xref: /openbmc/linux/fs/pstore/zone.c (revision e5bd61e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Provide a pstore intermediate backend, organized into kernel memory
4  * allocated zones that are then mapped and flushed into a single
5  * contiguous region on a storage backend of some kind (block, mtd, etc).
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mount.h>
14 #include <linux/printk.h>
15 #include <linux/fs.h>
16 #include <linux/pstore_zone.h>
17 #include <linux/kdev_t.h>
18 #include <linux/device.h>
19 #include <linux/namei.h>
20 #include <linux/fcntl.h>
21 #include <linux/uio.h>
22 #include <linux/writeback.h>
23 #include "internal.h"
24 
25 /**
26  * struct psz_buffer - header of zone to flush to storage
27  *
28  * @sig: signature to indicate header (PSZ_SIG xor PSZONE-type value)
29  * @datalen: length of data in @data
30  * @start: offset into @data where the beginning of the stored bytes begin
31  * @data: zone data.
32  */
33 struct psz_buffer {
34 #define PSZ_SIG (0x43474244) /* DBGC */
35 	uint32_t sig;
36 	atomic_t datalen;
37 	atomic_t start;
38 	uint8_t data[];
39 };
40 
41 /**
42  * struct psz_kmsg_header - kmsg dump-specific header to flush to storage
43  *
44  * @magic: magic num for kmsg dump header
45  * @time: kmsg dump trigger time
46  * @compressed: whether conpressed
47  * @counter: kmsg dump counter
48  * @reason: the kmsg dump reason (e.g. oops, panic, etc)
49  * @data: pointer to log data
50  *
51  * This is a sub-header for a kmsg dump, trailing after &psz_buffer.
52  */
53 struct psz_kmsg_header {
54 #define PSTORE_KMSG_HEADER_MAGIC 0x4dfc3ae5 /* Just a random number */
55 	uint32_t magic;
56 	struct timespec64 time;
57 	bool compressed;
58 	uint32_t counter;
59 	enum kmsg_dump_reason reason;
60 	uint8_t data[];
61 };
62 
63 /**
64  * struct pstore_zone - single stored buffer
65  *
66  * @off: zone offset of storage
67  * @type: front-end type for this zone
68  * @name: front-end name for this zone
69  * @buffer: pointer to data buffer managed by this zone
70  * @oldbuf: pointer to old data buffer
71  * @buffer_size: bytes in @buffer->data
72  * @should_recover: whether this zone should recover from storage
73  * @dirty: whether the data in @buffer dirty
74  *
75  * zone structure in memory.
76  */
77 struct pstore_zone {
78 	loff_t off;
79 	const char *name;
80 	enum pstore_type_id type;
81 
82 	struct psz_buffer *buffer;
83 	struct psz_buffer *oldbuf;
84 	size_t buffer_size;
85 	bool should_recover;
86 	atomic_t dirty;
87 };
88 
89 /**
90  * struct psz_context - all about running state of pstore/zone
91  *
92  * @kpszs: kmsg dump storage zones
93  * @ppsz: pmsg storage zone
94  * @cpsz: console storage zone
95  * @fpszs: ftrace storage zones
96  * @kmsg_max_cnt: max count of @kpszs
97  * @kmsg_read_cnt: counter of total read kmsg dumps
98  * @kmsg_write_cnt: counter of total kmsg dump writes
99  * @pmsg_read_cnt: counter of total read pmsg zone
100  * @console_read_cnt: counter of total read console zone
101  * @ftrace_max_cnt: max count of @fpszs
102  * @ftrace_read_cnt: counter of max read ftrace zone
103  * @oops_counter: counter of oops dumps
104  * @panic_counter: counter of panic dumps
105  * @recovered: whether finished recovering data from storage
106  * @on_panic: whether panic is happening
107  * @pstore_zone_info_lock: lock to @pstore_zone_info
108  * @pstore_zone_info: information from backend
109  * @pstore: structure for pstore
110  */
111 struct psz_context {
112 	struct pstore_zone **kpszs;
113 	struct pstore_zone *ppsz;
114 	struct pstore_zone *cpsz;
115 	struct pstore_zone **fpszs;
116 	unsigned int kmsg_max_cnt;
117 	unsigned int kmsg_read_cnt;
118 	unsigned int kmsg_write_cnt;
119 	unsigned int pmsg_read_cnt;
120 	unsigned int console_read_cnt;
121 	unsigned int ftrace_max_cnt;
122 	unsigned int ftrace_read_cnt;
123 	/*
124 	 * These counters should be calculated during recovery.
125 	 * It records the oops/panic times after crashes rather than boots.
126 	 */
127 	unsigned int oops_counter;
128 	unsigned int panic_counter;
129 	atomic_t recovered;
130 	atomic_t on_panic;
131 
132 	/*
133 	 * pstore_zone_info_lock protects this entire structure during calls
134 	 * to register_pstore_zone()/unregister_pstore_zone().
135 	 */
136 	struct mutex pstore_zone_info_lock;
137 	struct pstore_zone_info *pstore_zone_info;
138 	struct pstore_info pstore;
139 };
140 static struct psz_context pstore_zone_cxt;
141 
142 static void psz_flush_all_dirty_zones(struct work_struct *);
143 static DECLARE_DELAYED_WORK(psz_cleaner, psz_flush_all_dirty_zones);
144 
145 /**
146  * enum psz_flush_mode - flush mode for psz_zone_write()
147  *
148  * @FLUSH_NONE: do not flush to storage but update data on memory
149  * @FLUSH_PART: just flush part of data including meta data to storage
150  * @FLUSH_META: just flush meta data of zone to storage
151  * @FLUSH_ALL: flush all of zone
152  */
153 enum psz_flush_mode {
154 	FLUSH_NONE = 0,
155 	FLUSH_PART,
156 	FLUSH_META,
157 	FLUSH_ALL,
158 };
159 
160 static inline int buffer_datalen(struct pstore_zone *zone)
161 {
162 	return atomic_read(&zone->buffer->datalen);
163 }
164 
165 static inline int buffer_start(struct pstore_zone *zone)
166 {
167 	return atomic_read(&zone->buffer->start);
168 }
169 
170 static inline bool is_on_panic(void)
171 {
172 	return atomic_read(&pstore_zone_cxt.on_panic);
173 }
174 
175 static ssize_t psz_zone_read_buffer(struct pstore_zone *zone, char *buf,
176 		size_t len, unsigned long off)
177 {
178 	if (!buf || !zone || !zone->buffer)
179 		return -EINVAL;
180 	if (off > zone->buffer_size)
181 		return -EINVAL;
182 	len = min_t(size_t, len, zone->buffer_size - off);
183 	memcpy(buf, zone->buffer->data + off, len);
184 	return len;
185 }
186 
187 static int psz_zone_read_oldbuf(struct pstore_zone *zone, char *buf,
188 		size_t len, unsigned long off)
189 {
190 	if (!buf || !zone || !zone->oldbuf)
191 		return -EINVAL;
192 	if (off > zone->buffer_size)
193 		return -EINVAL;
194 	len = min_t(size_t, len, zone->buffer_size - off);
195 	memcpy(buf, zone->oldbuf->data + off, len);
196 	return 0;
197 }
198 
199 static int psz_zone_write(struct pstore_zone *zone,
200 		enum psz_flush_mode flush_mode, const char *buf,
201 		size_t len, unsigned long off)
202 {
203 	struct pstore_zone_info *info = pstore_zone_cxt.pstore_zone_info;
204 	ssize_t wcnt = 0;
205 	ssize_t (*writeop)(const char *buf, size_t bytes, loff_t pos);
206 	size_t wlen;
207 
208 	if (off > zone->buffer_size)
209 		return -EINVAL;
210 
211 	wlen = min_t(size_t, len, zone->buffer_size - off);
212 	if (buf && wlen) {
213 		memcpy(zone->buffer->data + off, buf, wlen);
214 		atomic_set(&zone->buffer->datalen, wlen + off);
215 	}
216 
217 	/* avoid to damage old records */
218 	if (!is_on_panic() && !atomic_read(&pstore_zone_cxt.recovered))
219 		goto dirty;
220 
221 	writeop = is_on_panic() ? info->panic_write : info->write;
222 	if (!writeop)
223 		goto dirty;
224 
225 	switch (flush_mode) {
226 	case FLUSH_NONE:
227 		if (unlikely(buf && wlen))
228 			goto dirty;
229 		return 0;
230 	case FLUSH_PART:
231 		wcnt = writeop((const char *)zone->buffer->data + off, wlen,
232 				zone->off + sizeof(*zone->buffer) + off);
233 		if (wcnt != wlen)
234 			goto dirty;
235 		fallthrough;
236 	case FLUSH_META:
237 		wlen = sizeof(struct psz_buffer);
238 		wcnt = writeop((const char *)zone->buffer, wlen, zone->off);
239 		if (wcnt != wlen)
240 			goto dirty;
241 		break;
242 	case FLUSH_ALL:
243 		wlen = zone->buffer_size + sizeof(*zone->buffer);
244 		wcnt = writeop((const char *)zone->buffer, wlen, zone->off);
245 		if (wcnt != wlen)
246 			goto dirty;
247 		break;
248 	}
249 
250 	return 0;
251 dirty:
252 	/* no need to mark dirty if going to try next zone */
253 	if (wcnt == -ENOMSG)
254 		return -ENOMSG;
255 	atomic_set(&zone->dirty, true);
256 	/* flush dirty zones nicely */
257 	if (wcnt == -EBUSY && !is_on_panic())
258 		schedule_delayed_work(&psz_cleaner, msecs_to_jiffies(500));
259 	return -EBUSY;
260 }
261 
262 static int psz_flush_dirty_zone(struct pstore_zone *zone)
263 {
264 	int ret;
265 
266 	if (unlikely(!zone))
267 		return -EINVAL;
268 
269 	if (unlikely(!atomic_read(&pstore_zone_cxt.recovered)))
270 		return -EBUSY;
271 
272 	if (!atomic_xchg(&zone->dirty, false))
273 		return 0;
274 
275 	ret = psz_zone_write(zone, FLUSH_ALL, NULL, 0, 0);
276 	if (ret)
277 		atomic_set(&zone->dirty, true);
278 	return ret;
279 }
280 
281 static int psz_flush_dirty_zones(struct pstore_zone **zones, unsigned int cnt)
282 {
283 	int i, ret;
284 	struct pstore_zone *zone;
285 
286 	if (!zones)
287 		return -EINVAL;
288 
289 	for (i = 0; i < cnt; i++) {
290 		zone = zones[i];
291 		if (!zone)
292 			return -EINVAL;
293 		ret = psz_flush_dirty_zone(zone);
294 		if (ret)
295 			return ret;
296 	}
297 	return 0;
298 }
299 
300 static int psz_move_zone(struct pstore_zone *old, struct pstore_zone *new)
301 {
302 	const char *data = (const char *)old->buffer->data;
303 	int ret;
304 
305 	ret = psz_zone_write(new, FLUSH_ALL, data, buffer_datalen(old), 0);
306 	if (ret) {
307 		atomic_set(&new->buffer->datalen, 0);
308 		atomic_set(&new->dirty, false);
309 		return ret;
310 	}
311 	atomic_set(&old->buffer->datalen, 0);
312 	return 0;
313 }
314 
315 static void psz_flush_all_dirty_zones(struct work_struct *work)
316 {
317 	struct psz_context *cxt = &pstore_zone_cxt;
318 	int ret = 0;
319 
320 	if (cxt->ppsz)
321 		ret |= psz_flush_dirty_zone(cxt->ppsz);
322 	if (cxt->cpsz)
323 		ret |= psz_flush_dirty_zone(cxt->cpsz);
324 	if (cxt->kpszs)
325 		ret |= psz_flush_dirty_zones(cxt->kpszs, cxt->kmsg_max_cnt);
326 	if (cxt->fpszs)
327 		ret |= psz_flush_dirty_zones(cxt->fpszs, cxt->ftrace_max_cnt);
328 	if (ret && cxt->pstore_zone_info)
329 		schedule_delayed_work(&psz_cleaner, msecs_to_jiffies(1000));
330 }
331 
332 static int psz_kmsg_recover_data(struct psz_context *cxt)
333 {
334 	struct pstore_zone_info *info = cxt->pstore_zone_info;
335 	struct pstore_zone *zone = NULL;
336 	struct psz_buffer *buf;
337 	unsigned long i;
338 	ssize_t rcnt;
339 
340 	if (!info->read)
341 		return -EINVAL;
342 
343 	for (i = 0; i < cxt->kmsg_max_cnt; i++) {
344 		zone = cxt->kpszs[i];
345 		if (unlikely(!zone))
346 			return -EINVAL;
347 		if (atomic_read(&zone->dirty)) {
348 			unsigned int wcnt = cxt->kmsg_write_cnt;
349 			struct pstore_zone *new = cxt->kpszs[wcnt];
350 			int ret;
351 
352 			ret = psz_move_zone(zone, new);
353 			if (ret) {
354 				pr_err("move zone from %lu to %d failed\n",
355 						i, wcnt);
356 				return ret;
357 			}
358 			cxt->kmsg_write_cnt = (wcnt + 1) % cxt->kmsg_max_cnt;
359 		}
360 		if (!zone->should_recover)
361 			continue;
362 		buf = zone->buffer;
363 		rcnt = info->read((char *)buf, zone->buffer_size + sizeof(*buf),
364 				zone->off);
365 		if (rcnt != zone->buffer_size + sizeof(*buf))
366 			return (int)rcnt < 0 ? (int)rcnt : -EIO;
367 	}
368 	return 0;
369 }
370 
371 static int psz_kmsg_recover_meta(struct psz_context *cxt)
372 {
373 	struct pstore_zone_info *info = cxt->pstore_zone_info;
374 	struct pstore_zone *zone;
375 	size_t rcnt, len;
376 	struct psz_buffer *buf;
377 	struct psz_kmsg_header *hdr;
378 	struct timespec64 time = { };
379 	unsigned long i;
380 	/*
381 	 * Recover may on panic, we can't allocate any memory by kmalloc.
382 	 * So, we use local array instead.
383 	 */
384 	char buffer_header[sizeof(*buf) + sizeof(*hdr)] = {0};
385 
386 	if (!info->read)
387 		return -EINVAL;
388 
389 	len = sizeof(*buf) + sizeof(*hdr);
390 	buf = (struct psz_buffer *)buffer_header;
391 	for (i = 0; i < cxt->kmsg_max_cnt; i++) {
392 		zone = cxt->kpszs[i];
393 		if (unlikely(!zone))
394 			return -EINVAL;
395 
396 		rcnt = info->read((char *)buf, len, zone->off);
397 		if (rcnt == -ENOMSG) {
398 			pr_debug("%s with id %lu may be broken, skip\n",
399 					zone->name, i);
400 			continue;
401 		} else if (rcnt != len) {
402 			pr_err("read %s with id %lu failed\n", zone->name, i);
403 			return (int)rcnt < 0 ? (int)rcnt : -EIO;
404 		}
405 
406 		if (buf->sig != zone->buffer->sig) {
407 			pr_debug("no valid data in kmsg dump zone %lu\n", i);
408 			continue;
409 		}
410 
411 		if (zone->buffer_size < atomic_read(&buf->datalen)) {
412 			pr_info("found overtop zone: %s: id %lu, off %lld, size %zu\n",
413 					zone->name, i, zone->off,
414 					zone->buffer_size);
415 			continue;
416 		}
417 
418 		hdr = (struct psz_kmsg_header *)buf->data;
419 		if (hdr->magic != PSTORE_KMSG_HEADER_MAGIC) {
420 			pr_info("found invalid zone: %s: id %lu, off %lld, size %zu\n",
421 					zone->name, i, zone->off,
422 					zone->buffer_size);
423 			continue;
424 		}
425 
426 		/*
427 		 * we get the newest zone, and the next one must be the oldest
428 		 * or unused zone, because we do write one by one like a circle.
429 		 */
430 		if (hdr->time.tv_sec >= time.tv_sec) {
431 			time.tv_sec = hdr->time.tv_sec;
432 			cxt->kmsg_write_cnt = (i + 1) % cxt->kmsg_max_cnt;
433 		}
434 
435 		if (hdr->reason == KMSG_DUMP_OOPS)
436 			cxt->oops_counter =
437 				max(cxt->oops_counter, hdr->counter);
438 		else if (hdr->reason == KMSG_DUMP_PANIC)
439 			cxt->panic_counter =
440 				max(cxt->panic_counter, hdr->counter);
441 
442 		if (!atomic_read(&buf->datalen)) {
443 			pr_debug("found erased zone: %s: id %lu, off %lld, size %zu, datalen %d\n",
444 					zone->name, i, zone->off,
445 					zone->buffer_size,
446 					atomic_read(&buf->datalen));
447 			continue;
448 		}
449 
450 		if (!is_on_panic())
451 			zone->should_recover = true;
452 		pr_debug("found nice zone: %s: id %lu, off %lld, size %zu, datalen %d\n",
453 				zone->name, i, zone->off,
454 				zone->buffer_size, atomic_read(&buf->datalen));
455 	}
456 
457 	return 0;
458 }
459 
460 static int psz_kmsg_recover(struct psz_context *cxt)
461 {
462 	int ret;
463 
464 	if (!cxt->kpszs)
465 		return 0;
466 
467 	ret = psz_kmsg_recover_meta(cxt);
468 	if (ret)
469 		goto recover_fail;
470 
471 	ret = psz_kmsg_recover_data(cxt);
472 	if (ret)
473 		goto recover_fail;
474 
475 	return 0;
476 recover_fail:
477 	pr_debug("psz_recover_kmsg failed\n");
478 	return ret;
479 }
480 
481 static int psz_recover_zone(struct psz_context *cxt, struct pstore_zone *zone)
482 {
483 	struct pstore_zone_info *info = cxt->pstore_zone_info;
484 	struct psz_buffer *oldbuf, tmpbuf;
485 	int ret = 0;
486 	char *buf;
487 	ssize_t rcnt, len, start, off;
488 
489 	if (!zone || zone->oldbuf)
490 		return 0;
491 
492 	if (is_on_panic()) {
493 		/* save data as much as possible */
494 		psz_flush_dirty_zone(zone);
495 		return 0;
496 	}
497 
498 	if (unlikely(!info->read))
499 		return -EINVAL;
500 
501 	len = sizeof(struct psz_buffer);
502 	rcnt = info->read((char *)&tmpbuf, len, zone->off);
503 	if (rcnt != len) {
504 		pr_debug("read zone %s failed\n", zone->name);
505 		return (int)rcnt < 0 ? (int)rcnt : -EIO;
506 	}
507 
508 	if (tmpbuf.sig != zone->buffer->sig) {
509 		pr_debug("no valid data in zone %s\n", zone->name);
510 		return 0;
511 	}
512 
513 	if (zone->buffer_size < atomic_read(&tmpbuf.datalen) ||
514 		zone->buffer_size < atomic_read(&tmpbuf.start)) {
515 		pr_info("found overtop zone: %s: off %lld, size %zu\n",
516 				zone->name, zone->off, zone->buffer_size);
517 		/* just keep going */
518 		return 0;
519 	}
520 
521 	if (!atomic_read(&tmpbuf.datalen)) {
522 		pr_debug("found erased zone: %s: off %lld, size %zu, datalen %d\n",
523 				zone->name, zone->off, zone->buffer_size,
524 				atomic_read(&tmpbuf.datalen));
525 		return 0;
526 	}
527 
528 	pr_debug("found nice zone: %s: off %lld, size %zu, datalen %d\n",
529 			zone->name, zone->off, zone->buffer_size,
530 			atomic_read(&tmpbuf.datalen));
531 
532 	len = atomic_read(&tmpbuf.datalen) + sizeof(*oldbuf);
533 	oldbuf = kzalloc(len, GFP_KERNEL);
534 	if (!oldbuf)
535 		return -ENOMEM;
536 
537 	memcpy(oldbuf, &tmpbuf, sizeof(*oldbuf));
538 	buf = (char *)oldbuf + sizeof(*oldbuf);
539 	len = atomic_read(&oldbuf->datalen);
540 	start = atomic_read(&oldbuf->start);
541 	off = zone->off + sizeof(*oldbuf);
542 
543 	/* get part of data */
544 	rcnt = info->read(buf, len - start, off + start);
545 	if (rcnt != len - start) {
546 		pr_err("read zone %s failed\n", zone->name);
547 		ret = (int)rcnt < 0 ? (int)rcnt : -EIO;
548 		goto free_oldbuf;
549 	}
550 
551 	/* get the rest of data */
552 	rcnt = info->read(buf + len - start, start, off);
553 	if (rcnt != start) {
554 		pr_err("read zone %s failed\n", zone->name);
555 		ret = (int)rcnt < 0 ? (int)rcnt : -EIO;
556 		goto free_oldbuf;
557 	}
558 
559 	zone->oldbuf = oldbuf;
560 	psz_flush_dirty_zone(zone);
561 	return 0;
562 
563 free_oldbuf:
564 	kfree(oldbuf);
565 	return ret;
566 }
567 
568 static int psz_recover_zones(struct psz_context *cxt,
569 		struct pstore_zone **zones, unsigned int cnt)
570 {
571 	int ret;
572 	unsigned int i;
573 	struct pstore_zone *zone;
574 
575 	if (!zones)
576 		return 0;
577 
578 	for (i = 0; i < cnt; i++) {
579 		zone = zones[i];
580 		if (unlikely(!zone))
581 			continue;
582 		ret = psz_recover_zone(cxt, zone);
583 		if (ret)
584 			goto recover_fail;
585 	}
586 
587 	return 0;
588 recover_fail:
589 	pr_debug("recover %s[%u] failed\n", zone->name, i);
590 	return ret;
591 }
592 
593 /**
594  * psz_recovery() - recover data from storage
595  * @cxt: the context of pstore/zone
596  *
597  * recovery means reading data back from storage after rebooting
598  *
599  * Return: 0 on success, others on failure.
600  */
601 static inline int psz_recovery(struct psz_context *cxt)
602 {
603 	int ret;
604 
605 	if (atomic_read(&cxt->recovered))
606 		return 0;
607 
608 	ret = psz_kmsg_recover(cxt);
609 	if (ret)
610 		goto out;
611 
612 	ret = psz_recover_zone(cxt, cxt->ppsz);
613 	if (ret)
614 		goto out;
615 
616 	ret = psz_recover_zone(cxt, cxt->cpsz);
617 	if (ret)
618 		goto out;
619 
620 	ret = psz_recover_zones(cxt, cxt->fpszs, cxt->ftrace_max_cnt);
621 
622 out:
623 	if (unlikely(ret))
624 		pr_err("recover failed\n");
625 	else {
626 		pr_debug("recover end!\n");
627 		atomic_set(&cxt->recovered, 1);
628 	}
629 	return ret;
630 }
631 
632 static int psz_pstore_open(struct pstore_info *psi)
633 {
634 	struct psz_context *cxt = psi->data;
635 
636 	cxt->kmsg_read_cnt = 0;
637 	cxt->pmsg_read_cnt = 0;
638 	cxt->console_read_cnt = 0;
639 	cxt->ftrace_read_cnt = 0;
640 	return 0;
641 }
642 
643 static inline bool psz_old_ok(struct pstore_zone *zone)
644 {
645 	if (zone && zone->oldbuf && atomic_read(&zone->oldbuf->datalen))
646 		return true;
647 	return false;
648 }
649 
650 static inline bool psz_ok(struct pstore_zone *zone)
651 {
652 	if (zone && zone->buffer && buffer_datalen(zone))
653 		return true;
654 	return false;
655 }
656 
657 static inline int psz_kmsg_erase(struct psz_context *cxt,
658 		struct pstore_zone *zone, struct pstore_record *record)
659 {
660 	struct psz_buffer *buffer = zone->buffer;
661 	struct psz_kmsg_header *hdr =
662 		(struct psz_kmsg_header *)buffer->data;
663 	size_t size;
664 
665 	if (unlikely(!psz_ok(zone)))
666 		return 0;
667 
668 	/* this zone is already updated, no need to erase */
669 	if (record->count != hdr->counter)
670 		return 0;
671 
672 	size = buffer_datalen(zone) + sizeof(*zone->buffer);
673 	atomic_set(&zone->buffer->datalen, 0);
674 	if (cxt->pstore_zone_info->erase)
675 		return cxt->pstore_zone_info->erase(size, zone->off);
676 	else
677 		return psz_zone_write(zone, FLUSH_META, NULL, 0, 0);
678 }
679 
680 static inline int psz_record_erase(struct psz_context *cxt,
681 		struct pstore_zone *zone)
682 {
683 	if (unlikely(!psz_old_ok(zone)))
684 		return 0;
685 
686 	kfree(zone->oldbuf);
687 	zone->oldbuf = NULL;
688 	/*
689 	 * if there are new data in zone buffer, that means the old data
690 	 * are already invalid. It is no need to flush 0 (erase) to
691 	 * block device.
692 	 */
693 	if (!buffer_datalen(zone))
694 		return psz_zone_write(zone, FLUSH_META, NULL, 0, 0);
695 	psz_flush_dirty_zone(zone);
696 	return 0;
697 }
698 
699 static int psz_pstore_erase(struct pstore_record *record)
700 {
701 	struct psz_context *cxt = record->psi->data;
702 
703 	switch (record->type) {
704 	case PSTORE_TYPE_DMESG:
705 		if (record->id >= cxt->kmsg_max_cnt)
706 			return -EINVAL;
707 		return psz_kmsg_erase(cxt, cxt->kpszs[record->id], record);
708 	case PSTORE_TYPE_PMSG:
709 		return psz_record_erase(cxt, cxt->ppsz);
710 	case PSTORE_TYPE_CONSOLE:
711 		return psz_record_erase(cxt, cxt->cpsz);
712 	case PSTORE_TYPE_FTRACE:
713 		if (record->id >= cxt->ftrace_max_cnt)
714 			return -EINVAL;
715 		return psz_record_erase(cxt, cxt->fpszs[record->id]);
716 	default: return -EINVAL;
717 	}
718 }
719 
720 static void psz_write_kmsg_hdr(struct pstore_zone *zone,
721 		struct pstore_record *record)
722 {
723 	struct psz_context *cxt = record->psi->data;
724 	struct psz_buffer *buffer = zone->buffer;
725 	struct psz_kmsg_header *hdr =
726 		(struct psz_kmsg_header *)buffer->data;
727 
728 	hdr->magic = PSTORE_KMSG_HEADER_MAGIC;
729 	hdr->compressed = record->compressed;
730 	hdr->time.tv_sec = record->time.tv_sec;
731 	hdr->time.tv_nsec = record->time.tv_nsec;
732 	hdr->reason = record->reason;
733 	if (hdr->reason == KMSG_DUMP_OOPS)
734 		hdr->counter = ++cxt->oops_counter;
735 	else if (hdr->reason == KMSG_DUMP_PANIC)
736 		hdr->counter = ++cxt->panic_counter;
737 	else
738 		hdr->counter = 0;
739 }
740 
741 /*
742  * In case zone is broken, which may occur to MTD device, we try each zones,
743  * start at cxt->kmsg_write_cnt.
744  */
745 static inline int notrace psz_kmsg_write_record(struct psz_context *cxt,
746 		struct pstore_record *record)
747 {
748 	size_t size, hlen;
749 	struct pstore_zone *zone;
750 	unsigned int i;
751 
752 	for (i = 0; i < cxt->kmsg_max_cnt; i++) {
753 		unsigned int zonenum, len;
754 		int ret;
755 
756 		zonenum = (cxt->kmsg_write_cnt + i) % cxt->kmsg_max_cnt;
757 		zone = cxt->kpszs[zonenum];
758 		if (unlikely(!zone))
759 			return -ENOSPC;
760 
761 		/* avoid destroying old data, allocate a new one */
762 		len = zone->buffer_size + sizeof(*zone->buffer);
763 		zone->oldbuf = zone->buffer;
764 		zone->buffer = kzalloc(len, GFP_KERNEL);
765 		if (!zone->buffer) {
766 			zone->buffer = zone->oldbuf;
767 			return -ENOMEM;
768 		}
769 		zone->buffer->sig = zone->oldbuf->sig;
770 
771 		pr_debug("write %s to zone id %d\n", zone->name, zonenum);
772 		psz_write_kmsg_hdr(zone, record);
773 		hlen = sizeof(struct psz_kmsg_header);
774 		size = min_t(size_t, record->size, zone->buffer_size - hlen);
775 		ret = psz_zone_write(zone, FLUSH_ALL, record->buf, size, hlen);
776 		if (likely(!ret || ret != -ENOMSG)) {
777 			cxt->kmsg_write_cnt = zonenum + 1;
778 			cxt->kmsg_write_cnt %= cxt->kmsg_max_cnt;
779 			/* no need to try next zone, free last zone buffer */
780 			kfree(zone->oldbuf);
781 			zone->oldbuf = NULL;
782 			return ret;
783 		}
784 
785 		pr_debug("zone %u may be broken, try next dmesg zone\n",
786 				zonenum);
787 		kfree(zone->buffer);
788 		zone->buffer = zone->oldbuf;
789 		zone->oldbuf = NULL;
790 	}
791 
792 	return -EBUSY;
793 }
794 
795 static int notrace psz_kmsg_write(struct psz_context *cxt,
796 		struct pstore_record *record)
797 {
798 	int ret;
799 
800 	/*
801 	 * Explicitly only take the first part of any new crash.
802 	 * If our buffer is larger than kmsg_bytes, this can never happen,
803 	 * and if our buffer is smaller than kmsg_bytes, we don't want the
804 	 * report split across multiple records.
805 	 */
806 	if (record->part != 1)
807 		return -ENOSPC;
808 
809 	if (!cxt->kpszs)
810 		return -ENOSPC;
811 
812 	ret = psz_kmsg_write_record(cxt, record);
813 	if (!ret && is_on_panic()) {
814 		/* ensure all data are flushed to storage when panic */
815 		pr_debug("try to flush other dirty zones\n");
816 		psz_flush_all_dirty_zones(NULL);
817 	}
818 
819 	/* always return 0 as we had handled it on buffer */
820 	return 0;
821 }
822 
823 static int notrace psz_record_write(struct pstore_zone *zone,
824 		struct pstore_record *record)
825 {
826 	size_t start, rem;
827 	bool is_full_data = false;
828 	char *buf;
829 	int cnt;
830 
831 	if (!zone || !record)
832 		return -ENOSPC;
833 
834 	if (atomic_read(&zone->buffer->datalen) >= zone->buffer_size)
835 		is_full_data = true;
836 
837 	cnt = record->size;
838 	buf = record->buf;
839 	if (unlikely(cnt > zone->buffer_size)) {
840 		buf += cnt - zone->buffer_size;
841 		cnt = zone->buffer_size;
842 	}
843 
844 	start = buffer_start(zone);
845 	rem = zone->buffer_size - start;
846 	if (unlikely(rem < cnt)) {
847 		psz_zone_write(zone, FLUSH_PART, buf, rem, start);
848 		buf += rem;
849 		cnt -= rem;
850 		start = 0;
851 		is_full_data = true;
852 	}
853 
854 	atomic_set(&zone->buffer->start, cnt + start);
855 	psz_zone_write(zone, FLUSH_PART, buf, cnt, start);
856 
857 	/**
858 	 * psz_zone_write will set datalen as start + cnt.
859 	 * It work if actual data length lesser than buffer size.
860 	 * If data length greater than buffer size, pmsg will rewrite to
861 	 * beginning of zone, which make buffer->datalen wrongly.
862 	 * So we should reset datalen as buffer size once actual data length
863 	 * greater than buffer size.
864 	 */
865 	if (is_full_data) {
866 		atomic_set(&zone->buffer->datalen, zone->buffer_size);
867 		psz_zone_write(zone, FLUSH_META, NULL, 0, 0);
868 	}
869 	return 0;
870 }
871 
872 static int notrace psz_pstore_write(struct pstore_record *record)
873 {
874 	struct psz_context *cxt = record->psi->data;
875 
876 	if (record->type == PSTORE_TYPE_DMESG &&
877 			record->reason == KMSG_DUMP_PANIC)
878 		atomic_set(&cxt->on_panic, 1);
879 
880 	/*
881 	 * if on panic, do not write except panic records
882 	 * Fix case that panic_write prints log which wakes up console backend.
883 	 */
884 	if (is_on_panic() && record->type != PSTORE_TYPE_DMESG)
885 		return -EBUSY;
886 
887 	switch (record->type) {
888 	case PSTORE_TYPE_DMESG:
889 		return psz_kmsg_write(cxt, record);
890 	case PSTORE_TYPE_CONSOLE:
891 		return psz_record_write(cxt->cpsz, record);
892 	case PSTORE_TYPE_PMSG:
893 		return psz_record_write(cxt->ppsz, record);
894 	case PSTORE_TYPE_FTRACE: {
895 		int zonenum = smp_processor_id();
896 
897 		if (!cxt->fpszs)
898 			return -ENOSPC;
899 		return psz_record_write(cxt->fpszs[zonenum], record);
900 	}
901 	default:
902 		return -EINVAL;
903 	}
904 }
905 
906 static struct pstore_zone *psz_read_next_zone(struct psz_context *cxt)
907 {
908 	struct pstore_zone *zone = NULL;
909 
910 	while (cxt->kmsg_read_cnt < cxt->kmsg_max_cnt) {
911 		zone = cxt->kpszs[cxt->kmsg_read_cnt++];
912 		if (psz_ok(zone))
913 			return zone;
914 	}
915 
916 	if (cxt->ftrace_read_cnt < cxt->ftrace_max_cnt)
917 		/*
918 		 * No need psz_old_ok(). Let psz_ftrace_read() do so for
919 		 * combination. psz_ftrace_read() should traverse over
920 		 * all zones in case of some zone without data.
921 		 */
922 		return cxt->fpszs[cxt->ftrace_read_cnt++];
923 
924 	if (cxt->pmsg_read_cnt == 0) {
925 		cxt->pmsg_read_cnt++;
926 		zone = cxt->ppsz;
927 		if (psz_old_ok(zone))
928 			return zone;
929 	}
930 
931 	if (cxt->console_read_cnt == 0) {
932 		cxt->console_read_cnt++;
933 		zone = cxt->cpsz;
934 		if (psz_old_ok(zone))
935 			return zone;
936 	}
937 
938 	return NULL;
939 }
940 
941 static int psz_kmsg_read_hdr(struct pstore_zone *zone,
942 		struct pstore_record *record)
943 {
944 	struct psz_buffer *buffer = zone->buffer;
945 	struct psz_kmsg_header *hdr =
946 		(struct psz_kmsg_header *)buffer->data;
947 
948 	if (hdr->magic != PSTORE_KMSG_HEADER_MAGIC)
949 		return -EINVAL;
950 	record->compressed = hdr->compressed;
951 	record->time.tv_sec = hdr->time.tv_sec;
952 	record->time.tv_nsec = hdr->time.tv_nsec;
953 	record->reason = hdr->reason;
954 	record->count = hdr->counter;
955 	return 0;
956 }
957 
958 static ssize_t psz_kmsg_read(struct pstore_zone *zone,
959 		struct pstore_record *record)
960 {
961 	ssize_t size, hlen = 0;
962 
963 	size = buffer_datalen(zone);
964 	/* Clear and skip this kmsg dump record if it has no valid header */
965 	if (psz_kmsg_read_hdr(zone, record)) {
966 		atomic_set(&zone->buffer->datalen, 0);
967 		atomic_set(&zone->dirty, 0);
968 		return -ENOMSG;
969 	}
970 	size -= sizeof(struct psz_kmsg_header);
971 
972 	if (!record->compressed) {
973 		char *buf = kasprintf(GFP_KERNEL, "%s: Total %d times\n",
974 				      kmsg_dump_reason_str(record->reason),
975 				      record->count);
976 		hlen = strlen(buf);
977 		record->buf = krealloc(buf, hlen + size, GFP_KERNEL);
978 		if (!record->buf) {
979 			kfree(buf);
980 			return -ENOMEM;
981 		}
982 	} else {
983 		record->buf = kmalloc(size, GFP_KERNEL);
984 		if (!record->buf)
985 			return -ENOMEM;
986 	}
987 
988 	size = psz_zone_read_buffer(zone, record->buf + hlen, size,
989 			sizeof(struct psz_kmsg_header));
990 	if (unlikely(size < 0)) {
991 		kfree(record->buf);
992 		return -ENOMSG;
993 	}
994 
995 	return size + hlen;
996 }
997 
998 /* try to combine all ftrace zones */
999 static ssize_t psz_ftrace_read(struct pstore_zone *zone,
1000 		struct pstore_record *record)
1001 {
1002 	struct psz_context *cxt;
1003 	struct psz_buffer *buf;
1004 	int ret;
1005 
1006 	if (!zone || !record)
1007 		return -ENOSPC;
1008 
1009 	if (!psz_old_ok(zone))
1010 		goto out;
1011 
1012 	buf = (struct psz_buffer *)zone->oldbuf;
1013 	if (!buf)
1014 		return -ENOMSG;
1015 
1016 	ret = pstore_ftrace_combine_log(&record->buf, &record->size,
1017 			(char *)buf->data, atomic_read(&buf->datalen));
1018 	if (unlikely(ret))
1019 		return ret;
1020 
1021 out:
1022 	cxt = record->psi->data;
1023 	if (cxt->ftrace_read_cnt < cxt->ftrace_max_cnt)
1024 		/* then, read next ftrace zone */
1025 		return -ENOMSG;
1026 	record->id = 0;
1027 	return record->size ? record->size : -ENOMSG;
1028 }
1029 
1030 static ssize_t psz_record_read(struct pstore_zone *zone,
1031 		struct pstore_record *record)
1032 {
1033 	size_t len;
1034 	struct psz_buffer *buf;
1035 
1036 	if (!zone || !record)
1037 		return -ENOSPC;
1038 
1039 	buf = (struct psz_buffer *)zone->oldbuf;
1040 	if (!buf)
1041 		return -ENOMSG;
1042 
1043 	len = atomic_read(&buf->datalen);
1044 	record->buf = kmalloc(len, GFP_KERNEL);
1045 	if (!record->buf)
1046 		return -ENOMEM;
1047 
1048 	if (unlikely(psz_zone_read_oldbuf(zone, record->buf, len, 0))) {
1049 		kfree(record->buf);
1050 		return -ENOMSG;
1051 	}
1052 
1053 	return len;
1054 }
1055 
1056 static ssize_t psz_pstore_read(struct pstore_record *record)
1057 {
1058 	struct psz_context *cxt = record->psi->data;
1059 	ssize_t (*readop)(struct pstore_zone *zone,
1060 			struct pstore_record *record);
1061 	struct pstore_zone *zone;
1062 	ssize_t ret;
1063 
1064 	/* before read, we must recover from storage */
1065 	ret = psz_recovery(cxt);
1066 	if (ret)
1067 		return ret;
1068 
1069 next_zone:
1070 	zone = psz_read_next_zone(cxt);
1071 	if (!zone)
1072 		return 0;
1073 
1074 	record->type = zone->type;
1075 	switch (record->type) {
1076 	case PSTORE_TYPE_DMESG:
1077 		readop = psz_kmsg_read;
1078 		record->id = cxt->kmsg_read_cnt - 1;
1079 		break;
1080 	case PSTORE_TYPE_FTRACE:
1081 		readop = psz_ftrace_read;
1082 		break;
1083 	case PSTORE_TYPE_CONSOLE:
1084 	case PSTORE_TYPE_PMSG:
1085 		readop = psz_record_read;
1086 		break;
1087 	default:
1088 		goto next_zone;
1089 	}
1090 
1091 	ret = readop(zone, record);
1092 	if (ret == -ENOMSG)
1093 		goto next_zone;
1094 	return ret;
1095 }
1096 
1097 static struct psz_context pstore_zone_cxt = {
1098 	.pstore_zone_info_lock =
1099 		__MUTEX_INITIALIZER(pstore_zone_cxt.pstore_zone_info_lock),
1100 	.recovered = ATOMIC_INIT(0),
1101 	.on_panic = ATOMIC_INIT(0),
1102 	.pstore = {
1103 		.owner = THIS_MODULE,
1104 		.open = psz_pstore_open,
1105 		.read = psz_pstore_read,
1106 		.write = psz_pstore_write,
1107 		.erase = psz_pstore_erase,
1108 	},
1109 };
1110 
1111 static void psz_free_zone(struct pstore_zone **pszone)
1112 {
1113 	struct pstore_zone *zone = *pszone;
1114 
1115 	if (!zone)
1116 		return;
1117 
1118 	kfree(zone->buffer);
1119 	kfree(zone);
1120 	*pszone = NULL;
1121 }
1122 
1123 static void psz_free_zones(struct pstore_zone ***pszones, unsigned int *cnt)
1124 {
1125 	struct pstore_zone **zones = *pszones;
1126 
1127 	if (!zones)
1128 		return;
1129 
1130 	while (*cnt > 0) {
1131 		(*cnt)--;
1132 		psz_free_zone(&(zones[*cnt]));
1133 	}
1134 	kfree(zones);
1135 	*pszones = NULL;
1136 }
1137 
1138 static void psz_free_all_zones(struct psz_context *cxt)
1139 {
1140 	if (cxt->kpszs)
1141 		psz_free_zones(&cxt->kpszs, &cxt->kmsg_max_cnt);
1142 	if (cxt->ppsz)
1143 		psz_free_zone(&cxt->ppsz);
1144 	if (cxt->cpsz)
1145 		psz_free_zone(&cxt->cpsz);
1146 	if (cxt->fpszs)
1147 		psz_free_zones(&cxt->fpszs, &cxt->ftrace_max_cnt);
1148 }
1149 
1150 static struct pstore_zone *psz_init_zone(enum pstore_type_id type,
1151 		loff_t *off, size_t size)
1152 {
1153 	struct pstore_zone_info *info = pstore_zone_cxt.pstore_zone_info;
1154 	struct pstore_zone *zone;
1155 	const char *name = pstore_type_to_name(type);
1156 
1157 	if (!size)
1158 		return NULL;
1159 
1160 	if (*off + size > info->total_size) {
1161 		pr_err("no room for %s (0x%zx@0x%llx over 0x%lx)\n",
1162 			name, size, *off, info->total_size);
1163 		return ERR_PTR(-ENOMEM);
1164 	}
1165 
1166 	zone = kzalloc(sizeof(struct pstore_zone), GFP_KERNEL);
1167 	if (!zone)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	zone->buffer = kmalloc(size, GFP_KERNEL);
1171 	if (!zone->buffer) {
1172 		kfree(zone);
1173 		return ERR_PTR(-ENOMEM);
1174 	}
1175 	memset(zone->buffer, 0xFF, size);
1176 	zone->off = *off;
1177 	zone->name = name;
1178 	zone->type = type;
1179 	zone->buffer_size = size - sizeof(struct psz_buffer);
1180 	zone->buffer->sig = type ^ PSZ_SIG;
1181 	zone->oldbuf = NULL;
1182 	atomic_set(&zone->dirty, 0);
1183 	atomic_set(&zone->buffer->datalen, 0);
1184 	atomic_set(&zone->buffer->start, 0);
1185 
1186 	*off += size;
1187 
1188 	pr_debug("pszone %s: off 0x%llx, %zu header, %zu data\n", zone->name,
1189 			zone->off, sizeof(*zone->buffer), zone->buffer_size);
1190 	return zone;
1191 }
1192 
1193 static struct pstore_zone **psz_init_zones(enum pstore_type_id type,
1194 	loff_t *off, size_t total_size, ssize_t record_size,
1195 	unsigned int *cnt)
1196 {
1197 	struct pstore_zone_info *info = pstore_zone_cxt.pstore_zone_info;
1198 	struct pstore_zone **zones, *zone;
1199 	const char *name = pstore_type_to_name(type);
1200 	int c, i;
1201 
1202 	*cnt = 0;
1203 	if (!total_size || !record_size)
1204 		return NULL;
1205 
1206 	if (*off + total_size > info->total_size) {
1207 		pr_err("no room for zones %s (0x%zx@0x%llx over 0x%lx)\n",
1208 			name, total_size, *off, info->total_size);
1209 		return ERR_PTR(-ENOMEM);
1210 	}
1211 
1212 	c = total_size / record_size;
1213 	zones = kcalloc(c, sizeof(*zones), GFP_KERNEL);
1214 	if (!zones) {
1215 		pr_err("allocate for zones %s failed\n", name);
1216 		return ERR_PTR(-ENOMEM);
1217 	}
1218 	memset(zones, 0, c * sizeof(*zones));
1219 
1220 	for (i = 0; i < c; i++) {
1221 		zone = psz_init_zone(type, off, record_size);
1222 		if (!zone || IS_ERR(zone)) {
1223 			pr_err("initialize zones %s failed\n", name);
1224 			psz_free_zones(&zones, &i);
1225 			return (void *)zone;
1226 		}
1227 		zones[i] = zone;
1228 	}
1229 
1230 	*cnt = c;
1231 	return zones;
1232 }
1233 
1234 static int psz_alloc_zones(struct psz_context *cxt)
1235 {
1236 	struct pstore_zone_info *info = cxt->pstore_zone_info;
1237 	loff_t off = 0;
1238 	int err;
1239 	size_t off_size = 0;
1240 
1241 	off_size += info->pmsg_size;
1242 	cxt->ppsz = psz_init_zone(PSTORE_TYPE_PMSG, &off, info->pmsg_size);
1243 	if (IS_ERR(cxt->ppsz)) {
1244 		err = PTR_ERR(cxt->ppsz);
1245 		cxt->ppsz = NULL;
1246 		goto free_out;
1247 	}
1248 
1249 	off_size += info->console_size;
1250 	cxt->cpsz = psz_init_zone(PSTORE_TYPE_CONSOLE, &off,
1251 			info->console_size);
1252 	if (IS_ERR(cxt->cpsz)) {
1253 		err = PTR_ERR(cxt->cpsz);
1254 		cxt->cpsz = NULL;
1255 		goto free_out;
1256 	}
1257 
1258 	off_size += info->ftrace_size;
1259 	cxt->fpszs = psz_init_zones(PSTORE_TYPE_FTRACE, &off,
1260 			info->ftrace_size,
1261 			info->ftrace_size / nr_cpu_ids,
1262 			&cxt->ftrace_max_cnt);
1263 	if (IS_ERR(cxt->fpszs)) {
1264 		err = PTR_ERR(cxt->fpszs);
1265 		cxt->fpszs = NULL;
1266 		goto free_out;
1267 	}
1268 
1269 	cxt->kpszs = psz_init_zones(PSTORE_TYPE_DMESG, &off,
1270 			info->total_size - off_size,
1271 			info->kmsg_size, &cxt->kmsg_max_cnt);
1272 	if (IS_ERR(cxt->kpszs)) {
1273 		err = PTR_ERR(cxt->kpszs);
1274 		cxt->kpszs = NULL;
1275 		goto free_out;
1276 	}
1277 
1278 	return 0;
1279 free_out:
1280 	psz_free_all_zones(cxt);
1281 	return err;
1282 }
1283 
1284 /**
1285  * register_pstore_zone() - register to pstore/zone
1286  *
1287  * @info: back-end driver information. See &struct pstore_zone_info.
1288  *
1289  * Only one back-end at one time.
1290  *
1291  * Return: 0 on success, others on failure.
1292  */
1293 int register_pstore_zone(struct pstore_zone_info *info)
1294 {
1295 	int err = -EINVAL;
1296 	struct psz_context *cxt = &pstore_zone_cxt;
1297 
1298 	if (info->total_size < 4096) {
1299 		pr_warn("total_size must be >= 4096\n");
1300 		return -EINVAL;
1301 	}
1302 	if (info->total_size > SZ_128M) {
1303 		pr_warn("capping size to 128MiB\n");
1304 		info->total_size = SZ_128M;
1305 	}
1306 
1307 	if (!info->kmsg_size && !info->pmsg_size && !info->console_size &&
1308 	    !info->ftrace_size) {
1309 		pr_warn("at least one record size must be non-zero\n");
1310 		return -EINVAL;
1311 	}
1312 
1313 	if (!info->name || !info->name[0])
1314 		return -EINVAL;
1315 
1316 #define check_size(name, size) {					\
1317 		if (info->name > 0 && info->name < (size)) {		\
1318 			pr_err(#name " must be over %d\n", (size));	\
1319 			return -EINVAL;					\
1320 		}							\
1321 		if (info->name & (size - 1)) {				\
1322 			pr_err(#name " must be a multiple of %d\n",	\
1323 					(size));			\
1324 			return -EINVAL;					\
1325 		}							\
1326 	}
1327 
1328 	check_size(total_size, 4096);
1329 	check_size(kmsg_size, SECTOR_SIZE);
1330 	check_size(pmsg_size, SECTOR_SIZE);
1331 	check_size(console_size, SECTOR_SIZE);
1332 	check_size(ftrace_size, SECTOR_SIZE);
1333 
1334 #undef check_size
1335 
1336 	/*
1337 	 * the @read and @write must be applied.
1338 	 * if no @read, pstore may mount failed.
1339 	 * if no @write, pstore do not support to remove record file.
1340 	 */
1341 	if (!info->read || !info->write) {
1342 		pr_err("no valid general read/write interface\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	mutex_lock(&cxt->pstore_zone_info_lock);
1347 	if (cxt->pstore_zone_info) {
1348 		pr_warn("'%s' already loaded: ignoring '%s'\n",
1349 				cxt->pstore_zone_info->name, info->name);
1350 		mutex_unlock(&cxt->pstore_zone_info_lock);
1351 		return -EBUSY;
1352 	}
1353 	cxt->pstore_zone_info = info;
1354 
1355 	pr_debug("register %s with properties:\n", info->name);
1356 	pr_debug("\ttotal size : %ld Bytes\n", info->total_size);
1357 	pr_debug("\tkmsg size : %ld Bytes\n", info->kmsg_size);
1358 	pr_debug("\tpmsg size : %ld Bytes\n", info->pmsg_size);
1359 	pr_debug("\tconsole size : %ld Bytes\n", info->console_size);
1360 	pr_debug("\tftrace size : %ld Bytes\n", info->ftrace_size);
1361 
1362 	err = psz_alloc_zones(cxt);
1363 	if (err) {
1364 		pr_err("alloc zones failed\n");
1365 		goto fail_out;
1366 	}
1367 
1368 	if (info->kmsg_size) {
1369 		cxt->pstore.bufsize = cxt->kpszs[0]->buffer_size -
1370 			sizeof(struct psz_kmsg_header);
1371 		cxt->pstore.buf = kzalloc(cxt->pstore.bufsize, GFP_KERNEL);
1372 		if (!cxt->pstore.buf) {
1373 			err = -ENOMEM;
1374 			goto fail_free;
1375 		}
1376 	}
1377 	cxt->pstore.data = cxt;
1378 
1379 	pr_info("registered %s as backend for", info->name);
1380 	cxt->pstore.max_reason = info->max_reason;
1381 	cxt->pstore.name = info->name;
1382 	if (info->kmsg_size) {
1383 		cxt->pstore.flags |= PSTORE_FLAGS_DMESG;
1384 		pr_cont(" kmsg(%s",
1385 			kmsg_dump_reason_str(cxt->pstore.max_reason));
1386 		if (cxt->pstore_zone_info->panic_write)
1387 			pr_cont(",panic_write");
1388 		pr_cont(")");
1389 	}
1390 	if (info->pmsg_size) {
1391 		cxt->pstore.flags |= PSTORE_FLAGS_PMSG;
1392 		pr_cont(" pmsg");
1393 	}
1394 	if (info->console_size) {
1395 		cxt->pstore.flags |= PSTORE_FLAGS_CONSOLE;
1396 		pr_cont(" console");
1397 	}
1398 	if (info->ftrace_size) {
1399 		cxt->pstore.flags |= PSTORE_FLAGS_FTRACE;
1400 		pr_cont(" ftrace");
1401 	}
1402 	pr_cont("\n");
1403 
1404 	err = pstore_register(&cxt->pstore);
1405 	if (err) {
1406 		pr_err("registering with pstore failed\n");
1407 		goto fail_free;
1408 	}
1409 	mutex_unlock(&pstore_zone_cxt.pstore_zone_info_lock);
1410 
1411 	return 0;
1412 
1413 fail_free:
1414 	kfree(cxt->pstore.buf);
1415 	cxt->pstore.buf = NULL;
1416 	cxt->pstore.bufsize = 0;
1417 	psz_free_all_zones(cxt);
1418 fail_out:
1419 	pstore_zone_cxt.pstore_zone_info = NULL;
1420 	mutex_unlock(&pstore_zone_cxt.pstore_zone_info_lock);
1421 	return err;
1422 }
1423 EXPORT_SYMBOL_GPL(register_pstore_zone);
1424 
1425 /**
1426  * unregister_pstore_zone() - unregister to pstore/zone
1427  *
1428  * @info: back-end driver information. See struct pstore_zone_info.
1429  */
1430 void unregister_pstore_zone(struct pstore_zone_info *info)
1431 {
1432 	struct psz_context *cxt = &pstore_zone_cxt;
1433 
1434 	mutex_lock(&cxt->pstore_zone_info_lock);
1435 	if (!cxt->pstore_zone_info) {
1436 		mutex_unlock(&cxt->pstore_zone_info_lock);
1437 		return;
1438 	}
1439 
1440 	/* Stop incoming writes from pstore. */
1441 	pstore_unregister(&cxt->pstore);
1442 
1443 	/* Flush any pending writes. */
1444 	psz_flush_all_dirty_zones(NULL);
1445 	flush_delayed_work(&psz_cleaner);
1446 
1447 	/* Clean up allocations. */
1448 	kfree(cxt->pstore.buf);
1449 	cxt->pstore.buf = NULL;
1450 	cxt->pstore.bufsize = 0;
1451 	cxt->pstore_zone_info = NULL;
1452 
1453 	psz_free_all_zones(cxt);
1454 
1455 	/* Clear counters and zone state. */
1456 	cxt->oops_counter = 0;
1457 	cxt->panic_counter = 0;
1458 	atomic_set(&cxt->recovered, 0);
1459 	atomic_set(&cxt->on_panic, 0);
1460 
1461 	mutex_unlock(&cxt->pstore_zone_info_lock);
1462 }
1463 EXPORT_SYMBOL_GPL(unregister_pstore_zone);
1464 
1465 MODULE_LICENSE("GPL");
1466 MODULE_AUTHOR("WeiXiong Liao <liaoweixiong@allwinnertech.com>");
1467 MODULE_AUTHOR("Kees Cook <keescook@chromium.org>");
1468 MODULE_DESCRIPTION("Storage Manager for pstore/blk");
1469