1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/reiserfs_fs.h> 7 #include <linux/reiserfs_acl.h> 8 #include <linux/reiserfs_xattr.h> 9 #include <asm/uaccess.h> 10 #include <linux/pagemap.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/buffer_head.h> 15 #include <linux/quotaops.h> 16 17 /* 18 ** We pack the tails of files on file close, not at the time they are written. 19 ** This implies an unnecessary copy of the tail and an unnecessary indirect item 20 ** insertion/balancing, for files that are written in one write. 21 ** It avoids unnecessary tail packings (balances) for files that are written in 22 ** multiple writes and are small enough to have tails. 23 ** 24 ** file_release is called by the VFS layer when the file is closed. If 25 ** this is the last open file descriptor, and the file 26 ** small enough to have a tail, and the tail is currently in an 27 ** unformatted node, the tail is converted back into a direct item. 28 ** 29 ** We use reiserfs_truncate_file to pack the tail, since it already has 30 ** all the conditions coded. 31 */ 32 static int reiserfs_file_release(struct inode *inode, struct file *filp) 33 { 34 35 struct reiserfs_transaction_handle th; 36 int err; 37 int jbegin_failure = 0; 38 39 BUG_ON(!S_ISREG(inode->i_mode)); 40 41 /* fast out for when nothing needs to be done */ 42 if ((atomic_read(&inode->i_count) > 1 || 43 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || 44 !tail_has_to_be_packed(inode)) && 45 REISERFS_I(inode)->i_prealloc_count <= 0) { 46 return 0; 47 } 48 49 mutex_lock(&inode->i_mutex); 50 51 mutex_lock(&(REISERFS_I(inode)->i_mmap)); 52 if (REISERFS_I(inode)->i_flags & i_ever_mapped) 53 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 54 55 reiserfs_write_lock(inode->i_sb); 56 /* freeing preallocation only involves relogging blocks that 57 * are already in the current transaction. preallocation gets 58 * freed at the end of each transaction, so it is impossible for 59 * us to log any additional blocks (including quota blocks) 60 */ 61 err = journal_begin(&th, inode->i_sb, 1); 62 if (err) { 63 /* uh oh, we can't allow the inode to go away while there 64 * is still preallocation blocks pending. Try to join the 65 * aborted transaction 66 */ 67 jbegin_failure = err; 68 err = journal_join_abort(&th, inode->i_sb, 1); 69 70 if (err) { 71 /* hmpf, our choices here aren't good. We can pin the inode 72 * which will disallow unmount from every happening, we can 73 * do nothing, which will corrupt random memory on unmount, 74 * or we can forcibly remove the file from the preallocation 75 * list, which will leak blocks on disk. Lets pin the inode 76 * and let the admin know what is going on. 77 */ 78 igrab(inode); 79 reiserfs_warning(inode->i_sb, 80 "pinning inode %lu because the " 81 "preallocation can't be freed", 82 inode->i_ino); 83 goto out; 84 } 85 } 86 reiserfs_update_inode_transaction(inode); 87 88 #ifdef REISERFS_PREALLOCATE 89 reiserfs_discard_prealloc(&th, inode); 90 #endif 91 err = journal_end(&th, inode->i_sb, 1); 92 93 /* copy back the error code from journal_begin */ 94 if (!err) 95 err = jbegin_failure; 96 97 if (!err && atomic_read(&inode->i_count) <= 1 && 98 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && 99 tail_has_to_be_packed(inode)) { 100 /* if regular file is released by last holder and it has been 101 appended (we append by unformatted node only) or its direct 102 item(s) had to be converted, then it may have to be 103 indirect2direct converted */ 104 err = reiserfs_truncate_file(inode, 0); 105 } 106 out: 107 mutex_unlock(&(REISERFS_I(inode)->i_mmap)); 108 mutex_unlock(&inode->i_mutex); 109 reiserfs_write_unlock(inode->i_sb); 110 return err; 111 } 112 113 static int reiserfs_file_mmap(struct file *file, struct vm_area_struct *vma) 114 { 115 struct inode *inode; 116 117 inode = file->f_path.dentry->d_inode; 118 mutex_lock(&(REISERFS_I(inode)->i_mmap)); 119 REISERFS_I(inode)->i_flags |= i_ever_mapped; 120 mutex_unlock(&(REISERFS_I(inode)->i_mmap)); 121 122 return generic_file_mmap(file, vma); 123 } 124 125 static void reiserfs_vfs_truncate_file(struct inode *inode) 126 { 127 reiserfs_truncate_file(inode, 1); 128 } 129 130 /* Sync a reiserfs file. */ 131 132 /* 133 * FIXME: sync_mapping_buffers() never has anything to sync. Can 134 * be removed... 135 */ 136 137 static int reiserfs_sync_file(struct file *p_s_filp, 138 struct dentry *p_s_dentry, int datasync) 139 { 140 struct inode *p_s_inode = p_s_dentry->d_inode; 141 int n_err; 142 int barrier_done; 143 144 BUG_ON(!S_ISREG(p_s_inode->i_mode)); 145 n_err = sync_mapping_buffers(p_s_inode->i_mapping); 146 reiserfs_write_lock(p_s_inode->i_sb); 147 barrier_done = reiserfs_commit_for_inode(p_s_inode); 148 reiserfs_write_unlock(p_s_inode->i_sb); 149 if (barrier_done != 1 && reiserfs_barrier_flush(p_s_inode->i_sb)) 150 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); 151 if (barrier_done < 0) 152 return barrier_done; 153 return (n_err < 0) ? -EIO : 0; 154 } 155 156 /* I really do not want to play with memory shortage right now, so 157 to simplify the code, we are not going to write more than this much pages at 158 a time. This still should considerably improve performance compared to 4k 159 at a time case. This is 32 pages of 4k size. */ 160 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE 161 162 /* Allocates blocks for a file to fulfil write request. 163 Maps all unmapped but prepared pages from the list. 164 Updates metadata with newly allocated blocknumbers as needed */ 165 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */ 166 loff_t pos, /* Writing position */ 167 int num_pages, /* number of pages write going 168 to touch */ 169 int write_bytes, /* amount of bytes to write */ 170 struct page **prepared_pages, /* array of 171 prepared pages 172 */ 173 int blocks_to_allocate /* Amount of blocks we 174 need to allocate to 175 fit the data into file 176 */ 177 ) 178 { 179 struct cpu_key key; // cpu key of item that we are going to deal with 180 struct item_head *ih; // pointer to item head that we are going to deal with 181 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with 182 __le32 *item; // pointer to item we are going to deal with 183 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 184 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored. 185 reiserfs_blocknr_hint_t hint; // hint structure for block allocator. 186 size_t res; // return value of various functions that we call. 187 int curr_block; // current block used to keep track of unmapped blocks. 188 int i; // loop counter 189 int itempos; // position in item 190 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in 191 // first page 192 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */ 193 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created. 194 int modifying_this_item = 0; // Flag for items traversal code to keep track 195 // of the fact that we already prepared 196 // current block for journal 197 int will_prealloc = 0; 198 RFALSE(!blocks_to_allocate, 199 "green-9004: tried to allocate zero blocks?"); 200 201 /* only preallocate if this is a small write */ 202 if (REISERFS_I(inode)->i_prealloc_count || 203 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && 204 blocks_to_allocate < 205 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) 206 will_prealloc = 207 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; 208 209 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * 210 sizeof(b_blocknr_t), GFP_NOFS); 211 if (!allocated_blocks) 212 return -ENOMEM; 213 214 /* First we compose a key to point at the writing position, we want to do 215 that outside of any locking region. */ 216 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); 217 218 /* If we came here, it means we absolutely need to open a transaction, 219 since we need to allocate some blocks */ 220 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that. 221 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough 222 if (res) 223 goto error_exit; 224 reiserfs_update_inode_transaction(inode); 225 226 /* Look for the in-tree position of our write, need path for block allocator */ 227 res = search_for_position_by_key(inode->i_sb, &key, &path); 228 if (res == IO_ERROR) { 229 res = -EIO; 230 goto error_exit; 231 } 232 233 /* Allocate blocks */ 234 /* First fill in "hint" structure for block allocator */ 235 hint.th = th; // transaction handle. 236 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine. 237 hint.inode = inode; // Inode is needed by block allocator too. 238 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator. 239 hint.key = key.on_disk_key; // on disk key of file. 240 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already. 241 hint.formatted_node = 0; // We are allocating blocks for unformatted node. 242 hint.preallocate = will_prealloc; 243 244 /* Call block allocator to allocate blocks */ 245 res = 246 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 247 blocks_to_allocate, blocks_to_allocate); 248 if (res != CARRY_ON) { 249 if (res == NO_DISK_SPACE) { 250 /* We flush the transaction in case of no space. This way some 251 blocks might become free */ 252 SB_JOURNAL(inode->i_sb)->j_must_wait = 1; 253 res = restart_transaction(th, inode, &path); 254 if (res) 255 goto error_exit; 256 257 /* We might have scheduled, so search again */ 258 res = 259 search_for_position_by_key(inode->i_sb, &key, 260 &path); 261 if (res == IO_ERROR) { 262 res = -EIO; 263 goto error_exit; 264 } 265 266 /* update changed info for hint structure. */ 267 res = 268 reiserfs_allocate_blocknrs(&hint, allocated_blocks, 269 blocks_to_allocate, 270 blocks_to_allocate); 271 if (res != CARRY_ON) { 272 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 273 pathrelse(&path); 274 goto error_exit; 275 } 276 } else { 277 res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; 278 pathrelse(&path); 279 goto error_exit; 280 } 281 } 282 #ifdef __BIG_ENDIAN 283 // Too bad, I have not found any way to convert a given region from 284 // cpu format to little endian format 285 { 286 int i; 287 for (i = 0; i < blocks_to_allocate; i++) 288 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); 289 } 290 #endif 291 292 /* Blocks allocating well might have scheduled and tree might have changed, 293 let's search the tree again */ 294 /* find where in the tree our write should go */ 295 res = search_for_position_by_key(inode->i_sb, &key, &path); 296 if (res == IO_ERROR) { 297 res = -EIO; 298 goto error_exit_free_blocks; 299 } 300 301 bh = get_last_bh(&path); // Get a bufferhead for last element in path. 302 ih = get_ih(&path); // Get a pointer to last item head in path. 303 item = get_item(&path); // Get a pointer to last item in path 304 305 /* Let's see what we have found */ 306 if (res != POSITION_FOUND) { /* position not found, this means that we 307 might need to append file with holes 308 first */ 309 // Since we are writing past the file's end, we need to find out if 310 // there is a hole that needs to be inserted before our writing 311 // position, and how many blocks it is going to cover (we need to 312 // populate pointers to file blocks representing the hole with zeros) 313 314 { 315 int item_offset = 1; 316 /* 317 * if ih is stat data, its offset is 0 and we don't want to 318 * add 1 to pos in the hole_size calculation 319 */ 320 if (is_statdata_le_ih(ih)) 321 item_offset = 0; 322 hole_size = (pos + item_offset - 323 (le_key_k_offset 324 (get_inode_item_key_version(inode), 325 &(ih->ih_key)) + op_bytes_number(ih, 326 inode-> 327 i_sb-> 328 s_blocksize))) 329 >> inode->i_sb->s_blocksize_bits; 330 } 331 332 if (hole_size > 0) { 333 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time. 334 /* area filled with zeroes, to supply as list of zero blocknumbers 335 We allocate it outside of loop just in case loop would spin for 336 several iterations. */ 337 char *zeros = kzalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway. 338 if (!zeros) { 339 res = -ENOMEM; 340 goto error_exit_free_blocks; 341 } 342 do { 343 to_paste = 344 min_t(__u64, hole_size, 345 MAX_ITEM_LEN(inode->i_sb-> 346 s_blocksize) / 347 UNFM_P_SIZE); 348 if (is_indirect_le_ih(ih)) { 349 /* Ok, there is existing indirect item already. Need to append it */ 350 /* Calculate position past inserted item */ 351 make_cpu_key(&key, inode, 352 le_key_k_offset 353 (get_inode_item_key_version 354 (inode), 355 &(ih->ih_key)) + 356 op_bytes_number(ih, 357 inode-> 358 i_sb-> 359 s_blocksize), 360 TYPE_INDIRECT, 3); 361 res = 362 reiserfs_paste_into_item(th, &path, 363 &key, 364 inode, 365 (char *) 366 zeros, 367 UNFM_P_SIZE 368 * 369 to_paste); 370 if (res) { 371 kfree(zeros); 372 goto error_exit_free_blocks; 373 } 374 } else if (is_statdata_le_ih(ih)) { 375 /* No existing item, create it */ 376 /* item head for new item */ 377 struct item_head ins_ih; 378 379 /* create a key for our new item */ 380 make_cpu_key(&key, inode, 1, 381 TYPE_INDIRECT, 3); 382 383 /* Create new item head for our new item */ 384 make_le_item_head(&ins_ih, &key, 385 key.version, 1, 386 TYPE_INDIRECT, 387 to_paste * 388 UNFM_P_SIZE, 389 0 /* free space */ ); 390 391 /* Find where such item should live in the tree */ 392 res = 393 search_item(inode->i_sb, &key, 394 &path); 395 if (res != ITEM_NOT_FOUND) { 396 /* item should not exist, otherwise we have error */ 397 if (res != -ENOSPC) { 398 reiserfs_warning(inode-> 399 i_sb, 400 "green-9008: search_by_key (%K) returned %d", 401 &key, 402 res); 403 } 404 res = -EIO; 405 kfree(zeros); 406 goto error_exit_free_blocks; 407 } 408 res = 409 reiserfs_insert_item(th, &path, 410 &key, &ins_ih, 411 inode, 412 (char *)zeros); 413 } else { 414 reiserfs_panic(inode->i_sb, 415 "green-9011: Unexpected key type %K\n", 416 &key); 417 } 418 if (res) { 419 kfree(zeros); 420 goto error_exit_free_blocks; 421 } 422 /* Now we want to check if transaction is too full, and if it is 423 we restart it. This will also free the path. */ 424 if (journal_transaction_should_end 425 (th, th->t_blocks_allocated)) { 426 inode->i_size = cpu_key_k_offset(&key) + 427 (to_paste << inode->i_blkbits); 428 res = 429 restart_transaction(th, inode, 430 &path); 431 if (res) { 432 pathrelse(&path); 433 kfree(zeros); 434 goto error_exit; 435 } 436 } 437 438 /* Well, need to recalculate path and stuff */ 439 set_cpu_key_k_offset(&key, 440 cpu_key_k_offset(&key) + 441 (to_paste << inode-> 442 i_blkbits)); 443 res = 444 search_for_position_by_key(inode->i_sb, 445 &key, &path); 446 if (res == IO_ERROR) { 447 res = -EIO; 448 kfree(zeros); 449 goto error_exit_free_blocks; 450 } 451 bh = get_last_bh(&path); 452 ih = get_ih(&path); 453 item = get_item(&path); 454 hole_size -= to_paste; 455 } while (hole_size); 456 kfree(zeros); 457 } 458 } 459 // Go through existing indirect items first 460 // replace all zeroes with blocknumbers from list 461 // Note that if no corresponding item was found, by previous search, 462 // it means there are no existing in-tree representation for file area 463 // we are going to overwrite, so there is nothing to scan through for holes. 464 for (curr_block = 0, itempos = path.pos_in_item; 465 curr_block < blocks_to_allocate && res == POSITION_FOUND;) { 466 retry: 467 468 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { 469 /* We run out of data in this indirect item, let's look for another 470 one. */ 471 /* First if we are already modifying current item, log it */ 472 if (modifying_this_item) { 473 journal_mark_dirty(th, inode->i_sb, bh); 474 modifying_this_item = 0; 475 } 476 /* Then set the key to look for a new indirect item (offset of old 477 item is added to old item length */ 478 set_cpu_key_k_offset(&key, 479 le_key_k_offset 480 (get_inode_item_key_version(inode), 481 &(ih->ih_key)) + 482 op_bytes_number(ih, 483 inode->i_sb-> 484 s_blocksize)); 485 /* Search ofor position of new key in the tree. */ 486 res = 487 search_for_position_by_key(inode->i_sb, &key, 488 &path); 489 if (res == IO_ERROR) { 490 res = -EIO; 491 goto error_exit_free_blocks; 492 } 493 bh = get_last_bh(&path); 494 ih = get_ih(&path); 495 item = get_item(&path); 496 itempos = path.pos_in_item; 497 continue; // loop to check all kinds of conditions and so on. 498 } 499 /* Ok, we have correct position in item now, so let's see if it is 500 representing file hole (blocknumber is zero) and fill it if needed */ 501 if (!item[itempos]) { 502 /* Ok, a hole. Now we need to check if we already prepared this 503 block to be journaled */ 504 while (!modifying_this_item) { // loop until succeed 505 /* Well, this item is not journaled yet, so we must prepare 506 it for journal first, before we can change it */ 507 struct item_head tmp_ih; // We copy item head of found item, 508 // here to detect if fs changed under 509 // us while we were preparing for 510 // journal. 511 int fs_gen; // We store fs generation here to find if someone 512 // changes fs under our feet 513 514 copy_item_head(&tmp_ih, ih); // Remember itemhead 515 fs_gen = get_generation(inode->i_sb); // remember fs generation 516 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing. 517 if (fs_changed(fs_gen, inode->i_sb) 518 && item_moved(&tmp_ih, &path)) { 519 // Sigh, fs was changed under us, we need to look for new 520 // location of item we are working with 521 522 /* unmark prepaerd area as journaled and search for it's 523 new position */ 524 reiserfs_restore_prepared_buffer(inode-> 525 i_sb, 526 bh); 527 res = 528 search_for_position_by_key(inode-> 529 i_sb, 530 &key, 531 &path); 532 if (res == IO_ERROR) { 533 res = -EIO; 534 goto error_exit_free_blocks; 535 } 536 bh = get_last_bh(&path); 537 ih = get_ih(&path); 538 item = get_item(&path); 539 itempos = path.pos_in_item; 540 goto retry; 541 } 542 modifying_this_item = 1; 543 } 544 item[itempos] = allocated_blocks[curr_block]; // Assign new block 545 curr_block++; 546 } 547 itempos++; 548 } 549 550 if (modifying_this_item) { // We need to log last-accessed block, if it 551 // was modified, but not logged yet. 552 journal_mark_dirty(th, inode->i_sb, bh); 553 } 554 555 if (curr_block < blocks_to_allocate) { 556 // Oh, well need to append to indirect item, or to create indirect item 557 // if there weren't any 558 if (is_indirect_le_ih(ih)) { 559 // Existing indirect item - append. First calculate key for append 560 // position. We do not need to recalculate path as it should 561 // already point to correct place. 562 make_cpu_key(&key, inode, 563 le_key_k_offset(get_inode_item_key_version 564 (inode), 565 &(ih->ih_key)) + 566 op_bytes_number(ih, 567 inode->i_sb->s_blocksize), 568 TYPE_INDIRECT, 3); 569 res = 570 reiserfs_paste_into_item(th, &path, &key, inode, 571 (char *)(allocated_blocks + 572 curr_block), 573 UNFM_P_SIZE * 574 (blocks_to_allocate - 575 curr_block)); 576 if (res) { 577 goto error_exit_free_blocks; 578 } 579 } else if (is_statdata_le_ih(ih)) { 580 // Last found item was statdata. That means we need to create indirect item. 581 struct item_head ins_ih; /* itemhead for new item */ 582 583 /* create a key for our new item */ 584 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one, 585 // because that's 586 // where first 587 // indirect item 588 // begins 589 /* Create new item head for our new item */ 590 make_le_item_head(&ins_ih, &key, key.version, 1, 591 TYPE_INDIRECT, 592 (blocks_to_allocate - 593 curr_block) * UNFM_P_SIZE, 594 0 /* free space */ ); 595 /* Find where such item should live in the tree */ 596 res = search_item(inode->i_sb, &key, &path); 597 if (res != ITEM_NOT_FOUND) { 598 /* Well, if we have found such item already, or some error 599 occured, we need to warn user and return error */ 600 if (res != -ENOSPC) { 601 reiserfs_warning(inode->i_sb, 602 "green-9009: search_by_key (%K) " 603 "returned %d", &key, 604 res); 605 } 606 res = -EIO; 607 goto error_exit_free_blocks; 608 } 609 /* Insert item into the tree with the data as its body */ 610 res = 611 reiserfs_insert_item(th, &path, &key, &ins_ih, 612 inode, 613 (char *)(allocated_blocks + 614 curr_block)); 615 } else { 616 reiserfs_panic(inode->i_sb, 617 "green-9010: unexpected item type for key %K\n", 618 &key); 619 } 620 } 621 // the caller is responsible for closing the transaction 622 // unless we return an error, they are also responsible for logging 623 // the inode. 624 // 625 pathrelse(&path); 626 /* 627 * cleanup prellocation from previous writes 628 * if this is a partial block write 629 */ 630 if (write_bytes & (inode->i_sb->s_blocksize - 1)) 631 reiserfs_discard_prealloc(th, inode); 632 reiserfs_write_unlock(inode->i_sb); 633 634 // go through all the pages/buffers and map the buffers to newly allocated 635 // blocks (so that system knows where to write these pages later). 636 curr_block = 0; 637 for (i = 0; i < num_pages; i++) { 638 struct page *page = prepared_pages[i]; //current page 639 struct buffer_head *head = page_buffers(page); // first buffer for a page 640 int block_start, block_end; // in-page offsets for buffers. 641 642 if (!page_buffers(page)) 643 reiserfs_panic(inode->i_sb, 644 "green-9005: No buffers for prepared page???"); 645 646 /* For each buffer in page */ 647 for (bh = head, block_start = 0; bh != head || !block_start; 648 block_start = block_end, bh = bh->b_this_page) { 649 if (!bh) 650 reiserfs_panic(inode->i_sb, 651 "green-9006: Allocated but absent buffer for a page?"); 652 block_end = block_start + inode->i_sb->s_blocksize; 653 if (i == 0 && block_end <= from) 654 /* if this buffer is before requested data to map, skip it */ 655 continue; 656 if (i == num_pages - 1 && block_start >= to) 657 /* If this buffer is after requested data to map, abort 658 processing of current page */ 659 break; 660 661 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it 662 map_bh(bh, inode->i_sb, 663 le32_to_cpu(allocated_blocks 664 [curr_block])); 665 curr_block++; 666 set_buffer_new(bh); 667 } 668 } 669 } 670 671 RFALSE(curr_block > blocks_to_allocate, 672 "green-9007: Used too many blocks? weird"); 673 674 kfree(allocated_blocks); 675 return 0; 676 677 // Need to deal with transaction here. 678 error_exit_free_blocks: 679 pathrelse(&path); 680 // free blocks 681 for (i = 0; i < blocks_to_allocate; i++) 682 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), 683 1); 684 685 error_exit: 686 if (th->t_trans_id) { 687 int err; 688 // update any changes we made to blk count 689 mark_inode_dirty(inode); 690 err = 691 journal_end(th, inode->i_sb, 692 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 693 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); 694 if (err) 695 res = err; 696 } 697 reiserfs_write_unlock(inode->i_sb); 698 kfree(allocated_blocks); 699 700 return res; 701 } 702 703 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ 704 static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */ 705 size_t num_pages /* amount of pages */ ) 706 { 707 int i; // loop counter 708 709 for (i = 0; i < num_pages; i++) { 710 struct page *page = prepared_pages[i]; 711 712 try_to_free_buffers(page); 713 unlock_page(page); 714 page_cache_release(page); 715 } 716 } 717 718 /* This function will copy data from userspace to specified pages within 719 supplied byte range */ 720 static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */ 721 int num_pages, /* Number of pages affected */ 722 int write_bytes, /* Amount of bytes to write */ 723 struct page **prepared_pages, /* pointer to 724 array to 725 prepared pages 726 */ 727 const char __user * buf /* Pointer to user-supplied 728 data */ 729 ) 730 { 731 long page_fault = 0; // status of copy_from_user. 732 int i; // loop counter. 733 int offset; // offset in page 734 735 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 736 i++, offset = 0) { 737 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 738 struct page *page = prepared_pages[i]; // Current page we process. 739 740 fault_in_pages_readable(buf, count); 741 742 /* Copy data from userspace to the current page */ 743 kmap(page); 744 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data. 745 /* Flush processor's dcache for this page */ 746 flush_dcache_page(page); 747 kunmap(page); 748 buf += count; 749 write_bytes -= count; 750 751 if (page_fault) 752 break; // Was there a fault? abort. 753 } 754 755 return page_fault ? -EFAULT : 0; 756 } 757 758 /* taken fs/buffer.c:__block_commit_write */ 759 int reiserfs_commit_page(struct inode *inode, struct page *page, 760 unsigned from, unsigned to) 761 { 762 unsigned block_start, block_end; 763 int partial = 0; 764 unsigned blocksize; 765 struct buffer_head *bh, *head; 766 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; 767 int new; 768 int logit = reiserfs_file_data_log(inode); 769 struct super_block *s = inode->i_sb; 770 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 771 struct reiserfs_transaction_handle th; 772 int ret = 0; 773 774 th.t_trans_id = 0; 775 blocksize = 1 << inode->i_blkbits; 776 777 if (logit) { 778 reiserfs_write_lock(s); 779 ret = journal_begin(&th, s, bh_per_page + 1); 780 if (ret) 781 goto drop_write_lock; 782 reiserfs_update_inode_transaction(inode); 783 } 784 for (bh = head = page_buffers(page), block_start = 0; 785 bh != head || !block_start; 786 block_start = block_end, bh = bh->b_this_page) { 787 788 new = buffer_new(bh); 789 clear_buffer_new(bh); 790 block_end = block_start + blocksize; 791 if (block_end <= from || block_start >= to) { 792 if (!buffer_uptodate(bh)) 793 partial = 1; 794 } else { 795 set_buffer_uptodate(bh); 796 if (logit) { 797 reiserfs_prepare_for_journal(s, bh, 1); 798 journal_mark_dirty(&th, s, bh); 799 } else if (!buffer_dirty(bh)) { 800 mark_buffer_dirty(bh); 801 /* do data=ordered on any page past the end 802 * of file and any buffer marked BH_New. 803 */ 804 if (reiserfs_data_ordered(inode->i_sb) && 805 (new || page->index >= i_size_index)) { 806 reiserfs_add_ordered_list(inode, bh); 807 } 808 } 809 } 810 } 811 if (logit) { 812 ret = journal_end(&th, s, bh_per_page + 1); 813 drop_write_lock: 814 reiserfs_write_unlock(s); 815 } 816 /* 817 * If this is a partial write which happened to make all buffers 818 * uptodate then we can optimize away a bogus readpage() for 819 * the next read(). Here we 'discover' whether the page went 820 * uptodate as a result of this (potentially partial) write. 821 */ 822 if (!partial) 823 SetPageUptodate(page); 824 return ret; 825 } 826 827 /* Submit pages for write. This was separated from actual file copying 828 because we might want to allocate block numbers in-between. 829 This function assumes that caller will adjust file size to correct value. */ 830 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */ 831 size_t num_pages, /* Number of pages to write */ 832 size_t write_bytes, /* number of bytes to write */ 833 struct page **prepared_pages /* list of pages */ 834 ) 835 { 836 int status; // return status of block_commit_write. 837 int retval = 0; // Return value we are going to return. 838 int i; // loop counter 839 int offset; // Writing offset in page. 840 int orig_write_bytes = write_bytes; 841 int sd_update = 0; 842 843 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; 844 i++, offset = 0) { 845 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page 846 struct page *page = prepared_pages[i]; // Current page we process. 847 848 status = 849 reiserfs_commit_page(inode, page, offset, offset + count); 850 if (status) 851 retval = status; // To not overcomplicate matters We are going to 852 // submit all the pages even if there was error. 853 // we only remember error status to report it on 854 // exit. 855 write_bytes -= count; 856 } 857 /* now that we've gotten all the ordered buffers marked dirty, 858 * we can safely update i_size and close any running transaction 859 */ 860 if (pos + orig_write_bytes > inode->i_size) { 861 inode->i_size = pos + orig_write_bytes; // Set new size 862 /* If the file have grown so much that tail packing is no 863 * longer possible, reset "need to pack" flag */ 864 if ((have_large_tails(inode->i_sb) && 865 inode->i_size > i_block_size(inode) * 4) || 866 (have_small_tails(inode->i_sb) && 867 inode->i_size > i_block_size(inode))) 868 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 869 else if ((have_large_tails(inode->i_sb) && 870 inode->i_size < i_block_size(inode) * 4) || 871 (have_small_tails(inode->i_sb) && 872 inode->i_size < i_block_size(inode))) 873 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 874 875 if (th->t_trans_id) { 876 reiserfs_write_lock(inode->i_sb); 877 // this sets the proper flags for O_SYNC to trigger a commit 878 mark_inode_dirty(inode); 879 reiserfs_write_unlock(inode->i_sb); 880 } else { 881 reiserfs_write_lock(inode->i_sb); 882 reiserfs_update_inode_transaction(inode); 883 mark_inode_dirty(inode); 884 reiserfs_write_unlock(inode->i_sb); 885 } 886 887 sd_update = 1; 888 } 889 if (th->t_trans_id) { 890 reiserfs_write_lock(inode->i_sb); 891 if (!sd_update) 892 mark_inode_dirty(inode); 893 status = journal_end(th, th->t_super, th->t_blocks_allocated); 894 if (status) 895 retval = status; 896 reiserfs_write_unlock(inode->i_sb); 897 } 898 th->t_trans_id = 0; 899 900 /* 901 * we have to unlock the pages after updating i_size, otherwise 902 * we race with writepage 903 */ 904 for (i = 0; i < num_pages; i++) { 905 struct page *page = prepared_pages[i]; 906 unlock_page(page); 907 mark_page_accessed(page); 908 page_cache_release(page); 909 } 910 return retval; 911 } 912 913 /* Look if passed writing region is going to touch file's tail 914 (if it is present). And if it is, convert the tail to unformatted node */ 915 static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */ 916 loff_t pos, /* Writing position */ 917 int write_bytes /* amount of bytes to write */ 918 ) 919 { 920 INITIALIZE_PATH(path); // needed for search_for_position 921 struct cpu_key key; // Key that would represent last touched writing byte. 922 struct item_head *ih; // item header of found block; 923 int res; // Return value of various functions we call. 924 int cont_expand_offset; // We will put offset for generic_cont_expand here 925 // This can be int just because tails are created 926 // only for small files. 927 928 /* this embodies a dependency on a particular tail policy */ 929 if (inode->i_size >= inode->i_sb->s_blocksize * 4) { 930 /* such a big files do not have tails, so we won't bother ourselves 931 to look for tails, simply return */ 932 return 0; 933 } 934 935 reiserfs_write_lock(inode->i_sb); 936 /* find the item containing the last byte to be written, or if 937 * writing past the end of the file then the last item of the 938 * file (and then we check its type). */ 939 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, 940 3 /*key length */ ); 941 res = search_for_position_by_key(inode->i_sb, &key, &path); 942 if (res == IO_ERROR) { 943 reiserfs_write_unlock(inode->i_sb); 944 return -EIO; 945 } 946 ih = get_ih(&path); 947 res = 0; 948 if (is_direct_le_ih(ih)) { 949 /* Ok, closest item is file tail (tails are stored in "direct" 950 * items), so we need to unpack it. */ 951 /* To not overcomplicate matters, we just call generic_cont_expand 952 which will in turn call other stuff and finally will boil down to 953 reiserfs_get_block() that would do necessary conversion. */ 954 cont_expand_offset = 955 le_key_k_offset(get_inode_item_key_version(inode), 956 &(ih->ih_key)); 957 pathrelse(&path); 958 res = generic_cont_expand(inode, cont_expand_offset); 959 } else 960 pathrelse(&path); 961 962 reiserfs_write_unlock(inode->i_sb); 963 return res; 964 } 965 966 /* This function locks pages starting from @pos for @inode. 967 @num_pages pages are locked and stored in 968 @prepared_pages array. Also buffers are allocated for these pages. 969 First and last page of the region is read if it is overwritten only 970 partially. If last page did not exist before write (file hole or file 971 append), it is zeroed, then. 972 Returns number of unallocated blocks that should be allocated to cover 973 new file data.*/ 974 static int reiserfs_prepare_file_region_for_write(struct inode *inode 975 /* Inode of the file */ , 976 loff_t pos, /* position in the file */ 977 size_t num_pages, /* number of pages to 978 prepare */ 979 size_t write_bytes, /* Amount of bytes to be 980 overwritten from 981 @pos */ 982 struct page **prepared_pages /* pointer to array 983 where to store 984 prepared pages */ 985 ) 986 { 987 int res = 0; // Return values of different functions we call. 988 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages. 989 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page 990 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; 991 /* offset of last modified byte in last 992 page */ 993 struct address_space *mapping = inode->i_mapping; // Pages are mapped here. 994 int i; // Simple counter 995 int blocks = 0; /* Return value (blocks that should be allocated) */ 996 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead 997 // of a page. 998 unsigned block_start, block_end; // Starting and ending offsets of current 999 // buffer in the page. 1000 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if 1001 // Page appeared to be not up 1002 // to date. Note how we have 1003 // at most 2 buffers, this is 1004 // because we at most may 1005 // partially overwrite two 1006 // buffers for one page. One at // the beginning of write area 1007 // and one at the end. 1008 // Everything inthe middle gets // overwritten totally. 1009 1010 struct cpu_key key; // cpu key of item that we are going to deal with 1011 struct item_head *ih = NULL; // pointer to item head that we are going to deal with 1012 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with 1013 INITIALIZE_PATH(path); // path to item, that we are going to deal with. 1014 __le32 *item = NULL; // pointer to item we are going to deal with 1015 int item_pos = -1; /* Position in indirect item */ 1016 1017 if (num_pages < 1) { 1018 reiserfs_warning(inode->i_sb, 1019 "green-9001: reiserfs_prepare_file_region_for_write " 1020 "called with zero number of pages to process"); 1021 return -EFAULT; 1022 } 1023 1024 /* We have 2 loops for pages. In first loop we grab and lock the pages, so 1025 that nobody would touch these until we release the pages. Then 1026 we'd start to deal with mapping buffers to blocks. */ 1027 for (i = 0; i < num_pages; i++) { 1028 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page 1029 if (!prepared_pages[i]) { 1030 res = -ENOMEM; 1031 goto failed_page_grabbing; 1032 } 1033 if (!page_has_buffers(prepared_pages[i])) 1034 create_empty_buffers(prepared_pages[i], 1035 inode->i_sb->s_blocksize, 0); 1036 } 1037 1038 /* Let's count amount of blocks for a case where all the blocks 1039 overwritten are new (we will substract already allocated blocks later) */ 1040 if (num_pages > 2) 1041 /* These are full-overwritten pages so we count all the blocks in 1042 these pages are counted as needed to be allocated */ 1043 blocks = 1044 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1045 1046 /* count blocks needed for first page (possibly partially written) */ 1047 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */ 1048 1049 /* Now we account for last page. If last page == first page (we 1050 overwrite only one page), we substract all the blocks past the 1051 last writing position in a page out of already calculated number 1052 of blocks */ 1053 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1054 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); 1055 /* Note how we do not roundup here since partial blocks still 1056 should be allocated */ 1057 1058 /* Now if all the write area lies past the file end, no point in 1059 maping blocks, since there is none, so we just zero out remaining 1060 parts of first and last pages in write area (if needed) */ 1061 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { 1062 if (from != 0) /* First page needs to be partially zeroed */ 1063 zero_user_page(prepared_pages[0], 0, from, KM_USER0); 1064 1065 if (to != PAGE_CACHE_SIZE) /* Last page needs to be partially zeroed */ 1066 zero_user_page(prepared_pages[num_pages-1], to, 1067 PAGE_CACHE_SIZE - to, KM_USER0); 1068 1069 /* Since all blocks are new - use already calculated value */ 1070 return blocks; 1071 } 1072 1073 /* Well, since we write somewhere into the middle of a file, there is 1074 possibility we are writing over some already allocated blocks, so 1075 let's map these blocks and substract number of such blocks out of blocks 1076 we need to allocate (calculated above) */ 1077 /* Mask write position to start on blocksize, we do it out of the 1078 loop for performance reasons */ 1079 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); 1080 /* Set cpu key to the starting position in a file (on left block boundary) */ 1081 make_cpu_key(&key, inode, 1082 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), 1083 TYPE_ANY, 3 /*key length */ ); 1084 1085 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key() 1086 for (i = 0; i < num_pages; i++) { 1087 1088 head = page_buffers(prepared_pages[i]); 1089 /* For each buffer in the page */ 1090 for (bh = head, block_start = 0; bh != head || !block_start; 1091 block_start = block_end, bh = bh->b_this_page) { 1092 if (!bh) 1093 reiserfs_panic(inode->i_sb, 1094 "green-9002: Allocated but absent buffer for a page?"); 1095 /* Find where this buffer ends */ 1096 block_end = block_start + inode->i_sb->s_blocksize; 1097 if (i == 0 && block_end <= from) 1098 /* if this buffer is before requested data to map, skip it */ 1099 continue; 1100 1101 if (i == num_pages - 1 && block_start >= to) { 1102 /* If this buffer is after requested data to map, abort 1103 processing of current page */ 1104 break; 1105 } 1106 1107 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 1108 /* This is optimisation for a case where buffer is mapped 1109 and have blocknumber assigned. In case significant amount 1110 of such buffers are present, we may avoid some amount 1111 of search_by_key calls. 1112 Probably it would be possible to move parts of this code 1113 out of BKL, but I afraid that would overcomplicate code 1114 without any noticeable benefit. 1115 */ 1116 item_pos++; 1117 /* Update the key */ 1118 set_cpu_key_k_offset(&key, 1119 cpu_key_k_offset(&key) + 1120 inode->i_sb->s_blocksize); 1121 blocks--; // Decrease the amount of blocks that need to be 1122 // allocated 1123 continue; // Go to the next buffer 1124 } 1125 1126 if (!itembuf || /* if first iteration */ 1127 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the 1128 current unformatted_item */ 1129 /* Try to find next item */ 1130 res = 1131 search_for_position_by_key(inode->i_sb, 1132 &key, &path); 1133 /* Abort if no more items */ 1134 if (res != POSITION_FOUND) { 1135 /* make sure later loops don't use this item */ 1136 itembuf = NULL; 1137 item = NULL; 1138 break; 1139 } 1140 1141 /* Update information about current indirect item */ 1142 itembuf = get_last_bh(&path); 1143 ih = get_ih(&path); 1144 item = get_item(&path); 1145 item_pos = path.pos_in_item; 1146 1147 RFALSE(!is_indirect_le_ih(ih), 1148 "green-9003: indirect item expected"); 1149 } 1150 1151 /* See if there is some block associated with the file 1152 at that position, map the buffer to this block */ 1153 if (get_block_num(item, item_pos)) { 1154 map_bh(bh, inode->i_sb, 1155 get_block_num(item, item_pos)); 1156 blocks--; // Decrease the amount of blocks that need to be 1157 // allocated 1158 } 1159 item_pos++; 1160 /* Update the key */ 1161 set_cpu_key_k_offset(&key, 1162 cpu_key_k_offset(&key) + 1163 inode->i_sb->s_blocksize); 1164 } 1165 } 1166 pathrelse(&path); // Free the path 1167 reiserfs_write_unlock(inode->i_sb); 1168 1169 /* Now zero out unmappend buffers for the first and last pages of 1170 write area or issue read requests if page is mapped. */ 1171 /* First page, see if it is not uptodate */ 1172 if (!PageUptodate(prepared_pages[0])) { 1173 head = page_buffers(prepared_pages[0]); 1174 1175 /* For each buffer in page */ 1176 for (bh = head, block_start = 0; bh != head || !block_start; 1177 block_start = block_end, bh = bh->b_this_page) { 1178 1179 if (!bh) 1180 reiserfs_panic(inode->i_sb, 1181 "green-9002: Allocated but absent buffer for a page?"); 1182 /* Find where this buffer ends */ 1183 block_end = block_start + inode->i_sb->s_blocksize; 1184 if (block_end <= from) 1185 /* if this buffer is before requested data to map, skip it */ 1186 continue; 1187 if (block_start < from) { /* Aha, our partial buffer */ 1188 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1189 issue READ request for it to 1190 not loose data */ 1191 ll_rw_block(READ, 1, &bh); 1192 *wait_bh++ = bh; 1193 } else { /* Not mapped, zero it */ 1194 zero_user_page(prepared_pages[0], 1195 block_start, 1196 from - block_start, KM_USER0); 1197 set_buffer_uptodate(bh); 1198 } 1199 } 1200 } 1201 } 1202 1203 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ 1204 if (!PageUptodate(prepared_pages[num_pages - 1]) || 1205 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > 1206 (inode->i_size >> PAGE_CACHE_SHIFT)) { 1207 head = page_buffers(prepared_pages[num_pages - 1]); 1208 1209 /* for each buffer in page */ 1210 for (bh = head, block_start = 0; bh != head || !block_start; 1211 block_start = block_end, bh = bh->b_this_page) { 1212 1213 if (!bh) 1214 reiserfs_panic(inode->i_sb, 1215 "green-9002: Allocated but absent buffer for a page?"); 1216 /* Find where this buffer ends */ 1217 block_end = block_start + inode->i_sb->s_blocksize; 1218 if (block_start >= to) 1219 /* if this buffer is after requested data to map, skip it */ 1220 break; 1221 if (block_end > to) { /* Aha, our partial buffer */ 1222 if (buffer_mapped(bh)) { /* If it is mapped, we need to 1223 issue READ request for it to 1224 not loose data */ 1225 ll_rw_block(READ, 1, &bh); 1226 *wait_bh++ = bh; 1227 } else { /* Not mapped, zero it */ 1228 zero_user_page(prepared_pages[num_pages-1], 1229 to, block_end - to, KM_USER0); 1230 set_buffer_uptodate(bh); 1231 } 1232 } 1233 } 1234 } 1235 1236 /* Wait for read requests we made to happen, if necessary */ 1237 while (wait_bh > wait) { 1238 wait_on_buffer(*--wait_bh); 1239 if (!buffer_uptodate(*wait_bh)) { 1240 res = -EIO; 1241 goto failed_read; 1242 } 1243 } 1244 1245 return blocks; 1246 failed_page_grabbing: 1247 num_pages = i; 1248 failed_read: 1249 reiserfs_unprepare_pages(prepared_pages, num_pages); 1250 return res; 1251 } 1252 1253 /* Write @count bytes at position @ppos in a file indicated by @file 1254 from the buffer @buf. 1255 1256 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want 1257 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was 1258 written for (ext2/3). This is for several reasons: 1259 1260 * It has no understanding of any filesystem specific optimizations. 1261 1262 * It enters the filesystem repeatedly for each page that is written. 1263 1264 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key 1265 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time 1266 * to reiserfs which allows for fewer tree traversals. 1267 1268 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. 1269 1270 * Asking the block allocation code for blocks one at a time is slightly less efficient. 1271 1272 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to 1273 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make 1274 things right finally. 1275 1276 Future Features: providing search_by_key with hints. 1277 1278 */ 1279 static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */ 1280 const char __user * buf, /* pointer to user supplied data 1281 (in userspace) */ 1282 size_t count, /* amount of bytes to write */ 1283 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to 1284 * new current position before returning. */ 1285 ) 1286 { 1287 size_t already_written = 0; // Number of bytes already written to the file. 1288 loff_t pos; // Current position in the file. 1289 ssize_t res; // return value of various functions that we call. 1290 int err = 0; 1291 struct inode *inode = file->f_path.dentry->d_inode; // Inode of the file that we are writing to. 1292 /* To simplify coding at this time, we store 1293 locked pages in array for now */ 1294 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; 1295 struct reiserfs_transaction_handle th; 1296 th.t_trans_id = 0; 1297 1298 /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items 1299 * lying around (most of the disk, in fact). Despite the filesystem 1300 * now being a v3.6 format, the old items still can't support large 1301 * file sizes. Catch this case here, as the rest of the VFS layer is 1302 * oblivious to the different limitations between old and new items. 1303 * reiserfs_setattr catches this for truncates. This chunk is lifted 1304 * from generic_write_checks. */ 1305 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 && 1306 *ppos + count > MAX_NON_LFS) { 1307 if (*ppos >= MAX_NON_LFS) { 1308 send_sig(SIGXFSZ, current, 0); 1309 return -EFBIG; 1310 } 1311 if (count > MAX_NON_LFS - (unsigned long)*ppos) 1312 count = MAX_NON_LFS - (unsigned long)*ppos; 1313 } 1314 1315 if (file->f_flags & O_DIRECT) 1316 return do_sync_write(file, buf, count, ppos); 1317 1318 if (unlikely((ssize_t) count < 0)) 1319 return -EINVAL; 1320 1321 if (unlikely(!access_ok(VERIFY_READ, buf, count))) 1322 return -EFAULT; 1323 1324 mutex_lock(&inode->i_mutex); // locks the entire file for just us 1325 1326 pos = *ppos; 1327 1328 /* Check if we can write to specified region of file, file 1329 is not overly big and this kind of stuff. Adjust pos and 1330 count, if needed */ 1331 res = generic_write_checks(file, &pos, &count, 0); 1332 if (res) 1333 goto out; 1334 1335 if (count == 0) 1336 goto out; 1337 1338 res = remove_suid(file->f_path.dentry); 1339 if (res) 1340 goto out; 1341 1342 file_update_time(file); 1343 1344 // Ok, we are done with all the checks. 1345 1346 // Now we should start real work 1347 1348 /* If we are going to write past the file's packed tail or if we are going 1349 to overwrite part of the tail, we need that tail to be converted into 1350 unformatted node */ 1351 res = reiserfs_check_for_tail_and_convert(inode, pos, count); 1352 if (res) 1353 goto out; 1354 1355 while (count > 0) { 1356 /* This is the main loop in which we running until some error occures 1357 or until we write all of the data. */ 1358 size_t num_pages; /* amount of pages we are going to write this iteration */ 1359 size_t write_bytes; /* amount of bytes to write during this iteration */ 1360 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */ 1361 1362 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ 1363 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial 1364 pages */ 1365 ((count + 1366 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); 1367 /* convert size to amount of 1368 pages */ 1369 reiserfs_write_lock(inode->i_sb); 1370 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME 1371 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { 1372 /* If we were asked to write more data than we want to or if there 1373 is not that much space, then we shorten amount of data to write 1374 for this iteration. */ 1375 num_pages = 1376 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, 1377 reiserfs_can_fit_pages(inode->i_sb)); 1378 /* Also we should not forget to set size in bytes accordingly */ 1379 write_bytes = (num_pages << PAGE_CACHE_SHIFT) - 1380 (pos & (PAGE_CACHE_SIZE - 1)); 1381 /* If position is not on the 1382 start of the page, we need 1383 to substract the offset 1384 within page */ 1385 } else 1386 write_bytes = count; 1387 1388 /* reserve the blocks to be allocated later, so that later on 1389 we still have the space to write the blocks to */ 1390 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1391 num_pages << 1392 (PAGE_CACHE_SHIFT - 1393 inode->i_blkbits)); 1394 reiserfs_write_unlock(inode->i_sb); 1395 1396 if (!num_pages) { /* If we do not have enough space even for a single page... */ 1397 if (pos > 1398 inode->i_size + inode->i_sb->s_blocksize - 1399 (pos & (inode->i_sb->s_blocksize - 1))) { 1400 res = -ENOSPC; 1401 break; // In case we are writing past the end of the last file block, break. 1402 } 1403 // Otherwise we are possibly overwriting the file, so 1404 // let's set write size to be equal or less than blocksize. 1405 // This way we get it correctly for file holes. 1406 // But overwriting files on absolutelly full volumes would not 1407 // be very efficient. Well, people are not supposed to fill 1408 // 100% of disk space anyway. 1409 write_bytes = 1410 min_t(size_t, count, 1411 inode->i_sb->s_blocksize - 1412 (pos & (inode->i_sb->s_blocksize - 1))); 1413 num_pages = 1; 1414 // No blocks were claimed before, so do it now. 1415 reiserfs_claim_blocks_to_be_allocated(inode->i_sb, 1416 1 << 1417 (PAGE_CACHE_SHIFT 1418 - 1419 inode-> 1420 i_blkbits)); 1421 } 1422 1423 /* Prepare for writing into the region, read in all the 1424 partially overwritten pages, if needed. And lock the pages, 1425 so that nobody else can access these until we are done. 1426 We get number of actual blocks needed as a result. */ 1427 res = reiserfs_prepare_file_region_for_write(inode, pos, 1428 num_pages, 1429 write_bytes, 1430 prepared_pages); 1431 if (res < 0) { 1432 reiserfs_release_claimed_blocks(inode->i_sb, 1433 num_pages << 1434 (PAGE_CACHE_SHIFT - 1435 inode->i_blkbits)); 1436 break; 1437 } 1438 1439 blocks_to_allocate = res; 1440 1441 /* First we correct our estimate of how many blocks we need */ 1442 reiserfs_release_claimed_blocks(inode->i_sb, 1443 (num_pages << 1444 (PAGE_CACHE_SHIFT - 1445 inode->i_sb-> 1446 s_blocksize_bits)) - 1447 blocks_to_allocate); 1448 1449 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */ 1450 /* Fill in all the possible holes and append the file if needed */ 1451 res = 1452 reiserfs_allocate_blocks_for_region(&th, inode, pos, 1453 num_pages, 1454 write_bytes, 1455 prepared_pages, 1456 blocks_to_allocate); 1457 } 1458 1459 /* well, we have allocated the blocks, so it is time to free 1460 the reservation we made earlier. */ 1461 reiserfs_release_claimed_blocks(inode->i_sb, 1462 blocks_to_allocate); 1463 if (res) { 1464 reiserfs_unprepare_pages(prepared_pages, num_pages); 1465 break; 1466 } 1467 1468 /* NOTE that allocating blocks and filling blocks can be done in reverse order 1469 and probably we would do that just to get rid of garbage in files after a 1470 crash */ 1471 1472 /* Copy data from user-supplied buffer to file's pages */ 1473 res = 1474 reiserfs_copy_from_user_to_file_region(pos, num_pages, 1475 write_bytes, 1476 prepared_pages, buf); 1477 if (res) { 1478 reiserfs_unprepare_pages(prepared_pages, num_pages); 1479 break; 1480 } 1481 1482 /* Send the pages to disk and unlock them. */ 1483 res = 1484 reiserfs_submit_file_region_for_write(&th, inode, pos, 1485 num_pages, 1486 write_bytes, 1487 prepared_pages); 1488 if (res) 1489 break; 1490 1491 already_written += write_bytes; 1492 buf += write_bytes; 1493 *ppos = pos += write_bytes; 1494 count -= write_bytes; 1495 balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); 1496 } 1497 1498 /* this is only true on error */ 1499 if (th.t_trans_id) { 1500 reiserfs_write_lock(inode->i_sb); 1501 err = journal_end(&th, th.t_super, th.t_blocks_allocated); 1502 reiserfs_write_unlock(inode->i_sb); 1503 if (err) { 1504 res = err; 1505 goto out; 1506 } 1507 } 1508 1509 if (likely(res >= 0) && 1510 (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode)))) 1511 res = generic_osync_inode(inode, file->f_mapping, 1512 OSYNC_METADATA | OSYNC_DATA); 1513 1514 mutex_unlock(&inode->i_mutex); 1515 reiserfs_async_progress_wait(inode->i_sb); 1516 return (already_written != 0) ? already_written : res; 1517 1518 out: 1519 mutex_unlock(&inode->i_mutex); // unlock the file on exit. 1520 return res; 1521 } 1522 1523 const struct file_operations reiserfs_file_operations = { 1524 .read = do_sync_read, 1525 .write = reiserfs_file_write, 1526 .ioctl = reiserfs_ioctl, 1527 #ifdef CONFIG_COMPAT 1528 .compat_ioctl = reiserfs_compat_ioctl, 1529 #endif 1530 .mmap = reiserfs_file_mmap, 1531 .open = generic_file_open, 1532 .release = reiserfs_file_release, 1533 .fsync = reiserfs_sync_file, 1534 .aio_read = generic_file_aio_read, 1535 .aio_write = generic_file_aio_write, 1536 .splice_read = generic_file_splice_read, 1537 .splice_write = generic_file_splice_write, 1538 }; 1539 1540 const struct inode_operations reiserfs_file_inode_operations = { 1541 .truncate = reiserfs_vfs_truncate_file, 1542 .setattr = reiserfs_setattr, 1543 .setxattr = reiserfs_setxattr, 1544 .getxattr = reiserfs_getxattr, 1545 .listxattr = reiserfs_listxattr, 1546 .removexattr = reiserfs_removexattr, 1547 .permission = reiserfs_permission, 1548 }; 1549