xref: /openbmc/linux/fs/reiserfs/fix_node.c (revision 7dd65feb)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36 
37 #include <linux/time.h>
38 #include <linux/string.h>
39 #include <linux/reiserfs_fs.h>
40 #include <linux/buffer_head.h>
41 
42 /* To make any changes in the tree we find a node, that contains item
43    to be changed/deleted or position in the node we insert a new item
44    to. We call this node S. To do balancing we need to decide what we
45    will shift to left/right neighbor, or to a new node, where new item
46    will be etc. To make this analysis simpler we build virtual
47    node. Virtual node is an array of items, that will replace items of
48    node S. (For instance if we are going to delete an item, virtual
49    node does not contain it). Virtual node keeps information about
50    item sizes and types, mergeability of first and last items, sizes
51    of all entries in directory item. We use this array of items when
52    calculating what we can shift to neighbors and how many nodes we
53    have to have if we do not any shiftings, if we shift to left/right
54    neighbor or to both. */
55 
56 /* taking item number in virtual node, returns number of item, that it has in source buffer */
57 static inline int old_item_num(int new_num, int affected_item_num, int mode)
58 {
59 	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 		return new_num;
61 
62 	if (mode == M_INSERT) {
63 
64 		RFALSE(new_num == 0,
65 		       "vs-8005: for INSERT mode and item number of inserted item");
66 
67 		return new_num - 1;
68 	}
69 
70 	RFALSE(mode != M_DELETE,
71 	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 	       mode);
73 	/* delete mode */
74 	return new_num + 1;
75 }
76 
77 static void create_virtual_node(struct tree_balance *tb, int h)
78 {
79 	struct item_head *ih;
80 	struct virtual_node *vn = tb->tb_vn;
81 	int new_num;
82 	struct buffer_head *Sh;	/* this comes from tb->S[h] */
83 
84 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
85 
86 	/* size of changed node */
87 	vn->vn_size =
88 	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
89 
90 	/* for internal nodes array if virtual items is not created */
91 	if (h) {
92 		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 		return;
94 	}
95 
96 	/* number of items in virtual node  */
97 	vn->vn_nr_item =
98 	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
100 
101 	/* first virtual item */
102 	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105 
106 	/* first item in the node */
107 	ih = B_N_PITEM_HEAD(Sh, 0);
108 
109 	/* define the mergeability for 0-th item (if it is not being deleted) */
110 	if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113 
114 	/* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 		int j;
117 		struct virtual_item *vi = vn->vn_vi + new_num;
118 		int is_affected =
119 		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120 
121 		if (is_affected && vn->vn_mode == M_INSERT)
122 			continue;
123 
124 		/* get item number in source node */
125 		j = old_item_num(new_num, vn->vn_affected_item_num,
126 				 vn->vn_mode);
127 
128 		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 		vi->vi_ih = ih + j;
130 		vi->vi_item = B_I_PITEM(Sh, ih + j);
131 		vi->vi_uarea = vn->vn_free_ptr;
132 
133 		// FIXME: there is no check, that item operation did not
134 		// consume too much memory
135 		vn->vn_free_ptr +=
136 		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
138 			reiserfs_panic(tb->tb_sb, "vs-8030",
139 				       "virtual node space consumed");
140 
141 		if (!is_affected)
142 			/* this is not being changed */
143 			continue;
144 
145 		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 			vi->vi_new_data = vn->vn_data;	// pointer to data which is going to be pasted
148 		}
149 	}
150 
151 	/* virtual inserted item is not defined yet */
152 	if (vn->vn_mode == M_INSERT) {
153 		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154 
155 		RFALSE(vn->vn_ins_ih == NULL,
156 		       "vs-8040: item header of inserted item is not specified");
157 		vi->vi_item_len = tb->insert_size[0];
158 		vi->vi_ih = vn->vn_ins_ih;
159 		vi->vi_item = vn->vn_data;
160 		vi->vi_uarea = vn->vn_free_ptr;
161 
162 		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 			     tb->insert_size[0]);
164 	}
165 
166 	/* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 	if (tb->CFR[0]) {
168 		struct reiserfs_key *key;
169 
170 		key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 		if (op_is_left_mergeable(key, Sh->b_size)
172 		    && (vn->vn_mode != M_DELETE
173 			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 			    VI_TYPE_RIGHT_MERGEABLE;
176 
177 #ifdef CONFIG_REISERFS_CHECK
178 		if (op_is_left_mergeable(key, Sh->b_size) &&
179 		    !(vn->vn_mode != M_DELETE
180 		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 			/* we delete last item and it could be merged with right neighbor's first item */
182 			if (!
183 			    (B_NR_ITEMS(Sh) == 1
184 			     && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 			     && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 				/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 				print_block(Sh, 0, -1, -1);
188 				reiserfs_panic(tb->tb_sb, "vs-8045",
189 					       "rdkey %k, affected item==%d "
190 					       "(mode==%c) Must be %c",
191 					       key, vn->vn_affected_item_num,
192 					       vn->vn_mode, M_DELETE);
193 			}
194 		}
195 #endif
196 
197 	}
198 }
199 
200 /* using virtual node check, how many items can be shifted to left
201    neighbor */
202 static void check_left(struct tree_balance *tb, int h, int cur_free)
203 {
204 	int i;
205 	struct virtual_node *vn = tb->tb_vn;
206 	struct virtual_item *vi;
207 	int d_size, ih_size;
208 
209 	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
210 
211 	/* internal level */
212 	if (h > 0) {
213 		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 		return;
215 	}
216 
217 	/* leaf level */
218 
219 	if (!cur_free || !vn->vn_nr_item) {
220 		/* no free space or nothing to move */
221 		tb->lnum[h] = 0;
222 		tb->lbytes = -1;
223 		return;
224 	}
225 
226 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 	       "vs-8055: parent does not exist or invalid");
228 
229 	vi = vn->vn_vi;
230 	if ((unsigned int)cur_free >=
231 	    (vn->vn_size -
232 	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 		/* all contents of S[0] fits into L[0] */
234 
235 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 		       "vs-8055: invalid mode or balance condition failed");
237 
238 		tb->lnum[0] = vn->vn_nr_item;
239 		tb->lbytes = -1;
240 		return;
241 	}
242 
243 	d_size = 0, ih_size = IH_SIZE;
244 
245 	/* first item may be merge with last item in left neighbor */
246 	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 		d_size = -((int)IH_SIZE), ih_size = 0;
248 
249 	tb->lnum[0] = 0;
250 	for (i = 0; i < vn->vn_nr_item;
251 	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 		d_size += vi->vi_item_len;
253 		if (cur_free >= d_size) {
254 			/* the item can be shifted entirely */
255 			cur_free -= d_size;
256 			tb->lnum[0]++;
257 			continue;
258 		}
259 
260 		/* the item cannot be shifted entirely, try to split it */
261 		/* check whether L[0] can hold ih and at least one byte of the item body */
262 		if (cur_free <= ih_size) {
263 			/* cannot shift even a part of the current item */
264 			tb->lbytes = -1;
265 			return;
266 		}
267 		cur_free -= ih_size;
268 
269 		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 		if (tb->lbytes != -1)
271 			/* count partially shifted item */
272 			tb->lnum[0]++;
273 
274 		break;
275 	}
276 
277 	return;
278 }
279 
280 /* using virtual node check, how many items can be shifted to right
281    neighbor */
282 static void check_right(struct tree_balance *tb, int h, int cur_free)
283 {
284 	int i;
285 	struct virtual_node *vn = tb->tb_vn;
286 	struct virtual_item *vi;
287 	int d_size, ih_size;
288 
289 	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290 
291 	/* internal level */
292 	if (h > 0) {
293 		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 		return;
295 	}
296 
297 	/* leaf level */
298 
299 	if (!cur_free || !vn->vn_nr_item) {
300 		/* no free space  */
301 		tb->rnum[h] = 0;
302 		tb->rbytes = -1;
303 		return;
304 	}
305 
306 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 	       "vs-8075: parent does not exist or invalid");
308 
309 	vi = vn->vn_vi + vn->vn_nr_item - 1;
310 	if ((unsigned int)cur_free >=
311 	    (vn->vn_size -
312 	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 		/* all contents of S[0] fits into R[0] */
314 
315 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 		       "vs-8080: invalid mode or balance condition failed");
317 
318 		tb->rnum[h] = vn->vn_nr_item;
319 		tb->rbytes = -1;
320 		return;
321 	}
322 
323 	d_size = 0, ih_size = IH_SIZE;
324 
325 	/* last item may be merge with first item in right neighbor */
326 	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 		d_size = -(int)IH_SIZE, ih_size = 0;
328 
329 	tb->rnum[0] = 0;
330 	for (i = vn->vn_nr_item - 1; i >= 0;
331 	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 		d_size += vi->vi_item_len;
333 		if (cur_free >= d_size) {
334 			/* the item can be shifted entirely */
335 			cur_free -= d_size;
336 			tb->rnum[0]++;
337 			continue;
338 		}
339 
340 		/* check whether R[0] can hold ih and at least one byte of the item body */
341 		if (cur_free <= ih_size) {	/* cannot shift even a part of the current item */
342 			tb->rbytes = -1;
343 			return;
344 		}
345 
346 		/* R[0] can hold the header of the item and at least one byte of its body */
347 		cur_free -= ih_size;	/* cur_free is still > 0 */
348 
349 		tb->rbytes = op_check_right(vi, cur_free);
350 		if (tb->rbytes != -1)
351 			/* count partially shifted item */
352 			tb->rnum[0]++;
353 
354 		break;
355 	}
356 
357 	return;
358 }
359 
360 /*
361  * from - number of items, which are shifted to left neighbor entirely
362  * to - number of item, which are shifted to right neighbor entirely
363  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
365 static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 		       int from, int from_bytes,
367 		       int to, int to_bytes, short *snum012, int flow)
368 {
369 	int i;
370 	int cur_free;
371 	//    int bytes;
372 	int units;
373 	struct virtual_node *vn = tb->tb_vn;
374 	//    struct virtual_item * vi;
375 
376 	int total_node_size, max_node_size, current_item_size;
377 	int needed_nodes;
378 	int start_item,		/* position of item we start filling node from */
379 	 end_item,		/* position of item we finish filling node by */
380 	 start_bytes,		/* number of first bytes (entries for directory) of start_item-th item
381 				   we do not include into node that is being filled */
382 	 end_bytes;		/* number of last bytes (entries for directory) of end_item-th item
383 				   we do node include into node that is being filled */
384 	int split_item_positions[2];	/* these are positions in virtual item of
385 					   items, that are split between S[0] and
386 					   S1new and S1new and S2new */
387 
388 	split_item_positions[0] = -1;
389 	split_item_positions[1] = -1;
390 
391 	/* We only create additional nodes if we are in insert or paste mode
392 	   or we are in replace mode at the internal level. If h is 0 and
393 	   the mode is M_REPLACE then in fix_nodes we change the mode to
394 	   paste or insert before we get here in the code.  */
395 	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 	       "vs-8100: insert_size < 0 in overflow");
397 
398 	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399 
400 	/* snum012 [0-2] - number of items, that lay
401 	   to S[0], first new node and second new node */
402 	snum012[3] = -1;	/* s1bytes */
403 	snum012[4] = -1;	/* s2bytes */
404 
405 	/* internal level */
406 	if (h > 0) {
407 		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 		if (i == max_node_size)
409 			return 1;
410 		return (i / max_node_size + 1);
411 	}
412 
413 	/* leaf level */
414 	needed_nodes = 1;
415 	total_node_size = 0;
416 	cur_free = max_node_size;
417 
418 	// start from 'from'-th item
419 	start_item = from;
420 	// skip its first 'start_bytes' units
421 	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422 
423 	// last included item is the 'end_item'-th one
424 	end_item = vn->vn_nr_item - to - 1;
425 	// do not count last 'end_bytes' units of 'end_item'-th item
426 	end_bytes = (to_bytes != -1) ? to_bytes : 0;
427 
428 	/* go through all item beginning from the start_item-th item and ending by
429 	   the end_item-th item. Do not count first 'start_bytes' units of
430 	   'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431 
432 	for (i = start_item; i <= end_item; i++) {
433 		struct virtual_item *vi = vn->vn_vi + i;
434 		int skip_from_end = ((i == end_item) ? end_bytes : 0);
435 
436 		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437 
438 		/* get size of current item */
439 		current_item_size = vi->vi_item_len;
440 
441 		/* do not take in calculation head part (from_bytes) of from-th item */
442 		current_item_size -=
443 		    op_part_size(vi, 0 /*from start */ , start_bytes);
444 
445 		/* do not take in calculation tail part of last item */
446 		current_item_size -=
447 		    op_part_size(vi, 1 /*from end */ , skip_from_end);
448 
449 		/* if item fits into current node entierly */
450 		if (total_node_size + current_item_size <= max_node_size) {
451 			snum012[needed_nodes - 1]++;
452 			total_node_size += current_item_size;
453 			start_bytes = 0;
454 			continue;
455 		}
456 
457 		if (current_item_size > max_node_size) {
458 			/* virtual item length is longer, than max size of item in
459 			   a node. It is impossible for direct item */
460 			RFALSE(is_direct_le_ih(vi->vi_ih),
461 			       "vs-8110: "
462 			       "direct item length is %d. It can not be longer than %d",
463 			       current_item_size, max_node_size);
464 			/* we will try to split it */
465 			flow = 1;
466 		}
467 
468 		if (!flow) {
469 			/* as we do not split items, take new node and continue */
470 			needed_nodes++;
471 			i--;
472 			total_node_size = 0;
473 			continue;
474 		}
475 		// calculate number of item units which fit into node being
476 		// filled
477 		{
478 			int free_space;
479 
480 			free_space = max_node_size - total_node_size - IH_SIZE;
481 			units =
482 			    op_check_left(vi, free_space, start_bytes,
483 					  skip_from_end);
484 			if (units == -1) {
485 				/* nothing fits into current node, take new node and continue */
486 				needed_nodes++, i--, total_node_size = 0;
487 				continue;
488 			}
489 		}
490 
491 		/* something fits into the current node */
492 		//if (snum012[3] != -1 || needed_nodes != 1)
493 		//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 		//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 		start_bytes += units;
496 		snum012[needed_nodes - 1 + 3] = units;
497 
498 		if (needed_nodes > 2)
499 			reiserfs_warning(tb->tb_sb, "vs-8111",
500 					 "split_item_position is out of range");
501 		snum012[needed_nodes - 1]++;
502 		split_item_positions[needed_nodes - 1] = i;
503 		needed_nodes++;
504 		/* continue from the same item with start_bytes != -1 */
505 		start_item = i;
506 		i--;
507 		total_node_size = 0;
508 	}
509 
510 	// sum012[4] (if it is not -1) contains number of units of which
511 	// are to be in S1new, snum012[3] - to be in S0. They are supposed
512 	// to be S1bytes and S2bytes correspondingly, so recalculate
513 	if (snum012[4] > 0) {
514 		int split_item_num;
515 		int bytes_to_r, bytes_to_l;
516 		int bytes_to_S1new;
517 
518 		split_item_num = split_item_positions[1];
519 		bytes_to_l =
520 		    ((from == split_item_num
521 		      && from_bytes != -1) ? from_bytes : 0);
522 		bytes_to_r =
523 		    ((end_item == split_item_num
524 		      && end_bytes != -1) ? end_bytes : 0);
525 		bytes_to_S1new =
526 		    ((split_item_positions[0] ==
527 		      split_item_positions[1]) ? snum012[3] : 0);
528 
529 		// s2bytes
530 		snum012[4] =
531 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 		    bytes_to_r - bytes_to_l - bytes_to_S1new;
533 
534 		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
536 			reiserfs_warning(tb->tb_sb, "vs-8115",
537 					 "not directory or indirect item");
538 	}
539 
540 	/* now we know S2bytes, calculate S1bytes */
541 	if (snum012[3] > 0) {
542 		int split_item_num;
543 		int bytes_to_r, bytes_to_l;
544 		int bytes_to_S2new;
545 
546 		split_item_num = split_item_positions[0];
547 		bytes_to_l =
548 		    ((from == split_item_num
549 		      && from_bytes != -1) ? from_bytes : 0);
550 		bytes_to_r =
551 		    ((end_item == split_item_num
552 		      && end_bytes != -1) ? end_bytes : 0);
553 		bytes_to_S2new =
554 		    ((split_item_positions[0] == split_item_positions[1]
555 		      && snum012[4] != -1) ? snum012[4] : 0);
556 
557 		// s1bytes
558 		snum012[3] =
559 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 		    bytes_to_r - bytes_to_l - bytes_to_S2new;
561 	}
562 
563 	return needed_nodes;
564 }
565 
566 
567 /* Set parameters for balancing.
568  * Performs write of results of analysis of balancing into structure tb,
569  * where it will later be used by the functions that actually do the balancing.
570  * Parameters:
571  *	tb	tree_balance structure;
572  *	h	current level of the node;
573  *	lnum	number of items from S[h] that must be shifted to L[h];
574  *	rnum	number of items from S[h] that must be shifted to R[h];
575  *	blk_num	number of blocks that S[h] will be splitted into;
576  *	s012	number of items that fall into splitted nodes.
577  *	lbytes	number of bytes which flow to the left neighbor from the item that is not
578  *		not shifted entirely
579  *	rbytes	number of bytes which flow to the right neighbor from the item that is not
580  *		not shifted entirely
581  *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
582  */
583 
584 static void set_parameters(struct tree_balance *tb, int h, int lnum,
585 			   int rnum, int blk_num, short *s012, int lb, int rb)
586 {
587 
588 	tb->lnum[h] = lnum;
589 	tb->rnum[h] = rnum;
590 	tb->blknum[h] = blk_num;
591 
592 	if (h == 0) {		/* only for leaf level */
593 		if (s012 != NULL) {
594 			tb->s0num = *s012++,
595 			    tb->s1num = *s012++, tb->s2num = *s012++;
596 			tb->s1bytes = *s012++;
597 			tb->s2bytes = *s012;
598 		}
599 		tb->lbytes = lb;
600 		tb->rbytes = rb;
601 	}
602 	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
603 	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
604 
605 	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
606 	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
607 }
608 
609 /* check, does node disappear if we shift tb->lnum[0] items to left
610    neighbor and tb->rnum[0] to the right one. */
611 static int is_leaf_removable(struct tree_balance *tb)
612 {
613 	struct virtual_node *vn = tb->tb_vn;
614 	int to_left, to_right;
615 	int size;
616 	int remain_items;
617 
618 	/* number of items, that will be shifted to left (right) neighbor
619 	   entirely */
620 	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
621 	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
622 	remain_items = vn->vn_nr_item;
623 
624 	/* how many items remain in S[0] after shiftings to neighbors */
625 	remain_items -= (to_left + to_right);
626 
627 	if (remain_items < 1) {
628 		/* all content of node can be shifted to neighbors */
629 		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
630 			       NULL, -1, -1);
631 		return 1;
632 	}
633 
634 	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
635 		/* S[0] is not removable */
636 		return 0;
637 
638 	/* check, whether we can divide 1 remaining item between neighbors */
639 
640 	/* get size of remaining item (in item units) */
641 	size = op_unit_num(&(vn->vn_vi[to_left]));
642 
643 	if (tb->lbytes + tb->rbytes >= size) {
644 		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
645 			       tb->lbytes, -1);
646 		return 1;
647 	}
648 
649 	return 0;
650 }
651 
652 /* check whether L, S, R can be joined in one node */
653 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
654 {
655 	struct virtual_node *vn = tb->tb_vn;
656 	int ih_size;
657 	struct buffer_head *S0;
658 
659 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
660 
661 	ih_size = 0;
662 	if (vn->vn_nr_item) {
663 		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
664 			ih_size += IH_SIZE;
665 
666 		if (vn->vn_vi[vn->vn_nr_item - 1].
667 		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
668 			ih_size += IH_SIZE;
669 	} else {
670 		/* there was only one item and it will be deleted */
671 		struct item_head *ih;
672 
673 		RFALSE(B_NR_ITEMS(S0) != 1,
674 		       "vs-8125: item number must be 1: it is %d",
675 		       B_NR_ITEMS(S0));
676 
677 		ih = B_N_PITEM_HEAD(S0, 0);
678 		if (tb->CFR[0]
679 		    && !comp_short_le_keys(&(ih->ih_key),
680 					   B_N_PDELIM_KEY(tb->CFR[0],
681 							  tb->rkey[0])))
682 			if (is_direntry_le_ih(ih)) {
683 				/* Directory must be in correct state here: that is
684 				   somewhere at the left side should exist first directory
685 				   item. But the item being deleted can not be that first
686 				   one because its right neighbor is item of the same
687 				   directory. (But first item always gets deleted in last
688 				   turn). So, neighbors of deleted item can be merged, so
689 				   we can save ih_size */
690 				ih_size = IH_SIZE;
691 
692 				/* we might check that left neighbor exists and is of the
693 				   same directory */
694 				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
695 				       "vs-8130: first directory item can not be removed until directory is not empty");
696 			}
697 
698 	}
699 
700 	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
701 		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
702 		PROC_INFO_INC(tb->tb_sb, leaves_removable);
703 		return 1;
704 	}
705 	return 0;
706 
707 }
708 
709 /* when we do not split item, lnum and rnum are numbers of entire items */
710 #define SET_PAR_SHIFT_LEFT \
711 if (h)\
712 {\
713    int to_l;\
714    \
715    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
716 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
717 	      \
718 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
719 }\
720 else \
721 {\
722    if (lset==LEFT_SHIFT_FLOW)\
723      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
724 		     tb->lbytes, -1);\
725    else\
726      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
727 		     -1, -1);\
728 }
729 
730 #define SET_PAR_SHIFT_RIGHT \
731 if (h)\
732 {\
733    int to_r;\
734    \
735    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
736    \
737    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
738 }\
739 else \
740 {\
741    if (rset==RIGHT_SHIFT_FLOW)\
742      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
743 		  -1, tb->rbytes);\
744    else\
745      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
746 		  -1, -1);\
747 }
748 
749 static void free_buffers_in_tb(struct tree_balance *tb)
750 {
751 	int i;
752 
753 	pathrelse(tb->tb_path);
754 
755 	for (i = 0; i < MAX_HEIGHT; i++) {
756 		brelse(tb->L[i]);
757 		brelse(tb->R[i]);
758 		brelse(tb->FL[i]);
759 		brelse(tb->FR[i]);
760 		brelse(tb->CFL[i]);
761 		brelse(tb->CFR[i]);
762 
763 		tb->L[i] = NULL;
764 		tb->R[i] = NULL;
765 		tb->FL[i] = NULL;
766 		tb->FR[i] = NULL;
767 		tb->CFL[i] = NULL;
768 		tb->CFR[i] = NULL;
769 	}
770 }
771 
772 /* Get new buffers for storing new nodes that are created while balancing.
773  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
774  *	        CARRY_ON - schedule didn't occur while the function worked;
775  *	        NO_DISK_SPACE - no disk space.
776  */
777 /* The function is NOT SCHEDULE-SAFE! */
778 static int get_empty_nodes(struct tree_balance *tb, int h)
779 {
780 	struct buffer_head *new_bh,
781 	    *Sh = PATH_H_PBUFFER(tb->tb_path, h);
782 	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
783 	int counter, number_of_freeblk, amount_needed,	/* number of needed empty blocks */
784 	 retval = CARRY_ON;
785 	struct super_block *sb = tb->tb_sb;
786 
787 	/* number_of_freeblk is the number of empty blocks which have been
788 	   acquired for use by the balancing algorithm minus the number of
789 	   empty blocks used in the previous levels of the analysis,
790 	   number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
791 	   after empty blocks are acquired, and the balancing analysis is
792 	   then restarted, amount_needed is the number needed by this level
793 	   (h) of the balancing analysis.
794 
795 	   Note that for systems with many processes writing, it would be
796 	   more layout optimal to calculate the total number needed by all
797 	   levels and then to run reiserfs_new_blocks to get all of them at once.  */
798 
799 	/* Initiate number_of_freeblk to the amount acquired prior to the restart of
800 	   the analysis or 0 if not restarted, then subtract the amount needed
801 	   by all of the levels of the tree below h. */
802 	/* blknum includes S[h], so we subtract 1 in this calculation */
803 	for (counter = 0, number_of_freeblk = tb->cur_blknum;
804 	     counter < h; counter++)
805 		number_of_freeblk -=
806 		    (tb->blknum[counter]) ? (tb->blknum[counter] -
807 						   1) : 0;
808 
809 	/* Allocate missing empty blocks. */
810 	/* if Sh == 0  then we are getting a new root */
811 	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
812 	/*  Amount_needed = the amount that we need more than the amount that we have. */
813 	if (amount_needed > number_of_freeblk)
814 		amount_needed -= number_of_freeblk;
815 	else			/* If we have enough already then there is nothing to do. */
816 		return CARRY_ON;
817 
818 	/* No need to check quota - is not allocated for blocks used for formatted nodes */
819 	if (reiserfs_new_form_blocknrs(tb, blocknrs,
820 				       amount_needed) == NO_DISK_SPACE)
821 		return NO_DISK_SPACE;
822 
823 	/* for each blocknumber we just got, get a buffer and stick it on FEB */
824 	for (blocknr = blocknrs, counter = 0;
825 	     counter < amount_needed; blocknr++, counter++) {
826 
827 		RFALSE(!*blocknr,
828 		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
829 
830 		new_bh = sb_getblk(sb, *blocknr);
831 		RFALSE(buffer_dirty(new_bh) ||
832 		       buffer_journaled(new_bh) ||
833 		       buffer_journal_dirty(new_bh),
834 		       "PAP-8140: journaled or dirty buffer %b for the new block",
835 		       new_bh);
836 
837 		/* Put empty buffers into the array. */
838 		RFALSE(tb->FEB[tb->cur_blknum],
839 		       "PAP-8141: busy slot for new buffer");
840 
841 		set_buffer_journal_new(new_bh);
842 		tb->FEB[tb->cur_blknum++] = new_bh;
843 	}
844 
845 	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
846 		retval = REPEAT_SEARCH;
847 
848 	return retval;
849 }
850 
851 /* Get free space of the left neighbor, which is stored in the parent
852  * node of the left neighbor.  */
853 static int get_lfree(struct tree_balance *tb, int h)
854 {
855 	struct buffer_head *l, *f;
856 	int order;
857 
858 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
859 	    (l = tb->FL[h]) == NULL)
860 		return 0;
861 
862 	if (f == l)
863 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
864 	else {
865 		order = B_NR_ITEMS(l);
866 		f = l;
867 	}
868 
869 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
870 }
871 
872 /* Get free space of the right neighbor,
873  * which is stored in the parent node of the right neighbor.
874  */
875 static int get_rfree(struct tree_balance *tb, int h)
876 {
877 	struct buffer_head *r, *f;
878 	int order;
879 
880 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
881 	    (r = tb->FR[h]) == NULL)
882 		return 0;
883 
884 	if (f == r)
885 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
886 	else {
887 		order = 0;
888 		f = r;
889 	}
890 
891 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
892 
893 }
894 
895 /* Check whether left neighbor is in memory. */
896 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
897 {
898 	struct buffer_head *father, *left;
899 	struct super_block *sb = tb->tb_sb;
900 	b_blocknr_t left_neighbor_blocknr;
901 	int left_neighbor_position;
902 
903 	/* Father of the left neighbor does not exist. */
904 	if (!tb->FL[h])
905 		return 0;
906 
907 	/* Calculate father of the node to be balanced. */
908 	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
909 
910 	RFALSE(!father ||
911 	       !B_IS_IN_TREE(father) ||
912 	       !B_IS_IN_TREE(tb->FL[h]) ||
913 	       !buffer_uptodate(father) ||
914 	       !buffer_uptodate(tb->FL[h]),
915 	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
916 	       father, tb->FL[h]);
917 
918 	/* Get position of the pointer to the left neighbor into the left father. */
919 	left_neighbor_position = (father == tb->FL[h]) ?
920 	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
921 	/* Get left neighbor block number. */
922 	left_neighbor_blocknr =
923 	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
924 	/* Look for the left neighbor in the cache. */
925 	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
926 
927 		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
928 		       "vs-8170: left neighbor (%b %z) is not in the tree",
929 		       left, left);
930 		put_bh(left);
931 		return 1;
932 	}
933 
934 	return 0;
935 }
936 
937 #define LEFT_PARENTS  'l'
938 #define RIGHT_PARENTS 'r'
939 
940 static void decrement_key(struct cpu_key *key)
941 {
942 	// call item specific function for this key
943 	item_ops[cpu_key_k_type(key)]->decrement_key(key);
944 }
945 
946 /* Calculate far left/right parent of the left/right neighbor of the current node, that
947  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
948  * Calculate left/right common parent of the current node and L[h]/R[h].
949  * Calculate left/right delimiting key position.
950  * Returns:	PATH_INCORRECT   - path in the tree is not correct;
951  		SCHEDULE_OCCURRED - schedule occurred while the function worked;
952  *	        CARRY_ON         - schedule didn't occur while the function worked;
953  */
954 static int get_far_parent(struct tree_balance *tb,
955 			  int h,
956 			  struct buffer_head **pfather,
957 			  struct buffer_head **pcom_father, char c_lr_par)
958 {
959 	struct buffer_head *parent;
960 	INITIALIZE_PATH(s_path_to_neighbor_father);
961 	struct treepath *path = tb->tb_path;
962 	struct cpu_key s_lr_father_key;
963 	int counter,
964 	    position = INT_MAX,
965 	    first_last_position = 0,
966 	    path_offset = PATH_H_PATH_OFFSET(path, h);
967 
968 	/* Starting from F[h] go upwards in the tree, and look for the common
969 	   ancestor of F[h], and its neighbor l/r, that should be obtained. */
970 
971 	counter = path_offset;
972 
973 	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
974 	       "PAP-8180: invalid path length");
975 
976 	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
977 		/* Check whether parent of the current buffer in the path is really parent in the tree. */
978 		if (!B_IS_IN_TREE
979 		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
980 			return REPEAT_SEARCH;
981 		/* Check whether position in the parent is correct. */
982 		if ((position =
983 		     PATH_OFFSET_POSITION(path,
984 					  counter - 1)) >
985 		    B_NR_ITEMS(parent))
986 			return REPEAT_SEARCH;
987 		/* Check whether parent at the path really points to the child. */
988 		if (B_N_CHILD_NUM(parent, position) !=
989 		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
990 			return REPEAT_SEARCH;
991 		/* Return delimiting key if position in the parent is not equal to first/last one. */
992 		if (c_lr_par == RIGHT_PARENTS)
993 			first_last_position = B_NR_ITEMS(parent);
994 		if (position != first_last_position) {
995 			*pcom_father = parent;
996 			get_bh(*pcom_father);
997 			/*(*pcom_father = parent)->b_count++; */
998 			break;
999 		}
1000 	}
1001 
1002 	/* if we are in the root of the tree, then there is no common father */
1003 	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1004 		/* Check whether first buffer in the path is the root of the tree. */
1005 		if (PATH_OFFSET_PBUFFER
1006 		    (tb->tb_path,
1007 		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1008 		    SB_ROOT_BLOCK(tb->tb_sb)) {
1009 			*pfather = *pcom_father = NULL;
1010 			return CARRY_ON;
1011 		}
1012 		return REPEAT_SEARCH;
1013 	}
1014 
1015 	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1016 	       "PAP-8185: (%b %z) level too small",
1017 	       *pcom_father, *pcom_father);
1018 
1019 	/* Check whether the common parent is locked. */
1020 
1021 	if (buffer_locked(*pcom_father)) {
1022 
1023 		/* Release the write lock while the buffer is busy */
1024 		reiserfs_write_unlock(tb->tb_sb);
1025 		__wait_on_buffer(*pcom_father);
1026 		reiserfs_write_lock(tb->tb_sb);
1027 		if (FILESYSTEM_CHANGED_TB(tb)) {
1028 			brelse(*pcom_father);
1029 			return REPEAT_SEARCH;
1030 		}
1031 	}
1032 
1033 	/* So, we got common parent of the current node and its left/right neighbor.
1034 	   Now we are geting the parent of the left/right neighbor. */
1035 
1036 	/* Form key to get parent of the left/right neighbor. */
1037 	le_key2cpu_key(&s_lr_father_key,
1038 		       B_N_PDELIM_KEY(*pcom_father,
1039 				      (c_lr_par ==
1040 				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1041 							position -
1042 							1) : (tb->rkey[h -
1043 									   1] =
1044 							      position)));
1045 
1046 	if (c_lr_par == LEFT_PARENTS)
1047 		decrement_key(&s_lr_father_key);
1048 
1049 	if (search_by_key
1050 	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1051 	     h + 1) == IO_ERROR)
1052 		// path is released
1053 		return IO_ERROR;
1054 
1055 	if (FILESYSTEM_CHANGED_TB(tb)) {
1056 		pathrelse(&s_path_to_neighbor_father);
1057 		brelse(*pcom_father);
1058 		return REPEAT_SEARCH;
1059 	}
1060 
1061 	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1062 
1063 	RFALSE(B_LEVEL(*pfather) != h + 1,
1064 	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1065 	RFALSE(s_path_to_neighbor_father.path_length <
1066 	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1067 
1068 	s_path_to_neighbor_father.path_length--;
1069 	pathrelse(&s_path_to_neighbor_father);
1070 	return CARRY_ON;
1071 }
1072 
1073 /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1074  * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1075  * FR[path_offset], CFL[path_offset], CFR[path_offset].
1076  * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1077  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1078  *	        CARRY_ON - schedule didn't occur while the function worked;
1079  */
1080 static int get_parents(struct tree_balance *tb, int h)
1081 {
1082 	struct treepath *path = tb->tb_path;
1083 	int position,
1084 	    ret,
1085 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1086 	struct buffer_head *curf, *curcf;
1087 
1088 	/* Current node is the root of the tree or will be root of the tree */
1089 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1090 		/* The root can not have parents.
1091 		   Release nodes which previously were obtained as parents of the current node neighbors. */
1092 		brelse(tb->FL[h]);
1093 		brelse(tb->CFL[h]);
1094 		brelse(tb->FR[h]);
1095 		brelse(tb->CFR[h]);
1096 		tb->FL[h]  = NULL;
1097 		tb->CFL[h] = NULL;
1098 		tb->FR[h]  = NULL;
1099 		tb->CFR[h] = NULL;
1100 		return CARRY_ON;
1101 	}
1102 
1103 	/* Get parent FL[path_offset] of L[path_offset]. */
1104 	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1105 	if (position) {
1106 		/* Current node is not the first child of its parent. */
1107 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1108 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1109 		get_bh(curf);
1110 		get_bh(curf);
1111 		tb->lkey[h] = position - 1;
1112 	} else {
1113 		/* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1114 		   Calculate current common parent of L[path_offset] and the current node. Note that
1115 		   CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1116 		   Calculate lkey[path_offset]. */
1117 		if ((ret = get_far_parent(tb, h + 1, &curf,
1118 						  &curcf,
1119 						  LEFT_PARENTS)) != CARRY_ON)
1120 			return ret;
1121 	}
1122 
1123 	brelse(tb->FL[h]);
1124 	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1125 	brelse(tb->CFL[h]);
1126 	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1127 
1128 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1129 	       (curcf && !B_IS_IN_TREE(curcf)),
1130 	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1131 
1132 /* Get parent FR[h] of R[h]. */
1133 
1134 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1135 	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1136 /* Calculate current parent of R[h], which is the right neighbor of F[h].
1137    Calculate current common parent of R[h] and current node. Note that CFR[h]
1138    not equal FR[path_offset] and CFR[h] not equal F[h]. */
1139 		if ((ret =
1140 		     get_far_parent(tb, h + 1, &curf, &curcf,
1141 				    RIGHT_PARENTS)) != CARRY_ON)
1142 			return ret;
1143 	} else {
1144 /* Current node is not the last child of its parent F[h]. */
1145 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1146 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1147 		get_bh(curf);
1148 		get_bh(curf);
1149 		tb->rkey[h] = position;
1150 	}
1151 
1152 	brelse(tb->FR[h]);
1153 	/* New initialization of FR[path_offset]. */
1154 	tb->FR[h] = curf;
1155 
1156 	brelse(tb->CFR[h]);
1157 	/* New initialization of CFR[path_offset]. */
1158 	tb->CFR[h] = curcf;
1159 
1160 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1161 	       (curcf && !B_IS_IN_TREE(curcf)),
1162 	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1163 
1164 	return CARRY_ON;
1165 }
1166 
1167 /* it is possible to remove node as result of shiftings to
1168    neighbors even when we insert or paste item. */
1169 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1170 				      struct tree_balance *tb, int h)
1171 {
1172 	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1173 	int levbytes = tb->insert_size[h];
1174 	struct item_head *ih;
1175 	struct reiserfs_key *r_key = NULL;
1176 
1177 	ih = B_N_PITEM_HEAD(Sh, 0);
1178 	if (tb->CFR[h])
1179 		r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1180 
1181 	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1182 	    /* shifting may merge items which might save space */
1183 	    -
1184 	    ((!h
1185 	      && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1186 	    -
1187 	    ((!h && r_key
1188 	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1189 	    + ((h) ? KEY_SIZE : 0)) {
1190 		/* node can not be removed */
1191 		if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1192 			if (!h)
1193 				tb->s0num =
1194 				    B_NR_ITEMS(Sh) +
1195 				    ((mode == M_INSERT) ? 1 : 0);
1196 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1197 			return NO_BALANCING_NEEDED;
1198 		}
1199 	}
1200 	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1201 	return !NO_BALANCING_NEEDED;
1202 }
1203 
1204 /* Check whether current node S[h] is balanced when increasing its size by
1205  * Inserting or Pasting.
1206  * Calculate parameters for balancing for current level h.
1207  * Parameters:
1208  *	tb	tree_balance structure;
1209  *	h	current level of the node;
1210  *	inum	item number in S[h];
1211  *	mode	i - insert, p - paste;
1212  * Returns:	1 - schedule occurred;
1213  *	        0 - balancing for higher levels needed;
1214  *	       -1 - no balancing for higher levels needed;
1215  *	       -2 - no disk space.
1216  */
1217 /* ip means Inserting or Pasting */
1218 static int ip_check_balance(struct tree_balance *tb, int h)
1219 {
1220 	struct virtual_node *vn = tb->tb_vn;
1221 	int levbytes,		/* Number of bytes that must be inserted into (value
1222 				   is negative if bytes are deleted) buffer which
1223 				   contains node being balanced.  The mnemonic is
1224 				   that the attempted change in node space used level
1225 				   is levbytes bytes. */
1226 	 ret;
1227 
1228 	int lfree, sfree, rfree /* free space in L, S and R */ ;
1229 
1230 	/* nver is short for number of vertixes, and lnver is the number if
1231 	   we shift to the left, rnver is the number if we shift to the
1232 	   right, and lrnver is the number if we shift in both directions.
1233 	   The goal is to minimize first the number of vertixes, and second,
1234 	   the number of vertixes whose contents are changed by shifting,
1235 	   and third the number of uncached vertixes whose contents are
1236 	   changed by shifting and must be read from disk.  */
1237 	int nver, lnver, rnver, lrnver;
1238 
1239 	/* used at leaf level only, S0 = S[0] is the node being balanced,
1240 	   sInum [ I = 0,1,2 ] is the number of items that will
1241 	   remain in node SI after balancing.  S1 and S2 are new
1242 	   nodes that might be created. */
1243 
1244 	/* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1245 	   where 4th parameter is s1bytes and 5th - s2bytes
1246 	 */
1247 	short snum012[40] = { 0, };	/* s0num, s1num, s2num for 8 cases
1248 					   0,1 - do not shift and do not shift but bottle
1249 					   2 - shift only whole item to left
1250 					   3 - shift to left and bottle as much as possible
1251 					   4,5 - shift to right (whole items and as much as possible
1252 					   6,7 - shift to both directions (whole items and as much as possible)
1253 					 */
1254 
1255 	/* Sh is the node whose balance is currently being checked */
1256 	struct buffer_head *Sh;
1257 
1258 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1259 	levbytes = tb->insert_size[h];
1260 
1261 	/* Calculate balance parameters for creating new root. */
1262 	if (!Sh) {
1263 		if (!h)
1264 			reiserfs_panic(tb->tb_sb, "vs-8210",
1265 				       "S[0] can not be 0");
1266 		switch (ret = get_empty_nodes(tb, h)) {
1267 		case CARRY_ON:
1268 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1269 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1270 
1271 		case NO_DISK_SPACE:
1272 		case REPEAT_SEARCH:
1273 			return ret;
1274 		default:
1275 			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1276 				       "return value of get_empty_nodes");
1277 		}
1278 	}
1279 
1280 	if ((ret = get_parents(tb, h)) != CARRY_ON)	/* get parents of S[h] neighbors. */
1281 		return ret;
1282 
1283 	sfree = B_FREE_SPACE(Sh);
1284 
1285 	/* get free space of neighbors */
1286 	rfree = get_rfree(tb, h);
1287 	lfree = get_lfree(tb, h);
1288 
1289 	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1290 	    NO_BALANCING_NEEDED)
1291 		/* and new item fits into node S[h] without any shifting */
1292 		return NO_BALANCING_NEEDED;
1293 
1294 	create_virtual_node(tb, h);
1295 
1296 	/*
1297 	   determine maximal number of items we can shift to the left neighbor (in tb structure)
1298 	   and the maximal number of bytes that can flow to the left neighbor
1299 	   from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1300 	 */
1301 	check_left(tb, h, lfree);
1302 
1303 	/*
1304 	   determine maximal number of items we can shift to the right neighbor (in tb structure)
1305 	   and the maximal number of bytes that can flow to the right neighbor
1306 	   from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1307 	 */
1308 	check_right(tb, h, rfree);
1309 
1310 	/* all contents of internal node S[h] can be moved into its
1311 	   neighbors, S[h] will be removed after balancing */
1312 	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1313 		int to_r;
1314 
1315 		/* Since we are working on internal nodes, and our internal
1316 		   nodes have fixed size entries, then we can balance by the
1317 		   number of items rather than the space they consume.  In this
1318 		   routine we set the left node equal to the right node,
1319 		   allowing a difference of less than or equal to 1 child
1320 		   pointer. */
1321 		to_r =
1322 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1323 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1324 						tb->rnum[h]);
1325 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1326 			       -1, -1);
1327 		return CARRY_ON;
1328 	}
1329 
1330 	/* this checks balance condition, that any two neighboring nodes can not fit in one node */
1331 	RFALSE(h &&
1332 	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1333 		tb->rnum[h] >= vn->vn_nr_item + 1),
1334 	       "vs-8220: tree is not balanced on internal level");
1335 	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1336 		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1337 	       "vs-8225: tree is not balanced on leaf level");
1338 
1339 	/* all contents of S[0] can be moved into its neighbors
1340 	   S[0] will be removed after balancing. */
1341 	if (!h && is_leaf_removable(tb))
1342 		return CARRY_ON;
1343 
1344 	/* why do we perform this check here rather than earlier??
1345 	   Answer: we can win 1 node in some cases above. Moreover we
1346 	   checked it above, when we checked, that S[0] is not removable
1347 	   in principle */
1348 	if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */
1349 		if (!h)
1350 			tb->s0num = vn->vn_nr_item;
1351 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1352 		return NO_BALANCING_NEEDED;
1353 	}
1354 
1355 	{
1356 		int lpar, rpar, nset, lset, rset, lrset;
1357 		/*
1358 		 * regular overflowing of the node
1359 		 */
1360 
1361 		/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1362 		   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1363 		   nset, lset, rset, lrset - shows, whether flowing items give better packing
1364 		 */
1365 #define FLOW 1
1366 #define NO_FLOW 0		/* do not any splitting */
1367 
1368 		/* we choose one the following */
1369 #define NOTHING_SHIFT_NO_FLOW	0
1370 #define NOTHING_SHIFT_FLOW	5
1371 #define LEFT_SHIFT_NO_FLOW	10
1372 #define LEFT_SHIFT_FLOW		15
1373 #define RIGHT_SHIFT_NO_FLOW	20
1374 #define RIGHT_SHIFT_FLOW	25
1375 #define LR_SHIFT_NO_FLOW	30
1376 #define LR_SHIFT_FLOW		35
1377 
1378 		lpar = tb->lnum[h];
1379 		rpar = tb->rnum[h];
1380 
1381 		/* calculate number of blocks S[h] must be split into when
1382 		   nothing is shifted to the neighbors,
1383 		   as well as number of items in each part of the split node (s012 numbers),
1384 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1385 		nset = NOTHING_SHIFT_NO_FLOW;
1386 		nver = get_num_ver(vn->vn_mode, tb, h,
1387 				   0, -1, h ? vn->vn_nr_item : 0, -1,
1388 				   snum012, NO_FLOW);
1389 
1390 		if (!h) {
1391 			int nver1;
1392 
1393 			/* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1394 			nver1 = get_num_ver(vn->vn_mode, tb, h,
1395 					    0, -1, 0, -1,
1396 					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1397 			if (nver > nver1)
1398 				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1399 		}
1400 
1401 		/* calculate number of blocks S[h] must be split into when
1402 		   l_shift_num first items and l_shift_bytes of the right most
1403 		   liquid item to be shifted are shifted to the left neighbor,
1404 		   as well as number of items in each part of the splitted node (s012 numbers),
1405 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1406 		 */
1407 		lset = LEFT_SHIFT_NO_FLOW;
1408 		lnver = get_num_ver(vn->vn_mode, tb, h,
1409 				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1410 				    -1, h ? vn->vn_nr_item : 0, -1,
1411 				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1412 		if (!h) {
1413 			int lnver1;
1414 
1415 			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1416 					     lpar -
1417 					     ((tb->lbytes != -1) ? 1 : 0),
1418 					     tb->lbytes, 0, -1,
1419 					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1420 			if (lnver > lnver1)
1421 				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1422 		}
1423 
1424 		/* calculate number of blocks S[h] must be split into when
1425 		   r_shift_num first items and r_shift_bytes of the left most
1426 		   liquid item to be shifted are shifted to the right neighbor,
1427 		   as well as number of items in each part of the splitted node (s012 numbers),
1428 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1429 		 */
1430 		rset = RIGHT_SHIFT_NO_FLOW;
1431 		rnver = get_num_ver(vn->vn_mode, tb, h,
1432 				    0, -1,
1433 				    h ? (vn->vn_nr_item - rpar) : (rpar -
1434 								   ((tb->
1435 								     rbytes !=
1436 								     -1) ? 1 :
1437 								    0)), -1,
1438 				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1439 		if (!h) {
1440 			int rnver1;
1441 
1442 			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1443 					     0, -1,
1444 					     (rpar -
1445 					      ((tb->rbytes != -1) ? 1 : 0)),
1446 					     tb->rbytes,
1447 					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1448 
1449 			if (rnver > rnver1)
1450 				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1451 		}
1452 
1453 		/* calculate number of blocks S[h] must be split into when
1454 		   items are shifted in both directions,
1455 		   as well as number of items in each part of the splitted node (s012 numbers),
1456 		   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1457 		 */
1458 		lrset = LR_SHIFT_NO_FLOW;
1459 		lrnver = get_num_ver(vn->vn_mode, tb, h,
1460 				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1461 				     -1,
1462 				     h ? (vn->vn_nr_item - rpar) : (rpar -
1463 								    ((tb->
1464 								      rbytes !=
1465 								      -1) ? 1 :
1466 								     0)), -1,
1467 				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1468 		if (!h) {
1469 			int lrnver1;
1470 
1471 			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1472 					      lpar -
1473 					      ((tb->lbytes != -1) ? 1 : 0),
1474 					      tb->lbytes,
1475 					      (rpar -
1476 					       ((tb->rbytes != -1) ? 1 : 0)),
1477 					      tb->rbytes,
1478 					      snum012 + LR_SHIFT_FLOW, FLOW);
1479 			if (lrnver > lrnver1)
1480 				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1481 		}
1482 
1483 		/* Our general shifting strategy is:
1484 		   1) to minimized number of new nodes;
1485 		   2) to minimized number of neighbors involved in shifting;
1486 		   3) to minimized number of disk reads; */
1487 
1488 		/* we can win TWO or ONE nodes by shifting in both directions */
1489 		if (lrnver < lnver && lrnver < rnver) {
1490 			RFALSE(h &&
1491 			       (tb->lnum[h] != 1 ||
1492 				tb->rnum[h] != 1 ||
1493 				lrnver != 1 || rnver != 2 || lnver != 2
1494 				|| h != 1), "vs-8230: bad h");
1495 			if (lrset == LR_SHIFT_FLOW)
1496 				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1497 					       lrnver, snum012 + lrset,
1498 					       tb->lbytes, tb->rbytes);
1499 			else
1500 				set_parameters(tb, h,
1501 					       tb->lnum[h] -
1502 					       ((tb->lbytes == -1) ? 0 : 1),
1503 					       tb->rnum[h] -
1504 					       ((tb->rbytes == -1) ? 0 : 1),
1505 					       lrnver, snum012 + lrset, -1, -1);
1506 
1507 			return CARRY_ON;
1508 		}
1509 
1510 		/* if shifting doesn't lead to better packing then don't shift */
1511 		if (nver == lrnver) {
1512 			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1513 				       -1);
1514 			return CARRY_ON;
1515 		}
1516 
1517 		/* now we know that for better packing shifting in only one
1518 		   direction either to the left or to the right is required */
1519 
1520 		/*  if shifting to the left is better than shifting to the right */
1521 		if (lnver < rnver) {
1522 			SET_PAR_SHIFT_LEFT;
1523 			return CARRY_ON;
1524 		}
1525 
1526 		/* if shifting to the right is better than shifting to the left */
1527 		if (lnver > rnver) {
1528 			SET_PAR_SHIFT_RIGHT;
1529 			return CARRY_ON;
1530 		}
1531 
1532 		/* now shifting in either direction gives the same number
1533 		   of nodes and we can make use of the cached neighbors */
1534 		if (is_left_neighbor_in_cache(tb, h)) {
1535 			SET_PAR_SHIFT_LEFT;
1536 			return CARRY_ON;
1537 		}
1538 
1539 		/* shift to the right independently on whether the right neighbor in cache or not */
1540 		SET_PAR_SHIFT_RIGHT;
1541 		return CARRY_ON;
1542 	}
1543 }
1544 
1545 /* Check whether current node S[h] is balanced when Decreasing its size by
1546  * Deleting or Cutting for INTERNAL node of S+tree.
1547  * Calculate parameters for balancing for current level h.
1548  * Parameters:
1549  *	tb	tree_balance structure;
1550  *	h	current level of the node;
1551  *	inum	item number in S[h];
1552  *	mode	i - insert, p - paste;
1553  * Returns:	1 - schedule occurred;
1554  *	        0 - balancing for higher levels needed;
1555  *	       -1 - no balancing for higher levels needed;
1556  *	       -2 - no disk space.
1557  *
1558  * Note: Items of internal nodes have fixed size, so the balance condition for
1559  * the internal part of S+tree is as for the B-trees.
1560  */
1561 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1562 {
1563 	struct virtual_node *vn = tb->tb_vn;
1564 
1565 	/* Sh is the node whose balance is currently being checked,
1566 	   and Fh is its father.  */
1567 	struct buffer_head *Sh, *Fh;
1568 	int maxsize, ret;
1569 	int lfree, rfree /* free space in L and R */ ;
1570 
1571 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1572 	Fh = PATH_H_PPARENT(tb->tb_path, h);
1573 
1574 	maxsize = MAX_CHILD_SIZE(Sh);
1575 
1576 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1577 /*   new_nr_item = number of items node would have if operation is */
1578 /* 	performed without balancing (new_nr_item); */
1579 	create_virtual_node(tb, h);
1580 
1581 	if (!Fh) {		/* S[h] is the root. */
1582 		if (vn->vn_nr_item > 0) {
1583 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1584 			return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */
1585 		}
1586 		/* new_nr_item == 0.
1587 		 * Current root will be deleted resulting in
1588 		 * decrementing the tree height. */
1589 		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1590 		return CARRY_ON;
1591 	}
1592 
1593 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1594 		return ret;
1595 
1596 	/* get free space of neighbors */
1597 	rfree = get_rfree(tb, h);
1598 	lfree = get_lfree(tb, h);
1599 
1600 	/* determine maximal number of items we can fit into neighbors */
1601 	check_left(tb, h, lfree);
1602 	check_right(tb, h, rfree);
1603 
1604 	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {	/* Balance condition for the internal node is valid.
1605 						 * In this case we balance only if it leads to better packing. */
1606 		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {	/* Here we join S[h] with one of its neighbors,
1607 							 * which is impossible with greater values of new_nr_item. */
1608 			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1609 				/* All contents of S[h] can be moved to L[h]. */
1610 				int n;
1611 				int order_L;
1612 
1613 				order_L =
1614 				    ((n =
1615 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1616 							  h)) ==
1617 				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1618 				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1619 				    (DC_SIZE + KEY_SIZE);
1620 				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1621 					       -1);
1622 				return CARRY_ON;
1623 			}
1624 
1625 			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1626 				/* All contents of S[h] can be moved to R[h]. */
1627 				int n;
1628 				int order_R;
1629 
1630 				order_R =
1631 				    ((n =
1632 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1633 							  h)) ==
1634 				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1635 				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1636 				    (DC_SIZE + KEY_SIZE);
1637 				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1638 					       -1);
1639 				return CARRY_ON;
1640 			}
1641 		}
1642 
1643 		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1644 			/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1645 			int to_r;
1646 
1647 			to_r =
1648 			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1649 			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1650 			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1651 			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1652 				       0, NULL, -1, -1);
1653 			return CARRY_ON;
1654 		}
1655 
1656 		/* Balancing does not lead to better packing. */
1657 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1658 		return NO_BALANCING_NEEDED;
1659 	}
1660 
1661 	/* Current node contain insufficient number of items. Balancing is required. */
1662 	/* Check whether we can merge S[h] with left neighbor. */
1663 	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1664 		if (is_left_neighbor_in_cache(tb, h)
1665 		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1666 			int n;
1667 			int order_L;
1668 
1669 			order_L =
1670 			    ((n =
1671 			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1672 						  h)) ==
1673 			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1674 			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1675 								      KEY_SIZE);
1676 			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1677 			return CARRY_ON;
1678 		}
1679 
1680 	/* Check whether we can merge S[h] with right neighbor. */
1681 	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1682 		int n;
1683 		int order_R;
1684 
1685 		order_R =
1686 		    ((n =
1687 		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1688 					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1689 		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1690 							      KEY_SIZE);
1691 		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1692 		return CARRY_ON;
1693 	}
1694 
1695 	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1696 	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1697 		int to_r;
1698 
1699 		to_r =
1700 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1701 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1702 						tb->rnum[h]);
1703 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1704 			       -1, -1);
1705 		return CARRY_ON;
1706 	}
1707 
1708 	/* For internal nodes try to borrow item from a neighbor */
1709 	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1710 
1711 	/* Borrow one or two items from caching neighbor */
1712 	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1713 		int from_l;
1714 
1715 		from_l =
1716 		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1717 		     1) / 2 - (vn->vn_nr_item + 1);
1718 		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1719 		return CARRY_ON;
1720 	}
1721 
1722 	set_parameters(tb, h, 0,
1723 		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1724 			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1725 	return CARRY_ON;
1726 }
1727 
1728 /* Check whether current node S[h] is balanced when Decreasing its size by
1729  * Deleting or Truncating for LEAF node of S+tree.
1730  * Calculate parameters for balancing for current level h.
1731  * Parameters:
1732  *	tb	tree_balance structure;
1733  *	h	current level of the node;
1734  *	inum	item number in S[h];
1735  *	mode	i - insert, p - paste;
1736  * Returns:	1 - schedule occurred;
1737  *	        0 - balancing for higher levels needed;
1738  *	       -1 - no balancing for higher levels needed;
1739  *	       -2 - no disk space.
1740  */
1741 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1742 {
1743 	struct virtual_node *vn = tb->tb_vn;
1744 
1745 	/* Number of bytes that must be deleted from
1746 	   (value is negative if bytes are deleted) buffer which
1747 	   contains node being balanced.  The mnemonic is that the
1748 	   attempted change in node space used level is levbytes bytes. */
1749 	int levbytes;
1750 	/* the maximal item size */
1751 	int maxsize, ret;
1752 	/* S0 is the node whose balance is currently being checked,
1753 	   and F0 is its father.  */
1754 	struct buffer_head *S0, *F0;
1755 	int lfree, rfree /* free space in L and R */ ;
1756 
1757 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1758 	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1759 
1760 	levbytes = tb->insert_size[h];
1761 
1762 	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1763 
1764 	if (!F0) {		/* S[0] is the root now. */
1765 
1766 		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1767 		       "vs-8240: attempt to create empty buffer tree");
1768 
1769 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1770 		return NO_BALANCING_NEEDED;
1771 	}
1772 
1773 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1774 		return ret;
1775 
1776 	/* get free space of neighbors */
1777 	rfree = get_rfree(tb, h);
1778 	lfree = get_lfree(tb, h);
1779 
1780 	create_virtual_node(tb, h);
1781 
1782 	/* if 3 leaves can be merge to one, set parameters and return */
1783 	if (are_leaves_removable(tb, lfree, rfree))
1784 		return CARRY_ON;
1785 
1786 	/* determine maximal number of items we can shift to the left/right  neighbor
1787 	   and the maximal number of bytes that can flow to the left/right neighbor
1788 	   from the left/right most liquid item that cannot be shifted from S[0] entirely
1789 	 */
1790 	check_left(tb, h, lfree);
1791 	check_right(tb, h, rfree);
1792 
1793 	/* check whether we can merge S with left neighbor. */
1794 	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1795 		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1796 		    !tb->FR[h]) {
1797 
1798 			RFALSE(!tb->FL[h],
1799 			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1800 
1801 			/* set parameter to merge S[0] with its left neighbor */
1802 			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1803 			return CARRY_ON;
1804 		}
1805 
1806 	/* check whether we can merge S[0] with right neighbor. */
1807 	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1808 		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1809 		return CARRY_ON;
1810 	}
1811 
1812 	/* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1813 	if (is_leaf_removable(tb))
1814 		return CARRY_ON;
1815 
1816 	/* Balancing is not required. */
1817 	tb->s0num = vn->vn_nr_item;
1818 	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1819 	return NO_BALANCING_NEEDED;
1820 }
1821 
1822 /* Check whether current node S[h] is balanced when Decreasing its size by
1823  * Deleting or Cutting.
1824  * Calculate parameters for balancing for current level h.
1825  * Parameters:
1826  *	tb	tree_balance structure;
1827  *	h	current level of the node;
1828  *	inum	item number in S[h];
1829  *	mode	d - delete, c - cut.
1830  * Returns:	1 - schedule occurred;
1831  *	        0 - balancing for higher levels needed;
1832  *	       -1 - no balancing for higher levels needed;
1833  *	       -2 - no disk space.
1834  */
1835 static int dc_check_balance(struct tree_balance *tb, int h)
1836 {
1837 	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1838 	       "vs-8250: S is not initialized");
1839 
1840 	if (h)
1841 		return dc_check_balance_internal(tb, h);
1842 	else
1843 		return dc_check_balance_leaf(tb, h);
1844 }
1845 
1846 /* Check whether current node S[h] is balanced.
1847  * Calculate parameters for balancing for current level h.
1848  * Parameters:
1849  *
1850  *	tb	tree_balance structure:
1851  *
1852  *              tb is a large structure that must be read about in the header file
1853  *              at the same time as this procedure if the reader is to successfully
1854  *              understand this procedure
1855  *
1856  *	h	current level of the node;
1857  *	inum	item number in S[h];
1858  *	mode	i - insert, p - paste, d - delete, c - cut.
1859  * Returns:	1 - schedule occurred;
1860  *	        0 - balancing for higher levels needed;
1861  *	       -1 - no balancing for higher levels needed;
1862  *	       -2 - no disk space.
1863  */
1864 static int check_balance(int mode,
1865 			 struct tree_balance *tb,
1866 			 int h,
1867 			 int inum,
1868 			 int pos_in_item,
1869 			 struct item_head *ins_ih, const void *data)
1870 {
1871 	struct virtual_node *vn;
1872 
1873 	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1874 	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1875 	vn->vn_mode = mode;
1876 	vn->vn_affected_item_num = inum;
1877 	vn->vn_pos_in_item = pos_in_item;
1878 	vn->vn_ins_ih = ins_ih;
1879 	vn->vn_data = data;
1880 
1881 	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1882 	       "vs-8255: ins_ih can not be 0 in insert mode");
1883 
1884 	if (tb->insert_size[h] > 0)
1885 		/* Calculate balance parameters when size of node is increasing. */
1886 		return ip_check_balance(tb, h);
1887 
1888 	/* Calculate balance parameters when  size of node is decreasing. */
1889 	return dc_check_balance(tb, h);
1890 }
1891 
1892 /* Check whether parent at the path is the really parent of the current node.*/
1893 static int get_direct_parent(struct tree_balance *tb, int h)
1894 {
1895 	struct buffer_head *bh;
1896 	struct treepath *path = tb->tb_path;
1897 	int position,
1898 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1899 
1900 	/* We are in the root or in the new root. */
1901 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1902 
1903 		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1904 		       "PAP-8260: invalid offset in the path");
1905 
1906 		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1907 		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1908 			/* Root is not changed. */
1909 			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1910 			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1911 			return CARRY_ON;
1912 		}
1913 		return REPEAT_SEARCH;	/* Root is changed and we must recalculate the path. */
1914 	}
1915 
1916 	if (!B_IS_IN_TREE
1917 	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1918 		return REPEAT_SEARCH;	/* Parent in the path is not in the tree. */
1919 
1920 	if ((position =
1921 	     PATH_OFFSET_POSITION(path,
1922 				  path_offset - 1)) > B_NR_ITEMS(bh))
1923 		return REPEAT_SEARCH;
1924 
1925 	if (B_N_CHILD_NUM(bh, position) !=
1926 	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1927 		/* Parent in the path is not parent of the current node in the tree. */
1928 		return REPEAT_SEARCH;
1929 
1930 	if (buffer_locked(bh)) {
1931 		reiserfs_write_unlock(tb->tb_sb);
1932 		__wait_on_buffer(bh);
1933 		reiserfs_write_lock(tb->tb_sb);
1934 		if (FILESYSTEM_CHANGED_TB(tb))
1935 			return REPEAT_SEARCH;
1936 	}
1937 
1938 	return CARRY_ON;	/* Parent in the path is unlocked and really parent of the current node.  */
1939 }
1940 
1941 /* Using lnum[h] and rnum[h] we should determine what neighbors
1942  * of S[h] we
1943  * need in order to balance S[h], and get them if necessary.
1944  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1945  *	        CARRY_ON - schedule didn't occur while the function worked;
1946  */
1947 static int get_neighbors(struct tree_balance *tb, int h)
1948 {
1949 	int child_position,
1950 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1951 	unsigned long son_number;
1952 	struct super_block *sb = tb->tb_sb;
1953 	struct buffer_head *bh;
1954 
1955 	PROC_INFO_INC(sb, get_neighbors[h]);
1956 
1957 	if (tb->lnum[h]) {
1958 		/* We need left neighbor to balance S[h]. */
1959 		PROC_INFO_INC(sb, need_l_neighbor[h]);
1960 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1961 
1962 		RFALSE(bh == tb->FL[h] &&
1963 		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1964 		       "PAP-8270: invalid position in the parent");
1965 
1966 		child_position =
1967 		    (bh ==
1968 		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1969 								       FL[h]);
1970 		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1971 		reiserfs_write_unlock(sb);
1972 		bh = sb_bread(sb, son_number);
1973 		reiserfs_write_lock(sb);
1974 		if (!bh)
1975 			return IO_ERROR;
1976 		if (FILESYSTEM_CHANGED_TB(tb)) {
1977 			brelse(bh);
1978 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
1979 			return REPEAT_SEARCH;
1980 		}
1981 
1982 		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1983 		       child_position > B_NR_ITEMS(tb->FL[h]) ||
1984 		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
1985 		       bh->b_blocknr, "PAP-8275: invalid parent");
1986 		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1987 		RFALSE(!h &&
1988 		       B_FREE_SPACE(bh) !=
1989 		       MAX_CHILD_SIZE(bh) -
1990 		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
1991 		       "PAP-8290: invalid child size of left neighbor");
1992 
1993 		brelse(tb->L[h]);
1994 		tb->L[h] = bh;
1995 	}
1996 
1997 	/* We need right neighbor to balance S[path_offset]. */
1998 	if (tb->rnum[h]) {	/* We need right neighbor to balance S[path_offset]. */
1999 		PROC_INFO_INC(sb, need_r_neighbor[h]);
2000 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2001 
2002 		RFALSE(bh == tb->FR[h] &&
2003 		       PATH_OFFSET_POSITION(tb->tb_path,
2004 					    path_offset) >=
2005 		       B_NR_ITEMS(bh),
2006 		       "PAP-8295: invalid position in the parent");
2007 
2008 		child_position =
2009 		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2010 		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2011 		reiserfs_write_unlock(sb);
2012 		bh = sb_bread(sb, son_number);
2013 		reiserfs_write_lock(sb);
2014 		if (!bh)
2015 			return IO_ERROR;
2016 		if (FILESYSTEM_CHANGED_TB(tb)) {
2017 			brelse(bh);
2018 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2019 			return REPEAT_SEARCH;
2020 		}
2021 		brelse(tb->R[h]);
2022 		tb->R[h] = bh;
2023 
2024 		RFALSE(!h
2025 		       && B_FREE_SPACE(bh) !=
2026 		       MAX_CHILD_SIZE(bh) -
2027 		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2028 		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2029 		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2030 		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2031 
2032 	}
2033 	return CARRY_ON;
2034 }
2035 
2036 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2037 {
2038 	int max_num_of_items;
2039 	int max_num_of_entries;
2040 	unsigned long blocksize = sb->s_blocksize;
2041 
2042 #define MIN_NAME_LEN 1
2043 
2044 	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2045 	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2046 	    (DEH_SIZE + MIN_NAME_LEN);
2047 
2048 	return sizeof(struct virtual_node) +
2049 	    max(max_num_of_items * sizeof(struct virtual_item),
2050 		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2051 		(max_num_of_entries - 1) * sizeof(__u16));
2052 }
2053 
2054 /* maybe we should fail balancing we are going to perform when kmalloc
2055    fails several times. But now it will loop until kmalloc gets
2056    required memory */
2057 static int get_mem_for_virtual_node(struct tree_balance *tb)
2058 {
2059 	int check_fs = 0;
2060 	int size;
2061 	char *buf;
2062 
2063 	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2064 
2065 	if (size > tb->vn_buf_size) {
2066 		/* we have to allocate more memory for virtual node */
2067 		if (tb->vn_buf) {
2068 			/* free memory allocated before */
2069 			kfree(tb->vn_buf);
2070 			/* this is not needed if kfree is atomic */
2071 			check_fs = 1;
2072 		}
2073 
2074 		/* virtual node requires now more memory */
2075 		tb->vn_buf_size = size;
2076 
2077 		/* get memory for virtual item */
2078 		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2079 		if (!buf) {
2080 			/* getting memory with GFP_KERNEL priority may involve
2081 			   balancing now (due to indirect_to_direct conversion on
2082 			   dcache shrinking). So, release path and collected
2083 			   resources here */
2084 			free_buffers_in_tb(tb);
2085 			buf = kmalloc(size, GFP_NOFS);
2086 			if (!buf) {
2087 				tb->vn_buf_size = 0;
2088 			}
2089 			tb->vn_buf = buf;
2090 			schedule();
2091 			return REPEAT_SEARCH;
2092 		}
2093 
2094 		tb->vn_buf = buf;
2095 	}
2096 
2097 	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2098 		return REPEAT_SEARCH;
2099 
2100 	return CARRY_ON;
2101 }
2102 
2103 #ifdef CONFIG_REISERFS_CHECK
2104 static void tb_buffer_sanity_check(struct super_block *sb,
2105 				   struct buffer_head *bh,
2106 				   const char *descr, int level)
2107 {
2108 	if (bh) {
2109 		if (atomic_read(&(bh->b_count)) <= 0)
2110 
2111 			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2112 				       "reference counter for buffer %s[%d] "
2113 				       "(%b)", descr, level, bh);
2114 
2115 		if (!buffer_uptodate(bh))
2116 			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2117 				       "to date %s[%d] (%b)",
2118 				       descr, level, bh);
2119 
2120 		if (!B_IS_IN_TREE(bh))
2121 			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2122 				       "in tree %s[%d] (%b)",
2123 				       descr, level, bh);
2124 
2125 		if (bh->b_bdev != sb->s_bdev)
2126 			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2127 				       "device %s[%d] (%b)",
2128 				       descr, level, bh);
2129 
2130 		if (bh->b_size != sb->s_blocksize)
2131 			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2132 				       "blocksize %s[%d] (%b)",
2133 				       descr, level, bh);
2134 
2135 		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2136 			reiserfs_panic(sb, "jmacd-6", "buffer block "
2137 				       "number too high %s[%d] (%b)",
2138 				       descr, level, bh);
2139 	}
2140 }
2141 #else
2142 static void tb_buffer_sanity_check(struct super_block *sb,
2143 				   struct buffer_head *bh,
2144 				   const char *descr, int level)
2145 {;
2146 }
2147 #endif
2148 
2149 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2150 {
2151 	return reiserfs_prepare_for_journal(s, bh, 0);
2152 }
2153 
2154 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2155 {
2156 	struct buffer_head *locked;
2157 #ifdef CONFIG_REISERFS_CHECK
2158 	int repeat_counter = 0;
2159 #endif
2160 	int i;
2161 
2162 	do {
2163 
2164 		locked = NULL;
2165 
2166 		for (i = tb->tb_path->path_length;
2167 		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2168 			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2169 				/* if I understand correctly, we can only be sure the last buffer
2170 				 ** in the path is in the tree --clm
2171 				 */
2172 #ifdef CONFIG_REISERFS_CHECK
2173 				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2174 				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2175 					tb_buffer_sanity_check(tb->tb_sb,
2176 							       PATH_OFFSET_PBUFFER
2177 							       (tb->tb_path,
2178 								i), "S",
2179 							       tb->tb_path->
2180 							       path_length - i);
2181 #endif
2182 				if (!clear_all_dirty_bits(tb->tb_sb,
2183 							  PATH_OFFSET_PBUFFER
2184 							  (tb->tb_path,
2185 							   i))) {
2186 					locked =
2187 					    PATH_OFFSET_PBUFFER(tb->tb_path,
2188 								i);
2189 				}
2190 			}
2191 		}
2192 
2193 		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2194 		     i++) {
2195 
2196 			if (tb->lnum[i]) {
2197 
2198 				if (tb->L[i]) {
2199 					tb_buffer_sanity_check(tb->tb_sb,
2200 							       tb->L[i],
2201 							       "L", i);
2202 					if (!clear_all_dirty_bits
2203 					    (tb->tb_sb, tb->L[i]))
2204 						locked = tb->L[i];
2205 				}
2206 
2207 				if (!locked && tb->FL[i]) {
2208 					tb_buffer_sanity_check(tb->tb_sb,
2209 							       tb->FL[i],
2210 							       "FL", i);
2211 					if (!clear_all_dirty_bits
2212 					    (tb->tb_sb, tb->FL[i]))
2213 						locked = tb->FL[i];
2214 				}
2215 
2216 				if (!locked && tb->CFL[i]) {
2217 					tb_buffer_sanity_check(tb->tb_sb,
2218 							       tb->CFL[i],
2219 							       "CFL", i);
2220 					if (!clear_all_dirty_bits
2221 					    (tb->tb_sb, tb->CFL[i]))
2222 						locked = tb->CFL[i];
2223 				}
2224 
2225 			}
2226 
2227 			if (!locked && (tb->rnum[i])) {
2228 
2229 				if (tb->R[i]) {
2230 					tb_buffer_sanity_check(tb->tb_sb,
2231 							       tb->R[i],
2232 							       "R", i);
2233 					if (!clear_all_dirty_bits
2234 					    (tb->tb_sb, tb->R[i]))
2235 						locked = tb->R[i];
2236 				}
2237 
2238 				if (!locked && tb->FR[i]) {
2239 					tb_buffer_sanity_check(tb->tb_sb,
2240 							       tb->FR[i],
2241 							       "FR", i);
2242 					if (!clear_all_dirty_bits
2243 					    (tb->tb_sb, tb->FR[i]))
2244 						locked = tb->FR[i];
2245 				}
2246 
2247 				if (!locked && tb->CFR[i]) {
2248 					tb_buffer_sanity_check(tb->tb_sb,
2249 							       tb->CFR[i],
2250 							       "CFR", i);
2251 					if (!clear_all_dirty_bits
2252 					    (tb->tb_sb, tb->CFR[i]))
2253 						locked = tb->CFR[i];
2254 				}
2255 			}
2256 		}
2257 		/* as far as I can tell, this is not required.  The FEB list seems
2258 		 ** to be full of newly allocated nodes, which will never be locked,
2259 		 ** dirty, or anything else.
2260 		 ** To be safe, I'm putting in the checks and waits in.  For the moment,
2261 		 ** they are needed to keep the code in journal.c from complaining
2262 		 ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2263 		 ** --clm
2264 		 */
2265 		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2266 			if (tb->FEB[i]) {
2267 				if (!clear_all_dirty_bits
2268 				    (tb->tb_sb, tb->FEB[i]))
2269 					locked = tb->FEB[i];
2270 			}
2271 		}
2272 
2273 		if (locked) {
2274 #ifdef CONFIG_REISERFS_CHECK
2275 			repeat_counter++;
2276 			if ((repeat_counter % 10000) == 0) {
2277 				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2278 						 "too many iterations waiting "
2279 						 "for buffer to unlock "
2280 						 "(%b)", locked);
2281 
2282 				/* Don't loop forever.  Try to recover from possible error. */
2283 
2284 				return (FILESYSTEM_CHANGED_TB(tb)) ?
2285 				    REPEAT_SEARCH : CARRY_ON;
2286 			}
2287 #endif
2288 			reiserfs_write_unlock(tb->tb_sb);
2289 			__wait_on_buffer(locked);
2290 			reiserfs_write_lock(tb->tb_sb);
2291 			if (FILESYSTEM_CHANGED_TB(tb))
2292 				return REPEAT_SEARCH;
2293 		}
2294 
2295 	} while (locked);
2296 
2297 	return CARRY_ON;
2298 }
2299 
2300 /* Prepare for balancing, that is
2301  *	get all necessary parents, and neighbors;
2302  *	analyze what and where should be moved;
2303  *	get sufficient number of new nodes;
2304  * Balancing will start only after all resources will be collected at a time.
2305  *
2306  * When ported to SMP kernels, only at the last moment after all needed nodes
2307  * are collected in cache, will the resources be locked using the usual
2308  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2309  * this code neither write locks what it does not need to write lock nor locks out of order
2310  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2311  *
2312  * fix is meant in the sense of render unchanging
2313  *
2314  * Latency might be improved by first gathering a list of what buffers are needed
2315  * and then getting as many of them in parallel as possible? -Hans
2316  *
2317  * Parameters:
2318  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2319  *	tb	tree_balance structure;
2320  *	inum	item number in S[h];
2321  *      pos_in_item - comment this if you can
2322  *      ins_ih	item head of item being inserted
2323  *	data	inserted item or data to be pasted
2324  * Returns:	1 - schedule occurred while the function worked;
2325  *	        0 - schedule didn't occur while the function worked;
2326  *             -1 - if no_disk_space
2327  */
2328 
2329 int fix_nodes(int op_mode, struct tree_balance *tb,
2330 	      struct item_head *ins_ih, const void *data)
2331 {
2332 	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2333 	int pos_in_item;
2334 
2335 	/* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2336 	 ** during wait_tb_buffers_run
2337 	 */
2338 	int wait_tb_buffers_run = 0;
2339 	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2340 
2341 	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2342 
2343 	pos_in_item = tb->tb_path->pos_in_item;
2344 
2345 	tb->fs_gen = get_generation(tb->tb_sb);
2346 
2347 	/* we prepare and log the super here so it will already be in the
2348 	 ** transaction when do_balance needs to change it.
2349 	 ** This way do_balance won't have to schedule when trying to prepare
2350 	 ** the super for logging
2351 	 */
2352 	reiserfs_prepare_for_journal(tb->tb_sb,
2353 				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2354 	journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2355 			   SB_BUFFER_WITH_SB(tb->tb_sb));
2356 	if (FILESYSTEM_CHANGED_TB(tb))
2357 		return REPEAT_SEARCH;
2358 
2359 	/* if it possible in indirect_to_direct conversion */
2360 	if (buffer_locked(tbS0)) {
2361 		reiserfs_write_unlock(tb->tb_sb);
2362 		__wait_on_buffer(tbS0);
2363 		reiserfs_write_lock(tb->tb_sb);
2364 		if (FILESYSTEM_CHANGED_TB(tb))
2365 			return REPEAT_SEARCH;
2366 	}
2367 #ifdef CONFIG_REISERFS_CHECK
2368 	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2369 		print_cur_tb("fix_nodes");
2370 		reiserfs_panic(tb->tb_sb, "PAP-8305",
2371 			       "there is pending do_balance");
2372 	}
2373 
2374 	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2375 		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2376 			       "not uptodate at the beginning of fix_nodes "
2377 			       "or not in tree (mode %c)",
2378 			       tbS0, tbS0, op_mode);
2379 
2380 	/* Check parameters. */
2381 	switch (op_mode) {
2382 	case M_INSERT:
2383 		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2384 			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2385 				       "item number %d (in S0 - %d) in case "
2386 				       "of insert", item_num,
2387 				       B_NR_ITEMS(tbS0));
2388 		break;
2389 	case M_PASTE:
2390 	case M_DELETE:
2391 	case M_CUT:
2392 		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2393 			print_block(tbS0, 0, -1, -1);
2394 			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2395 				       "item number(%d); mode = %c "
2396 				       "insert_size = %d",
2397 				       item_num, op_mode,
2398 				       tb->insert_size[0]);
2399 		}
2400 		break;
2401 	default:
2402 		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2403 			       "of operation");
2404 	}
2405 #endif
2406 
2407 	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2408 		// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2409 		return REPEAT_SEARCH;
2410 
2411 	/* Starting from the leaf level; for all levels h of the tree. */
2412 	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2413 		ret = get_direct_parent(tb, h);
2414 		if (ret != CARRY_ON)
2415 			goto repeat;
2416 
2417 		ret = check_balance(op_mode, tb, h, item_num,
2418 				    pos_in_item, ins_ih, data);
2419 		if (ret != CARRY_ON) {
2420 			if (ret == NO_BALANCING_NEEDED) {
2421 				/* No balancing for higher levels needed. */
2422 				ret = get_neighbors(tb, h);
2423 				if (ret != CARRY_ON)
2424 					goto repeat;
2425 				if (h != MAX_HEIGHT - 1)
2426 					tb->insert_size[h + 1] = 0;
2427 				/* ok, analysis and resource gathering are complete */
2428 				break;
2429 			}
2430 			goto repeat;
2431 		}
2432 
2433 		ret = get_neighbors(tb, h);
2434 		if (ret != CARRY_ON)
2435 			goto repeat;
2436 
2437 		/* No disk space, or schedule occurred and analysis may be
2438 		 * invalid and needs to be redone. */
2439 		ret = get_empty_nodes(tb, h);
2440 		if (ret != CARRY_ON)
2441 			goto repeat;
2442 
2443 		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2444 			/* We have a positive insert size but no nodes exist on this
2445 			   level, this means that we are creating a new root. */
2446 
2447 			RFALSE(tb->blknum[h] != 1,
2448 			       "PAP-8350: creating new empty root");
2449 
2450 			if (h < MAX_HEIGHT - 1)
2451 				tb->insert_size[h + 1] = 0;
2452 		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2453 			if (tb->blknum[h] > 1) {
2454 				/* The tree needs to be grown, so this node S[h]
2455 				   which is the root node is split into two nodes,
2456 				   and a new node (S[h+1]) will be created to
2457 				   become the root node.  */
2458 
2459 				RFALSE(h == MAX_HEIGHT - 1,
2460 				       "PAP-8355: attempt to create too high of a tree");
2461 
2462 				tb->insert_size[h + 1] =
2463 				    (DC_SIZE +
2464 				     KEY_SIZE) * (tb->blknum[h] - 1) +
2465 				    DC_SIZE;
2466 			} else if (h < MAX_HEIGHT - 1)
2467 				tb->insert_size[h + 1] = 0;
2468 		} else
2469 			tb->insert_size[h + 1] =
2470 			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2471 	}
2472 
2473 	ret = wait_tb_buffers_until_unlocked(tb);
2474 	if (ret == CARRY_ON) {
2475 		if (FILESYSTEM_CHANGED_TB(tb)) {
2476 			wait_tb_buffers_run = 1;
2477 			ret = REPEAT_SEARCH;
2478 			goto repeat;
2479 		} else {
2480 			return CARRY_ON;
2481 		}
2482 	} else {
2483 		wait_tb_buffers_run = 1;
2484 		goto repeat;
2485 	}
2486 
2487       repeat:
2488 	// fix_nodes was unable to perform its calculation due to
2489 	// filesystem got changed under us, lack of free disk space or i/o
2490 	// failure. If the first is the case - the search will be
2491 	// repeated. For now - free all resources acquired so far except
2492 	// for the new allocated nodes
2493 	{
2494 		int i;
2495 
2496 		/* Release path buffers. */
2497 		if (wait_tb_buffers_run) {
2498 			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2499 		} else {
2500 			pathrelse(tb->tb_path);
2501 		}
2502 		/* brelse all resources collected for balancing */
2503 		for (i = 0; i < MAX_HEIGHT; i++) {
2504 			if (wait_tb_buffers_run) {
2505 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2506 								 tb->L[i]);
2507 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2508 								 tb->R[i]);
2509 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2510 								 tb->FL[i]);
2511 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2512 								 tb->FR[i]);
2513 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2514 								 tb->
2515 								 CFL[i]);
2516 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2517 								 tb->
2518 								 CFR[i]);
2519 			}
2520 
2521 			brelse(tb->L[i]);
2522 			brelse(tb->R[i]);
2523 			brelse(tb->FL[i]);
2524 			brelse(tb->FR[i]);
2525 			brelse(tb->CFL[i]);
2526 			brelse(tb->CFR[i]);
2527 
2528 			tb->L[i] = NULL;
2529 			tb->R[i] = NULL;
2530 			tb->FL[i] = NULL;
2531 			tb->FR[i] = NULL;
2532 			tb->CFL[i] = NULL;
2533 			tb->CFR[i] = NULL;
2534 		}
2535 
2536 		if (wait_tb_buffers_run) {
2537 			for (i = 0; i < MAX_FEB_SIZE; i++) {
2538 				if (tb->FEB[i])
2539 					reiserfs_restore_prepared_buffer
2540 					    (tb->tb_sb, tb->FEB[i]);
2541 			}
2542 		}
2543 		return ret;
2544 	}
2545 
2546 }
2547 
2548 /* Anatoly will probably forgive me renaming tb to tb. I just
2549    wanted to make lines shorter */
2550 void unfix_nodes(struct tree_balance *tb)
2551 {
2552 	int i;
2553 
2554 	/* Release path buffers. */
2555 	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2556 
2557 	/* brelse all resources collected for balancing */
2558 	for (i = 0; i < MAX_HEIGHT; i++) {
2559 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2560 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2561 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2562 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2563 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2564 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2565 
2566 		brelse(tb->L[i]);
2567 		brelse(tb->R[i]);
2568 		brelse(tb->FL[i]);
2569 		brelse(tb->FR[i]);
2570 		brelse(tb->CFL[i]);
2571 		brelse(tb->CFR[i]);
2572 	}
2573 
2574 	/* deal with list of allocated (used and unused) nodes */
2575 	for (i = 0; i < MAX_FEB_SIZE; i++) {
2576 		if (tb->FEB[i]) {
2577 			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2578 			/* de-allocated block which was not used by balancing and
2579 			   bforget about buffer for it */
2580 			brelse(tb->FEB[i]);
2581 			reiserfs_free_block(tb->transaction_handle, NULL,
2582 					    blocknr, 0);
2583 		}
2584 		if (tb->used[i]) {
2585 			/* release used as new nodes including a new root */
2586 			brelse(tb->used[i]);
2587 		}
2588 	}
2589 
2590 	kfree(tb->vn_buf);
2591 
2592 }
2593