1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <asm/uaccess.h> 6 #include <linux/string.h> 7 #include <linux/time.h> 8 #include <linux/reiserfs_fs.h> 9 #include <linux/buffer_head.h> 10 11 /* this is one and only function that is used outside (do_balance.c) */ 12 int balance_internal(struct tree_balance *, 13 int, int, struct item_head *, struct buffer_head **); 14 15 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */ 16 #define INTERNAL_SHIFT_FROM_S_TO_L 0 17 #define INTERNAL_SHIFT_FROM_R_TO_S 1 18 #define INTERNAL_SHIFT_FROM_L_TO_S 2 19 #define INTERNAL_SHIFT_FROM_S_TO_R 3 20 #define INTERNAL_INSERT_TO_S 4 21 #define INTERNAL_INSERT_TO_L 5 22 #define INTERNAL_INSERT_TO_R 6 23 24 static void internal_define_dest_src_infos(int shift_mode, 25 struct tree_balance *tb, 26 int h, 27 struct buffer_info *dest_bi, 28 struct buffer_info *src_bi, 29 int *d_key, struct buffer_head **cf) 30 { 31 memset(dest_bi, 0, sizeof(struct buffer_info)); 32 memset(src_bi, 0, sizeof(struct buffer_info)); 33 /* define dest, src, dest parent, dest position */ 34 switch (shift_mode) { 35 case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */ 36 src_bi->tb = tb; 37 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 38 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 39 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 40 dest_bi->tb = tb; 41 dest_bi->bi_bh = tb->L[h]; 42 dest_bi->bi_parent = tb->FL[h]; 43 dest_bi->bi_position = get_left_neighbor_position(tb, h); 44 *d_key = tb->lkey[h]; 45 *cf = tb->CFL[h]; 46 break; 47 case INTERNAL_SHIFT_FROM_L_TO_S: 48 src_bi->tb = tb; 49 src_bi->bi_bh = tb->L[h]; 50 src_bi->bi_parent = tb->FL[h]; 51 src_bi->bi_position = get_left_neighbor_position(tb, h); 52 dest_bi->tb = tb; 53 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 54 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 55 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */ 56 *d_key = tb->lkey[h]; 57 *cf = tb->CFL[h]; 58 break; 59 60 case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */ 61 src_bi->tb = tb; 62 src_bi->bi_bh = tb->R[h]; 63 src_bi->bi_parent = tb->FR[h]; 64 src_bi->bi_position = get_right_neighbor_position(tb, h); 65 dest_bi->tb = tb; 66 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 67 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 68 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 69 *d_key = tb->rkey[h]; 70 *cf = tb->CFR[h]; 71 break; 72 73 case INTERNAL_SHIFT_FROM_S_TO_R: 74 src_bi->tb = tb; 75 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 76 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 77 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 78 dest_bi->tb = tb; 79 dest_bi->bi_bh = tb->R[h]; 80 dest_bi->bi_parent = tb->FR[h]; 81 dest_bi->bi_position = get_right_neighbor_position(tb, h); 82 *d_key = tb->rkey[h]; 83 *cf = tb->CFR[h]; 84 break; 85 86 case INTERNAL_INSERT_TO_L: 87 dest_bi->tb = tb; 88 dest_bi->bi_bh = tb->L[h]; 89 dest_bi->bi_parent = tb->FL[h]; 90 dest_bi->bi_position = get_left_neighbor_position(tb, h); 91 break; 92 93 case INTERNAL_INSERT_TO_S: 94 dest_bi->tb = tb; 95 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 96 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 97 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 98 break; 99 100 case INTERNAL_INSERT_TO_R: 101 dest_bi->tb = tb; 102 dest_bi->bi_bh = tb->R[h]; 103 dest_bi->bi_parent = tb->FR[h]; 104 dest_bi->bi_position = get_right_neighbor_position(tb, h); 105 break; 106 107 default: 108 reiserfs_panic(tb->tb_sb, 109 "internal_define_dest_src_infos: shift type is unknown (%d)", 110 shift_mode); 111 } 112 } 113 114 /* Insert count node pointers into buffer cur before position to + 1. 115 * Insert count items into buffer cur before position to. 116 * Items and node pointers are specified by inserted and bh respectively. 117 */ 118 static void internal_insert_childs(struct buffer_info *cur_bi, 119 int to, int count, 120 struct item_head *inserted, 121 struct buffer_head **bh) 122 { 123 struct buffer_head *cur = cur_bi->bi_bh; 124 struct block_head *blkh; 125 int nr; 126 struct reiserfs_key *ih; 127 struct disk_child new_dc[2]; 128 struct disk_child *dc; 129 int i; 130 131 if (count <= 0) 132 return; 133 134 blkh = B_BLK_HEAD(cur); 135 nr = blkh_nr_item(blkh); 136 137 RFALSE(count > 2, "too many children (%d) are to be inserted", count); 138 RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE), 139 "no enough free space (%d), needed %d bytes", 140 B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE)); 141 142 /* prepare space for count disk_child */ 143 dc = B_N_CHILD(cur, to + 1); 144 145 memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE); 146 147 /* copy to_be_insert disk children */ 148 for (i = 0; i < count; i++) { 149 put_dc_size(&(new_dc[i]), 150 MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i])); 151 put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr); 152 } 153 memcpy(dc, new_dc, DC_SIZE * count); 154 155 /* prepare space for count items */ 156 ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to)); 157 158 memmove(ih + count, ih, 159 (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE); 160 161 /* copy item headers (keys) */ 162 memcpy(ih, inserted, KEY_SIZE); 163 if (count > 1) 164 memcpy(ih + 1, inserted + 1, KEY_SIZE); 165 166 /* sizes, item number */ 167 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count); 168 set_blkh_free_space(blkh, 169 blkh_free_space(blkh) - count * (DC_SIZE + 170 KEY_SIZE)); 171 172 do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); 173 174 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 175 check_internal(cur); 176 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 177 178 if (cur_bi->bi_parent) { 179 struct disk_child *t_dc = 180 B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); 181 put_dc_size(t_dc, 182 dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE))); 183 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 184 0); 185 186 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 187 check_internal(cur_bi->bi_parent); 188 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 189 } 190 191 } 192 193 /* Delete del_num items and node pointers from buffer cur starting from * 194 * the first_i'th item and first_p'th pointers respectively. */ 195 static void internal_delete_pointers_items(struct buffer_info *cur_bi, 196 int first_p, 197 int first_i, int del_num) 198 { 199 struct buffer_head *cur = cur_bi->bi_bh; 200 int nr; 201 struct block_head *blkh; 202 struct reiserfs_key *key; 203 struct disk_child *dc; 204 205 RFALSE(cur == NULL, "buffer is 0"); 206 RFALSE(del_num < 0, 207 "negative number of items (%d) can not be deleted", del_num); 208 RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1 209 || first_i < 0, 210 "first pointer order (%d) < 0 or " 211 "no so many pointers (%d), only (%d) or " 212 "first key order %d < 0", first_p, first_p + del_num, 213 B_NR_ITEMS(cur) + 1, first_i); 214 if (del_num == 0) 215 return; 216 217 blkh = B_BLK_HEAD(cur); 218 nr = blkh_nr_item(blkh); 219 220 if (first_p == 0 && del_num == nr + 1) { 221 RFALSE(first_i != 0, 222 "1st deleted key must have order 0, not %d", first_i); 223 make_empty_node(cur_bi); 224 return; 225 } 226 227 RFALSE(first_i + del_num > B_NR_ITEMS(cur), 228 "first_i = %d del_num = %d " 229 "no so many keys (%d) in the node (%b)(%z)", 230 first_i, del_num, first_i + del_num, cur, cur); 231 232 /* deleting */ 233 dc = B_N_CHILD(cur, first_p); 234 235 memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE); 236 key = B_N_PDELIM_KEY(cur, first_i); 237 memmove(key, key + del_num, 238 (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - 239 del_num) * DC_SIZE); 240 241 /* sizes, item number */ 242 set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num); 243 set_blkh_free_space(blkh, 244 blkh_free_space(blkh) + 245 (del_num * (KEY_SIZE + DC_SIZE))); 246 247 do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); 248 /*&&&&&&&&&&&&&&&&&&&&&&& */ 249 check_internal(cur); 250 /*&&&&&&&&&&&&&&&&&&&&&&& */ 251 252 if (cur_bi->bi_parent) { 253 struct disk_child *t_dc; 254 t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); 255 put_dc_size(t_dc, 256 dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE))); 257 258 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 259 0); 260 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 261 check_internal(cur_bi->bi_parent); 262 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 263 } 264 } 265 266 /* delete n node pointers and items starting from given position */ 267 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n) 268 { 269 int i_from; 270 271 i_from = (from == 0) ? from : from - 1; 272 273 /* delete n pointers starting from `from' position in CUR; 274 delete n keys starting from 'i_from' position in CUR; 275 */ 276 internal_delete_pointers_items(cur_bi, from, i_from, n); 277 } 278 279 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest 280 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest 281 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest 282 */ 283 static void internal_copy_pointers_items(struct buffer_info *dest_bi, 284 struct buffer_head *src, 285 int last_first, int cpy_num) 286 { 287 /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST * 288 * as delimiting key have already inserted to buffer dest.*/ 289 struct buffer_head *dest = dest_bi->bi_bh; 290 int nr_dest, nr_src; 291 int dest_order, src_order; 292 struct block_head *blkh; 293 struct reiserfs_key *key; 294 struct disk_child *dc; 295 296 nr_src = B_NR_ITEMS(src); 297 298 RFALSE(dest == NULL || src == NULL, 299 "src (%p) or dest (%p) buffer is 0", src, dest); 300 RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST, 301 "invalid last_first parameter (%d)", last_first); 302 RFALSE(nr_src < cpy_num - 1, 303 "no so many items (%d) in src (%d)", cpy_num, nr_src); 304 RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num); 305 RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest), 306 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)", 307 cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest)); 308 309 if (cpy_num == 0) 310 return; 311 312 /* coping */ 313 blkh = B_BLK_HEAD(dest); 314 nr_dest = blkh_nr_item(blkh); 315 316 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */ 317 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */ 318 (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = 319 nr_src - cpy_num + 1) : (dest_order = 320 nr_dest, 321 src_order = 322 0); 323 324 /* prepare space for cpy_num pointers */ 325 dc = B_N_CHILD(dest, dest_order); 326 327 memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE); 328 329 /* insert pointers */ 330 memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num); 331 332 /* prepare space for cpy_num - 1 item headers */ 333 key = B_N_PDELIM_KEY(dest, dest_order); 334 memmove(key + cpy_num - 1, key, 335 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + 336 cpy_num)); 337 338 /* insert headers */ 339 memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1)); 340 341 /* sizes, item number */ 342 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1)); 343 set_blkh_free_space(blkh, 344 blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + 345 DC_SIZE * cpy_num)); 346 347 do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); 348 349 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 350 check_internal(dest); 351 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 352 353 if (dest_bi->bi_parent) { 354 struct disk_child *t_dc; 355 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); 356 put_dc_size(t_dc, 357 dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + 358 DC_SIZE * cpy_num)); 359 360 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 361 0); 362 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 363 check_internal(dest_bi->bi_parent); 364 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 365 } 366 367 } 368 369 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest. 370 * Delete cpy_num - del_par items and node pointers from buffer src. 371 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src. 372 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src. 373 */ 374 static void internal_move_pointers_items(struct buffer_info *dest_bi, 375 struct buffer_info *src_bi, 376 int last_first, int cpy_num, 377 int del_par) 378 { 379 int first_pointer; 380 int first_item; 381 382 internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first, 383 cpy_num); 384 385 if (last_first == FIRST_TO_LAST) { /* shift_left occurs */ 386 first_pointer = 0; 387 first_item = 0; 388 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, 389 for key - with first_item */ 390 internal_delete_pointers_items(src_bi, first_pointer, 391 first_item, cpy_num - del_par); 392 } else { /* shift_right occurs */ 393 int i, j; 394 395 i = (cpy_num - del_par == 396 (j = 397 B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num + 398 del_par; 399 400 internal_delete_pointers_items(src_bi, 401 j + 1 - cpy_num + del_par, i, 402 cpy_num - del_par); 403 } 404 } 405 406 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */ 407 static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before, /* insert key before key with n_dest number */ 408 struct buffer_head *src, int src_position) 409 { 410 struct buffer_head *dest = dest_bi->bi_bh; 411 int nr; 412 struct block_head *blkh; 413 struct reiserfs_key *key; 414 415 RFALSE(dest == NULL || src == NULL, 416 "source(%p) or dest(%p) buffer is 0", src, dest); 417 RFALSE(dest_position_before < 0 || src_position < 0, 418 "source(%d) or dest(%d) key number less than 0", 419 src_position, dest_position_before); 420 RFALSE(dest_position_before > B_NR_ITEMS(dest) || 421 src_position >= B_NR_ITEMS(src), 422 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))", 423 dest_position_before, B_NR_ITEMS(dest), 424 src_position, B_NR_ITEMS(src)); 425 RFALSE(B_FREE_SPACE(dest) < KEY_SIZE, 426 "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest)); 427 428 blkh = B_BLK_HEAD(dest); 429 nr = blkh_nr_item(blkh); 430 431 /* prepare space for inserting key */ 432 key = B_N_PDELIM_KEY(dest, dest_position_before); 433 memmove(key + 1, key, 434 (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE); 435 436 /* insert key */ 437 memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE); 438 439 /* Change dirt, free space, item number fields. */ 440 441 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1); 442 set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE); 443 444 do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); 445 446 if (dest_bi->bi_parent) { 447 struct disk_child *t_dc; 448 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); 449 put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE); 450 451 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 452 0); 453 } 454 } 455 456 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 457 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest. 458 * Replace d_key'th key in buffer cfl. 459 * Delete pointer_amount items and node pointers from buffer src. 460 */ 461 /* this can be invoked both to shift from S to L and from R to S */ 462 static void internal_shift_left(int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */ 463 struct tree_balance *tb, 464 int h, int pointer_amount) 465 { 466 struct buffer_info dest_bi, src_bi; 467 struct buffer_head *cf; 468 int d_key_position; 469 470 internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, 471 &d_key_position, &cf); 472 473 /*printk("pointer_amount = %d\n",pointer_amount); */ 474 475 if (pointer_amount) { 476 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */ 477 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, 478 d_key_position); 479 480 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) { 481 if (src_bi.bi_position /*src->b_item_order */ == 0) 482 replace_key(tb, cf, d_key_position, 483 src_bi. 484 bi_parent /*src->b_parent */ , 0); 485 } else 486 replace_key(tb, cf, d_key_position, src_bi.bi_bh, 487 pointer_amount - 1); 488 } 489 /* last parameter is del_parameter */ 490 internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, 491 pointer_amount, 0); 492 493 } 494 495 /* Insert delimiting key to L[h]. 496 * Copy n node pointers and n - 1 items from buffer S[h] to L[h]. 497 * Delete n - 1 items and node pointers from buffer S[h]. 498 */ 499 /* it always shifts from S[h] to L[h] */ 500 static void internal_shift1_left(struct tree_balance *tb, 501 int h, int pointer_amount) 502 { 503 struct buffer_info dest_bi, src_bi; 504 struct buffer_head *cf; 505 int d_key_position; 506 507 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 508 &dest_bi, &src_bi, &d_key_position, &cf); 509 510 if (pointer_amount > 0) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */ 511 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, 512 d_key_position); 513 /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */ 514 515 /* last parameter is del_parameter */ 516 internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, 517 pointer_amount, 1); 518 /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */ 519 } 520 521 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest. 522 * Copy n node pointers and n - 1 items from buffer src to buffer dest. 523 * Replace d_key'th key in buffer cfr. 524 * Delete n items and node pointers from buffer src. 525 */ 526 static void internal_shift_right(int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */ 527 struct tree_balance *tb, 528 int h, int pointer_amount) 529 { 530 struct buffer_info dest_bi, src_bi; 531 struct buffer_head *cf; 532 int d_key_position; 533 int nr; 534 535 internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, 536 &d_key_position, &cf); 537 538 nr = B_NR_ITEMS(src_bi.bi_bh); 539 540 if (pointer_amount > 0) { 541 /* insert delimiting key from common father of dest and src to dest node into position 0 */ 542 internal_insert_key(&dest_bi, 0, cf, d_key_position); 543 if (nr == pointer_amount - 1) { 544 RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ || 545 dest_bi.bi_bh != tb->R[h], 546 "src (%p) must be == tb->S[h](%p) when it disappears", 547 src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h)); 548 /* when S[h] disappers replace left delemiting key as well */ 549 if (tb->CFL[h]) 550 replace_key(tb, cf, d_key_position, tb->CFL[h], 551 tb->lkey[h]); 552 } else 553 replace_key(tb, cf, d_key_position, src_bi.bi_bh, 554 nr - pointer_amount); 555 } 556 557 /* last parameter is del_parameter */ 558 internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, 559 pointer_amount, 0); 560 } 561 562 /* Insert delimiting key to R[h]. 563 * Copy n node pointers and n - 1 items from buffer S[h] to R[h]. 564 * Delete n - 1 items and node pointers from buffer S[h]. 565 */ 566 /* it always shift from S[h] to R[h] */ 567 static void internal_shift1_right(struct tree_balance *tb, 568 int h, int pointer_amount) 569 { 570 struct buffer_info dest_bi, src_bi; 571 struct buffer_head *cf; 572 int d_key_position; 573 574 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 575 &dest_bi, &src_bi, &d_key_position, &cf); 576 577 if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */ 578 internal_insert_key(&dest_bi, 0, cf, d_key_position); 579 /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */ 580 581 /* last parameter is del_parameter */ 582 internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, 583 pointer_amount, 1); 584 /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */ 585 } 586 587 /* Delete insert_num node pointers together with their left items 588 * and balance current node.*/ 589 static void balance_internal_when_delete(struct tree_balance *tb, 590 int h, int child_pos) 591 { 592 int insert_num; 593 int n; 594 struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); 595 struct buffer_info bi; 596 597 insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE)); 598 599 /* delete child-node-pointer(s) together with their left item(s) */ 600 bi.tb = tb; 601 bi.bi_bh = tbSh; 602 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 603 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 604 605 internal_delete_childs(&bi, child_pos, -insert_num); 606 607 RFALSE(tb->blknum[h] > 1, 608 "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]); 609 610 n = B_NR_ITEMS(tbSh); 611 612 if (tb->lnum[h] == 0 && tb->rnum[h] == 0) { 613 if (tb->blknum[h] == 0) { 614 /* node S[h] (root of the tree) is empty now */ 615 struct buffer_head *new_root; 616 617 RFALSE(n 618 || B_FREE_SPACE(tbSh) != 619 MAX_CHILD_SIZE(tbSh) - DC_SIZE, 620 "buffer must have only 0 keys (%d)", n); 621 RFALSE(bi.bi_parent, "root has parent (%p)", 622 bi.bi_parent); 623 624 /* choose a new root */ 625 if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1])) 626 new_root = tb->R[h - 1]; 627 else 628 new_root = tb->L[h - 1]; 629 /* switch super block's tree root block number to the new value */ 630 PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr); 631 //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; 632 PUT_SB_TREE_HEIGHT(tb->tb_sb, 633 SB_TREE_HEIGHT(tb->tb_sb) - 1); 634 635 do_balance_mark_sb_dirty(tb, 636 REISERFS_SB(tb->tb_sb)->s_sbh, 637 1); 638 /*&&&&&&&&&&&&&&&&&&&&&& */ 639 if (h > 1) 640 /* use check_internal if new root is an internal node */ 641 check_internal(new_root); 642 /*&&&&&&&&&&&&&&&&&&&&&& */ 643 644 /* do what is needed for buffer thrown from tree */ 645 reiserfs_invalidate_buffer(tb, tbSh); 646 return; 647 } 648 return; 649 } 650 651 if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) { /* join S[h] with L[h] */ 652 653 RFALSE(tb->rnum[h] != 0, 654 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]", 655 h, tb->rnum[h]); 656 657 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1); 658 reiserfs_invalidate_buffer(tb, tbSh); 659 660 return; 661 } 662 663 if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) { /* join S[h] with R[h] */ 664 RFALSE(tb->lnum[h] != 0, 665 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]", 666 h, tb->lnum[h]); 667 668 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1); 669 670 reiserfs_invalidate_buffer(tb, tbSh); 671 return; 672 } 673 674 if (tb->lnum[h] < 0) { /* borrow from left neighbor L[h] */ 675 RFALSE(tb->rnum[h] != 0, 676 "wrong tb->rnum[%d]==%d when borrow from L[h]", h, 677 tb->rnum[h]); 678 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */ 679 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h, 680 -tb->lnum[h]); 681 return; 682 } 683 684 if (tb->rnum[h] < 0) { /* borrow from right neighbor R[h] */ 685 RFALSE(tb->lnum[h] != 0, 686 "invalid tb->lnum[%d]==%d when borrow from R[h]", 687 h, tb->lnum[h]); 688 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */ 689 return; 690 } 691 692 if (tb->lnum[h] > 0) { /* split S[h] into two parts and put them into neighbors */ 693 RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1, 694 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them", 695 h, tb->lnum[h], h, tb->rnum[h], n); 696 697 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */ 698 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 699 tb->rnum[h]); 700 701 reiserfs_invalidate_buffer(tb, tbSh); 702 703 return; 704 } 705 reiserfs_panic(tb->tb_sb, 706 "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d", 707 h, tb->lnum[h], h, tb->rnum[h]); 708 } 709 710 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/ 711 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key) 712 { 713 RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL, 714 "L[h](%p) and CFL[h](%p) must exist in replace_lkey", 715 tb->L[h], tb->CFL[h]); 716 717 if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0) 718 return; 719 720 memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE); 721 722 do_balance_mark_internal_dirty(tb, tb->CFL[h], 0); 723 } 724 725 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/ 726 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key) 727 { 728 RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL, 729 "R[h](%p) and CFR[h](%p) must exist in replace_rkey", 730 tb->R[h], tb->CFR[h]); 731 RFALSE(B_NR_ITEMS(tb->R[h]) == 0, 732 "R[h] can not be empty if it exists (item number=%d)", 733 B_NR_ITEMS(tb->R[h])); 734 735 memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE); 736 737 do_balance_mark_internal_dirty(tb, tb->CFR[h], 0); 738 } 739 740 int balance_internal(struct tree_balance *tb, /* tree_balance structure */ 741 int h, /* level of the tree */ 742 int child_pos, struct item_head *insert_key, /* key for insertion on higher level */ 743 struct buffer_head **insert_ptr /* node for insertion on higher level */ 744 ) 745 /* if inserting/pasting 746 { 747 child_pos is the position of the node-pointer in S[h] that * 748 pointed to S[h-1] before balancing of the h-1 level; * 749 this means that new pointers and items must be inserted AFTER * 750 child_pos 751 } 752 else 753 { 754 it is the position of the leftmost pointer that must be deleted (together with 755 its corresponding key to the left of the pointer) 756 as a result of the previous level's balancing. 757 } 758 */ 759 { 760 struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); 761 struct buffer_info bi; 762 int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */ 763 int insert_num, n, k; 764 struct buffer_head *S_new; 765 struct item_head new_insert_key; 766 struct buffer_head *new_insert_ptr = NULL; 767 struct item_head *new_insert_key_addr = insert_key; 768 769 RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h); 770 771 PROC_INFO_INC(tb->tb_sb, balance_at[h]); 772 773 order = 774 (tbSh) ? PATH_H_POSITION(tb->tb_path, 775 h + 1) /*tb->S[h]->b_item_order */ : 0; 776 777 /* Using insert_size[h] calculate the number insert_num of items 778 that must be inserted to or deleted from S[h]. */ 779 insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE)); 780 781 /* Check whether insert_num is proper * */ 782 RFALSE(insert_num < -2 || insert_num > 2, 783 "incorrect number of items inserted to the internal node (%d)", 784 insert_num); 785 RFALSE(h > 1 && (insert_num > 1 || insert_num < -1), 786 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", 787 insert_num, h); 788 789 /* Make balance in case insert_num < 0 */ 790 if (insert_num < 0) { 791 balance_internal_when_delete(tb, h, child_pos); 792 return order; 793 } 794 795 k = 0; 796 if (tb->lnum[h] > 0) { 797 /* shift lnum[h] items from S[h] to the left neighbor L[h]. 798 check how many of new items fall into L[h] or CFL[h] after 799 shifting */ 800 n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */ 801 if (tb->lnum[h] <= child_pos) { 802 /* new items don't fall into L[h] or CFL[h] */ 803 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 804 tb->lnum[h]); 805 /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */ 806 child_pos -= tb->lnum[h]; 807 } else if (tb->lnum[h] > child_pos + insert_num) { 808 /* all new items fall into L[h] */ 809 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 810 tb->lnum[h] - insert_num); 811 /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh, 812 tb->lnum[h]-insert_num); 813 */ 814 /* insert insert_num keys and node-pointers into L[h] */ 815 bi.tb = tb; 816 bi.bi_bh = tb->L[h]; 817 bi.bi_parent = tb->FL[h]; 818 bi.bi_position = get_left_neighbor_position(tb, h); 819 internal_insert_childs(&bi, 820 /*tb->L[h], tb->S[h-1]->b_next */ 821 n + child_pos + 1, 822 insert_num, insert_key, 823 insert_ptr); 824 825 insert_num = 0; 826 } else { 827 struct disk_child *dc; 828 829 /* some items fall into L[h] or CFL[h], but some don't fall */ 830 internal_shift1_left(tb, h, child_pos + 1); 831 /* calculate number of new items that fall into L[h] */ 832 k = tb->lnum[h] - child_pos - 1; 833 bi.tb = tb; 834 bi.bi_bh = tb->L[h]; 835 bi.bi_parent = tb->FL[h]; 836 bi.bi_position = get_left_neighbor_position(tb, h); 837 internal_insert_childs(&bi, 838 /*tb->L[h], tb->S[h-1]->b_next, */ 839 n + child_pos + 1, k, 840 insert_key, insert_ptr); 841 842 replace_lkey(tb, h, insert_key + k); 843 844 /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */ 845 dc = B_N_CHILD(tbSh, 0); 846 put_dc_size(dc, 847 MAX_CHILD_SIZE(insert_ptr[k]) - 848 B_FREE_SPACE(insert_ptr[k])); 849 put_dc_block_number(dc, insert_ptr[k]->b_blocknr); 850 851 do_balance_mark_internal_dirty(tb, tbSh, 0); 852 853 k++; 854 insert_key += k; 855 insert_ptr += k; 856 insert_num -= k; 857 child_pos = 0; 858 } 859 } 860 /* tb->lnum[h] > 0 */ 861 if (tb->rnum[h] > 0) { 862 /*shift rnum[h] items from S[h] to the right neighbor R[h] */ 863 /* check how many of new items fall into R or CFR after shifting */ 864 n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ 865 if (n - tb->rnum[h] >= child_pos) 866 /* new items fall into S[h] */ 867 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */ 868 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 869 tb->rnum[h]); 870 else if (n + insert_num - tb->rnum[h] < child_pos) { 871 /* all new items fall into R[h] */ 872 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h], 873 tb->rnum[h] - insert_num); */ 874 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 875 tb->rnum[h] - insert_num); 876 877 /* insert insert_num keys and node-pointers into R[h] */ 878 bi.tb = tb; 879 bi.bi_bh = tb->R[h]; 880 bi.bi_parent = tb->FR[h]; 881 bi.bi_position = get_right_neighbor_position(tb, h); 882 internal_insert_childs(&bi, 883 /*tb->R[h],tb->S[h-1]->b_next */ 884 child_pos - n - insert_num + 885 tb->rnum[h] - 1, 886 insert_num, insert_key, 887 insert_ptr); 888 insert_num = 0; 889 } else { 890 struct disk_child *dc; 891 892 /* one of the items falls into CFR[h] */ 893 internal_shift1_right(tb, h, n - child_pos + 1); 894 /* calculate number of new items that fall into R[h] */ 895 k = tb->rnum[h] - n + child_pos - 1; 896 bi.tb = tb; 897 bi.bi_bh = tb->R[h]; 898 bi.bi_parent = tb->FR[h]; 899 bi.bi_position = get_right_neighbor_position(tb, h); 900 internal_insert_childs(&bi, 901 /*tb->R[h], tb->R[h]->b_child, */ 902 0, k, insert_key + 1, 903 insert_ptr + 1); 904 905 replace_rkey(tb, h, insert_key + insert_num - k - 1); 906 907 /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */ 908 dc = B_N_CHILD(tb->R[h], 0); 909 put_dc_size(dc, 910 MAX_CHILD_SIZE(insert_ptr 911 [insert_num - k - 1]) - 912 B_FREE_SPACE(insert_ptr 913 [insert_num - k - 1])); 914 put_dc_block_number(dc, 915 insert_ptr[insert_num - k - 916 1]->b_blocknr); 917 918 do_balance_mark_internal_dirty(tb, tb->R[h], 0); 919 920 insert_num -= (k + 1); 921 } 922 } 923 924 /** Fill new node that appears instead of S[h] **/ 925 RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level"); 926 RFALSE(tb->blknum[h] < 0, "blknum can not be < 0"); 927 928 if (!tb->blknum[h]) { /* node S[h] is empty now */ 929 RFALSE(!tbSh, "S[h] is equal NULL"); 930 931 /* do what is needed for buffer thrown from tree */ 932 reiserfs_invalidate_buffer(tb, tbSh); 933 return order; 934 } 935 936 if (!tbSh) { 937 /* create new root */ 938 struct disk_child *dc; 939 struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1); 940 struct block_head *blkh; 941 942 if (tb->blknum[h] != 1) 943 reiserfs_panic(NULL, 944 "balance_internal: One new node required for creating the new root"); 945 /* S[h] = empty buffer from the list FEB. */ 946 tbSh = get_FEB(tb); 947 blkh = B_BLK_HEAD(tbSh); 948 set_blkh_level(blkh, h + 1); 949 950 /* Put the unique node-pointer to S[h] that points to S[h-1]. */ 951 952 dc = B_N_CHILD(tbSh, 0); 953 put_dc_block_number(dc, tbSh_1->b_blocknr); 954 put_dc_size(dc, 955 (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1))); 956 957 tb->insert_size[h] -= DC_SIZE; 958 set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE); 959 960 do_balance_mark_internal_dirty(tb, tbSh, 0); 961 962 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 963 check_internal(tbSh); 964 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 965 966 /* put new root into path structure */ 967 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 968 tbSh; 969 970 /* Change root in structure super block. */ 971 PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr); 972 PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1); 973 do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); 974 } 975 976 if (tb->blknum[h] == 2) { 977 int snum; 978 struct buffer_info dest_bi, src_bi; 979 980 /* S_new = free buffer from list FEB */ 981 S_new = get_FEB(tb); 982 983 set_blkh_level(B_BLK_HEAD(S_new), h + 1); 984 985 dest_bi.tb = tb; 986 dest_bi.bi_bh = S_new; 987 dest_bi.bi_parent = NULL; 988 dest_bi.bi_position = 0; 989 src_bi.tb = tb; 990 src_bi.bi_bh = tbSh; 991 src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 992 src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 993 994 n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ 995 snum = (insert_num + n + 1) / 2; 996 if (n - snum >= child_pos) { 997 /* new items don't fall into S_new */ 998 /* store the delimiting key for the next level */ 999 /* new_insert_key = (n - snum)'th key in S[h] */ 1000 memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum), 1001 KEY_SIZE); 1002 /* last parameter is del_par */ 1003 internal_move_pointers_items(&dest_bi, &src_bi, 1004 LAST_TO_FIRST, snum, 0); 1005 /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */ 1006 } else if (n + insert_num - snum < child_pos) { 1007 /* all new items fall into S_new */ 1008 /* store the delimiting key for the next level */ 1009 /* new_insert_key = (n + insert_item - snum)'th key in S[h] */ 1010 memcpy(&new_insert_key, 1011 B_N_PDELIM_KEY(tbSh, n + insert_num - snum), 1012 KEY_SIZE); 1013 /* last parameter is del_par */ 1014 internal_move_pointers_items(&dest_bi, &src_bi, 1015 LAST_TO_FIRST, 1016 snum - insert_num, 0); 1017 /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */ 1018 1019 /* insert insert_num keys and node-pointers into S_new */ 1020 internal_insert_childs(&dest_bi, 1021 /*S_new,tb->S[h-1]->b_next, */ 1022 child_pos - n - insert_num + 1023 snum - 1, 1024 insert_num, insert_key, 1025 insert_ptr); 1026 1027 insert_num = 0; 1028 } else { 1029 struct disk_child *dc; 1030 1031 /* some items fall into S_new, but some don't fall */ 1032 /* last parameter is del_par */ 1033 internal_move_pointers_items(&dest_bi, &src_bi, 1034 LAST_TO_FIRST, 1035 n - child_pos + 1, 1); 1036 /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */ 1037 /* calculate number of new items that fall into S_new */ 1038 k = snum - n + child_pos - 1; 1039 1040 internal_insert_childs(&dest_bi, /*S_new, */ 0, k, 1041 insert_key + 1, insert_ptr + 1); 1042 1043 /* new_insert_key = insert_key[insert_num - k - 1] */ 1044 memcpy(&new_insert_key, insert_key + insert_num - k - 1, 1045 KEY_SIZE); 1046 /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */ 1047 1048 dc = B_N_CHILD(S_new, 0); 1049 put_dc_size(dc, 1050 (MAX_CHILD_SIZE 1051 (insert_ptr[insert_num - k - 1]) - 1052 B_FREE_SPACE(insert_ptr 1053 [insert_num - k - 1]))); 1054 put_dc_block_number(dc, 1055 insert_ptr[insert_num - k - 1056 1]->b_blocknr); 1057 1058 do_balance_mark_internal_dirty(tb, S_new, 0); 1059 1060 insert_num -= (k + 1); 1061 } 1062 /* new_insert_ptr = node_pointer to S_new */ 1063 new_insert_ptr = S_new; 1064 1065 RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new) 1066 || buffer_dirty(S_new), "cm-00001: bad S_new (%b)", 1067 S_new); 1068 1069 // S_new is released in unfix_nodes 1070 } 1071 1072 n = B_NR_ITEMS(tbSh); /*number of items in S[h] */ 1073 1074 if (0 <= child_pos && child_pos <= n && insert_num > 0) { 1075 bi.tb = tb; 1076 bi.bi_bh = tbSh; 1077 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 1078 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 1079 internal_insert_childs(&bi, /*tbSh, */ 1080 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */ 1081 child_pos, insert_num, insert_key, 1082 insert_ptr); 1083 } 1084 1085 memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE); 1086 insert_ptr[0] = new_insert_ptr; 1087 1088 return order; 1089 } 1090