xref: /openbmc/linux/fs/reiserfs/fix_node.c (revision f42b3800)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36 
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41 
42 /* To make any changes in the tree we find a node, that contains item
43    to be changed/deleted or position in the node we insert a new item
44    to. We call this node S. To do balancing we need to decide what we
45    will shift to left/right neighbor, or to a new node, where new item
46    will be etc. To make this analysis simpler we build virtual
47    node. Virtual node is an array of items, that will replace items of
48    node S. (For instance if we are going to delete an item, virtual
49    node does not contain it). Virtual node keeps information about
50    item sizes and types, mergeability of first and last items, sizes
51    of all entries in directory item. We use this array of items when
52    calculating what we can shift to neighbors and how many nodes we
53    have to have if we do not any shiftings, if we shift to left/right
54    neighbor or to both. */
55 
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59 	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 		return new_num;
61 
62 	if (mode == M_INSERT) {
63 
64 		RFALSE(new_num == 0,
65 		       "vs-8005: for INSERT mode and item number of inserted item");
66 
67 		return new_num - 1;
68 	}
69 
70 	RFALSE(mode != M_DELETE,
71 	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 	       mode);
73 	/* delete mode */
74 	return new_num + 1;
75 }
76 
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79 	struct item_head *ih;
80 	struct virtual_node *vn = tb->tb_vn;
81 	int new_num;
82 	struct buffer_head *Sh;	/* this comes from tb->S[h] */
83 
84 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
85 
86 	/* size of changed node */
87 	vn->vn_size =
88 	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89 
90 	/* for internal nodes array if virtual items is not created */
91 	if (h) {
92 		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 		return;
94 	}
95 
96 	/* number of items in virtual node  */
97 	vn->vn_nr_item =
98 	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
100 
101 	/* first virtual item */
102 	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105 
106 	/* first item in the node */
107 	ih = B_N_PITEM_HEAD(Sh, 0);
108 
109 	/* define the mergeability for 0-th item (if it is not being deleted) */
110 	if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113 
114 	/* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 		int j;
117 		struct virtual_item *vi = vn->vn_vi + new_num;
118 		int is_affected =
119 		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120 
121 		if (is_affected && vn->vn_mode == M_INSERT)
122 			continue;
123 
124 		/* get item number in source node */
125 		j = old_item_num(new_num, vn->vn_affected_item_num,
126 				 vn->vn_mode);
127 
128 		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 		vi->vi_ih = ih + j;
130 		vi->vi_item = B_I_PITEM(Sh, ih + j);
131 		vi->vi_uarea = vn->vn_free_ptr;
132 
133 		// FIXME: there is no check, that item operation did not
134 		// consume too much memory
135 		vn->vn_free_ptr +=
136 		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138 			reiserfs_panic(tb->tb_sb,
139 				       "vs-8030: create_virtual_node: "
140 				       "virtual node space consumed");
141 
142 		if (!is_affected)
143 			/* this is not being changed */
144 			continue;
145 
146 		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
147 			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
148 			vi->vi_new_data = vn->vn_data;	// pointer to data which is going to be pasted
149 		}
150 	}
151 
152 	/* virtual inserted item is not defined yet */
153 	if (vn->vn_mode == M_INSERT) {
154 		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
155 
156 		RFALSE(vn->vn_ins_ih == NULL,
157 		       "vs-8040: item header of inserted item is not specified");
158 		vi->vi_item_len = tb->insert_size[0];
159 		vi->vi_ih = vn->vn_ins_ih;
160 		vi->vi_item = vn->vn_data;
161 		vi->vi_uarea = vn->vn_free_ptr;
162 
163 		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
164 			     tb->insert_size[0]);
165 	}
166 
167 	/* set right merge flag we take right delimiting key and check whether it is a mergeable item */
168 	if (tb->CFR[0]) {
169 		struct reiserfs_key *key;
170 
171 		key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
172 		if (op_is_left_mergeable(key, Sh->b_size)
173 		    && (vn->vn_mode != M_DELETE
174 			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
175 			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
176 			    VI_TYPE_RIGHT_MERGEABLE;
177 
178 #ifdef CONFIG_REISERFS_CHECK
179 		if (op_is_left_mergeable(key, Sh->b_size) &&
180 		    !(vn->vn_mode != M_DELETE
181 		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
182 			/* we delete last item and it could be merged with right neighbor's first item */
183 			if (!
184 			    (B_NR_ITEMS(Sh) == 1
185 			     && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
186 			     && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
187 				/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
188 				print_block(Sh, 0, -1, -1);
189 				reiserfs_panic(tb->tb_sb,
190 					       "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
191 					       key, vn->vn_affected_item_num,
192 					       vn->vn_mode, M_DELETE);
193 			}
194 		}
195 #endif
196 
197 	}
198 }
199 
200 /* using virtual node check, how many items can be shifted to left
201    neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204 	int i;
205 	struct virtual_node *vn = tb->tb_vn;
206 	struct virtual_item *vi;
207 	int d_size, ih_size;
208 
209 	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210 
211 	/* internal level */
212 	if (h > 0) {
213 		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 		return;
215 	}
216 
217 	/* leaf level */
218 
219 	if (!cur_free || !vn->vn_nr_item) {
220 		/* no free space or nothing to move */
221 		tb->lnum[h] = 0;
222 		tb->lbytes = -1;
223 		return;
224 	}
225 
226 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 	       "vs-8055: parent does not exist or invalid");
228 
229 	vi = vn->vn_vi;
230 	if ((unsigned int)cur_free >=
231 	    (vn->vn_size -
232 	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 		/* all contents of S[0] fits into L[0] */
234 
235 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 		       "vs-8055: invalid mode or balance condition failed");
237 
238 		tb->lnum[0] = vn->vn_nr_item;
239 		tb->lbytes = -1;
240 		return;
241 	}
242 
243 	d_size = 0, ih_size = IH_SIZE;
244 
245 	/* first item may be merge with last item in left neighbor */
246 	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 		d_size = -((int)IH_SIZE), ih_size = 0;
248 
249 	tb->lnum[0] = 0;
250 	for (i = 0; i < vn->vn_nr_item;
251 	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 		d_size += vi->vi_item_len;
253 		if (cur_free >= d_size) {
254 			/* the item can be shifted entirely */
255 			cur_free -= d_size;
256 			tb->lnum[0]++;
257 			continue;
258 		}
259 
260 		/* the item cannot be shifted entirely, try to split it */
261 		/* check whether L[0] can hold ih and at least one byte of the item body */
262 		if (cur_free <= ih_size) {
263 			/* cannot shift even a part of the current item */
264 			tb->lbytes = -1;
265 			return;
266 		}
267 		cur_free -= ih_size;
268 
269 		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 		if (tb->lbytes != -1)
271 			/* count partially shifted item */
272 			tb->lnum[0]++;
273 
274 		break;
275 	}
276 
277 	return;
278 }
279 
280 /* using virtual node check, how many items can be shifted to right
281    neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284 	int i;
285 	struct virtual_node *vn = tb->tb_vn;
286 	struct virtual_item *vi;
287 	int d_size, ih_size;
288 
289 	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290 
291 	/* internal level */
292 	if (h > 0) {
293 		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 		return;
295 	}
296 
297 	/* leaf level */
298 
299 	if (!cur_free || !vn->vn_nr_item) {
300 		/* no free space  */
301 		tb->rnum[h] = 0;
302 		tb->rbytes = -1;
303 		return;
304 	}
305 
306 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 	       "vs-8075: parent does not exist or invalid");
308 
309 	vi = vn->vn_vi + vn->vn_nr_item - 1;
310 	if ((unsigned int)cur_free >=
311 	    (vn->vn_size -
312 	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 		/* all contents of S[0] fits into R[0] */
314 
315 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 		       "vs-8080: invalid mode or balance condition failed");
317 
318 		tb->rnum[h] = vn->vn_nr_item;
319 		tb->rbytes = -1;
320 		return;
321 	}
322 
323 	d_size = 0, ih_size = IH_SIZE;
324 
325 	/* last item may be merge with first item in right neighbor */
326 	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 		d_size = -(int)IH_SIZE, ih_size = 0;
328 
329 	tb->rnum[0] = 0;
330 	for (i = vn->vn_nr_item - 1; i >= 0;
331 	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 		d_size += vi->vi_item_len;
333 		if (cur_free >= d_size) {
334 			/* the item can be shifted entirely */
335 			cur_free -= d_size;
336 			tb->rnum[0]++;
337 			continue;
338 		}
339 
340 		/* check whether R[0] can hold ih and at least one byte of the item body */
341 		if (cur_free <= ih_size) {	/* cannot shift even a part of the current item */
342 			tb->rbytes = -1;
343 			return;
344 		}
345 
346 		/* R[0] can hold the header of the item and at least one byte of its body */
347 		cur_free -= ih_size;	/* cur_free is still > 0 */
348 
349 		tb->rbytes = op_check_right(vi, cur_free);
350 		if (tb->rbytes != -1)
351 			/* count partially shifted item */
352 			tb->rnum[0]++;
353 
354 		break;
355 	}
356 
357 	return;
358 }
359 
360 /*
361  * from - number of items, which are shifted to left neighbor entirely
362  * to - number of item, which are shifted to right neighbor entirely
363  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 		       int from, int from_bytes,
367 		       int to, int to_bytes, short *snum012, int flow)
368 {
369 	int i;
370 	int cur_free;
371 	//    int bytes;
372 	int units;
373 	struct virtual_node *vn = tb->tb_vn;
374 	//    struct virtual_item * vi;
375 
376 	int total_node_size, max_node_size, current_item_size;
377 	int needed_nodes;
378 	int start_item,		/* position of item we start filling node from */
379 	 end_item,		/* position of item we finish filling node by */
380 	 start_bytes,		/* number of first bytes (entries for directory) of start_item-th item
381 				   we do not include into node that is being filled */
382 	 end_bytes;		/* number of last bytes (entries for directory) of end_item-th item
383 				   we do node include into node that is being filled */
384 	int split_item_positions[2];	/* these are positions in virtual item of
385 					   items, that are split between S[0] and
386 					   S1new and S1new and S2new */
387 
388 	split_item_positions[0] = -1;
389 	split_item_positions[1] = -1;
390 
391 	/* We only create additional nodes if we are in insert or paste mode
392 	   or we are in replace mode at the internal level. If h is 0 and
393 	   the mode is M_REPLACE then in fix_nodes we change the mode to
394 	   paste or insert before we get here in the code.  */
395 	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 	       "vs-8100: insert_size < 0 in overflow");
397 
398 	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399 
400 	/* snum012 [0-2] - number of items, that lay
401 	   to S[0], first new node and second new node */
402 	snum012[3] = -1;	/* s1bytes */
403 	snum012[4] = -1;	/* s2bytes */
404 
405 	/* internal level */
406 	if (h > 0) {
407 		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 		if (i == max_node_size)
409 			return 1;
410 		return (i / max_node_size + 1);
411 	}
412 
413 	/* leaf level */
414 	needed_nodes = 1;
415 	total_node_size = 0;
416 	cur_free = max_node_size;
417 
418 	// start from 'from'-th item
419 	start_item = from;
420 	// skip its first 'start_bytes' units
421 	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422 
423 	// last included item is the 'end_item'-th one
424 	end_item = vn->vn_nr_item - to - 1;
425 	// do not count last 'end_bytes' units of 'end_item'-th item
426 	end_bytes = (to_bytes != -1) ? to_bytes : 0;
427 
428 	/* go through all item beginning from the start_item-th item and ending by
429 	   the end_item-th item. Do not count first 'start_bytes' units of
430 	   'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431 
432 	for (i = start_item; i <= end_item; i++) {
433 		struct virtual_item *vi = vn->vn_vi + i;
434 		int skip_from_end = ((i == end_item) ? end_bytes : 0);
435 
436 		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437 
438 		/* get size of current item */
439 		current_item_size = vi->vi_item_len;
440 
441 		/* do not take in calculation head part (from_bytes) of from-th item */
442 		current_item_size -=
443 		    op_part_size(vi, 0 /*from start */ , start_bytes);
444 
445 		/* do not take in calculation tail part of last item */
446 		current_item_size -=
447 		    op_part_size(vi, 1 /*from end */ , skip_from_end);
448 
449 		/* if item fits into current node entierly */
450 		if (total_node_size + current_item_size <= max_node_size) {
451 			snum012[needed_nodes - 1]++;
452 			total_node_size += current_item_size;
453 			start_bytes = 0;
454 			continue;
455 		}
456 
457 		if (current_item_size > max_node_size) {
458 			/* virtual item length is longer, than max size of item in
459 			   a node. It is impossible for direct item */
460 			RFALSE(is_direct_le_ih(vi->vi_ih),
461 			       "vs-8110: "
462 			       "direct item length is %d. It can not be longer than %d",
463 			       current_item_size, max_node_size);
464 			/* we will try to split it */
465 			flow = 1;
466 		}
467 
468 		if (!flow) {
469 			/* as we do not split items, take new node and continue */
470 			needed_nodes++;
471 			i--;
472 			total_node_size = 0;
473 			continue;
474 		}
475 		// calculate number of item units which fit into node being
476 		// filled
477 		{
478 			int free_space;
479 
480 			free_space = max_node_size - total_node_size - IH_SIZE;
481 			units =
482 			    op_check_left(vi, free_space, start_bytes,
483 					  skip_from_end);
484 			if (units == -1) {
485 				/* nothing fits into current node, take new node and continue */
486 				needed_nodes++, i--, total_node_size = 0;
487 				continue;
488 			}
489 		}
490 
491 		/* something fits into the current node */
492 		//if (snum012[3] != -1 || needed_nodes != 1)
493 		//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 		//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 		start_bytes += units;
496 		snum012[needed_nodes - 1 + 3] = units;
497 
498 		if (needed_nodes > 2)
499 			reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: "
500 					 "split_item_position is out of boundary");
501 		snum012[needed_nodes - 1]++;
502 		split_item_positions[needed_nodes - 1] = i;
503 		needed_nodes++;
504 		/* continue from the same item with start_bytes != -1 */
505 		start_item = i;
506 		i--;
507 		total_node_size = 0;
508 	}
509 
510 	// sum012[4] (if it is not -1) contains number of units of which
511 	// are to be in S1new, snum012[3] - to be in S0. They are supposed
512 	// to be S1bytes and S2bytes correspondingly, so recalculate
513 	if (snum012[4] > 0) {
514 		int split_item_num;
515 		int bytes_to_r, bytes_to_l;
516 		int bytes_to_S1new;
517 
518 		split_item_num = split_item_positions[1];
519 		bytes_to_l =
520 		    ((from == split_item_num
521 		      && from_bytes != -1) ? from_bytes : 0);
522 		bytes_to_r =
523 		    ((end_item == split_item_num
524 		      && end_bytes != -1) ? end_bytes : 0);
525 		bytes_to_S1new =
526 		    ((split_item_positions[0] ==
527 		      split_item_positions[1]) ? snum012[3] : 0);
528 
529 		// s2bytes
530 		snum012[4] =
531 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 		    bytes_to_r - bytes_to_l - bytes_to_S1new;
533 
534 		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536 			reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not "
537 					 "directory or indirect item");
538 	}
539 
540 	/* now we know S2bytes, calculate S1bytes */
541 	if (snum012[3] > 0) {
542 		int split_item_num;
543 		int bytes_to_r, bytes_to_l;
544 		int bytes_to_S2new;
545 
546 		split_item_num = split_item_positions[0];
547 		bytes_to_l =
548 		    ((from == split_item_num
549 		      && from_bytes != -1) ? from_bytes : 0);
550 		bytes_to_r =
551 		    ((end_item == split_item_num
552 		      && end_bytes != -1) ? end_bytes : 0);
553 		bytes_to_S2new =
554 		    ((split_item_positions[0] == split_item_positions[1]
555 		      && snum012[4] != -1) ? snum012[4] : 0);
556 
557 		// s1bytes
558 		snum012[3] =
559 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 		    bytes_to_r - bytes_to_l - bytes_to_S2new;
561 	}
562 
563 	return needed_nodes;
564 }
565 
566 #ifdef CONFIG_REISERFS_CHECK
567 extern struct tree_balance *cur_tb;
568 #endif
569 
570 /* Set parameters for balancing.
571  * Performs write of results of analysis of balancing into structure tb,
572  * where it will later be used by the functions that actually do the balancing.
573  * Parameters:
574  *	tb	tree_balance structure;
575  *	h	current level of the node;
576  *	lnum	number of items from S[h] that must be shifted to L[h];
577  *	rnum	number of items from S[h] that must be shifted to R[h];
578  *	blk_num	number of blocks that S[h] will be splitted into;
579  *	s012	number of items that fall into splitted nodes.
580  *	lbytes	number of bytes which flow to the left neighbor from the item that is not
581  *		not shifted entirely
582  *	rbytes	number of bytes which flow to the right neighbor from the item that is not
583  *		not shifted entirely
584  *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
585  */
586 
587 static void set_parameters(struct tree_balance *tb, int h, int lnum,
588 			   int rnum, int blk_num, short *s012, int lb, int rb)
589 {
590 
591 	tb->lnum[h] = lnum;
592 	tb->rnum[h] = rnum;
593 	tb->blknum[h] = blk_num;
594 
595 	if (h == 0) {		/* only for leaf level */
596 		if (s012 != NULL) {
597 			tb->s0num = *s012++,
598 			    tb->s1num = *s012++, tb->s2num = *s012++;
599 			tb->s1bytes = *s012++;
600 			tb->s2bytes = *s012;
601 		}
602 		tb->lbytes = lb;
603 		tb->rbytes = rb;
604 	}
605 	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606 	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
607 
608 	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609 	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610 }
611 
612 /* check, does node disappear if we shift tb->lnum[0] items to left
613    neighbor and tb->rnum[0] to the right one. */
614 static int is_leaf_removable(struct tree_balance *tb)
615 {
616 	struct virtual_node *vn = tb->tb_vn;
617 	int to_left, to_right;
618 	int size;
619 	int remain_items;
620 
621 	/* number of items, that will be shifted to left (right) neighbor
622 	   entirely */
623 	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624 	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625 	remain_items = vn->vn_nr_item;
626 
627 	/* how many items remain in S[0] after shiftings to neighbors */
628 	remain_items -= (to_left + to_right);
629 
630 	if (remain_items < 1) {
631 		/* all content of node can be shifted to neighbors */
632 		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633 			       NULL, -1, -1);
634 		return 1;
635 	}
636 
637 	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638 		/* S[0] is not removable */
639 		return 0;
640 
641 	/* check, whether we can divide 1 remaining item between neighbors */
642 
643 	/* get size of remaining item (in item units) */
644 	size = op_unit_num(&(vn->vn_vi[to_left]));
645 
646 	if (tb->lbytes + tb->rbytes >= size) {
647 		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648 			       tb->lbytes, -1);
649 		return 1;
650 	}
651 
652 	return 0;
653 }
654 
655 /* check whether L, S, R can be joined in one node */
656 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
657 {
658 	struct virtual_node *vn = tb->tb_vn;
659 	int ih_size;
660 	struct buffer_head *S0;
661 
662 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663 
664 	ih_size = 0;
665 	if (vn->vn_nr_item) {
666 		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667 			ih_size += IH_SIZE;
668 
669 		if (vn->vn_vi[vn->vn_nr_item - 1].
670 		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
671 			ih_size += IH_SIZE;
672 	} else {
673 		/* there was only one item and it will be deleted */
674 		struct item_head *ih;
675 
676 		RFALSE(B_NR_ITEMS(S0) != 1,
677 		       "vs-8125: item number must be 1: it is %d",
678 		       B_NR_ITEMS(S0));
679 
680 		ih = B_N_PITEM_HEAD(S0, 0);
681 		if (tb->CFR[0]
682 		    && !comp_short_le_keys(&(ih->ih_key),
683 					   B_N_PDELIM_KEY(tb->CFR[0],
684 							  tb->rkey[0])))
685 			if (is_direntry_le_ih(ih)) {
686 				/* Directory must be in correct state here: that is
687 				   somewhere at the left side should exist first directory
688 				   item. But the item being deleted can not be that first
689 				   one because its right neighbor is item of the same
690 				   directory. (But first item always gets deleted in last
691 				   turn). So, neighbors of deleted item can be merged, so
692 				   we can save ih_size */
693 				ih_size = IH_SIZE;
694 
695 				/* we might check that left neighbor exists and is of the
696 				   same directory */
697 				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698 				       "vs-8130: first directory item can not be removed until directory is not empty");
699 			}
700 
701 	}
702 
703 	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704 		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705 		PROC_INFO_INC(tb->tb_sb, leaves_removable);
706 		return 1;
707 	}
708 	return 0;
709 
710 }
711 
712 /* when we do not split item, lnum and rnum are numbers of entire items */
713 #define SET_PAR_SHIFT_LEFT \
714 if (h)\
715 {\
716    int to_l;\
717    \
718    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
720 	      \
721 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722 }\
723 else \
724 {\
725    if (lset==LEFT_SHIFT_FLOW)\
726      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727 		     tb->lbytes, -1);\
728    else\
729      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730 		     -1, -1);\
731 }
732 
733 #define SET_PAR_SHIFT_RIGHT \
734 if (h)\
735 {\
736    int to_r;\
737    \
738    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739    \
740    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741 }\
742 else \
743 {\
744    if (rset==RIGHT_SHIFT_FLOW)\
745      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746 		  -1, tb->rbytes);\
747    else\
748      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749 		  -1, -1);\
750 }
751 
752 static void free_buffers_in_tb(struct tree_balance *p_s_tb)
753 {
754 	int n_counter;
755 
756 	decrement_counters_in_path(p_s_tb->tb_path);
757 
758 	for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) {
759 		decrement_bcount(p_s_tb->L[n_counter]);
760 		p_s_tb->L[n_counter] = NULL;
761 		decrement_bcount(p_s_tb->R[n_counter]);
762 		p_s_tb->R[n_counter] = NULL;
763 		decrement_bcount(p_s_tb->FL[n_counter]);
764 		p_s_tb->FL[n_counter] = NULL;
765 		decrement_bcount(p_s_tb->FR[n_counter]);
766 		p_s_tb->FR[n_counter] = NULL;
767 		decrement_bcount(p_s_tb->CFL[n_counter]);
768 		p_s_tb->CFL[n_counter] = NULL;
769 		decrement_bcount(p_s_tb->CFR[n_counter]);
770 		p_s_tb->CFR[n_counter] = NULL;
771 	}
772 }
773 
774 /* Get new buffers for storing new nodes that are created while balancing.
775  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
776  *	        CARRY_ON - schedule didn't occur while the function worked;
777  *	        NO_DISK_SPACE - no disk space.
778  */
779 /* The function is NOT SCHEDULE-SAFE! */
780 static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h)
781 {
782 	struct buffer_head *p_s_new_bh,
783 	    *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h);
784 	b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
785 	int n_counter, n_number_of_freeblk, n_amount_needed,	/* number of needed empty blocks */
786 	 n_retval = CARRY_ON;
787 	struct super_block *p_s_sb = p_s_tb->tb_sb;
788 
789 	/* number_of_freeblk is the number of empty blocks which have been
790 	   acquired for use by the balancing algorithm minus the number of
791 	   empty blocks used in the previous levels of the analysis,
792 	   number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
793 	   after empty blocks are acquired, and the balancing analysis is
794 	   then restarted, amount_needed is the number needed by this level
795 	   (n_h) of the balancing analysis.
796 
797 	   Note that for systems with many processes writing, it would be
798 	   more layout optimal to calculate the total number needed by all
799 	   levels and then to run reiserfs_new_blocks to get all of them at once.  */
800 
801 	/* Initiate number_of_freeblk to the amount acquired prior to the restart of
802 	   the analysis or 0 if not restarted, then subtract the amount needed
803 	   by all of the levels of the tree below n_h. */
804 	/* blknum includes S[n_h], so we subtract 1 in this calculation */
805 	for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum;
806 	     n_counter < n_h; n_counter++)
807 		n_number_of_freeblk -=
808 		    (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] -
809 						   1) : 0;
810 
811 	/* Allocate missing empty blocks. */
812 	/* if p_s_Sh == 0  then we are getting a new root */
813 	n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1;
814 	/*  Amount_needed = the amount that we need more than the amount that we have. */
815 	if (n_amount_needed > n_number_of_freeblk)
816 		n_amount_needed -= n_number_of_freeblk;
817 	else			/* If we have enough already then there is nothing to do. */
818 		return CARRY_ON;
819 
820 	/* No need to check quota - is not allocated for blocks used for formatted nodes */
821 	if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs,
822 				       n_amount_needed) == NO_DISK_SPACE)
823 		return NO_DISK_SPACE;
824 
825 	/* for each blocknumber we just got, get a buffer and stick it on FEB */
826 	for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
827 	     n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
828 
829 		RFALSE(!*p_n_blocknr,
830 		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
831 
832 		p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
833 		RFALSE(buffer_dirty(p_s_new_bh) ||
834 		       buffer_journaled(p_s_new_bh) ||
835 		       buffer_journal_dirty(p_s_new_bh),
836 		       "PAP-8140: journlaled or dirty buffer %b for the new block",
837 		       p_s_new_bh);
838 
839 		/* Put empty buffers into the array. */
840 		RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum],
841 		       "PAP-8141: busy slot for new buffer");
842 
843 		set_buffer_journal_new(p_s_new_bh);
844 		p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
845 	}
846 
847 	if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb))
848 		n_retval = REPEAT_SEARCH;
849 
850 	return n_retval;
851 }
852 
853 /* Get free space of the left neighbor, which is stored in the parent
854  * node of the left neighbor.  */
855 static int get_lfree(struct tree_balance *tb, int h)
856 {
857 	struct buffer_head *l, *f;
858 	int order;
859 
860 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
861 	    (l = tb->FL[h]) == NULL)
862 		return 0;
863 
864 	if (f == l)
865 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
866 	else {
867 		order = B_NR_ITEMS(l);
868 		f = l;
869 	}
870 
871 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
872 }
873 
874 /* Get free space of the right neighbor,
875  * which is stored in the parent node of the right neighbor.
876  */
877 static int get_rfree(struct tree_balance *tb, int h)
878 {
879 	struct buffer_head *r, *f;
880 	int order;
881 
882 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
883 	    (r = tb->FR[h]) == NULL)
884 		return 0;
885 
886 	if (f == r)
887 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
888 	else {
889 		order = 0;
890 		f = r;
891 	}
892 
893 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
894 
895 }
896 
897 /* Check whether left neighbor is in memory. */
898 static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h)
899 {
900 	struct buffer_head *p_s_father, *left;
901 	struct super_block *p_s_sb = p_s_tb->tb_sb;
902 	b_blocknr_t n_left_neighbor_blocknr;
903 	int n_left_neighbor_position;
904 
905 	if (!p_s_tb->FL[n_h])	/* Father of the left neighbor does not exist. */
906 		return 0;
907 
908 	/* Calculate father of the node to be balanced. */
909 	p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
910 
911 	RFALSE(!p_s_father ||
912 	       !B_IS_IN_TREE(p_s_father) ||
913 	       !B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
914 	       !buffer_uptodate(p_s_father) ||
915 	       !buffer_uptodate(p_s_tb->FL[n_h]),
916 	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
917 	       p_s_father, p_s_tb->FL[n_h]);
918 
919 	/* Get position of the pointer to the left neighbor into the left father. */
920 	n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ?
921 	    p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]);
922 	/* Get left neighbor block number. */
923 	n_left_neighbor_blocknr =
924 	    B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
925 	/* Look for the left neighbor in the cache. */
926 	if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) {
927 
928 		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
929 		       "vs-8170: left neighbor (%b %z) is not in the tree",
930 		       left, left);
931 		put_bh(left);
932 		return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 #define LEFT_PARENTS  'l'
939 #define RIGHT_PARENTS 'r'
940 
941 static void decrement_key(struct cpu_key *p_s_key)
942 {
943 	// call item specific function for this key
944 	item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
945 }
946 
947 /* Calculate far left/right parent of the left/right neighbor of the current node, that
948  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
949  * Calculate left/right common parent of the current node and L[h]/R[h].
950  * Calculate left/right delimiting key position.
951  * Returns:	PATH_INCORRECT   - path in the tree is not correct;
952  		SCHEDULE_OCCURRED - schedule occurred while the function worked;
953  *	        CARRY_ON         - schedule didn't occur while the function worked;
954  */
955 static int get_far_parent(struct tree_balance *p_s_tb,
956 			  int n_h,
957 			  struct buffer_head **pp_s_father,
958 			  struct buffer_head **pp_s_com_father, char c_lr_par)
959 {
960 	struct buffer_head *p_s_parent;
961 	INITIALIZE_PATH(s_path_to_neighbor_father);
962 	struct treepath *p_s_path = p_s_tb->tb_path;
963 	struct cpu_key s_lr_father_key;
964 	int n_counter,
965 	    n_position = INT_MAX,
966 	    n_first_last_position = 0,
967 	    n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
968 
969 	/* Starting from F[n_h] go upwards in the tree, and look for the common
970 	   ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
971 
972 	n_counter = n_path_offset;
973 
974 	RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET,
975 	       "PAP-8180: invalid path length");
976 
977 	for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
978 		/* Check whether parent of the current buffer in the path is really parent in the tree. */
979 		if (!B_IS_IN_TREE
980 		    (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
981 			return REPEAT_SEARCH;
982 		/* Check whether position in the parent is correct. */
983 		if ((n_position =
984 		     PATH_OFFSET_POSITION(p_s_path,
985 					  n_counter - 1)) >
986 		    B_NR_ITEMS(p_s_parent))
987 			return REPEAT_SEARCH;
988 		/* Check whether parent at the path really points to the child. */
989 		if (B_N_CHILD_NUM(p_s_parent, n_position) !=
990 		    PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
991 			return REPEAT_SEARCH;
992 		/* Return delimiting key if position in the parent is not equal to first/last one. */
993 		if (c_lr_par == RIGHT_PARENTS)
994 			n_first_last_position = B_NR_ITEMS(p_s_parent);
995 		if (n_position != n_first_last_position) {
996 			*pp_s_com_father = p_s_parent;
997 			get_bh(*pp_s_com_father);
998 			/*(*pp_s_com_father = p_s_parent)->b_count++; */
999 			break;
1000 		}
1001 	}
1002 
1003 	/* if we are in the root of the tree, then there is no common father */
1004 	if (n_counter == FIRST_PATH_ELEMENT_OFFSET) {
1005 		/* Check whether first buffer in the path is the root of the tree. */
1006 		if (PATH_OFFSET_PBUFFER
1007 		    (p_s_tb->tb_path,
1008 		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1009 		    SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1010 			*pp_s_father = *pp_s_com_father = NULL;
1011 			return CARRY_ON;
1012 		}
1013 		return REPEAT_SEARCH;
1014 	}
1015 
1016 	RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1017 	       "PAP-8185: (%b %z) level too small",
1018 	       *pp_s_com_father, *pp_s_com_father);
1019 
1020 	/* Check whether the common parent is locked. */
1021 
1022 	if (buffer_locked(*pp_s_com_father)) {
1023 		__wait_on_buffer(*pp_s_com_father);
1024 		if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1025 			decrement_bcount(*pp_s_com_father);
1026 			return REPEAT_SEARCH;
1027 		}
1028 	}
1029 
1030 	/* So, we got common parent of the current node and its left/right neighbor.
1031 	   Now we are geting the parent of the left/right neighbor. */
1032 
1033 	/* Form key to get parent of the left/right neighbor. */
1034 	le_key2cpu_key(&s_lr_father_key,
1035 		       B_N_PDELIM_KEY(*pp_s_com_father,
1036 				      (c_lr_par ==
1037 				       LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] =
1038 							n_position -
1039 							1) : (p_s_tb->rkey[n_h -
1040 									   1] =
1041 							      n_position)));
1042 
1043 	if (c_lr_par == LEFT_PARENTS)
1044 		decrement_key(&s_lr_father_key);
1045 
1046 	if (search_by_key
1047 	    (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1048 	     n_h + 1) == IO_ERROR)
1049 		// path is released
1050 		return IO_ERROR;
1051 
1052 	if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1053 		decrement_counters_in_path(&s_path_to_neighbor_father);
1054 		decrement_bcount(*pp_s_com_father);
1055 		return REPEAT_SEARCH;
1056 	}
1057 
1058 	*pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1059 
1060 	RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
1061 	       "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1062 	RFALSE(s_path_to_neighbor_father.path_length <
1063 	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1064 
1065 	s_path_to_neighbor_father.path_length--;
1066 	decrement_counters_in_path(&s_path_to_neighbor_father);
1067 	return CARRY_ON;
1068 }
1069 
1070 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1071  * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1072  * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1073  * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1074  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1075  *	        CARRY_ON - schedule didn't occur while the function worked;
1076  */
1077 static int get_parents(struct tree_balance *p_s_tb, int n_h)
1078 {
1079 	struct treepath *p_s_path = p_s_tb->tb_path;
1080 	int n_position,
1081 	    n_ret_value,
1082 	    n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1083 	struct buffer_head *p_s_curf, *p_s_curcf;
1084 
1085 	/* Current node is the root of the tree or will be root of the tree */
1086 	if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1087 		/* The root can not have parents.
1088 		   Release nodes which previously were obtained as parents of the current node neighbors. */
1089 		decrement_bcount(p_s_tb->FL[n_h]);
1090 		decrement_bcount(p_s_tb->CFL[n_h]);
1091 		decrement_bcount(p_s_tb->FR[n_h]);
1092 		decrement_bcount(p_s_tb->CFR[n_h]);
1093 		p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] =
1094 		    p_s_tb->CFR[n_h] = NULL;
1095 		return CARRY_ON;
1096 	}
1097 
1098 	/* Get parent FL[n_path_offset] of L[n_path_offset]. */
1099 	if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
1100 		/* Current node is not the first child of its parent. */
1101 		/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1102 		p_s_curf = p_s_curcf =
1103 		    PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1104 		get_bh(p_s_curf);
1105 		get_bh(p_s_curf);
1106 		p_s_tb->lkey[n_h] = n_position - 1;
1107 	} else {
1108 		/* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1109 		   Calculate current common parent of L[n_path_offset] and the current node. Note that
1110 		   CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1111 		   Calculate lkey[n_path_offset]. */
1112 		if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1113 						  &p_s_curcf,
1114 						  LEFT_PARENTS)) != CARRY_ON)
1115 			return n_ret_value;
1116 	}
1117 
1118 	decrement_bcount(p_s_tb->FL[n_h]);
1119 	p_s_tb->FL[n_h] = p_s_curf;	/* New initialization of FL[n_h]. */
1120 	decrement_bcount(p_s_tb->CFL[n_h]);
1121 	p_s_tb->CFL[n_h] = p_s_curcf;	/* New initialization of CFL[n_h]. */
1122 
1123 	RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1124 	       (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1125 	       "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1126 
1127 /* Get parent FR[n_h] of R[n_h]. */
1128 
1129 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1130 	if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
1131 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1132    Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1133    not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1134 		if ((n_ret_value =
1135 		     get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf,
1136 				    RIGHT_PARENTS)) != CARRY_ON)
1137 			return n_ret_value;
1138 	} else {
1139 /* Current node is not the last child of its parent F[n_h]. */
1140 		/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1141 		p_s_curf = p_s_curcf =
1142 		    PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1143 		get_bh(p_s_curf);
1144 		get_bh(p_s_curf);
1145 		p_s_tb->rkey[n_h] = n_position;
1146 	}
1147 
1148 	decrement_bcount(p_s_tb->FR[n_h]);
1149 	p_s_tb->FR[n_h] = p_s_curf;	/* New initialization of FR[n_path_offset]. */
1150 
1151 	decrement_bcount(p_s_tb->CFR[n_h]);
1152 	p_s_tb->CFR[n_h] = p_s_curcf;	/* New initialization of CFR[n_path_offset]. */
1153 
1154 	RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1155 	       (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1156 	       "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1157 
1158 	return CARRY_ON;
1159 }
1160 
1161 /* it is possible to remove node as result of shiftings to
1162    neighbors even when we insert or paste item. */
1163 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1164 				      struct tree_balance *tb, int h)
1165 {
1166 	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1167 	int levbytes = tb->insert_size[h];
1168 	struct item_head *ih;
1169 	struct reiserfs_key *r_key = NULL;
1170 
1171 	ih = B_N_PITEM_HEAD(Sh, 0);
1172 	if (tb->CFR[h])
1173 		r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1174 
1175 	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1176 	    /* shifting may merge items which might save space */
1177 	    -
1178 	    ((!h
1179 	      && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1180 	    -
1181 	    ((!h && r_key
1182 	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1183 	    + ((h) ? KEY_SIZE : 0)) {
1184 		/* node can not be removed */
1185 		if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1186 			if (!h)
1187 				tb->s0num =
1188 				    B_NR_ITEMS(Sh) +
1189 				    ((mode == M_INSERT) ? 1 : 0);
1190 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1191 			return NO_BALANCING_NEEDED;
1192 		}
1193 	}
1194 	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1195 	return !NO_BALANCING_NEEDED;
1196 }
1197 
1198 /* Check whether current node S[h] is balanced when increasing its size by
1199  * Inserting or Pasting.
1200  * Calculate parameters for balancing for current level h.
1201  * Parameters:
1202  *	tb	tree_balance structure;
1203  *	h	current level of the node;
1204  *	inum	item number in S[h];
1205  *	mode	i - insert, p - paste;
1206  * Returns:	1 - schedule occurred;
1207  *	        0 - balancing for higher levels needed;
1208  *	       -1 - no balancing for higher levels needed;
1209  *	       -2 - no disk space.
1210  */
1211 /* ip means Inserting or Pasting */
1212 static int ip_check_balance(struct tree_balance *tb, int h)
1213 {
1214 	struct virtual_node *vn = tb->tb_vn;
1215 	int levbytes,		/* Number of bytes that must be inserted into (value
1216 				   is negative if bytes are deleted) buffer which
1217 				   contains node being balanced.  The mnemonic is
1218 				   that the attempted change in node space used level
1219 				   is levbytes bytes. */
1220 	 n_ret_value;
1221 
1222 	int lfree, sfree, rfree /* free space in L, S and R */ ;
1223 
1224 	/* nver is short for number of vertixes, and lnver is the number if
1225 	   we shift to the left, rnver is the number if we shift to the
1226 	   right, and lrnver is the number if we shift in both directions.
1227 	   The goal is to minimize first the number of vertixes, and second,
1228 	   the number of vertixes whose contents are changed by shifting,
1229 	   and third the number of uncached vertixes whose contents are
1230 	   changed by shifting and must be read from disk.  */
1231 	int nver, lnver, rnver, lrnver;
1232 
1233 	/* used at leaf level only, S0 = S[0] is the node being balanced,
1234 	   sInum [ I = 0,1,2 ] is the number of items that will
1235 	   remain in node SI after balancing.  S1 and S2 are new
1236 	   nodes that might be created. */
1237 
1238 	/* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1239 	   where 4th parameter is s1bytes and 5th - s2bytes
1240 	 */
1241 	short snum012[40] = { 0, };	/* s0num, s1num, s2num for 8 cases
1242 					   0,1 - do not shift and do not shift but bottle
1243 					   2 - shift only whole item to left
1244 					   3 - shift to left and bottle as much as possible
1245 					   4,5 - shift to right (whole items and as much as possible
1246 					   6,7 - shift to both directions (whole items and as much as possible)
1247 					 */
1248 
1249 	/* Sh is the node whose balance is currently being checked */
1250 	struct buffer_head *Sh;
1251 
1252 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1253 	levbytes = tb->insert_size[h];
1254 
1255 	/* Calculate balance parameters for creating new root. */
1256 	if (!Sh) {
1257 		if (!h)
1258 			reiserfs_panic(tb->tb_sb,
1259 				       "vs-8210: ip_check_balance: S[0] can not be 0");
1260 		switch (n_ret_value = get_empty_nodes(tb, h)) {
1261 		case CARRY_ON:
1262 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1263 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1264 
1265 		case NO_DISK_SPACE:
1266 		case REPEAT_SEARCH:
1267 			return n_ret_value;
1268 		default:
1269 			reiserfs_panic(tb->tb_sb,
1270 				       "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1271 		}
1272 	}
1273 
1274 	if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)	/* get parents of S[h] neighbors. */
1275 		return n_ret_value;
1276 
1277 	sfree = B_FREE_SPACE(Sh);
1278 
1279 	/* get free space of neighbors */
1280 	rfree = get_rfree(tb, h);
1281 	lfree = get_lfree(tb, h);
1282 
1283 	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1284 	    NO_BALANCING_NEEDED)
1285 		/* and new item fits into node S[h] without any shifting */
1286 		return NO_BALANCING_NEEDED;
1287 
1288 	create_virtual_node(tb, h);
1289 
1290 	/*
1291 	   determine maximal number of items we can shift to the left neighbor (in tb structure)
1292 	   and the maximal number of bytes that can flow to the left neighbor
1293 	   from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1294 	 */
1295 	check_left(tb, h, lfree);
1296 
1297 	/*
1298 	   determine maximal number of items we can shift to the right neighbor (in tb structure)
1299 	   and the maximal number of bytes that can flow to the right neighbor
1300 	   from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1301 	 */
1302 	check_right(tb, h, rfree);
1303 
1304 	/* all contents of internal node S[h] can be moved into its
1305 	   neighbors, S[h] will be removed after balancing */
1306 	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1307 		int to_r;
1308 
1309 		/* Since we are working on internal nodes, and our internal
1310 		   nodes have fixed size entries, then we can balance by the
1311 		   number of items rather than the space they consume.  In this
1312 		   routine we set the left node equal to the right node,
1313 		   allowing a difference of less than or equal to 1 child
1314 		   pointer. */
1315 		to_r =
1316 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1317 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1318 						tb->rnum[h]);
1319 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1320 			       -1, -1);
1321 		return CARRY_ON;
1322 	}
1323 
1324 	/* this checks balance condition, that any two neighboring nodes can not fit in one node */
1325 	RFALSE(h &&
1326 	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1327 		tb->rnum[h] >= vn->vn_nr_item + 1),
1328 	       "vs-8220: tree is not balanced on internal level");
1329 	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1330 		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1331 	       "vs-8225: tree is not balanced on leaf level");
1332 
1333 	/* all contents of S[0] can be moved into its neighbors
1334 	   S[0] will be removed after balancing. */
1335 	if (!h && is_leaf_removable(tb))
1336 		return CARRY_ON;
1337 
1338 	/* why do we perform this check here rather than earlier??
1339 	   Answer: we can win 1 node in some cases above. Moreover we
1340 	   checked it above, when we checked, that S[0] is not removable
1341 	   in principle */
1342 	if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1343 		if (!h)
1344 			tb->s0num = vn->vn_nr_item;
1345 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1346 		return NO_BALANCING_NEEDED;
1347 	}
1348 
1349 	{
1350 		int lpar, rpar, nset, lset, rset, lrset;
1351 		/*
1352 		 * regular overflowing of the node
1353 		 */
1354 
1355 		/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1356 		   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1357 		   nset, lset, rset, lrset - shows, whether flowing items give better packing
1358 		 */
1359 #define FLOW 1
1360 #define NO_FLOW 0		/* do not any splitting */
1361 
1362 		/* we choose one the following */
1363 #define NOTHING_SHIFT_NO_FLOW	0
1364 #define NOTHING_SHIFT_FLOW	5
1365 #define LEFT_SHIFT_NO_FLOW	10
1366 #define LEFT_SHIFT_FLOW		15
1367 #define RIGHT_SHIFT_NO_FLOW	20
1368 #define RIGHT_SHIFT_FLOW	25
1369 #define LR_SHIFT_NO_FLOW	30
1370 #define LR_SHIFT_FLOW		35
1371 
1372 		lpar = tb->lnum[h];
1373 		rpar = tb->rnum[h];
1374 
1375 		/* calculate number of blocks S[h] must be split into when
1376 		   nothing is shifted to the neighbors,
1377 		   as well as number of items in each part of the split node (s012 numbers),
1378 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1379 		nset = NOTHING_SHIFT_NO_FLOW;
1380 		nver = get_num_ver(vn->vn_mode, tb, h,
1381 				   0, -1, h ? vn->vn_nr_item : 0, -1,
1382 				   snum012, NO_FLOW);
1383 
1384 		if (!h) {
1385 			int nver1;
1386 
1387 			/* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1388 			nver1 = get_num_ver(vn->vn_mode, tb, h,
1389 					    0, -1, 0, -1,
1390 					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1391 			if (nver > nver1)
1392 				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1393 		}
1394 
1395 		/* calculate number of blocks S[h] must be split into when
1396 		   l_shift_num first items and l_shift_bytes of the right most
1397 		   liquid item to be shifted are shifted to the left neighbor,
1398 		   as well as number of items in each part of the splitted node (s012 numbers),
1399 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1400 		 */
1401 		lset = LEFT_SHIFT_NO_FLOW;
1402 		lnver = get_num_ver(vn->vn_mode, tb, h,
1403 				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1404 				    -1, h ? vn->vn_nr_item : 0, -1,
1405 				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1406 		if (!h) {
1407 			int lnver1;
1408 
1409 			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1410 					     lpar -
1411 					     ((tb->lbytes != -1) ? 1 : 0),
1412 					     tb->lbytes, 0, -1,
1413 					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1414 			if (lnver > lnver1)
1415 				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1416 		}
1417 
1418 		/* calculate number of blocks S[h] must be split into when
1419 		   r_shift_num first items and r_shift_bytes of the left most
1420 		   liquid item to be shifted are shifted to the right neighbor,
1421 		   as well as number of items in each part of the splitted node (s012 numbers),
1422 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1423 		 */
1424 		rset = RIGHT_SHIFT_NO_FLOW;
1425 		rnver = get_num_ver(vn->vn_mode, tb, h,
1426 				    0, -1,
1427 				    h ? (vn->vn_nr_item - rpar) : (rpar -
1428 								   ((tb->
1429 								     rbytes !=
1430 								     -1) ? 1 :
1431 								    0)), -1,
1432 				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1433 		if (!h) {
1434 			int rnver1;
1435 
1436 			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1437 					     0, -1,
1438 					     (rpar -
1439 					      ((tb->rbytes != -1) ? 1 : 0)),
1440 					     tb->rbytes,
1441 					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1442 
1443 			if (rnver > rnver1)
1444 				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1445 		}
1446 
1447 		/* calculate number of blocks S[h] must be split into when
1448 		   items are shifted in both directions,
1449 		   as well as number of items in each part of the splitted node (s012 numbers),
1450 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1451 		 */
1452 		lrset = LR_SHIFT_NO_FLOW;
1453 		lrnver = get_num_ver(vn->vn_mode, tb, h,
1454 				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1455 				     -1,
1456 				     h ? (vn->vn_nr_item - rpar) : (rpar -
1457 								    ((tb->
1458 								      rbytes !=
1459 								      -1) ? 1 :
1460 								     0)), -1,
1461 				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1462 		if (!h) {
1463 			int lrnver1;
1464 
1465 			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1466 					      lpar -
1467 					      ((tb->lbytes != -1) ? 1 : 0),
1468 					      tb->lbytes,
1469 					      (rpar -
1470 					       ((tb->rbytes != -1) ? 1 : 0)),
1471 					      tb->rbytes,
1472 					      snum012 + LR_SHIFT_FLOW, FLOW);
1473 			if (lrnver > lrnver1)
1474 				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1475 		}
1476 
1477 		/* Our general shifting strategy is:
1478 		   1) to minimized number of new nodes;
1479 		   2) to minimized number of neighbors involved in shifting;
1480 		   3) to minimized number of disk reads; */
1481 
1482 		/* we can win TWO or ONE nodes by shifting in both directions */
1483 		if (lrnver < lnver && lrnver < rnver) {
1484 			RFALSE(h &&
1485 			       (tb->lnum[h] != 1 ||
1486 				tb->rnum[h] != 1 ||
1487 				lrnver != 1 || rnver != 2 || lnver != 2
1488 				|| h != 1), "vs-8230: bad h");
1489 			if (lrset == LR_SHIFT_FLOW)
1490 				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1491 					       lrnver, snum012 + lrset,
1492 					       tb->lbytes, tb->rbytes);
1493 			else
1494 				set_parameters(tb, h,
1495 					       tb->lnum[h] -
1496 					       ((tb->lbytes == -1) ? 0 : 1),
1497 					       tb->rnum[h] -
1498 					       ((tb->rbytes == -1) ? 0 : 1),
1499 					       lrnver, snum012 + lrset, -1, -1);
1500 
1501 			return CARRY_ON;
1502 		}
1503 
1504 		/* if shifting doesn't lead to better packing then don't shift */
1505 		if (nver == lrnver) {
1506 			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1507 				       -1);
1508 			return CARRY_ON;
1509 		}
1510 
1511 		/* now we know that for better packing shifting in only one
1512 		   direction either to the left or to the right is required */
1513 
1514 		/*  if shifting to the left is better than shifting to the right */
1515 		if (lnver < rnver) {
1516 			SET_PAR_SHIFT_LEFT;
1517 			return CARRY_ON;
1518 		}
1519 
1520 		/* if shifting to the right is better than shifting to the left */
1521 		if (lnver > rnver) {
1522 			SET_PAR_SHIFT_RIGHT;
1523 			return CARRY_ON;
1524 		}
1525 
1526 		/* now shifting in either direction gives the same number
1527 		   of nodes and we can make use of the cached neighbors */
1528 		if (is_left_neighbor_in_cache(tb, h)) {
1529 			SET_PAR_SHIFT_LEFT;
1530 			return CARRY_ON;
1531 		}
1532 
1533 		/* shift to the right independently on whether the right neighbor in cache or not */
1534 		SET_PAR_SHIFT_RIGHT;
1535 		return CARRY_ON;
1536 	}
1537 }
1538 
1539 /* Check whether current node S[h] is balanced when Decreasing its size by
1540  * Deleting or Cutting for INTERNAL node of S+tree.
1541  * Calculate parameters for balancing for current level h.
1542  * Parameters:
1543  *	tb	tree_balance structure;
1544  *	h	current level of the node;
1545  *	inum	item number in S[h];
1546  *	mode	i - insert, p - paste;
1547  * Returns:	1 - schedule occurred;
1548  *	        0 - balancing for higher levels needed;
1549  *	       -1 - no balancing for higher levels needed;
1550  *	       -2 - no disk space.
1551  *
1552  * Note: Items of internal nodes have fixed size, so the balance condition for
1553  * the internal part of S+tree is as for the B-trees.
1554  */
1555 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1556 {
1557 	struct virtual_node *vn = tb->tb_vn;
1558 
1559 	/* Sh is the node whose balance is currently being checked,
1560 	   and Fh is its father.  */
1561 	struct buffer_head *Sh, *Fh;
1562 	int maxsize, n_ret_value;
1563 	int lfree, rfree /* free space in L and R */ ;
1564 
1565 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1566 	Fh = PATH_H_PPARENT(tb->tb_path, h);
1567 
1568 	maxsize = MAX_CHILD_SIZE(Sh);
1569 
1570 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1571 /*   new_nr_item = number of items node would have if operation is */
1572 /* 	performed without balancing (new_nr_item); */
1573 	create_virtual_node(tb, h);
1574 
1575 	if (!Fh) {		/* S[h] is the root. */
1576 		if (vn->vn_nr_item > 0) {
1577 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1578 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1579 		}
1580 		/* new_nr_item == 0.
1581 		 * Current root will be deleted resulting in
1582 		 * decrementing the tree height. */
1583 		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1584 		return CARRY_ON;
1585 	}
1586 
1587 	if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1588 		return n_ret_value;
1589 
1590 	/* get free space of neighbors */
1591 	rfree = get_rfree(tb, h);
1592 	lfree = get_lfree(tb, h);
1593 
1594 	/* determine maximal number of items we can fit into neighbors */
1595 	check_left(tb, h, lfree);
1596 	check_right(tb, h, rfree);
1597 
1598 	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {	/* Balance condition for the internal node is valid.
1599 						 * In this case we balance only if it leads to better packing. */
1600 		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {	/* Here we join S[h] with one of its neighbors,
1601 							 * which is impossible with greater values of new_nr_item. */
1602 			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1603 				/* All contents of S[h] can be moved to L[h]. */
1604 				int n;
1605 				int order_L;
1606 
1607 				order_L =
1608 				    ((n =
1609 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1610 							  h)) ==
1611 				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1612 				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1613 				    (DC_SIZE + KEY_SIZE);
1614 				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1615 					       -1);
1616 				return CARRY_ON;
1617 			}
1618 
1619 			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1620 				/* All contents of S[h] can be moved to R[h]. */
1621 				int n;
1622 				int order_R;
1623 
1624 				order_R =
1625 				    ((n =
1626 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1627 							  h)) ==
1628 				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1629 				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1630 				    (DC_SIZE + KEY_SIZE);
1631 				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1632 					       -1);
1633 				return CARRY_ON;
1634 			}
1635 		}
1636 
1637 		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1638 			/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1639 			int to_r;
1640 
1641 			to_r =
1642 			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1643 			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1644 			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1645 			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1646 				       0, NULL, -1, -1);
1647 			return CARRY_ON;
1648 		}
1649 
1650 		/* Balancing does not lead to better packing. */
1651 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1652 		return NO_BALANCING_NEEDED;
1653 	}
1654 
1655 	/* Current node contain insufficient number of items. Balancing is required. */
1656 	/* Check whether we can merge S[h] with left neighbor. */
1657 	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1658 		if (is_left_neighbor_in_cache(tb, h)
1659 		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1660 			int n;
1661 			int order_L;
1662 
1663 			order_L =
1664 			    ((n =
1665 			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1666 						  h)) ==
1667 			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1668 			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1669 								      KEY_SIZE);
1670 			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1671 			return CARRY_ON;
1672 		}
1673 
1674 	/* Check whether we can merge S[h] with right neighbor. */
1675 	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1676 		int n;
1677 		int order_R;
1678 
1679 		order_R =
1680 		    ((n =
1681 		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1682 					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1683 		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1684 							      KEY_SIZE);
1685 		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1686 		return CARRY_ON;
1687 	}
1688 
1689 	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1690 	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1691 		int to_r;
1692 
1693 		to_r =
1694 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1695 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1696 						tb->rnum[h]);
1697 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1698 			       -1, -1);
1699 		return CARRY_ON;
1700 	}
1701 
1702 	/* For internal nodes try to borrow item from a neighbor */
1703 	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1704 
1705 	/* Borrow one or two items from caching neighbor */
1706 	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1707 		int from_l;
1708 
1709 		from_l =
1710 		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1711 		     1) / 2 - (vn->vn_nr_item + 1);
1712 		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1713 		return CARRY_ON;
1714 	}
1715 
1716 	set_parameters(tb, h, 0,
1717 		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1718 			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1719 	return CARRY_ON;
1720 }
1721 
1722 /* Check whether current node S[h] is balanced when Decreasing its size by
1723  * Deleting or Truncating for LEAF node of S+tree.
1724  * Calculate parameters for balancing for current level h.
1725  * Parameters:
1726  *	tb	tree_balance structure;
1727  *	h	current level of the node;
1728  *	inum	item number in S[h];
1729  *	mode	i - insert, p - paste;
1730  * Returns:	1 - schedule occurred;
1731  *	        0 - balancing for higher levels needed;
1732  *	       -1 - no balancing for higher levels needed;
1733  *	       -2 - no disk space.
1734  */
1735 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1736 {
1737 	struct virtual_node *vn = tb->tb_vn;
1738 
1739 	/* Number of bytes that must be deleted from
1740 	   (value is negative if bytes are deleted) buffer which
1741 	   contains node being balanced.  The mnemonic is that the
1742 	   attempted change in node space used level is levbytes bytes. */
1743 	int levbytes;
1744 	/* the maximal item size */
1745 	int maxsize, n_ret_value;
1746 	/* S0 is the node whose balance is currently being checked,
1747 	   and F0 is its father.  */
1748 	struct buffer_head *S0, *F0;
1749 	int lfree, rfree /* free space in L and R */ ;
1750 
1751 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1752 	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1753 
1754 	levbytes = tb->insert_size[h];
1755 
1756 	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1757 
1758 	if (!F0) {		/* S[0] is the root now. */
1759 
1760 		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1761 		       "vs-8240: attempt to create empty buffer tree");
1762 
1763 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1764 		return NO_BALANCING_NEEDED;
1765 	}
1766 
1767 	if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1768 		return n_ret_value;
1769 
1770 	/* get free space of neighbors */
1771 	rfree = get_rfree(tb, h);
1772 	lfree = get_lfree(tb, h);
1773 
1774 	create_virtual_node(tb, h);
1775 
1776 	/* if 3 leaves can be merge to one, set parameters and return */
1777 	if (are_leaves_removable(tb, lfree, rfree))
1778 		return CARRY_ON;
1779 
1780 	/* determine maximal number of items we can shift to the left/right  neighbor
1781 	   and the maximal number of bytes that can flow to the left/right neighbor
1782 	   from the left/right most liquid item that cannot be shifted from S[0] entirely
1783 	 */
1784 	check_left(tb, h, lfree);
1785 	check_right(tb, h, rfree);
1786 
1787 	/* check whether we can merge S with left neighbor. */
1788 	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1789 		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1790 		    !tb->FR[h]) {
1791 
1792 			RFALSE(!tb->FL[h],
1793 			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1794 
1795 			/* set parameter to merge S[0] with its left neighbor */
1796 			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1797 			return CARRY_ON;
1798 		}
1799 
1800 	/* check whether we can merge S[0] with right neighbor. */
1801 	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1802 		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1803 		return CARRY_ON;
1804 	}
1805 
1806 	/* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1807 	if (is_leaf_removable(tb))
1808 		return CARRY_ON;
1809 
1810 	/* Balancing is not required. */
1811 	tb->s0num = vn->vn_nr_item;
1812 	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1813 	return NO_BALANCING_NEEDED;
1814 }
1815 
1816 /* Check whether current node S[h] is balanced when Decreasing its size by
1817  * Deleting or Cutting.
1818  * Calculate parameters for balancing for current level h.
1819  * Parameters:
1820  *	tb	tree_balance structure;
1821  *	h	current level of the node;
1822  *	inum	item number in S[h];
1823  *	mode	d - delete, c - cut.
1824  * Returns:	1 - schedule occurred;
1825  *	        0 - balancing for higher levels needed;
1826  *	       -1 - no balancing for higher levels needed;
1827  *	       -2 - no disk space.
1828  */
1829 static int dc_check_balance(struct tree_balance *tb, int h)
1830 {
1831 	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1832 	       "vs-8250: S is not initialized");
1833 
1834 	if (h)
1835 		return dc_check_balance_internal(tb, h);
1836 	else
1837 		return dc_check_balance_leaf(tb, h);
1838 }
1839 
1840 /* Check whether current node S[h] is balanced.
1841  * Calculate parameters for balancing for current level h.
1842  * Parameters:
1843  *
1844  *	tb	tree_balance structure:
1845  *
1846  *              tb is a large structure that must be read about in the header file
1847  *              at the same time as this procedure if the reader is to successfully
1848  *              understand this procedure
1849  *
1850  *	h	current level of the node;
1851  *	inum	item number in S[h];
1852  *	mode	i - insert, p - paste, d - delete, c - cut.
1853  * Returns:	1 - schedule occurred;
1854  *	        0 - balancing for higher levels needed;
1855  *	       -1 - no balancing for higher levels needed;
1856  *	       -2 - no disk space.
1857  */
1858 static int check_balance(int mode,
1859 			 struct tree_balance *tb,
1860 			 int h,
1861 			 int inum,
1862 			 int pos_in_item,
1863 			 struct item_head *ins_ih, const void *data)
1864 {
1865 	struct virtual_node *vn;
1866 
1867 	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1868 	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1869 	vn->vn_mode = mode;
1870 	vn->vn_affected_item_num = inum;
1871 	vn->vn_pos_in_item = pos_in_item;
1872 	vn->vn_ins_ih = ins_ih;
1873 	vn->vn_data = data;
1874 
1875 	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1876 	       "vs-8255: ins_ih can not be 0 in insert mode");
1877 
1878 	if (tb->insert_size[h] > 0)
1879 		/* Calculate balance parameters when size of node is increasing. */
1880 		return ip_check_balance(tb, h);
1881 
1882 	/* Calculate balance parameters when  size of node is decreasing. */
1883 	return dc_check_balance(tb, h);
1884 }
1885 
1886 /* Check whether parent at the path is the really parent of the current node.*/
1887 static int get_direct_parent(struct tree_balance *p_s_tb, int n_h)
1888 {
1889 	struct buffer_head *p_s_bh;
1890 	struct treepath *p_s_path = p_s_tb->tb_path;
1891 	int n_position,
1892 	    n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1893 
1894 	/* We are in the root or in the new root. */
1895 	if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1896 
1897 		RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1898 		       "PAP-8260: invalid offset in the path");
1899 
1900 		if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
1901 		    b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1902 			/* Root is not changed. */
1903 			PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1904 			PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1905 			return CARRY_ON;
1906 		}
1907 		return REPEAT_SEARCH;	/* Root is changed and we must recalculate the path. */
1908 	}
1909 
1910 	if (!B_IS_IN_TREE
1911 	    (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
1912 		return REPEAT_SEARCH;	/* Parent in the path is not in the tree. */
1913 
1914 	if ((n_position =
1915 	     PATH_OFFSET_POSITION(p_s_path,
1916 				  n_path_offset - 1)) > B_NR_ITEMS(p_s_bh))
1917 		return REPEAT_SEARCH;
1918 
1919 	if (B_N_CHILD_NUM(p_s_bh, n_position) !=
1920 	    PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
1921 		/* Parent in the path is not parent of the current node in the tree. */
1922 		return REPEAT_SEARCH;
1923 
1924 	if (buffer_locked(p_s_bh)) {
1925 		__wait_on_buffer(p_s_bh);
1926 		if (FILESYSTEM_CHANGED_TB(p_s_tb))
1927 			return REPEAT_SEARCH;
1928 	}
1929 
1930 	return CARRY_ON;	/* Parent in the path is unlocked and really parent of the current node.  */
1931 }
1932 
1933 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1934  * of S[n_h] we
1935  * need in order to balance S[n_h], and get them if necessary.
1936  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1937  *	        CARRY_ON - schedule didn't occur while the function worked;
1938  */
1939 static int get_neighbors(struct tree_balance *p_s_tb, int n_h)
1940 {
1941 	int n_child_position,
1942 	    n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1943 	unsigned long n_son_number;
1944 	struct super_block *p_s_sb = p_s_tb->tb_sb;
1945 	struct buffer_head *p_s_bh;
1946 
1947 	PROC_INFO_INC(p_s_sb, get_neighbors[n_h]);
1948 
1949 	if (p_s_tb->lnum[n_h]) {
1950 		/* We need left neighbor to balance S[n_h]. */
1951 		PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]);
1952 		p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1953 
1954 		RFALSE(p_s_bh == p_s_tb->FL[n_h] &&
1955 		       !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1956 		       "PAP-8270: invalid position in the parent");
1957 
1958 		n_child_position =
1959 		    (p_s_bh ==
1960 		     p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->
1961 								       FL[n_h]);
1962 		n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1963 		p_s_bh = sb_bread(p_s_sb, n_son_number);
1964 		if (!p_s_bh)
1965 			return IO_ERROR;
1966 		if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1967 			decrement_bcount(p_s_bh);
1968 			PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
1969 			return REPEAT_SEARCH;
1970 		}
1971 
1972 		RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1973 		       n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1974 		       B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1975 		       p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1976 		RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1977 		RFALSE(!n_h &&
1978 		       B_FREE_SPACE(p_s_bh) !=
1979 		       MAX_CHILD_SIZE(p_s_bh) -
1980 		       dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)),
1981 		       "PAP-8290: invalid child size of left neighbor");
1982 
1983 		decrement_bcount(p_s_tb->L[n_h]);
1984 		p_s_tb->L[n_h] = p_s_bh;
1985 	}
1986 
1987 	if (p_s_tb->rnum[n_h]) {	/* We need right neighbor to balance S[n_path_offset]. */
1988 		PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]);
1989 		p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1990 
1991 		RFALSE(p_s_bh == p_s_tb->FR[n_h] &&
1992 		       PATH_OFFSET_POSITION(p_s_tb->tb_path,
1993 					    n_path_offset) >=
1994 		       B_NR_ITEMS(p_s_bh),
1995 		       "PAP-8295: invalid position in the parent");
1996 
1997 		n_child_position =
1998 		    (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0;
1999 		n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
2000 		p_s_bh = sb_bread(p_s_sb, n_son_number);
2001 		if (!p_s_bh)
2002 			return IO_ERROR;
2003 		if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2004 			decrement_bcount(p_s_bh);
2005 			PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
2006 			return REPEAT_SEARCH;
2007 		}
2008 		decrement_bcount(p_s_tb->R[n_h]);
2009 		p_s_tb->R[n_h] = p_s_bh;
2010 
2011 		RFALSE(!n_h
2012 		       && B_FREE_SPACE(p_s_bh) !=
2013 		       MAX_CHILD_SIZE(p_s_bh) -
2014 		       dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)),
2015 		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2016 		       B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh),
2017 		       dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)));
2018 
2019 	}
2020 	return CARRY_ON;
2021 }
2022 
2023 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2024 {
2025 	int max_num_of_items;
2026 	int max_num_of_entries;
2027 	unsigned long blocksize = sb->s_blocksize;
2028 
2029 #define MIN_NAME_LEN 1
2030 
2031 	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2032 	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2033 	    (DEH_SIZE + MIN_NAME_LEN);
2034 
2035 	return sizeof(struct virtual_node) +
2036 	    max(max_num_of_items * sizeof(struct virtual_item),
2037 		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2038 		(max_num_of_entries - 1) * sizeof(__u16));
2039 }
2040 
2041 /* maybe we should fail balancing we are going to perform when kmalloc
2042    fails several times. But now it will loop until kmalloc gets
2043    required memory */
2044 static int get_mem_for_virtual_node(struct tree_balance *tb)
2045 {
2046 	int check_fs = 0;
2047 	int size;
2048 	char *buf;
2049 
2050 	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2051 
2052 	if (size > tb->vn_buf_size) {
2053 		/* we have to allocate more memory for virtual node */
2054 		if (tb->vn_buf) {
2055 			/* free memory allocated before */
2056 			kfree(tb->vn_buf);
2057 			/* this is not needed if kfree is atomic */
2058 			check_fs = 1;
2059 		}
2060 
2061 		/* virtual node requires now more memory */
2062 		tb->vn_buf_size = size;
2063 
2064 		/* get memory for virtual item */
2065 		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2066 		if (!buf) {
2067 			/* getting memory with GFP_KERNEL priority may involve
2068 			   balancing now (due to indirect_to_direct conversion on
2069 			   dcache shrinking). So, release path and collected
2070 			   resources here */
2071 			free_buffers_in_tb(tb);
2072 			buf = kmalloc(size, GFP_NOFS);
2073 			if (!buf) {
2074 				tb->vn_buf_size = 0;
2075 			}
2076 			tb->vn_buf = buf;
2077 			schedule();
2078 			return REPEAT_SEARCH;
2079 		}
2080 
2081 		tb->vn_buf = buf;
2082 	}
2083 
2084 	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2085 		return REPEAT_SEARCH;
2086 
2087 	return CARRY_ON;
2088 }
2089 
2090 #ifdef CONFIG_REISERFS_CHECK
2091 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2092 				   struct buffer_head *p_s_bh,
2093 				   const char *descr, int level)
2094 {
2095 	if (p_s_bh) {
2096 		if (atomic_read(&(p_s_bh->b_count)) <= 0) {
2097 
2098 			reiserfs_panic(p_s_sb,
2099 				       "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n",
2100 				       descr, level, p_s_bh);
2101 		}
2102 
2103 		if (!buffer_uptodate(p_s_bh)) {
2104 			reiserfs_panic(p_s_sb,
2105 				       "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n",
2106 				       descr, level, p_s_bh);
2107 		}
2108 
2109 		if (!B_IS_IN_TREE(p_s_bh)) {
2110 			reiserfs_panic(p_s_sb,
2111 				       "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n",
2112 				       descr, level, p_s_bh);
2113 		}
2114 
2115 		if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2116 			reiserfs_panic(p_s_sb,
2117 				       "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n",
2118 				       descr, level, p_s_bh);
2119 		}
2120 
2121 		if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2122 			reiserfs_panic(p_s_sb,
2123 				       "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n",
2124 				       descr, level, p_s_bh);
2125 		}
2126 
2127 		if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2128 			reiserfs_panic(p_s_sb,
2129 				       "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n",
2130 				       descr, level, p_s_bh);
2131 		}
2132 	}
2133 }
2134 #else
2135 static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2136 				   struct buffer_head *p_s_bh,
2137 				   const char *descr, int level)
2138 {;
2139 }
2140 #endif
2141 
2142 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2143 {
2144 	return reiserfs_prepare_for_journal(s, bh, 0);
2145 }
2146 
2147 static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
2148 {
2149 	struct buffer_head *locked;
2150 #ifdef CONFIG_REISERFS_CHECK
2151 	int repeat_counter = 0;
2152 #endif
2153 	int i;
2154 
2155 	do {
2156 
2157 		locked = NULL;
2158 
2159 		for (i = p_s_tb->tb_path->path_length;
2160 		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2161 			if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2162 				/* if I understand correctly, we can only be sure the last buffer
2163 				 ** in the path is in the tree --clm
2164 				 */
2165 #ifdef CONFIG_REISERFS_CHECK
2166 				if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2167 				    PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2168 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2169 							       PATH_OFFSET_PBUFFER
2170 							       (p_s_tb->tb_path,
2171 								i), "S",
2172 							       p_s_tb->tb_path->
2173 							       path_length - i);
2174 				}
2175 #endif
2176 				if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2177 							  PATH_OFFSET_PBUFFER
2178 							  (p_s_tb->tb_path,
2179 							   i))) {
2180 					locked =
2181 					    PATH_OFFSET_PBUFFER(p_s_tb->tb_path,
2182 								i);
2183 				}
2184 			}
2185 		}
2186 
2187 		for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i];
2188 		     i++) {
2189 
2190 			if (p_s_tb->lnum[i]) {
2191 
2192 				if (p_s_tb->L[i]) {
2193 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2194 							       p_s_tb->L[i],
2195 							       "L", i);
2196 					if (!clear_all_dirty_bits
2197 					    (p_s_tb->tb_sb, p_s_tb->L[i]))
2198 						locked = p_s_tb->L[i];
2199 				}
2200 
2201 				if (!locked && p_s_tb->FL[i]) {
2202 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2203 							       p_s_tb->FL[i],
2204 							       "FL", i);
2205 					if (!clear_all_dirty_bits
2206 					    (p_s_tb->tb_sb, p_s_tb->FL[i]))
2207 						locked = p_s_tb->FL[i];
2208 				}
2209 
2210 				if (!locked && p_s_tb->CFL[i]) {
2211 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2212 							       p_s_tb->CFL[i],
2213 							       "CFL", i);
2214 					if (!clear_all_dirty_bits
2215 					    (p_s_tb->tb_sb, p_s_tb->CFL[i]))
2216 						locked = p_s_tb->CFL[i];
2217 				}
2218 
2219 			}
2220 
2221 			if (!locked && (p_s_tb->rnum[i])) {
2222 
2223 				if (p_s_tb->R[i]) {
2224 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2225 							       p_s_tb->R[i],
2226 							       "R", i);
2227 					if (!clear_all_dirty_bits
2228 					    (p_s_tb->tb_sb, p_s_tb->R[i]))
2229 						locked = p_s_tb->R[i];
2230 				}
2231 
2232 				if (!locked && p_s_tb->FR[i]) {
2233 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2234 							       p_s_tb->FR[i],
2235 							       "FR", i);
2236 					if (!clear_all_dirty_bits
2237 					    (p_s_tb->tb_sb, p_s_tb->FR[i]))
2238 						locked = p_s_tb->FR[i];
2239 				}
2240 
2241 				if (!locked && p_s_tb->CFR[i]) {
2242 					tb_buffer_sanity_check(p_s_tb->tb_sb,
2243 							       p_s_tb->CFR[i],
2244 							       "CFR", i);
2245 					if (!clear_all_dirty_bits
2246 					    (p_s_tb->tb_sb, p_s_tb->CFR[i]))
2247 						locked = p_s_tb->CFR[i];
2248 				}
2249 			}
2250 		}
2251 		/* as far as I can tell, this is not required.  The FEB list seems
2252 		 ** to be full of newly allocated nodes, which will never be locked,
2253 		 ** dirty, or anything else.
2254 		 ** To be safe, I'm putting in the checks and waits in.  For the moment,
2255 		 ** they are needed to keep the code in journal.c from complaining
2256 		 ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2257 		 ** --clm
2258 		 */
2259 		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2260 			if (p_s_tb->FEB[i]) {
2261 				if (!clear_all_dirty_bits
2262 				    (p_s_tb->tb_sb, p_s_tb->FEB[i]))
2263 					locked = p_s_tb->FEB[i];
2264 			}
2265 		}
2266 
2267 		if (locked) {
2268 #ifdef CONFIG_REISERFS_CHECK
2269 			repeat_counter++;
2270 			if ((repeat_counter % 10000) == 0) {
2271 				reiserfs_warning(p_s_tb->tb_sb,
2272 						 "wait_tb_buffers_until_released(): too many "
2273 						 "iterations waiting for buffer to unlock "
2274 						 "(%b)", locked);
2275 
2276 				/* Don't loop forever.  Try to recover from possible error. */
2277 
2278 				return (FILESYSTEM_CHANGED_TB(p_s_tb)) ?
2279 				    REPEAT_SEARCH : CARRY_ON;
2280 			}
2281 #endif
2282 			__wait_on_buffer(locked);
2283 			if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2284 				return REPEAT_SEARCH;
2285 			}
2286 		}
2287 
2288 	} while (locked);
2289 
2290 	return CARRY_ON;
2291 }
2292 
2293 /* Prepare for balancing, that is
2294  *	get all necessary parents, and neighbors;
2295  *	analyze what and where should be moved;
2296  *	get sufficient number of new nodes;
2297  * Balancing will start only after all resources will be collected at a time.
2298  *
2299  * When ported to SMP kernels, only at the last moment after all needed nodes
2300  * are collected in cache, will the resources be locked using the usual
2301  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2302  * this code neither write locks what it does not need to write lock nor locks out of order
2303  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2304  *
2305  * fix is meant in the sense of render unchanging
2306  *
2307  * Latency might be improved by first gathering a list of what buffers are needed
2308  * and then getting as many of them in parallel as possible? -Hans
2309  *
2310  * Parameters:
2311  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2312  *	tb	tree_balance structure;
2313  *	inum	item number in S[h];
2314  *      pos_in_item - comment this if you can
2315  *      ins_ih & ins_sd are used when inserting
2316  * Returns:	1 - schedule occurred while the function worked;
2317  *	        0 - schedule didn't occur while the function worked;
2318  *             -1 - if no_disk_space
2319  */
2320 
2321 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih,	// item head of item being inserted
2322 	      const void *data	// inserted item or data to be pasted
2323     )
2324 {
2325 	int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2326 	int n_pos_in_item;
2327 
2328 	/* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2329 	 ** during wait_tb_buffers_run
2330 	 */
2331 	int wait_tb_buffers_run = 0;
2332 	struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2333 
2334 	++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes;
2335 
2336 	n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2337 
2338 	p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb);
2339 
2340 	/* we prepare and log the super here so it will already be in the
2341 	 ** transaction when do_balance needs to change it.
2342 	 ** This way do_balance won't have to schedule when trying to prepare
2343 	 ** the super for logging
2344 	 */
2345 	reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2346 				     SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1);
2347 	journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2348 			   SB_BUFFER_WITH_SB(p_s_tb->tb_sb));
2349 	if (FILESYSTEM_CHANGED_TB(p_s_tb))
2350 		return REPEAT_SEARCH;
2351 
2352 	/* if it possible in indirect_to_direct conversion */
2353 	if (buffer_locked(p_s_tbS0)) {
2354 		__wait_on_buffer(p_s_tbS0);
2355 		if (FILESYSTEM_CHANGED_TB(p_s_tb))
2356 			return REPEAT_SEARCH;
2357 	}
2358 #ifdef CONFIG_REISERFS_CHECK
2359 	if (cur_tb) {
2360 		print_cur_tb("fix_nodes");
2361 		reiserfs_panic(p_s_tb->tb_sb,
2362 			       "PAP-8305: fix_nodes:  there is pending do_balance");
2363 	}
2364 
2365 	if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) {
2366 		reiserfs_panic(p_s_tb->tb_sb,
2367 			       "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2368 			       "at the beginning of fix_nodes or not in tree (mode %c)",
2369 			       p_s_tbS0, p_s_tbS0, n_op_mode);
2370 	}
2371 
2372 	/* Check parameters. */
2373 	switch (n_op_mode) {
2374 	case M_INSERT:
2375 		if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0))
2376 			reiserfs_panic(p_s_tb->tb_sb,
2377 				       "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2378 				       n_item_num, B_NR_ITEMS(p_s_tbS0));
2379 		break;
2380 	case M_PASTE:
2381 	case M_DELETE:
2382 	case M_CUT:
2383 		if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) {
2384 			print_block(p_s_tbS0, 0, -1, -1);
2385 			reiserfs_panic(p_s_tb->tb_sb,
2386 				       "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n",
2387 				       n_item_num, n_op_mode,
2388 				       p_s_tb->insert_size[0]);
2389 		}
2390 		break;
2391 	default:
2392 		reiserfs_panic(p_s_tb->tb_sb,
2393 			       "PAP-8340: fix_nodes: Incorrect mode of operation");
2394 	}
2395 #endif
2396 
2397 	if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH)
2398 		// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2399 		return REPEAT_SEARCH;
2400 
2401 	/* Starting from the leaf level; for all levels n_h of the tree. */
2402 	for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) {
2403 		if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) {
2404 			goto repeat;
2405 		}
2406 
2407 		if ((n_ret_value =
2408 		     check_balance(n_op_mode, p_s_tb, n_h, n_item_num,
2409 				   n_pos_in_item, p_s_ins_ih,
2410 				   data)) != CARRY_ON) {
2411 			if (n_ret_value == NO_BALANCING_NEEDED) {
2412 				/* No balancing for higher levels needed. */
2413 				if ((n_ret_value =
2414 				     get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2415 					goto repeat;
2416 				}
2417 				if (n_h != MAX_HEIGHT - 1)
2418 					p_s_tb->insert_size[n_h + 1] = 0;
2419 				/* ok, analysis and resource gathering are complete */
2420 				break;
2421 			}
2422 			goto repeat;
2423 		}
2424 
2425 		if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2426 			goto repeat;
2427 		}
2428 
2429 		if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) {
2430 			goto repeat;	/* No disk space, or schedule occurred and
2431 					   analysis may be invalid and needs to be redone. */
2432 		}
2433 
2434 		if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) {
2435 			/* We have a positive insert size but no nodes exist on this
2436 			   level, this means that we are creating a new root. */
2437 
2438 			RFALSE(p_s_tb->blknum[n_h] != 1,
2439 			       "PAP-8350: creating new empty root");
2440 
2441 			if (n_h < MAX_HEIGHT - 1)
2442 				p_s_tb->insert_size[n_h + 1] = 0;
2443 		} else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) {
2444 			if (p_s_tb->blknum[n_h] > 1) {
2445 				/* The tree needs to be grown, so this node S[n_h]
2446 				   which is the root node is split into two nodes,
2447 				   and a new node (S[n_h+1]) will be created to
2448 				   become the root node.  */
2449 
2450 				RFALSE(n_h == MAX_HEIGHT - 1,
2451 				       "PAP-8355: attempt to create too high of a tree");
2452 
2453 				p_s_tb->insert_size[n_h + 1] =
2454 				    (DC_SIZE +
2455 				     KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) +
2456 				    DC_SIZE;
2457 			} else if (n_h < MAX_HEIGHT - 1)
2458 				p_s_tb->insert_size[n_h + 1] = 0;
2459 		} else
2460 			p_s_tb->insert_size[n_h + 1] =
2461 			    (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2462 	}
2463 
2464 	if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) {
2465 		if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2466 			wait_tb_buffers_run = 1;
2467 			n_ret_value = REPEAT_SEARCH;
2468 			goto repeat;
2469 		} else {
2470 			return CARRY_ON;
2471 		}
2472 	} else {
2473 		wait_tb_buffers_run = 1;
2474 		goto repeat;
2475 	}
2476 
2477       repeat:
2478 	// fix_nodes was unable to perform its calculation due to
2479 	// filesystem got changed under us, lack of free disk space or i/o
2480 	// failure. If the first is the case - the search will be
2481 	// repeated. For now - free all resources acquired so far except
2482 	// for the new allocated nodes
2483 	{
2484 		int i;
2485 
2486 		/* Release path buffers. */
2487 		if (wait_tb_buffers_run) {
2488 			pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path);
2489 		} else {
2490 			pathrelse(p_s_tb->tb_path);
2491 		}
2492 		/* brelse all resources collected for balancing */
2493 		for (i = 0; i < MAX_HEIGHT; i++) {
2494 			if (wait_tb_buffers_run) {
2495 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2496 								 p_s_tb->L[i]);
2497 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2498 								 p_s_tb->R[i]);
2499 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2500 								 p_s_tb->FL[i]);
2501 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2502 								 p_s_tb->FR[i]);
2503 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2504 								 p_s_tb->
2505 								 CFL[i]);
2506 				reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2507 								 p_s_tb->
2508 								 CFR[i]);
2509 			}
2510 
2511 			brelse(p_s_tb->L[i]);
2512 			p_s_tb->L[i] = NULL;
2513 			brelse(p_s_tb->R[i]);
2514 			p_s_tb->R[i] = NULL;
2515 			brelse(p_s_tb->FL[i]);
2516 			p_s_tb->FL[i] = NULL;
2517 			brelse(p_s_tb->FR[i]);
2518 			p_s_tb->FR[i] = NULL;
2519 			brelse(p_s_tb->CFL[i]);
2520 			p_s_tb->CFL[i] = NULL;
2521 			brelse(p_s_tb->CFR[i]);
2522 			p_s_tb->CFR[i] = NULL;
2523 		}
2524 
2525 		if (wait_tb_buffers_run) {
2526 			for (i = 0; i < MAX_FEB_SIZE; i++) {
2527 				if (p_s_tb->FEB[i]) {
2528 					reiserfs_restore_prepared_buffer
2529 					    (p_s_tb->tb_sb, p_s_tb->FEB[i]);
2530 				}
2531 			}
2532 		}
2533 		return n_ret_value;
2534 	}
2535 
2536 }
2537 
2538 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2539    wanted to make lines shorter */
2540 void unfix_nodes(struct tree_balance *tb)
2541 {
2542 	int i;
2543 
2544 	/* Release path buffers. */
2545 	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2546 
2547 	/* brelse all resources collected for balancing */
2548 	for (i = 0; i < MAX_HEIGHT; i++) {
2549 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2550 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2551 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2552 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2553 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2554 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2555 
2556 		brelse(tb->L[i]);
2557 		brelse(tb->R[i]);
2558 		brelse(tb->FL[i]);
2559 		brelse(tb->FR[i]);
2560 		brelse(tb->CFL[i]);
2561 		brelse(tb->CFR[i]);
2562 	}
2563 
2564 	/* deal with list of allocated (used and unused) nodes */
2565 	for (i = 0; i < MAX_FEB_SIZE; i++) {
2566 		if (tb->FEB[i]) {
2567 			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2568 			/* de-allocated block which was not used by balancing and
2569 			   bforget about buffer for it */
2570 			brelse(tb->FEB[i]);
2571 			reiserfs_free_block(tb->transaction_handle, NULL,
2572 					    blocknr, 0);
2573 		}
2574 		if (tb->used[i]) {
2575 			/* release used as new nodes including a new root */
2576 			brelse(tb->used[i]);
2577 		}
2578 	}
2579 
2580 	kfree(tb->vn_buf);
2581 
2582 }
2583