xref: /openbmc/linux/fs/reiserfs/fix_node.c (revision b627b4ed)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36 
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41 
42 /* To make any changes in the tree we find a node, that contains item
43    to be changed/deleted or position in the node we insert a new item
44    to. We call this node S. To do balancing we need to decide what we
45    will shift to left/right neighbor, or to a new node, where new item
46    will be etc. To make this analysis simpler we build virtual
47    node. Virtual node is an array of items, that will replace items of
48    node S. (For instance if we are going to delete an item, virtual
49    node does not contain it). Virtual node keeps information about
50    item sizes and types, mergeability of first and last items, sizes
51    of all entries in directory item. We use this array of items when
52    calculating what we can shift to neighbors and how many nodes we
53    have to have if we do not any shiftings, if we shift to left/right
54    neighbor or to both. */
55 
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59 	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 		return new_num;
61 
62 	if (mode == M_INSERT) {
63 
64 		RFALSE(new_num == 0,
65 		       "vs-8005: for INSERT mode and item number of inserted item");
66 
67 		return new_num - 1;
68 	}
69 
70 	RFALSE(mode != M_DELETE,
71 	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 	       mode);
73 	/* delete mode */
74 	return new_num + 1;
75 }
76 
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79 	struct item_head *ih;
80 	struct virtual_node *vn = tb->tb_vn;
81 	int new_num;
82 	struct buffer_head *Sh;	/* this comes from tb->S[h] */
83 
84 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
85 
86 	/* size of changed node */
87 	vn->vn_size =
88 	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89 
90 	/* for internal nodes array if virtual items is not created */
91 	if (h) {
92 		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 		return;
94 	}
95 
96 	/* number of items in virtual node  */
97 	vn->vn_nr_item =
98 	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
100 
101 	/* first virtual item */
102 	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105 
106 	/* first item in the node */
107 	ih = B_N_PITEM_HEAD(Sh, 0);
108 
109 	/* define the mergeability for 0-th item (if it is not being deleted) */
110 	if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113 
114 	/* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 		int j;
117 		struct virtual_item *vi = vn->vn_vi + new_num;
118 		int is_affected =
119 		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120 
121 		if (is_affected && vn->vn_mode == M_INSERT)
122 			continue;
123 
124 		/* get item number in source node */
125 		j = old_item_num(new_num, vn->vn_affected_item_num,
126 				 vn->vn_mode);
127 
128 		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 		vi->vi_ih = ih + j;
130 		vi->vi_item = B_I_PITEM(Sh, ih + j);
131 		vi->vi_uarea = vn->vn_free_ptr;
132 
133 		// FIXME: there is no check, that item operation did not
134 		// consume too much memory
135 		vn->vn_free_ptr +=
136 		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138 			reiserfs_panic(tb->tb_sb, "vs-8030",
139 				       "virtual node space consumed");
140 
141 		if (!is_affected)
142 			/* this is not being changed */
143 			continue;
144 
145 		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 			vi->vi_new_data = vn->vn_data;	// pointer to data which is going to be pasted
148 		}
149 	}
150 
151 	/* virtual inserted item is not defined yet */
152 	if (vn->vn_mode == M_INSERT) {
153 		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154 
155 		RFALSE(vn->vn_ins_ih == NULL,
156 		       "vs-8040: item header of inserted item is not specified");
157 		vi->vi_item_len = tb->insert_size[0];
158 		vi->vi_ih = vn->vn_ins_ih;
159 		vi->vi_item = vn->vn_data;
160 		vi->vi_uarea = vn->vn_free_ptr;
161 
162 		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 			     tb->insert_size[0]);
164 	}
165 
166 	/* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 	if (tb->CFR[0]) {
168 		struct reiserfs_key *key;
169 
170 		key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 		if (op_is_left_mergeable(key, Sh->b_size)
172 		    && (vn->vn_mode != M_DELETE
173 			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 			    VI_TYPE_RIGHT_MERGEABLE;
176 
177 #ifdef CONFIG_REISERFS_CHECK
178 		if (op_is_left_mergeable(key, Sh->b_size) &&
179 		    !(vn->vn_mode != M_DELETE
180 		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 			/* we delete last item and it could be merged with right neighbor's first item */
182 			if (!
183 			    (B_NR_ITEMS(Sh) == 1
184 			     && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 			     && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 				/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 				print_block(Sh, 0, -1, -1);
188 				reiserfs_panic(tb->tb_sb, "vs-8045",
189 					       "rdkey %k, affected item==%d "
190 					       "(mode==%c) Must be %c",
191 					       key, vn->vn_affected_item_num,
192 					       vn->vn_mode, M_DELETE);
193 			}
194 		}
195 #endif
196 
197 	}
198 }
199 
200 /* using virtual node check, how many items can be shifted to left
201    neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204 	int i;
205 	struct virtual_node *vn = tb->tb_vn;
206 	struct virtual_item *vi;
207 	int d_size, ih_size;
208 
209 	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210 
211 	/* internal level */
212 	if (h > 0) {
213 		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 		return;
215 	}
216 
217 	/* leaf level */
218 
219 	if (!cur_free || !vn->vn_nr_item) {
220 		/* no free space or nothing to move */
221 		tb->lnum[h] = 0;
222 		tb->lbytes = -1;
223 		return;
224 	}
225 
226 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 	       "vs-8055: parent does not exist or invalid");
228 
229 	vi = vn->vn_vi;
230 	if ((unsigned int)cur_free >=
231 	    (vn->vn_size -
232 	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 		/* all contents of S[0] fits into L[0] */
234 
235 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 		       "vs-8055: invalid mode or balance condition failed");
237 
238 		tb->lnum[0] = vn->vn_nr_item;
239 		tb->lbytes = -1;
240 		return;
241 	}
242 
243 	d_size = 0, ih_size = IH_SIZE;
244 
245 	/* first item may be merge with last item in left neighbor */
246 	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 		d_size = -((int)IH_SIZE), ih_size = 0;
248 
249 	tb->lnum[0] = 0;
250 	for (i = 0; i < vn->vn_nr_item;
251 	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 		d_size += vi->vi_item_len;
253 		if (cur_free >= d_size) {
254 			/* the item can be shifted entirely */
255 			cur_free -= d_size;
256 			tb->lnum[0]++;
257 			continue;
258 		}
259 
260 		/* the item cannot be shifted entirely, try to split it */
261 		/* check whether L[0] can hold ih and at least one byte of the item body */
262 		if (cur_free <= ih_size) {
263 			/* cannot shift even a part of the current item */
264 			tb->lbytes = -1;
265 			return;
266 		}
267 		cur_free -= ih_size;
268 
269 		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 		if (tb->lbytes != -1)
271 			/* count partially shifted item */
272 			tb->lnum[0]++;
273 
274 		break;
275 	}
276 
277 	return;
278 }
279 
280 /* using virtual node check, how many items can be shifted to right
281    neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284 	int i;
285 	struct virtual_node *vn = tb->tb_vn;
286 	struct virtual_item *vi;
287 	int d_size, ih_size;
288 
289 	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290 
291 	/* internal level */
292 	if (h > 0) {
293 		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 		return;
295 	}
296 
297 	/* leaf level */
298 
299 	if (!cur_free || !vn->vn_nr_item) {
300 		/* no free space  */
301 		tb->rnum[h] = 0;
302 		tb->rbytes = -1;
303 		return;
304 	}
305 
306 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 	       "vs-8075: parent does not exist or invalid");
308 
309 	vi = vn->vn_vi + vn->vn_nr_item - 1;
310 	if ((unsigned int)cur_free >=
311 	    (vn->vn_size -
312 	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 		/* all contents of S[0] fits into R[0] */
314 
315 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 		       "vs-8080: invalid mode or balance condition failed");
317 
318 		tb->rnum[h] = vn->vn_nr_item;
319 		tb->rbytes = -1;
320 		return;
321 	}
322 
323 	d_size = 0, ih_size = IH_SIZE;
324 
325 	/* last item may be merge with first item in right neighbor */
326 	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 		d_size = -(int)IH_SIZE, ih_size = 0;
328 
329 	tb->rnum[0] = 0;
330 	for (i = vn->vn_nr_item - 1; i >= 0;
331 	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 		d_size += vi->vi_item_len;
333 		if (cur_free >= d_size) {
334 			/* the item can be shifted entirely */
335 			cur_free -= d_size;
336 			tb->rnum[0]++;
337 			continue;
338 		}
339 
340 		/* check whether R[0] can hold ih and at least one byte of the item body */
341 		if (cur_free <= ih_size) {	/* cannot shift even a part of the current item */
342 			tb->rbytes = -1;
343 			return;
344 		}
345 
346 		/* R[0] can hold the header of the item and at least one byte of its body */
347 		cur_free -= ih_size;	/* cur_free is still > 0 */
348 
349 		tb->rbytes = op_check_right(vi, cur_free);
350 		if (tb->rbytes != -1)
351 			/* count partially shifted item */
352 			tb->rnum[0]++;
353 
354 		break;
355 	}
356 
357 	return;
358 }
359 
360 /*
361  * from - number of items, which are shifted to left neighbor entirely
362  * to - number of item, which are shifted to right neighbor entirely
363  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 		       int from, int from_bytes,
367 		       int to, int to_bytes, short *snum012, int flow)
368 {
369 	int i;
370 	int cur_free;
371 	//    int bytes;
372 	int units;
373 	struct virtual_node *vn = tb->tb_vn;
374 	//    struct virtual_item * vi;
375 
376 	int total_node_size, max_node_size, current_item_size;
377 	int needed_nodes;
378 	int start_item,		/* position of item we start filling node from */
379 	 end_item,		/* position of item we finish filling node by */
380 	 start_bytes,		/* number of first bytes (entries for directory) of start_item-th item
381 				   we do not include into node that is being filled */
382 	 end_bytes;		/* number of last bytes (entries for directory) of end_item-th item
383 				   we do node include into node that is being filled */
384 	int split_item_positions[2];	/* these are positions in virtual item of
385 					   items, that are split between S[0] and
386 					   S1new and S1new and S2new */
387 
388 	split_item_positions[0] = -1;
389 	split_item_positions[1] = -1;
390 
391 	/* We only create additional nodes if we are in insert or paste mode
392 	   or we are in replace mode at the internal level. If h is 0 and
393 	   the mode is M_REPLACE then in fix_nodes we change the mode to
394 	   paste or insert before we get here in the code.  */
395 	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 	       "vs-8100: insert_size < 0 in overflow");
397 
398 	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399 
400 	/* snum012 [0-2] - number of items, that lay
401 	   to S[0], first new node and second new node */
402 	snum012[3] = -1;	/* s1bytes */
403 	snum012[4] = -1;	/* s2bytes */
404 
405 	/* internal level */
406 	if (h > 0) {
407 		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 		if (i == max_node_size)
409 			return 1;
410 		return (i / max_node_size + 1);
411 	}
412 
413 	/* leaf level */
414 	needed_nodes = 1;
415 	total_node_size = 0;
416 	cur_free = max_node_size;
417 
418 	// start from 'from'-th item
419 	start_item = from;
420 	// skip its first 'start_bytes' units
421 	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422 
423 	// last included item is the 'end_item'-th one
424 	end_item = vn->vn_nr_item - to - 1;
425 	// do not count last 'end_bytes' units of 'end_item'-th item
426 	end_bytes = (to_bytes != -1) ? to_bytes : 0;
427 
428 	/* go through all item beginning from the start_item-th item and ending by
429 	   the end_item-th item. Do not count first 'start_bytes' units of
430 	   'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431 
432 	for (i = start_item; i <= end_item; i++) {
433 		struct virtual_item *vi = vn->vn_vi + i;
434 		int skip_from_end = ((i == end_item) ? end_bytes : 0);
435 
436 		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437 
438 		/* get size of current item */
439 		current_item_size = vi->vi_item_len;
440 
441 		/* do not take in calculation head part (from_bytes) of from-th item */
442 		current_item_size -=
443 		    op_part_size(vi, 0 /*from start */ , start_bytes);
444 
445 		/* do not take in calculation tail part of last item */
446 		current_item_size -=
447 		    op_part_size(vi, 1 /*from end */ , skip_from_end);
448 
449 		/* if item fits into current node entierly */
450 		if (total_node_size + current_item_size <= max_node_size) {
451 			snum012[needed_nodes - 1]++;
452 			total_node_size += current_item_size;
453 			start_bytes = 0;
454 			continue;
455 		}
456 
457 		if (current_item_size > max_node_size) {
458 			/* virtual item length is longer, than max size of item in
459 			   a node. It is impossible for direct item */
460 			RFALSE(is_direct_le_ih(vi->vi_ih),
461 			       "vs-8110: "
462 			       "direct item length is %d. It can not be longer than %d",
463 			       current_item_size, max_node_size);
464 			/* we will try to split it */
465 			flow = 1;
466 		}
467 
468 		if (!flow) {
469 			/* as we do not split items, take new node and continue */
470 			needed_nodes++;
471 			i--;
472 			total_node_size = 0;
473 			continue;
474 		}
475 		// calculate number of item units which fit into node being
476 		// filled
477 		{
478 			int free_space;
479 
480 			free_space = max_node_size - total_node_size - IH_SIZE;
481 			units =
482 			    op_check_left(vi, free_space, start_bytes,
483 					  skip_from_end);
484 			if (units == -1) {
485 				/* nothing fits into current node, take new node and continue */
486 				needed_nodes++, i--, total_node_size = 0;
487 				continue;
488 			}
489 		}
490 
491 		/* something fits into the current node */
492 		//if (snum012[3] != -1 || needed_nodes != 1)
493 		//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 		//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 		start_bytes += units;
496 		snum012[needed_nodes - 1 + 3] = units;
497 
498 		if (needed_nodes > 2)
499 			reiserfs_warning(tb->tb_sb, "vs-8111",
500 					 "split_item_position is out of range");
501 		snum012[needed_nodes - 1]++;
502 		split_item_positions[needed_nodes - 1] = i;
503 		needed_nodes++;
504 		/* continue from the same item with start_bytes != -1 */
505 		start_item = i;
506 		i--;
507 		total_node_size = 0;
508 	}
509 
510 	// sum012[4] (if it is not -1) contains number of units of which
511 	// are to be in S1new, snum012[3] - to be in S0. They are supposed
512 	// to be S1bytes and S2bytes correspondingly, so recalculate
513 	if (snum012[4] > 0) {
514 		int split_item_num;
515 		int bytes_to_r, bytes_to_l;
516 		int bytes_to_S1new;
517 
518 		split_item_num = split_item_positions[1];
519 		bytes_to_l =
520 		    ((from == split_item_num
521 		      && from_bytes != -1) ? from_bytes : 0);
522 		bytes_to_r =
523 		    ((end_item == split_item_num
524 		      && end_bytes != -1) ? end_bytes : 0);
525 		bytes_to_S1new =
526 		    ((split_item_positions[0] ==
527 		      split_item_positions[1]) ? snum012[3] : 0);
528 
529 		// s2bytes
530 		snum012[4] =
531 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 		    bytes_to_r - bytes_to_l - bytes_to_S1new;
533 
534 		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536 			reiserfs_warning(tb->tb_sb, "vs-8115",
537 					 "not directory or indirect item");
538 	}
539 
540 	/* now we know S2bytes, calculate S1bytes */
541 	if (snum012[3] > 0) {
542 		int split_item_num;
543 		int bytes_to_r, bytes_to_l;
544 		int bytes_to_S2new;
545 
546 		split_item_num = split_item_positions[0];
547 		bytes_to_l =
548 		    ((from == split_item_num
549 		      && from_bytes != -1) ? from_bytes : 0);
550 		bytes_to_r =
551 		    ((end_item == split_item_num
552 		      && end_bytes != -1) ? end_bytes : 0);
553 		bytes_to_S2new =
554 		    ((split_item_positions[0] == split_item_positions[1]
555 		      && snum012[4] != -1) ? snum012[4] : 0);
556 
557 		// s1bytes
558 		snum012[3] =
559 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 		    bytes_to_r - bytes_to_l - bytes_to_S2new;
561 	}
562 
563 	return needed_nodes;
564 }
565 
566 #ifdef CONFIG_REISERFS_CHECK
567 extern struct tree_balance *cur_tb;
568 #endif
569 
570 /* Set parameters for balancing.
571  * Performs write of results of analysis of balancing into structure tb,
572  * where it will later be used by the functions that actually do the balancing.
573  * Parameters:
574  *	tb	tree_balance structure;
575  *	h	current level of the node;
576  *	lnum	number of items from S[h] that must be shifted to L[h];
577  *	rnum	number of items from S[h] that must be shifted to R[h];
578  *	blk_num	number of blocks that S[h] will be splitted into;
579  *	s012	number of items that fall into splitted nodes.
580  *	lbytes	number of bytes which flow to the left neighbor from the item that is not
581  *		not shifted entirely
582  *	rbytes	number of bytes which flow to the right neighbor from the item that is not
583  *		not shifted entirely
584  *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
585  */
586 
587 static void set_parameters(struct tree_balance *tb, int h, int lnum,
588 			   int rnum, int blk_num, short *s012, int lb, int rb)
589 {
590 
591 	tb->lnum[h] = lnum;
592 	tb->rnum[h] = rnum;
593 	tb->blknum[h] = blk_num;
594 
595 	if (h == 0) {		/* only for leaf level */
596 		if (s012 != NULL) {
597 			tb->s0num = *s012++,
598 			    tb->s1num = *s012++, tb->s2num = *s012++;
599 			tb->s1bytes = *s012++;
600 			tb->s2bytes = *s012;
601 		}
602 		tb->lbytes = lb;
603 		tb->rbytes = rb;
604 	}
605 	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606 	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
607 
608 	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609 	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610 }
611 
612 /* check, does node disappear if we shift tb->lnum[0] items to left
613    neighbor and tb->rnum[0] to the right one. */
614 static int is_leaf_removable(struct tree_balance *tb)
615 {
616 	struct virtual_node *vn = tb->tb_vn;
617 	int to_left, to_right;
618 	int size;
619 	int remain_items;
620 
621 	/* number of items, that will be shifted to left (right) neighbor
622 	   entirely */
623 	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624 	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625 	remain_items = vn->vn_nr_item;
626 
627 	/* how many items remain in S[0] after shiftings to neighbors */
628 	remain_items -= (to_left + to_right);
629 
630 	if (remain_items < 1) {
631 		/* all content of node can be shifted to neighbors */
632 		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633 			       NULL, -1, -1);
634 		return 1;
635 	}
636 
637 	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638 		/* S[0] is not removable */
639 		return 0;
640 
641 	/* check, whether we can divide 1 remaining item between neighbors */
642 
643 	/* get size of remaining item (in item units) */
644 	size = op_unit_num(&(vn->vn_vi[to_left]));
645 
646 	if (tb->lbytes + tb->rbytes >= size) {
647 		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648 			       tb->lbytes, -1);
649 		return 1;
650 	}
651 
652 	return 0;
653 }
654 
655 /* check whether L, S, R can be joined in one node */
656 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
657 {
658 	struct virtual_node *vn = tb->tb_vn;
659 	int ih_size;
660 	struct buffer_head *S0;
661 
662 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663 
664 	ih_size = 0;
665 	if (vn->vn_nr_item) {
666 		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667 			ih_size += IH_SIZE;
668 
669 		if (vn->vn_vi[vn->vn_nr_item - 1].
670 		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
671 			ih_size += IH_SIZE;
672 	} else {
673 		/* there was only one item and it will be deleted */
674 		struct item_head *ih;
675 
676 		RFALSE(B_NR_ITEMS(S0) != 1,
677 		       "vs-8125: item number must be 1: it is %d",
678 		       B_NR_ITEMS(S0));
679 
680 		ih = B_N_PITEM_HEAD(S0, 0);
681 		if (tb->CFR[0]
682 		    && !comp_short_le_keys(&(ih->ih_key),
683 					   B_N_PDELIM_KEY(tb->CFR[0],
684 							  tb->rkey[0])))
685 			if (is_direntry_le_ih(ih)) {
686 				/* Directory must be in correct state here: that is
687 				   somewhere at the left side should exist first directory
688 				   item. But the item being deleted can not be that first
689 				   one because its right neighbor is item of the same
690 				   directory. (But first item always gets deleted in last
691 				   turn). So, neighbors of deleted item can be merged, so
692 				   we can save ih_size */
693 				ih_size = IH_SIZE;
694 
695 				/* we might check that left neighbor exists and is of the
696 				   same directory */
697 				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698 				       "vs-8130: first directory item can not be removed until directory is not empty");
699 			}
700 
701 	}
702 
703 	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704 		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705 		PROC_INFO_INC(tb->tb_sb, leaves_removable);
706 		return 1;
707 	}
708 	return 0;
709 
710 }
711 
712 /* when we do not split item, lnum and rnum are numbers of entire items */
713 #define SET_PAR_SHIFT_LEFT \
714 if (h)\
715 {\
716    int to_l;\
717    \
718    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
720 	      \
721 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722 }\
723 else \
724 {\
725    if (lset==LEFT_SHIFT_FLOW)\
726      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727 		     tb->lbytes, -1);\
728    else\
729      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730 		     -1, -1);\
731 }
732 
733 #define SET_PAR_SHIFT_RIGHT \
734 if (h)\
735 {\
736    int to_r;\
737    \
738    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739    \
740    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741 }\
742 else \
743 {\
744    if (rset==RIGHT_SHIFT_FLOW)\
745      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746 		  -1, tb->rbytes);\
747    else\
748      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749 		  -1, -1);\
750 }
751 
752 static void free_buffers_in_tb(struct tree_balance *tb)
753 {
754 	int i;
755 
756 	pathrelse(tb->tb_path);
757 
758 	for (i = 0; i < MAX_HEIGHT; i++) {
759 		brelse(tb->L[i]);
760 		brelse(tb->R[i]);
761 		brelse(tb->FL[i]);
762 		brelse(tb->FR[i]);
763 		brelse(tb->CFL[i]);
764 		brelse(tb->CFR[i]);
765 
766 		tb->L[i] = NULL;
767 		tb->R[i] = NULL;
768 		tb->FL[i] = NULL;
769 		tb->FR[i] = NULL;
770 		tb->CFL[i] = NULL;
771 		tb->CFR[i] = NULL;
772 	}
773 }
774 
775 /* Get new buffers for storing new nodes that are created while balancing.
776  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
777  *	        CARRY_ON - schedule didn't occur while the function worked;
778  *	        NO_DISK_SPACE - no disk space.
779  */
780 /* The function is NOT SCHEDULE-SAFE! */
781 static int get_empty_nodes(struct tree_balance *tb, int h)
782 {
783 	struct buffer_head *new_bh,
784 	    *Sh = PATH_H_PBUFFER(tb->tb_path, h);
785 	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
786 	int counter, number_of_freeblk, amount_needed,	/* number of needed empty blocks */
787 	 retval = CARRY_ON;
788 	struct super_block *sb = tb->tb_sb;
789 
790 	/* number_of_freeblk is the number of empty blocks which have been
791 	   acquired for use by the balancing algorithm minus the number of
792 	   empty blocks used in the previous levels of the analysis,
793 	   number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
794 	   after empty blocks are acquired, and the balancing analysis is
795 	   then restarted, amount_needed is the number needed by this level
796 	   (h) of the balancing analysis.
797 
798 	   Note that for systems with many processes writing, it would be
799 	   more layout optimal to calculate the total number needed by all
800 	   levels and then to run reiserfs_new_blocks to get all of them at once.  */
801 
802 	/* Initiate number_of_freeblk to the amount acquired prior to the restart of
803 	   the analysis or 0 if not restarted, then subtract the amount needed
804 	   by all of the levels of the tree below h. */
805 	/* blknum includes S[h], so we subtract 1 in this calculation */
806 	for (counter = 0, number_of_freeblk = tb->cur_blknum;
807 	     counter < h; counter++)
808 		number_of_freeblk -=
809 		    (tb->blknum[counter]) ? (tb->blknum[counter] -
810 						   1) : 0;
811 
812 	/* Allocate missing empty blocks. */
813 	/* if Sh == 0  then we are getting a new root */
814 	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
815 	/*  Amount_needed = the amount that we need more than the amount that we have. */
816 	if (amount_needed > number_of_freeblk)
817 		amount_needed -= number_of_freeblk;
818 	else			/* If we have enough already then there is nothing to do. */
819 		return CARRY_ON;
820 
821 	/* No need to check quota - is not allocated for blocks used for formatted nodes */
822 	if (reiserfs_new_form_blocknrs(tb, blocknrs,
823 				       amount_needed) == NO_DISK_SPACE)
824 		return NO_DISK_SPACE;
825 
826 	/* for each blocknumber we just got, get a buffer and stick it on FEB */
827 	for (blocknr = blocknrs, counter = 0;
828 	     counter < amount_needed; blocknr++, counter++) {
829 
830 		RFALSE(!*blocknr,
831 		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
832 
833 		new_bh = sb_getblk(sb, *blocknr);
834 		RFALSE(buffer_dirty(new_bh) ||
835 		       buffer_journaled(new_bh) ||
836 		       buffer_journal_dirty(new_bh),
837 		       "PAP-8140: journlaled or dirty buffer %b for the new block",
838 		       new_bh);
839 
840 		/* Put empty buffers into the array. */
841 		RFALSE(tb->FEB[tb->cur_blknum],
842 		       "PAP-8141: busy slot for new buffer");
843 
844 		set_buffer_journal_new(new_bh);
845 		tb->FEB[tb->cur_blknum++] = new_bh;
846 	}
847 
848 	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
849 		retval = REPEAT_SEARCH;
850 
851 	return retval;
852 }
853 
854 /* Get free space of the left neighbor, which is stored in the parent
855  * node of the left neighbor.  */
856 static int get_lfree(struct tree_balance *tb, int h)
857 {
858 	struct buffer_head *l, *f;
859 	int order;
860 
861 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
862 	    (l = tb->FL[h]) == NULL)
863 		return 0;
864 
865 	if (f == l)
866 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
867 	else {
868 		order = B_NR_ITEMS(l);
869 		f = l;
870 	}
871 
872 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
873 }
874 
875 /* Get free space of the right neighbor,
876  * which is stored in the parent node of the right neighbor.
877  */
878 static int get_rfree(struct tree_balance *tb, int h)
879 {
880 	struct buffer_head *r, *f;
881 	int order;
882 
883 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
884 	    (r = tb->FR[h]) == NULL)
885 		return 0;
886 
887 	if (f == r)
888 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889 	else {
890 		order = 0;
891 		f = r;
892 	}
893 
894 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
895 
896 }
897 
898 /* Check whether left neighbor is in memory. */
899 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
900 {
901 	struct buffer_head *father, *left;
902 	struct super_block *sb = tb->tb_sb;
903 	b_blocknr_t left_neighbor_blocknr;
904 	int left_neighbor_position;
905 
906 	/* Father of the left neighbor does not exist. */
907 	if (!tb->FL[h])
908 		return 0;
909 
910 	/* Calculate father of the node to be balanced. */
911 	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
912 
913 	RFALSE(!father ||
914 	       !B_IS_IN_TREE(father) ||
915 	       !B_IS_IN_TREE(tb->FL[h]) ||
916 	       !buffer_uptodate(father) ||
917 	       !buffer_uptodate(tb->FL[h]),
918 	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
919 	       father, tb->FL[h]);
920 
921 	/* Get position of the pointer to the left neighbor into the left father. */
922 	left_neighbor_position = (father == tb->FL[h]) ?
923 	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
924 	/* Get left neighbor block number. */
925 	left_neighbor_blocknr =
926 	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
927 	/* Look for the left neighbor in the cache. */
928 	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
929 
930 		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
931 		       "vs-8170: left neighbor (%b %z) is not in the tree",
932 		       left, left);
933 		put_bh(left);
934 		return 1;
935 	}
936 
937 	return 0;
938 }
939 
940 #define LEFT_PARENTS  'l'
941 #define RIGHT_PARENTS 'r'
942 
943 static void decrement_key(struct cpu_key *key)
944 {
945 	// call item specific function for this key
946 	item_ops[cpu_key_k_type(key)]->decrement_key(key);
947 }
948 
949 /* Calculate far left/right parent of the left/right neighbor of the current node, that
950  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
951  * Calculate left/right common parent of the current node and L[h]/R[h].
952  * Calculate left/right delimiting key position.
953  * Returns:	PATH_INCORRECT   - path in the tree is not correct;
954  		SCHEDULE_OCCURRED - schedule occurred while the function worked;
955  *	        CARRY_ON         - schedule didn't occur while the function worked;
956  */
957 static int get_far_parent(struct tree_balance *tb,
958 			  int h,
959 			  struct buffer_head **pfather,
960 			  struct buffer_head **pcom_father, char c_lr_par)
961 {
962 	struct buffer_head *parent;
963 	INITIALIZE_PATH(s_path_to_neighbor_father);
964 	struct treepath *path = tb->tb_path;
965 	struct cpu_key s_lr_father_key;
966 	int counter,
967 	    position = INT_MAX,
968 	    first_last_position = 0,
969 	    path_offset = PATH_H_PATH_OFFSET(path, h);
970 
971 	/* Starting from F[h] go upwards in the tree, and look for the common
972 	   ancestor of F[h], and its neighbor l/r, that should be obtained. */
973 
974 	counter = path_offset;
975 
976 	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
977 	       "PAP-8180: invalid path length");
978 
979 	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
980 		/* Check whether parent of the current buffer in the path is really parent in the tree. */
981 		if (!B_IS_IN_TREE
982 		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
983 			return REPEAT_SEARCH;
984 		/* Check whether position in the parent is correct. */
985 		if ((position =
986 		     PATH_OFFSET_POSITION(path,
987 					  counter - 1)) >
988 		    B_NR_ITEMS(parent))
989 			return REPEAT_SEARCH;
990 		/* Check whether parent at the path really points to the child. */
991 		if (B_N_CHILD_NUM(parent, position) !=
992 		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
993 			return REPEAT_SEARCH;
994 		/* Return delimiting key if position in the parent is not equal to first/last one. */
995 		if (c_lr_par == RIGHT_PARENTS)
996 			first_last_position = B_NR_ITEMS(parent);
997 		if (position != first_last_position) {
998 			*pcom_father = parent;
999 			get_bh(*pcom_father);
1000 			/*(*pcom_father = parent)->b_count++; */
1001 			break;
1002 		}
1003 	}
1004 
1005 	/* if we are in the root of the tree, then there is no common father */
1006 	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1007 		/* Check whether first buffer in the path is the root of the tree. */
1008 		if (PATH_OFFSET_PBUFFER
1009 		    (tb->tb_path,
1010 		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1011 		    SB_ROOT_BLOCK(tb->tb_sb)) {
1012 			*pfather = *pcom_father = NULL;
1013 			return CARRY_ON;
1014 		}
1015 		return REPEAT_SEARCH;
1016 	}
1017 
1018 	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1019 	       "PAP-8185: (%b %z) level too small",
1020 	       *pcom_father, *pcom_father);
1021 
1022 	/* Check whether the common parent is locked. */
1023 
1024 	if (buffer_locked(*pcom_father)) {
1025 		__wait_on_buffer(*pcom_father);
1026 		if (FILESYSTEM_CHANGED_TB(tb)) {
1027 			brelse(*pcom_father);
1028 			return REPEAT_SEARCH;
1029 		}
1030 	}
1031 
1032 	/* So, we got common parent of the current node and its left/right neighbor.
1033 	   Now we are geting the parent of the left/right neighbor. */
1034 
1035 	/* Form key to get parent of the left/right neighbor. */
1036 	le_key2cpu_key(&s_lr_father_key,
1037 		       B_N_PDELIM_KEY(*pcom_father,
1038 				      (c_lr_par ==
1039 				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1040 							position -
1041 							1) : (tb->rkey[h -
1042 									   1] =
1043 							      position)));
1044 
1045 	if (c_lr_par == LEFT_PARENTS)
1046 		decrement_key(&s_lr_father_key);
1047 
1048 	if (search_by_key
1049 	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1050 	     h + 1) == IO_ERROR)
1051 		// path is released
1052 		return IO_ERROR;
1053 
1054 	if (FILESYSTEM_CHANGED_TB(tb)) {
1055 		pathrelse(&s_path_to_neighbor_father);
1056 		brelse(*pcom_father);
1057 		return REPEAT_SEARCH;
1058 	}
1059 
1060 	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1061 
1062 	RFALSE(B_LEVEL(*pfather) != h + 1,
1063 	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1064 	RFALSE(s_path_to_neighbor_father.path_length <
1065 	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1066 
1067 	s_path_to_neighbor_father.path_length--;
1068 	pathrelse(&s_path_to_neighbor_father);
1069 	return CARRY_ON;
1070 }
1071 
1072 /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1073  * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1074  * FR[path_offset], CFL[path_offset], CFR[path_offset].
1075  * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1076  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1077  *	        CARRY_ON - schedule didn't occur while the function worked;
1078  */
1079 static int get_parents(struct tree_balance *tb, int h)
1080 {
1081 	struct treepath *path = tb->tb_path;
1082 	int position,
1083 	    ret,
1084 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1085 	struct buffer_head *curf, *curcf;
1086 
1087 	/* Current node is the root of the tree or will be root of the tree */
1088 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1089 		/* The root can not have parents.
1090 		   Release nodes which previously were obtained as parents of the current node neighbors. */
1091 		brelse(tb->FL[h]);
1092 		brelse(tb->CFL[h]);
1093 		brelse(tb->FR[h]);
1094 		brelse(tb->CFR[h]);
1095 		tb->FL[h]  = NULL;
1096 		tb->CFL[h] = NULL;
1097 		tb->FR[h]  = NULL;
1098 		tb->CFR[h] = NULL;
1099 		return CARRY_ON;
1100 	}
1101 
1102 	/* Get parent FL[path_offset] of L[path_offset]. */
1103 	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1104 	if (position) {
1105 		/* Current node is not the first child of its parent. */
1106 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1107 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1108 		get_bh(curf);
1109 		get_bh(curf);
1110 		tb->lkey[h] = position - 1;
1111 	} else {
1112 		/* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1113 		   Calculate current common parent of L[path_offset] and the current node. Note that
1114 		   CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1115 		   Calculate lkey[path_offset]. */
1116 		if ((ret = get_far_parent(tb, h + 1, &curf,
1117 						  &curcf,
1118 						  LEFT_PARENTS)) != CARRY_ON)
1119 			return ret;
1120 	}
1121 
1122 	brelse(tb->FL[h]);
1123 	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1124 	brelse(tb->CFL[h]);
1125 	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1126 
1127 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1128 	       (curcf && !B_IS_IN_TREE(curcf)),
1129 	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1130 
1131 /* Get parent FR[h] of R[h]. */
1132 
1133 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1134 	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1135 /* Calculate current parent of R[h], which is the right neighbor of F[h].
1136    Calculate current common parent of R[h] and current node. Note that CFR[h]
1137    not equal FR[path_offset] and CFR[h] not equal F[h]. */
1138 		if ((ret =
1139 		     get_far_parent(tb, h + 1, &curf, &curcf,
1140 				    RIGHT_PARENTS)) != CARRY_ON)
1141 			return ret;
1142 	} else {
1143 /* Current node is not the last child of its parent F[h]. */
1144 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1145 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1146 		get_bh(curf);
1147 		get_bh(curf);
1148 		tb->rkey[h] = position;
1149 	}
1150 
1151 	brelse(tb->FR[h]);
1152 	/* New initialization of FR[path_offset]. */
1153 	tb->FR[h] = curf;
1154 
1155 	brelse(tb->CFR[h]);
1156 	/* New initialization of CFR[path_offset]. */
1157 	tb->CFR[h] = curcf;
1158 
1159 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1160 	       (curcf && !B_IS_IN_TREE(curcf)),
1161 	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1162 
1163 	return CARRY_ON;
1164 }
1165 
1166 /* it is possible to remove node as result of shiftings to
1167    neighbors even when we insert or paste item. */
1168 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1169 				      struct tree_balance *tb, int h)
1170 {
1171 	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1172 	int levbytes = tb->insert_size[h];
1173 	struct item_head *ih;
1174 	struct reiserfs_key *r_key = NULL;
1175 
1176 	ih = B_N_PITEM_HEAD(Sh, 0);
1177 	if (tb->CFR[h])
1178 		r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1179 
1180 	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1181 	    /* shifting may merge items which might save space */
1182 	    -
1183 	    ((!h
1184 	      && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1185 	    -
1186 	    ((!h && r_key
1187 	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1188 	    + ((h) ? KEY_SIZE : 0)) {
1189 		/* node can not be removed */
1190 		if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1191 			if (!h)
1192 				tb->s0num =
1193 				    B_NR_ITEMS(Sh) +
1194 				    ((mode == M_INSERT) ? 1 : 0);
1195 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1196 			return NO_BALANCING_NEEDED;
1197 		}
1198 	}
1199 	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1200 	return !NO_BALANCING_NEEDED;
1201 }
1202 
1203 /* Check whether current node S[h] is balanced when increasing its size by
1204  * Inserting or Pasting.
1205  * Calculate parameters for balancing for current level h.
1206  * Parameters:
1207  *	tb	tree_balance structure;
1208  *	h	current level of the node;
1209  *	inum	item number in S[h];
1210  *	mode	i - insert, p - paste;
1211  * Returns:	1 - schedule occurred;
1212  *	        0 - balancing for higher levels needed;
1213  *	       -1 - no balancing for higher levels needed;
1214  *	       -2 - no disk space.
1215  */
1216 /* ip means Inserting or Pasting */
1217 static int ip_check_balance(struct tree_balance *tb, int h)
1218 {
1219 	struct virtual_node *vn = tb->tb_vn;
1220 	int levbytes,		/* Number of bytes that must be inserted into (value
1221 				   is negative if bytes are deleted) buffer which
1222 				   contains node being balanced.  The mnemonic is
1223 				   that the attempted change in node space used level
1224 				   is levbytes bytes. */
1225 	 ret;
1226 
1227 	int lfree, sfree, rfree /* free space in L, S and R */ ;
1228 
1229 	/* nver is short for number of vertixes, and lnver is the number if
1230 	   we shift to the left, rnver is the number if we shift to the
1231 	   right, and lrnver is the number if we shift in both directions.
1232 	   The goal is to minimize first the number of vertixes, and second,
1233 	   the number of vertixes whose contents are changed by shifting,
1234 	   and third the number of uncached vertixes whose contents are
1235 	   changed by shifting and must be read from disk.  */
1236 	int nver, lnver, rnver, lrnver;
1237 
1238 	/* used at leaf level only, S0 = S[0] is the node being balanced,
1239 	   sInum [ I = 0,1,2 ] is the number of items that will
1240 	   remain in node SI after balancing.  S1 and S2 are new
1241 	   nodes that might be created. */
1242 
1243 	/* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1244 	   where 4th parameter is s1bytes and 5th - s2bytes
1245 	 */
1246 	short snum012[40] = { 0, };	/* s0num, s1num, s2num for 8 cases
1247 					   0,1 - do not shift and do not shift but bottle
1248 					   2 - shift only whole item to left
1249 					   3 - shift to left and bottle as much as possible
1250 					   4,5 - shift to right (whole items and as much as possible
1251 					   6,7 - shift to both directions (whole items and as much as possible)
1252 					 */
1253 
1254 	/* Sh is the node whose balance is currently being checked */
1255 	struct buffer_head *Sh;
1256 
1257 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1258 	levbytes = tb->insert_size[h];
1259 
1260 	/* Calculate balance parameters for creating new root. */
1261 	if (!Sh) {
1262 		if (!h)
1263 			reiserfs_panic(tb->tb_sb, "vs-8210",
1264 				       "S[0] can not be 0");
1265 		switch (ret = get_empty_nodes(tb, h)) {
1266 		case CARRY_ON:
1267 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1268 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1269 
1270 		case NO_DISK_SPACE:
1271 		case REPEAT_SEARCH:
1272 			return ret;
1273 		default:
1274 			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1275 				       "return value of get_empty_nodes");
1276 		}
1277 	}
1278 
1279 	if ((ret = get_parents(tb, h)) != CARRY_ON)	/* get parents of S[h] neighbors. */
1280 		return ret;
1281 
1282 	sfree = B_FREE_SPACE(Sh);
1283 
1284 	/* get free space of neighbors */
1285 	rfree = get_rfree(tb, h);
1286 	lfree = get_lfree(tb, h);
1287 
1288 	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1289 	    NO_BALANCING_NEEDED)
1290 		/* and new item fits into node S[h] without any shifting */
1291 		return NO_BALANCING_NEEDED;
1292 
1293 	create_virtual_node(tb, h);
1294 
1295 	/*
1296 	   determine maximal number of items we can shift to the left neighbor (in tb structure)
1297 	   and the maximal number of bytes that can flow to the left neighbor
1298 	   from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1299 	 */
1300 	check_left(tb, h, lfree);
1301 
1302 	/*
1303 	   determine maximal number of items we can shift to the right neighbor (in tb structure)
1304 	   and the maximal number of bytes that can flow to the right neighbor
1305 	   from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1306 	 */
1307 	check_right(tb, h, rfree);
1308 
1309 	/* all contents of internal node S[h] can be moved into its
1310 	   neighbors, S[h] will be removed after balancing */
1311 	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1312 		int to_r;
1313 
1314 		/* Since we are working on internal nodes, and our internal
1315 		   nodes have fixed size entries, then we can balance by the
1316 		   number of items rather than the space they consume.  In this
1317 		   routine we set the left node equal to the right node,
1318 		   allowing a difference of less than or equal to 1 child
1319 		   pointer. */
1320 		to_r =
1321 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1322 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1323 						tb->rnum[h]);
1324 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1325 			       -1, -1);
1326 		return CARRY_ON;
1327 	}
1328 
1329 	/* this checks balance condition, that any two neighboring nodes can not fit in one node */
1330 	RFALSE(h &&
1331 	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1332 		tb->rnum[h] >= vn->vn_nr_item + 1),
1333 	       "vs-8220: tree is not balanced on internal level");
1334 	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1335 		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1336 	       "vs-8225: tree is not balanced on leaf level");
1337 
1338 	/* all contents of S[0] can be moved into its neighbors
1339 	   S[0] will be removed after balancing. */
1340 	if (!h && is_leaf_removable(tb))
1341 		return CARRY_ON;
1342 
1343 	/* why do we perform this check here rather than earlier??
1344 	   Answer: we can win 1 node in some cases above. Moreover we
1345 	   checked it above, when we checked, that S[0] is not removable
1346 	   in principle */
1347 	if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1348 		if (!h)
1349 			tb->s0num = vn->vn_nr_item;
1350 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1351 		return NO_BALANCING_NEEDED;
1352 	}
1353 
1354 	{
1355 		int lpar, rpar, nset, lset, rset, lrset;
1356 		/*
1357 		 * regular overflowing of the node
1358 		 */
1359 
1360 		/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1361 		   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1362 		   nset, lset, rset, lrset - shows, whether flowing items give better packing
1363 		 */
1364 #define FLOW 1
1365 #define NO_FLOW 0		/* do not any splitting */
1366 
1367 		/* we choose one the following */
1368 #define NOTHING_SHIFT_NO_FLOW	0
1369 #define NOTHING_SHIFT_FLOW	5
1370 #define LEFT_SHIFT_NO_FLOW	10
1371 #define LEFT_SHIFT_FLOW		15
1372 #define RIGHT_SHIFT_NO_FLOW	20
1373 #define RIGHT_SHIFT_FLOW	25
1374 #define LR_SHIFT_NO_FLOW	30
1375 #define LR_SHIFT_FLOW		35
1376 
1377 		lpar = tb->lnum[h];
1378 		rpar = tb->rnum[h];
1379 
1380 		/* calculate number of blocks S[h] must be split into when
1381 		   nothing is shifted to the neighbors,
1382 		   as well as number of items in each part of the split node (s012 numbers),
1383 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1384 		nset = NOTHING_SHIFT_NO_FLOW;
1385 		nver = get_num_ver(vn->vn_mode, tb, h,
1386 				   0, -1, h ? vn->vn_nr_item : 0, -1,
1387 				   snum012, NO_FLOW);
1388 
1389 		if (!h) {
1390 			int nver1;
1391 
1392 			/* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1393 			nver1 = get_num_ver(vn->vn_mode, tb, h,
1394 					    0, -1, 0, -1,
1395 					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1396 			if (nver > nver1)
1397 				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1398 		}
1399 
1400 		/* calculate number of blocks S[h] must be split into when
1401 		   l_shift_num first items and l_shift_bytes of the right most
1402 		   liquid item to be shifted are shifted to the left neighbor,
1403 		   as well as number of items in each part of the splitted node (s012 numbers),
1404 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1405 		 */
1406 		lset = LEFT_SHIFT_NO_FLOW;
1407 		lnver = get_num_ver(vn->vn_mode, tb, h,
1408 				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1409 				    -1, h ? vn->vn_nr_item : 0, -1,
1410 				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1411 		if (!h) {
1412 			int lnver1;
1413 
1414 			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1415 					     lpar -
1416 					     ((tb->lbytes != -1) ? 1 : 0),
1417 					     tb->lbytes, 0, -1,
1418 					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1419 			if (lnver > lnver1)
1420 				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1421 		}
1422 
1423 		/* calculate number of blocks S[h] must be split into when
1424 		   r_shift_num first items and r_shift_bytes of the left most
1425 		   liquid item to be shifted are shifted to the right neighbor,
1426 		   as well as number of items in each part of the splitted node (s012 numbers),
1427 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1428 		 */
1429 		rset = RIGHT_SHIFT_NO_FLOW;
1430 		rnver = get_num_ver(vn->vn_mode, tb, h,
1431 				    0, -1,
1432 				    h ? (vn->vn_nr_item - rpar) : (rpar -
1433 								   ((tb->
1434 								     rbytes !=
1435 								     -1) ? 1 :
1436 								    0)), -1,
1437 				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1438 		if (!h) {
1439 			int rnver1;
1440 
1441 			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1442 					     0, -1,
1443 					     (rpar -
1444 					      ((tb->rbytes != -1) ? 1 : 0)),
1445 					     tb->rbytes,
1446 					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1447 
1448 			if (rnver > rnver1)
1449 				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1450 		}
1451 
1452 		/* calculate number of blocks S[h] must be split into when
1453 		   items are shifted in both directions,
1454 		   as well as number of items in each part of the splitted node (s012 numbers),
1455 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1456 		 */
1457 		lrset = LR_SHIFT_NO_FLOW;
1458 		lrnver = get_num_ver(vn->vn_mode, tb, h,
1459 				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1460 				     -1,
1461 				     h ? (vn->vn_nr_item - rpar) : (rpar -
1462 								    ((tb->
1463 								      rbytes !=
1464 								      -1) ? 1 :
1465 								     0)), -1,
1466 				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1467 		if (!h) {
1468 			int lrnver1;
1469 
1470 			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1471 					      lpar -
1472 					      ((tb->lbytes != -1) ? 1 : 0),
1473 					      tb->lbytes,
1474 					      (rpar -
1475 					       ((tb->rbytes != -1) ? 1 : 0)),
1476 					      tb->rbytes,
1477 					      snum012 + LR_SHIFT_FLOW, FLOW);
1478 			if (lrnver > lrnver1)
1479 				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1480 		}
1481 
1482 		/* Our general shifting strategy is:
1483 		   1) to minimized number of new nodes;
1484 		   2) to minimized number of neighbors involved in shifting;
1485 		   3) to minimized number of disk reads; */
1486 
1487 		/* we can win TWO or ONE nodes by shifting in both directions */
1488 		if (lrnver < lnver && lrnver < rnver) {
1489 			RFALSE(h &&
1490 			       (tb->lnum[h] != 1 ||
1491 				tb->rnum[h] != 1 ||
1492 				lrnver != 1 || rnver != 2 || lnver != 2
1493 				|| h != 1), "vs-8230: bad h");
1494 			if (lrset == LR_SHIFT_FLOW)
1495 				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1496 					       lrnver, snum012 + lrset,
1497 					       tb->lbytes, tb->rbytes);
1498 			else
1499 				set_parameters(tb, h,
1500 					       tb->lnum[h] -
1501 					       ((tb->lbytes == -1) ? 0 : 1),
1502 					       tb->rnum[h] -
1503 					       ((tb->rbytes == -1) ? 0 : 1),
1504 					       lrnver, snum012 + lrset, -1, -1);
1505 
1506 			return CARRY_ON;
1507 		}
1508 
1509 		/* if shifting doesn't lead to better packing then don't shift */
1510 		if (nver == lrnver) {
1511 			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1512 				       -1);
1513 			return CARRY_ON;
1514 		}
1515 
1516 		/* now we know that for better packing shifting in only one
1517 		   direction either to the left or to the right is required */
1518 
1519 		/*  if shifting to the left is better than shifting to the right */
1520 		if (lnver < rnver) {
1521 			SET_PAR_SHIFT_LEFT;
1522 			return CARRY_ON;
1523 		}
1524 
1525 		/* if shifting to the right is better than shifting to the left */
1526 		if (lnver > rnver) {
1527 			SET_PAR_SHIFT_RIGHT;
1528 			return CARRY_ON;
1529 		}
1530 
1531 		/* now shifting in either direction gives the same number
1532 		   of nodes and we can make use of the cached neighbors */
1533 		if (is_left_neighbor_in_cache(tb, h)) {
1534 			SET_PAR_SHIFT_LEFT;
1535 			return CARRY_ON;
1536 		}
1537 
1538 		/* shift to the right independently on whether the right neighbor in cache or not */
1539 		SET_PAR_SHIFT_RIGHT;
1540 		return CARRY_ON;
1541 	}
1542 }
1543 
1544 /* Check whether current node S[h] is balanced when Decreasing its size by
1545  * Deleting or Cutting for INTERNAL node of S+tree.
1546  * Calculate parameters for balancing for current level h.
1547  * Parameters:
1548  *	tb	tree_balance structure;
1549  *	h	current level of the node;
1550  *	inum	item number in S[h];
1551  *	mode	i - insert, p - paste;
1552  * Returns:	1 - schedule occurred;
1553  *	        0 - balancing for higher levels needed;
1554  *	       -1 - no balancing for higher levels needed;
1555  *	       -2 - no disk space.
1556  *
1557  * Note: Items of internal nodes have fixed size, so the balance condition for
1558  * the internal part of S+tree is as for the B-trees.
1559  */
1560 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1561 {
1562 	struct virtual_node *vn = tb->tb_vn;
1563 
1564 	/* Sh is the node whose balance is currently being checked,
1565 	   and Fh is its father.  */
1566 	struct buffer_head *Sh, *Fh;
1567 	int maxsize, ret;
1568 	int lfree, rfree /* free space in L and R */ ;
1569 
1570 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1571 	Fh = PATH_H_PPARENT(tb->tb_path, h);
1572 
1573 	maxsize = MAX_CHILD_SIZE(Sh);
1574 
1575 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1576 /*   new_nr_item = number of items node would have if operation is */
1577 /* 	performed without balancing (new_nr_item); */
1578 	create_virtual_node(tb, h);
1579 
1580 	if (!Fh) {		/* S[h] is the root. */
1581 		if (vn->vn_nr_item > 0) {
1582 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1583 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1584 		}
1585 		/* new_nr_item == 0.
1586 		 * Current root will be deleted resulting in
1587 		 * decrementing the tree height. */
1588 		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1589 		return CARRY_ON;
1590 	}
1591 
1592 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1593 		return ret;
1594 
1595 	/* get free space of neighbors */
1596 	rfree = get_rfree(tb, h);
1597 	lfree = get_lfree(tb, h);
1598 
1599 	/* determine maximal number of items we can fit into neighbors */
1600 	check_left(tb, h, lfree);
1601 	check_right(tb, h, rfree);
1602 
1603 	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {	/* Balance condition for the internal node is valid.
1604 						 * In this case we balance only if it leads to better packing. */
1605 		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {	/* Here we join S[h] with one of its neighbors,
1606 							 * which is impossible with greater values of new_nr_item. */
1607 			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1608 				/* All contents of S[h] can be moved to L[h]. */
1609 				int n;
1610 				int order_L;
1611 
1612 				order_L =
1613 				    ((n =
1614 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1615 							  h)) ==
1616 				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1617 				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1618 				    (DC_SIZE + KEY_SIZE);
1619 				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1620 					       -1);
1621 				return CARRY_ON;
1622 			}
1623 
1624 			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1625 				/* All contents of S[h] can be moved to R[h]. */
1626 				int n;
1627 				int order_R;
1628 
1629 				order_R =
1630 				    ((n =
1631 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1632 							  h)) ==
1633 				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1634 				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1635 				    (DC_SIZE + KEY_SIZE);
1636 				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1637 					       -1);
1638 				return CARRY_ON;
1639 			}
1640 		}
1641 
1642 		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1643 			/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1644 			int to_r;
1645 
1646 			to_r =
1647 			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1648 			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1649 			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1650 			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1651 				       0, NULL, -1, -1);
1652 			return CARRY_ON;
1653 		}
1654 
1655 		/* Balancing does not lead to better packing. */
1656 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1657 		return NO_BALANCING_NEEDED;
1658 	}
1659 
1660 	/* Current node contain insufficient number of items. Balancing is required. */
1661 	/* Check whether we can merge S[h] with left neighbor. */
1662 	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1663 		if (is_left_neighbor_in_cache(tb, h)
1664 		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1665 			int n;
1666 			int order_L;
1667 
1668 			order_L =
1669 			    ((n =
1670 			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1671 						  h)) ==
1672 			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1673 			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1674 								      KEY_SIZE);
1675 			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1676 			return CARRY_ON;
1677 		}
1678 
1679 	/* Check whether we can merge S[h] with right neighbor. */
1680 	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1681 		int n;
1682 		int order_R;
1683 
1684 		order_R =
1685 		    ((n =
1686 		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1687 					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1688 		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1689 							      KEY_SIZE);
1690 		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1691 		return CARRY_ON;
1692 	}
1693 
1694 	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1695 	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1696 		int to_r;
1697 
1698 		to_r =
1699 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1700 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1701 						tb->rnum[h]);
1702 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1703 			       -1, -1);
1704 		return CARRY_ON;
1705 	}
1706 
1707 	/* For internal nodes try to borrow item from a neighbor */
1708 	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1709 
1710 	/* Borrow one or two items from caching neighbor */
1711 	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1712 		int from_l;
1713 
1714 		from_l =
1715 		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1716 		     1) / 2 - (vn->vn_nr_item + 1);
1717 		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1718 		return CARRY_ON;
1719 	}
1720 
1721 	set_parameters(tb, h, 0,
1722 		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1723 			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1724 	return CARRY_ON;
1725 }
1726 
1727 /* Check whether current node S[h] is balanced when Decreasing its size by
1728  * Deleting or Truncating for LEAF node of S+tree.
1729  * Calculate parameters for balancing for current level h.
1730  * Parameters:
1731  *	tb	tree_balance structure;
1732  *	h	current level of the node;
1733  *	inum	item number in S[h];
1734  *	mode	i - insert, p - paste;
1735  * Returns:	1 - schedule occurred;
1736  *	        0 - balancing for higher levels needed;
1737  *	       -1 - no balancing for higher levels needed;
1738  *	       -2 - no disk space.
1739  */
1740 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1741 {
1742 	struct virtual_node *vn = tb->tb_vn;
1743 
1744 	/* Number of bytes that must be deleted from
1745 	   (value is negative if bytes are deleted) buffer which
1746 	   contains node being balanced.  The mnemonic is that the
1747 	   attempted change in node space used level is levbytes bytes. */
1748 	int levbytes;
1749 	/* the maximal item size */
1750 	int maxsize, ret;
1751 	/* S0 is the node whose balance is currently being checked,
1752 	   and F0 is its father.  */
1753 	struct buffer_head *S0, *F0;
1754 	int lfree, rfree /* free space in L and R */ ;
1755 
1756 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1757 	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1758 
1759 	levbytes = tb->insert_size[h];
1760 
1761 	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1762 
1763 	if (!F0) {		/* S[0] is the root now. */
1764 
1765 		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1766 		       "vs-8240: attempt to create empty buffer tree");
1767 
1768 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1769 		return NO_BALANCING_NEEDED;
1770 	}
1771 
1772 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1773 		return ret;
1774 
1775 	/* get free space of neighbors */
1776 	rfree = get_rfree(tb, h);
1777 	lfree = get_lfree(tb, h);
1778 
1779 	create_virtual_node(tb, h);
1780 
1781 	/* if 3 leaves can be merge to one, set parameters and return */
1782 	if (are_leaves_removable(tb, lfree, rfree))
1783 		return CARRY_ON;
1784 
1785 	/* determine maximal number of items we can shift to the left/right  neighbor
1786 	   and the maximal number of bytes that can flow to the left/right neighbor
1787 	   from the left/right most liquid item that cannot be shifted from S[0] entirely
1788 	 */
1789 	check_left(tb, h, lfree);
1790 	check_right(tb, h, rfree);
1791 
1792 	/* check whether we can merge S with left neighbor. */
1793 	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1794 		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1795 		    !tb->FR[h]) {
1796 
1797 			RFALSE(!tb->FL[h],
1798 			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1799 
1800 			/* set parameter to merge S[0] with its left neighbor */
1801 			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1802 			return CARRY_ON;
1803 		}
1804 
1805 	/* check whether we can merge S[0] with right neighbor. */
1806 	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1807 		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1808 		return CARRY_ON;
1809 	}
1810 
1811 	/* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1812 	if (is_leaf_removable(tb))
1813 		return CARRY_ON;
1814 
1815 	/* Balancing is not required. */
1816 	tb->s0num = vn->vn_nr_item;
1817 	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1818 	return NO_BALANCING_NEEDED;
1819 }
1820 
1821 /* Check whether current node S[h] is balanced when Decreasing its size by
1822  * Deleting or Cutting.
1823  * Calculate parameters for balancing for current level h.
1824  * Parameters:
1825  *	tb	tree_balance structure;
1826  *	h	current level of the node;
1827  *	inum	item number in S[h];
1828  *	mode	d - delete, c - cut.
1829  * Returns:	1 - schedule occurred;
1830  *	        0 - balancing for higher levels needed;
1831  *	       -1 - no balancing for higher levels needed;
1832  *	       -2 - no disk space.
1833  */
1834 static int dc_check_balance(struct tree_balance *tb, int h)
1835 {
1836 	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1837 	       "vs-8250: S is not initialized");
1838 
1839 	if (h)
1840 		return dc_check_balance_internal(tb, h);
1841 	else
1842 		return dc_check_balance_leaf(tb, h);
1843 }
1844 
1845 /* Check whether current node S[h] is balanced.
1846  * Calculate parameters for balancing for current level h.
1847  * Parameters:
1848  *
1849  *	tb	tree_balance structure:
1850  *
1851  *              tb is a large structure that must be read about in the header file
1852  *              at the same time as this procedure if the reader is to successfully
1853  *              understand this procedure
1854  *
1855  *	h	current level of the node;
1856  *	inum	item number in S[h];
1857  *	mode	i - insert, p - paste, d - delete, c - cut.
1858  * Returns:	1 - schedule occurred;
1859  *	        0 - balancing for higher levels needed;
1860  *	       -1 - no balancing for higher levels needed;
1861  *	       -2 - no disk space.
1862  */
1863 static int check_balance(int mode,
1864 			 struct tree_balance *tb,
1865 			 int h,
1866 			 int inum,
1867 			 int pos_in_item,
1868 			 struct item_head *ins_ih, const void *data)
1869 {
1870 	struct virtual_node *vn;
1871 
1872 	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1873 	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1874 	vn->vn_mode = mode;
1875 	vn->vn_affected_item_num = inum;
1876 	vn->vn_pos_in_item = pos_in_item;
1877 	vn->vn_ins_ih = ins_ih;
1878 	vn->vn_data = data;
1879 
1880 	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1881 	       "vs-8255: ins_ih can not be 0 in insert mode");
1882 
1883 	if (tb->insert_size[h] > 0)
1884 		/* Calculate balance parameters when size of node is increasing. */
1885 		return ip_check_balance(tb, h);
1886 
1887 	/* Calculate balance parameters when  size of node is decreasing. */
1888 	return dc_check_balance(tb, h);
1889 }
1890 
1891 /* Check whether parent at the path is the really parent of the current node.*/
1892 static int get_direct_parent(struct tree_balance *tb, int h)
1893 {
1894 	struct buffer_head *bh;
1895 	struct treepath *path = tb->tb_path;
1896 	int position,
1897 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1898 
1899 	/* We are in the root or in the new root. */
1900 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1901 
1902 		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1903 		       "PAP-8260: invalid offset in the path");
1904 
1905 		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1906 		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1907 			/* Root is not changed. */
1908 			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1909 			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1910 			return CARRY_ON;
1911 		}
1912 		return REPEAT_SEARCH;	/* Root is changed and we must recalculate the path. */
1913 	}
1914 
1915 	if (!B_IS_IN_TREE
1916 	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1917 		return REPEAT_SEARCH;	/* Parent in the path is not in the tree. */
1918 
1919 	if ((position =
1920 	     PATH_OFFSET_POSITION(path,
1921 				  path_offset - 1)) > B_NR_ITEMS(bh))
1922 		return REPEAT_SEARCH;
1923 
1924 	if (B_N_CHILD_NUM(bh, position) !=
1925 	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1926 		/* Parent in the path is not parent of the current node in the tree. */
1927 		return REPEAT_SEARCH;
1928 
1929 	if (buffer_locked(bh)) {
1930 		__wait_on_buffer(bh);
1931 		if (FILESYSTEM_CHANGED_TB(tb))
1932 			return REPEAT_SEARCH;
1933 	}
1934 
1935 	return CARRY_ON;	/* Parent in the path is unlocked and really parent of the current node.  */
1936 }
1937 
1938 /* Using lnum[h] and rnum[h] we should determine what neighbors
1939  * of S[h] we
1940  * need in order to balance S[h], and get them if necessary.
1941  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1942  *	        CARRY_ON - schedule didn't occur while the function worked;
1943  */
1944 static int get_neighbors(struct tree_balance *tb, int h)
1945 {
1946 	int child_position,
1947 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1948 	unsigned long son_number;
1949 	struct super_block *sb = tb->tb_sb;
1950 	struct buffer_head *bh;
1951 
1952 	PROC_INFO_INC(sb, get_neighbors[h]);
1953 
1954 	if (tb->lnum[h]) {
1955 		/* We need left neighbor to balance S[h]. */
1956 		PROC_INFO_INC(sb, need_l_neighbor[h]);
1957 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1958 
1959 		RFALSE(bh == tb->FL[h] &&
1960 		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1961 		       "PAP-8270: invalid position in the parent");
1962 
1963 		child_position =
1964 		    (bh ==
1965 		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1966 								       FL[h]);
1967 		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1968 		bh = sb_bread(sb, son_number);
1969 		if (!bh)
1970 			return IO_ERROR;
1971 		if (FILESYSTEM_CHANGED_TB(tb)) {
1972 			brelse(bh);
1973 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
1974 			return REPEAT_SEARCH;
1975 		}
1976 
1977 		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1978 		       child_position > B_NR_ITEMS(tb->FL[h]) ||
1979 		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
1980 		       bh->b_blocknr, "PAP-8275: invalid parent");
1981 		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1982 		RFALSE(!h &&
1983 		       B_FREE_SPACE(bh) !=
1984 		       MAX_CHILD_SIZE(bh) -
1985 		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
1986 		       "PAP-8290: invalid child size of left neighbor");
1987 
1988 		brelse(tb->L[h]);
1989 		tb->L[h] = bh;
1990 	}
1991 
1992 	/* We need right neighbor to balance S[path_offset]. */
1993 	if (tb->rnum[h]) {	/* We need right neighbor to balance S[path_offset]. */
1994 		PROC_INFO_INC(sb, need_r_neighbor[h]);
1995 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1996 
1997 		RFALSE(bh == tb->FR[h] &&
1998 		       PATH_OFFSET_POSITION(tb->tb_path,
1999 					    path_offset) >=
2000 		       B_NR_ITEMS(bh),
2001 		       "PAP-8295: invalid position in the parent");
2002 
2003 		child_position =
2004 		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2005 		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2006 		bh = sb_bread(sb, son_number);
2007 		if (!bh)
2008 			return IO_ERROR;
2009 		if (FILESYSTEM_CHANGED_TB(tb)) {
2010 			brelse(bh);
2011 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2012 			return REPEAT_SEARCH;
2013 		}
2014 		brelse(tb->R[h]);
2015 		tb->R[h] = bh;
2016 
2017 		RFALSE(!h
2018 		       && B_FREE_SPACE(bh) !=
2019 		       MAX_CHILD_SIZE(bh) -
2020 		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2021 		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2022 		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2023 		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2024 
2025 	}
2026 	return CARRY_ON;
2027 }
2028 
2029 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2030 {
2031 	int max_num_of_items;
2032 	int max_num_of_entries;
2033 	unsigned long blocksize = sb->s_blocksize;
2034 
2035 #define MIN_NAME_LEN 1
2036 
2037 	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2038 	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2039 	    (DEH_SIZE + MIN_NAME_LEN);
2040 
2041 	return sizeof(struct virtual_node) +
2042 	    max(max_num_of_items * sizeof(struct virtual_item),
2043 		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2044 		(max_num_of_entries - 1) * sizeof(__u16));
2045 }
2046 
2047 /* maybe we should fail balancing we are going to perform when kmalloc
2048    fails several times. But now it will loop until kmalloc gets
2049    required memory */
2050 static int get_mem_for_virtual_node(struct tree_balance *tb)
2051 {
2052 	int check_fs = 0;
2053 	int size;
2054 	char *buf;
2055 
2056 	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2057 
2058 	if (size > tb->vn_buf_size) {
2059 		/* we have to allocate more memory for virtual node */
2060 		if (tb->vn_buf) {
2061 			/* free memory allocated before */
2062 			kfree(tb->vn_buf);
2063 			/* this is not needed if kfree is atomic */
2064 			check_fs = 1;
2065 		}
2066 
2067 		/* virtual node requires now more memory */
2068 		tb->vn_buf_size = size;
2069 
2070 		/* get memory for virtual item */
2071 		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2072 		if (!buf) {
2073 			/* getting memory with GFP_KERNEL priority may involve
2074 			   balancing now (due to indirect_to_direct conversion on
2075 			   dcache shrinking). So, release path and collected
2076 			   resources here */
2077 			free_buffers_in_tb(tb);
2078 			buf = kmalloc(size, GFP_NOFS);
2079 			if (!buf) {
2080 				tb->vn_buf_size = 0;
2081 			}
2082 			tb->vn_buf = buf;
2083 			schedule();
2084 			return REPEAT_SEARCH;
2085 		}
2086 
2087 		tb->vn_buf = buf;
2088 	}
2089 
2090 	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2091 		return REPEAT_SEARCH;
2092 
2093 	return CARRY_ON;
2094 }
2095 
2096 #ifdef CONFIG_REISERFS_CHECK
2097 static void tb_buffer_sanity_check(struct super_block *sb,
2098 				   struct buffer_head *bh,
2099 				   const char *descr, int level)
2100 {
2101 	if (bh) {
2102 		if (atomic_read(&(bh->b_count)) <= 0)
2103 
2104 			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2105 				       "reference counter for buffer %s[%d] "
2106 				       "(%b)", descr, level, bh);
2107 
2108 		if (!buffer_uptodate(bh))
2109 			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2110 				       "to date %s[%d] (%b)",
2111 				       descr, level, bh);
2112 
2113 		if (!B_IS_IN_TREE(bh))
2114 			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2115 				       "in tree %s[%d] (%b)",
2116 				       descr, level, bh);
2117 
2118 		if (bh->b_bdev != sb->s_bdev)
2119 			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2120 				       "device %s[%d] (%b)",
2121 				       descr, level, bh);
2122 
2123 		if (bh->b_size != sb->s_blocksize)
2124 			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2125 				       "blocksize %s[%d] (%b)",
2126 				       descr, level, bh);
2127 
2128 		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2129 			reiserfs_panic(sb, "jmacd-6", "buffer block "
2130 				       "number too high %s[%d] (%b)",
2131 				       descr, level, bh);
2132 	}
2133 }
2134 #else
2135 static void tb_buffer_sanity_check(struct super_block *sb,
2136 				   struct buffer_head *bh,
2137 				   const char *descr, int level)
2138 {;
2139 }
2140 #endif
2141 
2142 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2143 {
2144 	return reiserfs_prepare_for_journal(s, bh, 0);
2145 }
2146 
2147 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2148 {
2149 	struct buffer_head *locked;
2150 #ifdef CONFIG_REISERFS_CHECK
2151 	int repeat_counter = 0;
2152 #endif
2153 	int i;
2154 
2155 	do {
2156 
2157 		locked = NULL;
2158 
2159 		for (i = tb->tb_path->path_length;
2160 		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2161 			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2162 				/* if I understand correctly, we can only be sure the last buffer
2163 				 ** in the path is in the tree --clm
2164 				 */
2165 #ifdef CONFIG_REISERFS_CHECK
2166 				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2167 				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2168 					tb_buffer_sanity_check(tb->tb_sb,
2169 							       PATH_OFFSET_PBUFFER
2170 							       (tb->tb_path,
2171 								i), "S",
2172 							       tb->tb_path->
2173 							       path_length - i);
2174 #endif
2175 				if (!clear_all_dirty_bits(tb->tb_sb,
2176 							  PATH_OFFSET_PBUFFER
2177 							  (tb->tb_path,
2178 							   i))) {
2179 					locked =
2180 					    PATH_OFFSET_PBUFFER(tb->tb_path,
2181 								i);
2182 				}
2183 			}
2184 		}
2185 
2186 		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2187 		     i++) {
2188 
2189 			if (tb->lnum[i]) {
2190 
2191 				if (tb->L[i]) {
2192 					tb_buffer_sanity_check(tb->tb_sb,
2193 							       tb->L[i],
2194 							       "L", i);
2195 					if (!clear_all_dirty_bits
2196 					    (tb->tb_sb, tb->L[i]))
2197 						locked = tb->L[i];
2198 				}
2199 
2200 				if (!locked && tb->FL[i]) {
2201 					tb_buffer_sanity_check(tb->tb_sb,
2202 							       tb->FL[i],
2203 							       "FL", i);
2204 					if (!clear_all_dirty_bits
2205 					    (tb->tb_sb, tb->FL[i]))
2206 						locked = tb->FL[i];
2207 				}
2208 
2209 				if (!locked && tb->CFL[i]) {
2210 					tb_buffer_sanity_check(tb->tb_sb,
2211 							       tb->CFL[i],
2212 							       "CFL", i);
2213 					if (!clear_all_dirty_bits
2214 					    (tb->tb_sb, tb->CFL[i]))
2215 						locked = tb->CFL[i];
2216 				}
2217 
2218 			}
2219 
2220 			if (!locked && (tb->rnum[i])) {
2221 
2222 				if (tb->R[i]) {
2223 					tb_buffer_sanity_check(tb->tb_sb,
2224 							       tb->R[i],
2225 							       "R", i);
2226 					if (!clear_all_dirty_bits
2227 					    (tb->tb_sb, tb->R[i]))
2228 						locked = tb->R[i];
2229 				}
2230 
2231 				if (!locked && tb->FR[i]) {
2232 					tb_buffer_sanity_check(tb->tb_sb,
2233 							       tb->FR[i],
2234 							       "FR", i);
2235 					if (!clear_all_dirty_bits
2236 					    (tb->tb_sb, tb->FR[i]))
2237 						locked = tb->FR[i];
2238 				}
2239 
2240 				if (!locked && tb->CFR[i]) {
2241 					tb_buffer_sanity_check(tb->tb_sb,
2242 							       tb->CFR[i],
2243 							       "CFR", i);
2244 					if (!clear_all_dirty_bits
2245 					    (tb->tb_sb, tb->CFR[i]))
2246 						locked = tb->CFR[i];
2247 				}
2248 			}
2249 		}
2250 		/* as far as I can tell, this is not required.  The FEB list seems
2251 		 ** to be full of newly allocated nodes, which will never be locked,
2252 		 ** dirty, or anything else.
2253 		 ** To be safe, I'm putting in the checks and waits in.  For the moment,
2254 		 ** they are needed to keep the code in journal.c from complaining
2255 		 ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2256 		 ** --clm
2257 		 */
2258 		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2259 			if (tb->FEB[i]) {
2260 				if (!clear_all_dirty_bits
2261 				    (tb->tb_sb, tb->FEB[i]))
2262 					locked = tb->FEB[i];
2263 			}
2264 		}
2265 
2266 		if (locked) {
2267 #ifdef CONFIG_REISERFS_CHECK
2268 			repeat_counter++;
2269 			if ((repeat_counter % 10000) == 0) {
2270 				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2271 						 "too many iterations waiting "
2272 						 "for buffer to unlock "
2273 						 "(%b)", locked);
2274 
2275 				/* Don't loop forever.  Try to recover from possible error. */
2276 
2277 				return (FILESYSTEM_CHANGED_TB(tb)) ?
2278 				    REPEAT_SEARCH : CARRY_ON;
2279 			}
2280 #endif
2281 			__wait_on_buffer(locked);
2282 			if (FILESYSTEM_CHANGED_TB(tb))
2283 				return REPEAT_SEARCH;
2284 		}
2285 
2286 	} while (locked);
2287 
2288 	return CARRY_ON;
2289 }
2290 
2291 /* Prepare for balancing, that is
2292  *	get all necessary parents, and neighbors;
2293  *	analyze what and where should be moved;
2294  *	get sufficient number of new nodes;
2295  * Balancing will start only after all resources will be collected at a time.
2296  *
2297  * When ported to SMP kernels, only at the last moment after all needed nodes
2298  * are collected in cache, will the resources be locked using the usual
2299  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2300  * this code neither write locks what it does not need to write lock nor locks out of order
2301  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2302  *
2303  * fix is meant in the sense of render unchanging
2304  *
2305  * Latency might be improved by first gathering a list of what buffers are needed
2306  * and then getting as many of them in parallel as possible? -Hans
2307  *
2308  * Parameters:
2309  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2310  *	tb	tree_balance structure;
2311  *	inum	item number in S[h];
2312  *      pos_in_item - comment this if you can
2313  *      ins_ih	item head of item being inserted
2314  *	data	inserted item or data to be pasted
2315  * Returns:	1 - schedule occurred while the function worked;
2316  *	        0 - schedule didn't occur while the function worked;
2317  *             -1 - if no_disk_space
2318  */
2319 
2320 int fix_nodes(int op_mode, struct tree_balance *tb,
2321 	      struct item_head *ins_ih, const void *data)
2322 {
2323 	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2324 	int pos_in_item;
2325 
2326 	/* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2327 	 ** during wait_tb_buffers_run
2328 	 */
2329 	int wait_tb_buffers_run = 0;
2330 	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2331 
2332 	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2333 
2334 	pos_in_item = tb->tb_path->pos_in_item;
2335 
2336 	tb->fs_gen = get_generation(tb->tb_sb);
2337 
2338 	/* we prepare and log the super here so it will already be in the
2339 	 ** transaction when do_balance needs to change it.
2340 	 ** This way do_balance won't have to schedule when trying to prepare
2341 	 ** the super for logging
2342 	 */
2343 	reiserfs_prepare_for_journal(tb->tb_sb,
2344 				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2345 	journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2346 			   SB_BUFFER_WITH_SB(tb->tb_sb));
2347 	if (FILESYSTEM_CHANGED_TB(tb))
2348 		return REPEAT_SEARCH;
2349 
2350 	/* if it possible in indirect_to_direct conversion */
2351 	if (buffer_locked(tbS0)) {
2352 		__wait_on_buffer(tbS0);
2353 		if (FILESYSTEM_CHANGED_TB(tb))
2354 			return REPEAT_SEARCH;
2355 	}
2356 #ifdef CONFIG_REISERFS_CHECK
2357 	if (cur_tb) {
2358 		print_cur_tb("fix_nodes");
2359 		reiserfs_panic(tb->tb_sb, "PAP-8305",
2360 			       "there is pending do_balance");
2361 	}
2362 
2363 	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2364 		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2365 			       "not uptodate at the beginning of fix_nodes "
2366 			       "or not in tree (mode %c)",
2367 			       tbS0, tbS0, op_mode);
2368 
2369 	/* Check parameters. */
2370 	switch (op_mode) {
2371 	case M_INSERT:
2372 		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2373 			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2374 				       "item number %d (in S0 - %d) in case "
2375 				       "of insert", item_num,
2376 				       B_NR_ITEMS(tbS0));
2377 		break;
2378 	case M_PASTE:
2379 	case M_DELETE:
2380 	case M_CUT:
2381 		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2382 			print_block(tbS0, 0, -1, -1);
2383 			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2384 				       "item number(%d); mode = %c "
2385 				       "insert_size = %d",
2386 				       item_num, op_mode,
2387 				       tb->insert_size[0]);
2388 		}
2389 		break;
2390 	default:
2391 		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2392 			       "of operation");
2393 	}
2394 #endif
2395 
2396 	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2397 		// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2398 		return REPEAT_SEARCH;
2399 
2400 	/* Starting from the leaf level; for all levels h of the tree. */
2401 	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2402 		ret = get_direct_parent(tb, h);
2403 		if (ret != CARRY_ON)
2404 			goto repeat;
2405 
2406 		ret = check_balance(op_mode, tb, h, item_num,
2407 				    pos_in_item, ins_ih, data);
2408 		if (ret != CARRY_ON) {
2409 			if (ret == NO_BALANCING_NEEDED) {
2410 				/* No balancing for higher levels needed. */
2411 				ret = get_neighbors(tb, h);
2412 				if (ret != CARRY_ON)
2413 					goto repeat;
2414 				if (h != MAX_HEIGHT - 1)
2415 					tb->insert_size[h + 1] = 0;
2416 				/* ok, analysis and resource gathering are complete */
2417 				break;
2418 			}
2419 			goto repeat;
2420 		}
2421 
2422 		ret = get_neighbors(tb, h);
2423 		if (ret != CARRY_ON)
2424 			goto repeat;
2425 
2426 		/* No disk space, or schedule occurred and analysis may be
2427 		 * invalid and needs to be redone. */
2428 		ret = get_empty_nodes(tb, h);
2429 		if (ret != CARRY_ON)
2430 			goto repeat;
2431 
2432 		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2433 			/* We have a positive insert size but no nodes exist on this
2434 			   level, this means that we are creating a new root. */
2435 
2436 			RFALSE(tb->blknum[h] != 1,
2437 			       "PAP-8350: creating new empty root");
2438 
2439 			if (h < MAX_HEIGHT - 1)
2440 				tb->insert_size[h + 1] = 0;
2441 		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2442 			if (tb->blknum[h] > 1) {
2443 				/* The tree needs to be grown, so this node S[h]
2444 				   which is the root node is split into two nodes,
2445 				   and a new node (S[h+1]) will be created to
2446 				   become the root node.  */
2447 
2448 				RFALSE(h == MAX_HEIGHT - 1,
2449 				       "PAP-8355: attempt to create too high of a tree");
2450 
2451 				tb->insert_size[h + 1] =
2452 				    (DC_SIZE +
2453 				     KEY_SIZE) * (tb->blknum[h] - 1) +
2454 				    DC_SIZE;
2455 			} else if (h < MAX_HEIGHT - 1)
2456 				tb->insert_size[h + 1] = 0;
2457 		} else
2458 			tb->insert_size[h + 1] =
2459 			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2460 	}
2461 
2462 	ret = wait_tb_buffers_until_unlocked(tb);
2463 	if (ret == CARRY_ON) {
2464 		if (FILESYSTEM_CHANGED_TB(tb)) {
2465 			wait_tb_buffers_run = 1;
2466 			ret = REPEAT_SEARCH;
2467 			goto repeat;
2468 		} else {
2469 			return CARRY_ON;
2470 		}
2471 	} else {
2472 		wait_tb_buffers_run = 1;
2473 		goto repeat;
2474 	}
2475 
2476       repeat:
2477 	// fix_nodes was unable to perform its calculation due to
2478 	// filesystem got changed under us, lack of free disk space or i/o
2479 	// failure. If the first is the case - the search will be
2480 	// repeated. For now - free all resources acquired so far except
2481 	// for the new allocated nodes
2482 	{
2483 		int i;
2484 
2485 		/* Release path buffers. */
2486 		if (wait_tb_buffers_run) {
2487 			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2488 		} else {
2489 			pathrelse(tb->tb_path);
2490 		}
2491 		/* brelse all resources collected for balancing */
2492 		for (i = 0; i < MAX_HEIGHT; i++) {
2493 			if (wait_tb_buffers_run) {
2494 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2495 								 tb->L[i]);
2496 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2497 								 tb->R[i]);
2498 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2499 								 tb->FL[i]);
2500 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2501 								 tb->FR[i]);
2502 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2503 								 tb->
2504 								 CFL[i]);
2505 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2506 								 tb->
2507 								 CFR[i]);
2508 			}
2509 
2510 			brelse(tb->L[i]);
2511 			brelse(tb->R[i]);
2512 			brelse(tb->FL[i]);
2513 			brelse(tb->FR[i]);
2514 			brelse(tb->CFL[i]);
2515 			brelse(tb->CFR[i]);
2516 
2517 			tb->L[i] = NULL;
2518 			tb->R[i] = NULL;
2519 			tb->FL[i] = NULL;
2520 			tb->FR[i] = NULL;
2521 			tb->CFL[i] = NULL;
2522 			tb->CFR[i] = NULL;
2523 		}
2524 
2525 		if (wait_tb_buffers_run) {
2526 			for (i = 0; i < MAX_FEB_SIZE; i++) {
2527 				if (tb->FEB[i])
2528 					reiserfs_restore_prepared_buffer
2529 					    (tb->tb_sb, tb->FEB[i]);
2530 			}
2531 		}
2532 		return ret;
2533 	}
2534 
2535 }
2536 
2537 /* Anatoly will probably forgive me renaming tb to tb. I just
2538    wanted to make lines shorter */
2539 void unfix_nodes(struct tree_balance *tb)
2540 {
2541 	int i;
2542 
2543 	/* Release path buffers. */
2544 	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2545 
2546 	/* brelse all resources collected for balancing */
2547 	for (i = 0; i < MAX_HEIGHT; i++) {
2548 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2549 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2550 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2551 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2552 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2553 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2554 
2555 		brelse(tb->L[i]);
2556 		brelse(tb->R[i]);
2557 		brelse(tb->FL[i]);
2558 		brelse(tb->FR[i]);
2559 		brelse(tb->CFL[i]);
2560 		brelse(tb->CFR[i]);
2561 	}
2562 
2563 	/* deal with list of allocated (used and unused) nodes */
2564 	for (i = 0; i < MAX_FEB_SIZE; i++) {
2565 		if (tb->FEB[i]) {
2566 			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2567 			/* de-allocated block which was not used by balancing and
2568 			   bforget about buffer for it */
2569 			brelse(tb->FEB[i]);
2570 			reiserfs_free_block(tb->transaction_handle, NULL,
2571 					    blocknr, 0);
2572 		}
2573 		if (tb->used[i]) {
2574 			/* release used as new nodes including a new root */
2575 			brelse(tb->used[i]);
2576 		}
2577 	}
2578 
2579 	kfree(tb->vn_buf);
2580 
2581 }
2582