028 	 */
2029 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2030 	unsigned long pos = 0;
2031 	unsigned long start = 0;
2032 	unsigned long blocksize = inode->i_sb->s_blocksize;
2033 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2034 	struct buffer_head *bh;
2035 	struct buffer_head *head;
2036 	struct page *page;
2037 	int error;
2038 
2039 	/* we know that we are only called with inode->i_size > 0.
2040 	 ** we also know that a file tail can never be as big as a block
2041 	 ** If i_size % blocksize == 0, our file is currently block aligned
2042 	 ** and it won't need converting or zeroing after a truncate.
2043 	 */
2044 	if ((offset & (blocksize - 1)) == 0) {
2045 		return -ENOENT;
2046 	}
2047 	page = grab_cache_page(inode->i_mapping, index);
2048 	error = -ENOMEM;
2049 	if (!page) {
2050 		goto out;
2051 	}
2052 	/* start within the page of the last block in the file */
2053 	start = (offset / blocksize) * blocksize;
2054 
2055 	error = __block_write_begin(page, start, offset - start,
2056 				    reiserfs_get_block_create_0);
2057 	if (error)
2058 		goto unlock;
2059 
2060 	head = page_buffers(page);
2061 	bh = head;
2062 	do {
2063 		if (pos >= start) {
2064 			break;
2065 		}
2066 		bh = bh->b_this_page;
2067 		pos += blocksize;
2068 	} while (bh != head);
2069 
2070 	if (!buffer_uptodate(bh)) {
2071 		/* note, this should never happen, prepare_write should
2072 		 ** be taking care of this for us.  If the buffer isn't up to date,
2073 		 ** I've screwed up the code to find the buffer, or the code to
2074 		 ** call prepare_write
2075 		 */
2076 		reiserfs_error(inode->i_sb, "clm-6000",
2077 			       "error reading block %lu", bh->b_blocknr);
2078 		error = -EIO;
2079 		goto unlock;
2080 	}
2081 	*bh_result = bh;
2082 	*page_result = page;
2083 
2084       out:
2085 	return error;
2086 
2087       unlock:
2088 	unlock_page(page);
2089 	page_cache_release(page);
2090 	return error;
2091 }
2092 
2093 /*
2094 ** vfs version of truncate file.  Must NOT be called with
2095 ** a transaction already started.
2096 **
2097 ** some code taken from block_truncate_page
2098 */
2099 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2100 {
2101 	struct reiserfs_transaction_handle th;
2102 	/* we want the offset for the first byte after the end of the file */
2103 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2104 	unsigned blocksize = inode->i_sb->s_blocksize;
2105 	unsigned length;
2106 	struct page *page = NULL;
2107 	int error;
2108 	struct buffer_head *bh = NULL;
2109 	int err2;
2110 
2111 	reiserfs_write_lock(inode->i_sb);
2112 
2113 	if (inode->i_size > 0) {
2114 		error = grab_tail_page(inode, &page, &bh);
2115 		if (error) {
2116 			// -ENOENT means we truncated past the end of the file,
2117 			// and get_block_create_0 could not find a block to read in,
2118 			// which is ok.
2119 			if (error != -ENOENT)
2120 				reiserfs_error(inode->i_sb, "clm-6001",
2121 					       "grab_tail_page failed %d",
2122 					       error);
2123 			page = NULL;
2124 			bh = NULL;
2125 		}
2126 	}
2127 
2128 	/* so, if page != NULL, we have a buffer head for the offset at
2129 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2130 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2131 	 ** and no zeroing is required on disk.  We zero after the truncate,
2132 	 ** because the truncate might pack the item anyway
2133 	 ** (it will unmap bh if it packs).
2134 	 */
2135 	/* it is enough to reserve space in transaction for 2 balancings:
2136 	   one for "save" link adding and another for the first
2137 	   cut_from_item. 1 is for update_sd */
2138 	error = journal_begin(&th, inode->i_sb,
2139 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2140 	if (error)
2141 		goto out;
2142 	reiserfs_update_inode_transaction(inode);
2143 	if (update_timestamps)
2144 		/* we are doing real truncate: if the system crashes before the last
2145 		   transaction of truncating gets committed - on reboot the file
2146 		   either appears truncated properly or not truncated at all */
2147 		add_save_link(&th, inode, 1);
2148 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2149 	error =
2150 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2151 	if (error)
2152 		goto out;
2153 
2154 	/* check reiserfs_do_truncate after ending the transaction */
2155 	if (err2) {
2156 		error = err2;
2157   		goto out;
2158 	}
2159 
2160 	if (update_timestamps) {
2161 		error = remove_save_link(inode, 1 /* truncate */);
2162 		if (error)
2163 			goto out;
2164 	}
2165 
2166 	if (page) {
2167 		length = offset & (blocksize - 1);
2168 		/* if we are not on a block boundary */
2169 		if (length) {
2170 			length = blocksize - length;
2171 			zero_user(page, offset, length);
2172 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2173 				mark_buffer_dirty(bh);
2174 			}
2175 		}
2176 		unlock_page(page);
2177 		page_cache_release(page);
2178 	}
2179 
2180 	reiserfs_write_unlock(inode->i_sb);
2181 
2182 	return 0;
2183       out:
2184 	if (page) {
2185 		unlock_page(page);
2186 		page_cache_release(page);
2187 	}
2188 
2189 	reiserfs_write_unlock(inode->i_sb);
2190 
2191 	return error;
2192 }
2193 
2194 static int map_block_for_writepage(struct inode *inode,
2195 				   struct buffer_head *bh_result,
2196 				   unsigned long block)
2197 {
2198 	struct reiserfs_transaction_handle th;
2199 	int fs_gen;
2200 	struct item_head tmp_ih;
2201 	struct item_head *ih;
2202 	struct buffer_head *bh;
2203 	__le32 *item;
2204 	struct cpu_key key;
2205 	INITIALIZE_PATH(path);
2206 	int pos_in_item;
2207 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2208 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2209 	int retval;
2210 	int use_get_block = 0;
2211 	int bytes_copied = 0;
2212 	int copy_size;
2213 	int trans_running = 0;
2214 
2215 	/* catch places below that try to log something without starting a trans */
2216 	th.t_trans_id = 0;
2217 
2218 	if (!buffer_uptodate(bh_result)) {
2219 		return -EIO;
2220 	}
2221 
2222 	kmap(bh_result->b_page);
2223       start_over:
2224 	reiserfs_write_lock(inode->i_sb);
2225 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2226 
2227       research:
2228 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2229 	if (retval != POSITION_FOUND) {
2230 		use_get_block = 1;
2231 		goto out;
2232 	}
2233 
2234 	bh = get_last_bh(&path);
2235 	ih = get_ih(&path);
2236 	item = get_item(&path);
2237 	pos_in_item = path.pos_in_item;
2238 
2239 	/* we've found an unformatted node */
2240 	if (indirect_item_found(retval, ih)) {
2241 		if (bytes_copied > 0) {
2242 			reiserfs_warning(inode->i_sb, "clm-6002",
2243 					 "bytes_copied %d", bytes_copied);
2244 		}
2245 		if (!get_block_num(item, pos_in_item)) {
2246 			/* crap, we are writing to a hole */
2247 			use_get_block = 1;
2248 			goto out;
2249 		}
2250 		set_block_dev_mapped(bh_result,
2251 				     get_block_num(item, pos_in_item), inode);
2252 	} else if (is_direct_le_ih(ih)) {
2253 		char *p;
2254 		p = page_address(bh_result->b_page);
2255 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2256 		copy_size = ih_item_len(ih) - pos_in_item;
2257 
2258 		fs_gen = get_generation(inode->i_sb);
2259 		copy_item_head(&tmp_ih, ih);
2260 
2261 		if (!trans_running) {
2262 			/* vs-3050 is gone, no need to drop the path */
2263 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2264 			if (retval)
2265 				goto out;
2266 			reiserfs_update_inode_transaction(inode);
2267 			trans_running = 1;
2268 			if (fs_changed(fs_gen, inode->i_sb)
2269 			    && item_moved(&tmp_ih, &path)) {
2270 				reiserfs_restore_prepared_buffer(inode->i_sb,
2271 								 bh);
2272 				goto research;
2273 			}
2274 		}
2275 
2276 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2277 
2278 		if (fs_changed(fs_gen, inode->i_sb)
2279 		    && item_moved(&tmp_ih, &path)) {
2280 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2281 			goto research;
2282 		}
2283 
2284 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2285 		       copy_size);
2286 
2287 		journal_mark_dirty(&th, inode->i_sb, bh);
2288 		bytes_copied += copy_size;
2289 		set_block_dev_mapped(bh_result, 0, inode);
2290 
2291 		/* are there still bytes left? */
2292 		if (bytes_copied < bh_result->b_size &&
2293 		    (byte_offset + bytes_copied) < inode->i_size) {
2294 			set_cpu_key_k_offset(&key,
2295 					     cpu_key_k_offset(&key) +
2296 					     copy_size);
2297 			goto research;
2298 		}
2299 	} else {
2300 		reiserfs_warning(inode->i_sb, "clm-6003",
2301 				 "bad item inode %lu", inode->i_ino);
2302 		retval = -EIO;
2303 		goto out;
2304 	}
2305 	retval = 0;
2306 
2307       out:
2308 	pathrelse(&path);
2309 	if (trans_running) {
2310 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2311 		if (err)
2312 			retval = err;
2313 		trans_running = 0;
2314 	}
2315 	reiserfs_write_unlock(inode->i_sb);
2316 
2317 	/* this is where we fill in holes in the file. */
2318 	if (use_get_block) {
2319 		retval = reiserfs_get_block(inode, block, bh_result,
2320 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2321 					    | GET_BLOCK_NO_DANGLE);
2322 		if (!retval) {
2323 			if (!buffer_mapped(bh_result)
2324 			    || bh_result->b_blocknr == 0) {
2325 				/* get_block failed to find a mapped unformatted node. */
2326 				use_get_block = 0;
2327 				goto start_over;
2328 			}
2329 		}
2330 	}
2331 	kunmap(bh_result->b_page);
2332 
2333 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2334 		/* we've copied data from the page into the direct item, so the
2335 		 * buffer in the page is now clean, mark it to reflect that.
2336 		 */
2337 		lock_buffer(bh_result);
2338 		clear_buffer_dirty(bh_result);
2339 		unlock_buffer(bh_result);
2340 	}
2341 	return retval;
2342 }
2343 
2344 /*
2345  * mason@suse.com: updated in 2.5.54 to follow the same general io
2346  * start/recovery path as __block_write_full_page, along with special
2347  * code to handle reiserfs tails.
2348  */
2349 static int reiserfs_write_full_page(struct page *page,
2350 				    struct writeback_control *wbc)
2351 {
2352 	struct inode *inode = page->mapping->host;
2353 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2354 	int error = 0;
2355 	unsigned long block;
2356 	sector_t last_block;
2357 	struct buffer_head *head, *bh;
2358 	int partial = 0;
2359 	int nr = 0;
2360 	int checked = PageChecked(page);
2361 	struct reiserfs_transaction_handle th;
2362 	struct super_block *s = inode->i_sb;
2363 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2364 	th.t_trans_id = 0;
2365 
2366 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2367 	if (checked && (current->flags & PF_MEMALLOC)) {
2368 		redirty_page_for_writepage(wbc, page);
2369 		unlock_page(page);
2370 		return 0;
2371 	}
2372 
2373 	/* The page dirty bit is cleared before writepage is called, which
2374 	 * means we have to tell create_empty_buffers to make dirty buffers
2375 	 * The page really should be up to date at this point, so tossing
2376 	 * in the BH_Uptodate is just a sanity check.
2377 	 */
2378 	if (!page_has_buffers(page)) {
2379 		create_empty_buffers(page, s->s_blocksize,
2380 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2381 	}
2382 	head = page_buffers(page);
2383 
2384 	/* last page in the file, zero out any contents past the
2385 	 ** last byte in the file
2386 	 */
2387 	if (page->index >= end_index) {
2388 		unsigned last_offset;
2389 
2390 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2391 		/* no file contents in this page */
2392 		if (page->index >= end_index + 1 || !last_offset) {
2393 			unlock_page(page);
2394 			return 0;
2395 		}
2396 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2397 	}
2398 	bh = head;
2399 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2400 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2401 	/* first map all the buffers, logging any direct items we find */
2402 	do {
2403 		if (block > last_block) {
2404 			/*
2405 			 * This can happen when the block size is less than
2406 			 * the page size.  The corresponding bytes in the page
2407 			 * were zero filled above
2408 			 */
2409 			clear_buffer_dirty(bh);
2410 			set_buffer_uptodate(bh);
2411 		} else if ((checked || buffer_dirty(bh)) &&
2412 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2413 						       && bh->b_blocknr ==
2414 						       0))) {
2415 			/* not mapped yet, or it points to a direct item, search
2416 			 * the btree for the mapping info, and log any direct
2417 			 * items found
2418 			 */
2419 			if ((error = map_block_for_writepage(inode, bh, block))) {
2420 				goto fail;
2421 			}
2422 		}
2423 		bh = bh->b_this_page;
2424 		block++;
2425 	} while (bh != head);
2426 
2427 	/*
2428 	 * we start the transaction after map_block_for_writepage,
2429 	 * because it can create holes in the file (an unbounded operation).
2430 	 * starting it here, we can make a reliable estimate for how many
2431 	 * blocks we're going to log
2432 	 */
2433 	if (checked) {
2434 		ClearPageChecked(page);
2435 		reiserfs_write_lock(s);
2436 		error = journal_begin(&th, s, bh_per_page + 1);
2437 		if (error) {
2438 			reiserfs_write_unlock(s);
2439 			goto fail;
2440 		}
2441 		reiserfs_update_inode_transaction(inode);
2442 	}
2443 	/* now go through and lock any dirty buffers on the page */
2444 	do {
2445 		get_bh(bh);
2446 		if (!buffer_mapped(bh))
2447 			continue;
2448 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2449 			continue;
2450 
2451 		if (checked) {
2452 			reiserfs_prepare_for_journal(s, bh, 1);
2453 			journal_mark_dirty(&th, s, bh);
2454 			continue;
2455 		}
2456 		/* from this point on, we know the buffer is mapped to a
2457 		 * real block and not a direct item
2458 		 */
2459 		if (wbc->sync_mode != WB_SYNC_NONE) {
2460 			lock_buffer(bh);
2461 		} else {
2462 			if (!trylock_buffer(bh)) {
2463 				redirty_page_for_writepage(wbc, page);
2464 				continue;
2465 			}
2466 		}
2467 		if (test_clear_buffer_dirty(bh)) {
2468 			mark_buffer_async_write(bh);
2469 		} else {
2470 			unlock_buffer(bh);
2471 		}
2472 	} while ((bh = bh->b_this_page) != head);
2473 
2474 	if (checked) {
2475 		error = journal_end(&th, s, bh_per_page + 1);
2476 		reiserfs_write_unlock(s);
2477 		if (error)
2478 			goto fail;
2479 	}
2480 	BUG_ON(PageWriteback(page));
2481 	set_page_writeback(page);
2482 	unlock_page(page);
2483 
2484 	/*
2485 	 * since any buffer might be the only dirty buffer on the page,
2486 	 * the first submit_bh can bring the page out of writeback.
2487 	 * be careful with the buffers.
2488 	 */
2489 	do {
2490 		struct buffer_head *next = bh->b_this_page;
2491 		if (buffer_async_write(bh)) {
2492 			submit_bh(WRITE, bh);
2493 			nr++;
2494 		}
2495 		put_bh(bh);
2496 		bh = next;
2497 	} while (bh != head);
2498 
2499 	error = 0;
2500       done:
2501 	if (nr == 0) {
2502 		/*
2503 		 * if this page only had a direct item, it is very possible for
2504 		 * no io to be required without there being an error.  Or,
2505 		 * someone else could have locked them and sent them down the
2506 		 * pipe without locking the page
2507 		 */
2508 		bh = head;
2509 		do {
2510 			if (!buffer_uptodate(bh)) {
2511 				partial = 1;
2512 				break;
2513 			}
2514 			bh = bh->b_this_page;
2515 		} while (bh != head);
2516 		if (!partial)
2517 			SetPageUptodate(page);
2518 		end_page_writeback(page);
2519 	}
2520 	return error;
2521 
2522       fail:
2523 	/* catches various errors, we need to make sure any valid dirty blocks
2524 	 * get to the media.  The page is currently locked and not marked for
2525 	 * writeback
2526 	 */
2527 	ClearPageUptodate(page);
2528 	bh = head;
2529 	do {
2530 		get_bh(bh);
2531 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2532 			lock_buffer(bh);
2533 			mark_buffer_async_write(bh);
2534 		} else {
2535 			/*
2536 			 * clear any dirty bits that might have come from getting
2537 			 * attached to a dirty page
2538 			 */
2539 			clear_buffer_dirty(bh);
2540 		}
2541 		bh = bh->b_this_page;
2542 	} while (bh != head);
2543 	SetPageError(page);
2544 	BUG_ON(PageWriteback(page));
2545 	set_page_writeback(page);
2546 	unlock_page(page);
2547 	do {
2548 		struct buffer_head *next = bh->b_this_page;
2549 		if (buffer_async_write(bh)) {
2550 			clear_buffer_dirty(bh);
2551 			submit_bh(WRITE, bh);
2552 			nr++;
2553 		}
2554 		put_bh(bh);
2555 		bh = next;
2556 	} while (bh != head);
2557 	goto done;
2558 }
2559 
2560 static int reiserfs_readpage(struct file *f, struct page *page)
2561 {
2562 	return block_read_full_page(page, reiserfs_get_block);
2563 }
2564 
2565 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2566 {
2567 	struct inode *inode = page->mapping->host;
2568 	reiserfs_wait_on_write_block(inode->i_sb);
2569 	return reiserfs_write_full_page(page, wbc);
2570 }
2571 
2572 static void reiserfs_truncate_failed_write(struct inode *inode)
2573 {
2574 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2575 	reiserfs_truncate_file(inode, 0);
2576 }
2577 
2578 static int reiserfs_write_begin(struct file *file,
2579 				struct address_space *mapping,
2580 				loff_t pos, unsigned len, unsigned flags,
2581 				struct page **pagep, void **fsdata)
2582 {
2583 	struct inode *inode;
2584 	struct page *page;
2585 	pgoff_t index;
2586 	int ret;
2587 	int old_ref = 0;
2588 
2589  	inode = mapping->host;
2590 	*fsdata = 0;
2591  	if (flags & AOP_FLAG_CONT_EXPAND &&
2592  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2593  		pos ++;
2594 		*fsdata = (void *)(unsigned long)flags;
2595 	}
2596 
2597 	index = pos >> PAGE_CACHE_SHIFT;
2598 	page = grab_cache_page_write_begin(mapping, index, flags);
2599 	if (!page)
2600 		return -ENOMEM;
2601 	*pagep = page;
2602 
2603 	reiserfs_wait_on_write_block(inode->i_sb);
2604 	fix_tail_page_for_writing(page);
2605 	if (reiserfs_transaction_running(inode->i_sb)) {
2606 		struct reiserfs_transaction_handle *th;
2607 		th = (struct reiserfs_transaction_handle *)current->
2608 		    journal_info;
2609 		BUG_ON(!th->t_refcount);
2610 		BUG_ON(!th->t_trans_id);
2611 		old_ref = th->t_refcount;
2612 		th->t_refcount++;
2613 	}
2614 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2615 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2616 		struct reiserfs_transaction_handle *th = current->journal_info;
2617 		/* this gets a little ugly.  If reiserfs_get_block returned an
2618 		 * error and left a transacstion running, we've got to close it,
2619 		 * and we've got to free handle if it was a persistent transaction.
2620 		 *
2621 		 * But, if we had nested into an existing transaction, we need
2622 		 * to just drop the ref count on the handle.
2623 		 *
2624 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2625 		 * and it was a persistent trans.  Otherwise, it was nested above.
2626 		 */
2627 		if (th->t_refcount > old_ref) {
2628 			if (old_ref)
2629 				th->t_refcount--;
2630 			else {
2631 				int err;
2632 				reiserfs_write_lock(inode->i_sb);
2633 				err = reiserfs_end_persistent_transaction(th);
2634 				reiserfs_write_unlock(inode->i_sb);
2635 				if (err)
2636 					ret = err;
2637 			}
2638 		}
2639 	}
2640 	if (ret) {
2641 		unlock_page(page);
2642 		page_cache_release(page);
2643 		/* Truncate allocated blocks */
2644 		reiserfs_truncate_failed_write(inode);
2645 	}
2646 	return ret;
2647 }
2648 
2649 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2650 {
2651 	struct inode *inode = page->mapping->host;
2652 	int ret;
2653 	int old_ref = 0;
2654 	int depth;
2655 
2656 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2657 	reiserfs_wait_on_write_block(inode->i_sb);
2658 	reiserfs_write_lock_nested(inode->i_sb, depth);
2659 
2660 	fix_tail_page_for_writing(page);
2661 	if (reiserfs_transaction_running(inode->i_sb)) {
2662 		struct reiserfs_transaction_handle *th;
2663 		th = (struct reiserfs_transaction_handle *)current->
2664 		    journal_info;
2665 		BUG_ON(!th->t_refcount);
2666 		BUG_ON(!th->t_trans_id);
2667 		old_ref = th->t_refcount;
2668 		th->t_refcount++;
2669 	}
2670 
2671 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2672 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2673 		struct reiserfs_transaction_handle *th = current->journal_info;
2674 		/* this gets a little ugly.  If reiserfs_get_block returned an
2675 		 * error and left a transacstion running, we've got to close it,
2676 		 * and we've got to free handle if it was a persistent transaction.
2677 		 *
2678 		 * But, if we had nested into an existing transaction, we need
2679 		 * to just drop the ref count on the handle.
2680 		 *
2681 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2682 		 * and it was a persistent trans.  Otherwise, it was nested above.
2683 		 */
2684 		if (th->t_refcount > old_ref) {
2685 			if (old_ref)
2686 				th->t_refcount--;
2687 			else {
2688 				int err;
2689 				reiserfs_write_lock(inode->i_sb);
2690 				err = reiserfs_end_persistent_transaction(th);
2691 				reiserfs_write_unlock(inode->i_sb);
2692 				if (err)
2693 					ret = err;
2694 			}
2695 		}
2696 	}
2697 	return ret;
2698 
2699 }
2700 
2701 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2702 {
2703 	return generic_block_bmap(as, block, reiserfs_bmap);
2704 }
2705 
2706 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2707 			      loff_t pos, unsigned len, unsigned copied,
2708 			      struct page *page, void *fsdata)
2709 {
2710 	struct inode *inode = page->mapping->host;
2711 	int ret = 0;
2712 	int update_sd = 0;
2713 	struct reiserfs_transaction_handle *th;
2714 	unsigned start;
2715 	bool locked = false;
2716 
2717 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2718 		pos ++;
2719 
2720 	reiserfs_wait_on_write_block(inode->i_sb);
2721 	if (reiserfs_transaction_running(inode->i_sb))
2722 		th = current->journal_info;
2723 	else
2724 		th = NULL;
2725 
2726 	start = pos & (PAGE_CACHE_SIZE - 1);
2727 	if (unlikely(copied < len)) {
2728 		if (!PageUptodate(page))
2729 			copied = 0;
2730 
2731 		page_zero_new_buffers(page, start + copied, start + len);
2732 	}
2733 	flush_dcache_page(page);
2734 
2735 	reiserfs_commit_page(inode, page, start, start + copied);
2736 
2737 	/* generic_commit_write does this for us, but does not update the
2738 	 ** transaction tracking stuff when the size changes.  So, we have
2739 	 ** to do the i_size updates here.
2740 	 */
2741 	if (pos + copied > inode->i_size) {
2742 		struct reiserfs_transaction_handle myth;
2743 		reiserfs_write_lock(inode->i_sb);
2744 		locked = true;
2745 		/* If the file have grown beyond the border where it
2746 		   can have a tail, unmark it as needing a tail
2747 		   packing */
2748 		if ((have_large_tails(inode->i_sb)
2749 		     && inode->i_size > i_block_size(inode) * 4)
2750 		    || (have_small_tails(inode->i_sb)
2751 			&& inode->i_size > i_block_size(inode)))
2752 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2753 
2754 		ret = journal_begin(&myth, inode->i_sb, 1);
2755 		if (ret)
2756 			goto journal_error;
2757 
2758 		reiserfs_update_inode_transaction(inode);
2759 		inode->i_size = pos + copied;
2760 		/*
2761 		 * this will just nest into our transaction.  It's important
2762 		 * to use mark_inode_dirty so the inode gets pushed around on the
2763 		 * dirty lists, and so that O_SYNC works as expected
2764 		 */
2765 		mark_inode_dirty(inode);
2766 		reiserfs_update_sd(&myth, inode);
2767 		update_sd = 1;
2768 		ret = journal_end(&myth, inode->i_sb, 1);
2769 		if (ret)
2770 			goto journal_error;
2771 	}
2772 	if (th) {
2773 		if (!locked) {
2774 			reiserfs_write_lock(inode->i_sb);
2775 			locked = true;
2776 		}
2777 		if (!update_sd)
2778 			mark_inode_dirty(inode);
2779 		ret = reiserfs_end_persistent_transaction(th);
2780 		if (ret)
2781 			goto out;
2782 	}
2783 
2784       out:
2785 	if (locked)
2786 		reiserfs_write_unlock(inode->i_sb);
2787 	unlock_page(page);
2788 	page_cache_release(page);
2789 
2790 	if (pos + len > inode->i_size)
2791 		reiserfs_truncate_failed_write(inode);
2792 
2793 	return ret == 0 ? copied : ret;
2794 
2795       journal_error:
2796 	reiserfs_write_unlock(inode->i_sb);
2797 	locked = false;
2798 	if (th) {
2799 		if (!update_sd)
2800 			reiserfs_update_sd(th, inode);
2801 		ret = reiserfs_end_persistent_transaction(th);
2802 	}
2803 	goto out;
2804 }
2805 
2806 int reiserfs_commit_write(struct file *f, struct page *page,
2807 			  unsigned from, unsigned to)
2808 {
2809 	struct inode *inode = page->mapping->host;
2810 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2811 	int ret = 0;
2812 	int update_sd = 0;
2813 	struct reiserfs_transaction_handle *th = NULL;
2814 	int depth;
2815 
2816 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2817 	reiserfs_wait_on_write_block(inode->i_sb);
2818 	reiserfs_write_lock_nested(inode->i_sb, depth);
2819 
2820 	if (reiserfs_transaction_running(inode->i_sb)) {
2821 		th = current->journal_info;
2822 	}
2823 	reiserfs_commit_page(inode, page, from, to);
2824 
2825 	/* generic_commit_write does this for us, but does not update the
2826 	 ** transaction tracking stuff when the size changes.  So, we have
2827 	 ** to do the i_size updates here.
2828 	 */
2829 	if (pos > inode->i_size) {
2830 		struct reiserfs_transaction_handle myth;
2831 		/* If the file have grown beyond the border where it
2832 		   can have a tail, unmark it as needing a tail
2833 		   packing */
2834 		if ((have_large_tails(inode->i_sb)
2835 		     && inode->i_size > i_block_size(inode) * 4)
2836 		    || (have_small_tails(inode->i_sb)
2837 			&& inode->i_size > i_block_size(inode)))
2838 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2839 
2840 		ret = journal_begin(&myth, inode->i_sb, 1);
2841 		if (ret)
2842 			goto journal_error;
2843 
2844 		reiserfs_update_inode_transaction(inode);
2845 		inode->i_size = pos;
2846 		/*
2847 		 * this will just nest into our transaction.  It's important
2848 		 * to use mark_inode_dirty so the inode gets pushed around on the
2849 		 * dirty lists, and so that O_SYNC works as expected
2850 		 */
2851 		mark_inode_dirty(inode);
2852 		reiserfs_update_sd(&myth, inode);
2853 		update_sd = 1;
2854 		ret = journal_end(&myth, inode->i_sb, 1);
2855 		if (ret)
2856 			goto journal_error;
2857 	}
2858 	if (th) {
2859 		if (!update_sd)
2860 			mark_inode_dirty(inode);
2861 		ret = reiserfs_end_persistent_transaction(th);
2862 		if (ret)
2863 			goto out;
2864 	}
2865 
2866       out:
2867 	return ret;
2868 
2869       journal_error:
2870 	if (th) {
2871 		if (!update_sd)
2872 			reiserfs_update_sd(th, inode);
2873 		ret = reiserfs_end_persistent_transaction(th);
2874 	}
2875 
2876 	return ret;
2877 }
2878 
2879 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2880 {
2881 	if (reiserfs_attrs(inode->i_sb)) {
2882 		if (sd_attrs & REISERFS_SYNC_FL)
2883 			inode->i_flags |= S_SYNC;
2884 		else
2885 			inode->i_flags &= ~S_SYNC;
2886 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2887 			inode->i_flags |= S_IMMUTABLE;
2888 		else
2889 			inode->i_flags &= ~S_IMMUTABLE;
2890 		if (sd_attrs & REISERFS_APPEND_FL)
2891 			inode->i_flags |= S_APPEND;
2892 		else
2893 			inode->i_flags &= ~S_APPEND;
2894 		if (sd_attrs & REISERFS_NOATIME_FL)
2895 			inode->i_flags |= S_NOATIME;
2896 		else
2897 			inode->i_flags &= ~S_NOATIME;
2898 		if (sd_attrs & REISERFS_NOTAIL_FL)
2899 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2900 		else
2901 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2902 	}
2903 }
2904 
2905 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2906 {
2907 	if (reiserfs_attrs(inode->i_sb)) {
2908 		if (inode->i_flags & S_IMMUTABLE)
2909 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2910 		else
2911 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2912 		if (inode->i_flags & S_SYNC)
2913 			*sd_attrs |= REISERFS_SYNC_FL;
2914 		else
2915 			*sd_attrs &= ~REISERFS_SYNC_FL;
2916 		if (inode->i_flags & S_NOATIME)
2917 			*sd_attrs |= REISERFS_NOATIME_FL;
2918 		else
2919 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2920 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2921 			*sd_attrs |= REISERFS_NOTAIL_FL;
2922 		else
2923 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2924 	}
2925 }
2926 
2927 /* decide if this buffer needs to stay around for data logging or ordered
2928 ** write purposes
2929 */
2930 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2931 {
2932 	int ret = 1;
2933 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2934 
2935 	lock_buffer(bh);
2936 	spin_lock(&j->j_dirty_buffers_lock);
2937 	if (!buffer_mapped(bh)) {
2938 		goto free_jh;
2939 	}
2940 	/* the page is locked, and the only places that log a data buffer
2941 	 * also lock the page.
2942 	 */
2943 	if (reiserfs_file_data_log(inode)) {
2944 		/*
2945 		 * very conservative, leave the buffer pinned if
2946 		 * anyone might need it.
2947 		 */
2948 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2949 			ret = 0;
2950 		}
2951 	} else  if (buffer_dirty(bh)) {
2952 		struct reiserfs_journal_list *jl;
2953 		struct reiserfs_jh *jh = bh->b_private;
2954 
2955 		/* why is this safe?
2956 		 * reiserfs_setattr updates i_size in the on disk
2957 		 * stat data before allowing vmtruncate to be called.
2958 		 *
2959 		 * If buffer was put onto the ordered list for this
2960 		 * transaction, we know for sure either this transaction
2961 		 * or an older one already has updated i_size on disk,
2962 		 * and this ordered data won't be referenced in the file
2963 		 * if we crash.
2964 		 *
2965 		 * if the buffer was put onto the ordered list for an older
2966 		 * transaction, we need to leave it around
2967 		 */
2968 		if (jh && (jl = jh->jl)
2969 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2970 			ret = 0;
2971 	}
2972       free_jh:
2973 	if (ret && bh->b_private) {
2974 		reiserfs_free_jh(bh);
2975 	}
2976 	spin_unlock(&j->j_dirty_buffers_lock);
2977 	unlock_buffer(bh);
2978 	return ret;
2979 }
2980 
2981 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2982 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
2983 				    unsigned int length)
2984 {
2985 	struct buffer_head *head, *bh, *next;
2986 	struct inode *inode = page->mapping->host;
2987 	unsigned int curr_off = 0;
2988 	unsigned int stop = offset + length;
2989 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2990 	int ret = 1;
2991 
2992 	BUG_ON(!PageLocked(page));
2993 
2994 	if (!partial_page)
2995 		ClearPageChecked(page);
2996 
2997 	if (!page_has_buffers(page))
2998 		goto out;
2999 
3000 	head = page_buffers(page);
3001 	bh = head;
3002 	do {
3003 		unsigned int next_off = curr_off + bh->b_size;
3004 		next = bh->b_this_page;
3005 
3006 		if (next_off > stop)
3007 			goto out;
3008 
3009 		/*
3010 		 * is this block fully invalidated?
3011 		 */
3012 		if (offset <= curr_off) {
3013 			if (invalidatepage_can_drop(inode, bh))
3014 				reiserfs_unmap_buffer(bh);
3015 			else
3016 				ret = 0;
3017 		}
3018 		curr_off = next_off;
3019 		bh = next;
3020 	} while (bh != head);
3021 
3022 	/*
3023 	 * We release buffers only if the entire page is being invalidated.
3024 	 * The get_block cached value has been unconditionally invalidated,
3025 	 * so real IO is not possible anymore.
3026 	 */
3027 	if (!partial_page && ret) {
3028 		ret = try_to_release_page(page, 0);
3029 		/* maybe should BUG_ON(!ret); - neilb */
3030 	}
3031       out:
3032 	return;
3033 }
3034 
3035 static int reiserfs_set_page_dirty(struct page *page)
3036 {
3037 	struct inode *inode = page->mapping->host;
3038 	if (reiserfs_file_data_log(inode)) {
3039 		SetPageChecked(page);
3040 		return __set_page_dirty_nobuffers(page);
3041 	}
3042 	return __set_page_dirty_buffers(page);
3043 }
3044 
3045 /*
3046  * Returns 1 if the page's buffers were dropped.  The page is locked.
3047  *
3048  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3049  * in the buffers at page_buffers(page).
3050  *
3051  * even in -o notail mode, we can't be sure an old mount without -o notail
3052  * didn't create files with tails.
3053  */
3054 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3055 {
3056 	struct inode *inode = page->mapping->host;
3057 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3058 	struct buffer_head *head;
3059 	struct buffer_head *bh;
3060 	int ret = 1;
3061 
3062 	WARN_ON(PageChecked(page));
3063 	spin_lock(&j->j_dirty_buffers_lock);
3064 	head = page_buffers(page);
3065 	bh = head;
3066 	do {
3067 		if (bh->b_private) {
3068 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3069 				reiserfs_free_jh(bh);
3070 			} else {
3071 				ret = 0;
3072 				break;
3073 			}
3074 		}
3075 		bh = bh->b_this_page;
3076 	} while (bh != head);
3077 	if (ret)
3078 		ret = try_to_free_buffers(page);
3079 	spin_unlock(&j->j_dirty_buffers_lock);
3080 	return ret;
3081 }
3082 
3083 /* We thank Mingming Cao for helping us understand in great detail what
3084    to do in this section of the code. */
3085 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3086 				  const struct iovec *iov, loff_t offset,
3087 				  unsigned long nr_segs)
3088 {
3089 	struct file *file = iocb->ki_filp;
3090 	struct inode *inode = file->f_mapping->host;
3091 	ssize_t ret;
3092 
3093 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3094 				  reiserfs_get_blocks_direct_io);
3095 
3096 	/*
3097 	 * In case of error extending write may have instantiated a few
3098 	 * blocks outside i_size. Trim these off again.
3099 	 */
3100 	if (unlikely((rw & WRITE) && ret < 0)) {
3101 		loff_t isize = i_size_read(inode);
3102 		loff_t end = offset + iov_length(iov, nr_segs);
3103 
3104 		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3105 			truncate_setsize(inode, isize);
3106 			reiserfs_vfs_truncate_file(inode);
3107 		}
3108 	}
3109 
3110 	return ret;
3111 }
3112 
3113 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3114 {
3115 	struct inode *inode = dentry->d_inode;
3116 	unsigned int ia_valid;
3117 	int error;
3118 
3119 	error = inode_change_ok(inode, attr);
3120 	if (error)
3121 		return error;
3122 
3123 	/* must be turned off for recursive notify_change calls */
3124 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3125 
3126 	if (is_quota_modification(inode, attr))
3127 		dquot_initialize(inode);
3128 	reiserfs_write_lock(inode->i_sb);
3129 	if (attr->ia_valid & ATTR_SIZE) {
3130 		/* version 2 items will be caught by the s_maxbytes check
3131 		 ** done for us in vmtruncate
3132 		 */
3133 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3134 		    attr->ia_size > MAX_NON_LFS) {
3135 			reiserfs_write_unlock(inode->i_sb);
3136 			error = -EFBIG;
3137 			goto out;
3138 		}
3139 
3140 		inode_dio_wait(inode);
3141 
3142 		/* fill in hole pointers in the expanding truncate case. */
3143 		if (attr->ia_size > inode->i_size) {
3144 			error = generic_cont_expand_simple(inode, attr->ia_size);
3145 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3146 				int err;
3147 				struct reiserfs_transaction_handle th;
3148 				/* we're changing at most 2 bitmaps, inode + super */
3149 				err = journal_begin(&th, inode->i_sb, 4);
3150 				if (!err) {
3151 					reiserfs_discard_prealloc(&th, inode);
3152 					err = journal_end(&th, inode->i_sb, 4);
3153 				}
3154 				if (err)
3155 					error = err;
3156 			}
3157 			if (error) {
3158 				reiserfs_write_unlock(inode->i_sb);
3159 				goto out;
3160 			}
3161 			/*
3162 			 * file size is changed, ctime and mtime are
3163 			 * to be updated
3164 			 */
3165 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3166 		}
3167 	}
3168 	reiserfs_write_unlock(inode->i_sb);
3169 
3170 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3171 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3172 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3173 		/* stat data of format v3.5 has 16 bit uid and gid */
3174 		error = -EINVAL;
3175 		goto out;
3176 	}
3177 
3178 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3179 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3180 		struct reiserfs_transaction_handle th;
3181 		int jbegin_count =
3182 		    2 *
3183 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3184 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3185 		    2;
3186 
3187 		error = reiserfs_chown_xattrs(inode, attr);
3188 
3189 		if (error)
3190 			return error;
3191 
3192 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3193 		reiserfs_write_lock(inode->i_sb);
3194 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3195 		reiserfs_write_unlock(inode->i_sb);
3196 		if (error)
3197 			goto out;
3198 		error = dquot_transfer(inode, attr);
3199 		reiserfs_write_lock(inode->i_sb);
3200 		if (error) {
3201 			journal_end(&th, inode->i_sb, jbegin_count);
3202 			reiserfs_write_unlock(inode->i_sb);
3203 			goto out;
3204 		}
3205 
3206 		/* Update corresponding info in inode so that everything is in
3207 		 * one transaction */
3208 		if (attr->ia_valid & ATTR_UID)
3209 			inode->i_uid = attr->ia_uid;
3210 		if (attr->ia_valid & ATTR_GID)
3211 			inode->i_gid = attr->ia_gid;
3212 		mark_inode_dirty(inode);
3213 		error = journal_end(&th, inode->i_sb, jbegin_count);
3214 		reiserfs_write_unlock(inode->i_sb);
3215 		if (error)
3216 			goto out;
3217 	}
3218 
3219 	if ((attr->ia_valid & ATTR_SIZE) &&
3220 	    attr->ia_size != i_size_read(inode)) {
3221 		error = inode_newsize_ok(inode, attr->ia_size);
3222 		if (!error) {
3223 			truncate_setsize(inode, attr->ia_size);
3224 			reiserfs_vfs_truncate_file(inode);
3225 		}
3226 	}
3227 
3228 	if (!error) {
3229 		setattr_copy(inode, attr);
3230 		mark_inode_dirty(inode);
3231 	}
3232 
3233 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3234 		if (attr->ia_valid & ATTR_MODE)
3235 			error = reiserfs_acl_chmod(inode);
3236 	}
3237 
3238 out:
3239 	return error;
3240 }
3241 
3242 const struct address_space_operations reiserfs_address_space_operations = {
3243 	.writepage = reiserfs_writepage,
3244 	.readpage = reiserfs_readpage,
3245 	.readpages = reiserfs_readpages,
3246 	.releasepage = reiserfs_releasepage,
3247 	.invalidatepage = reiserfs_invalidatepage,
3248 	.write_begin = reiserfs_write_begin,
3249 	.write_end = reiserfs_write_end,
3250 	.bmap = reiserfs_aop_bmap,
3251 	.direct_IO = reiserfs_direct_IO,
3252 	.set_page_dirty = reiserfs_set_page_dirty,
3253 };
3254