xref: /openbmc/linux/fs/pstore/ram_core.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/pstore_ram.h>
27 #include <asm/page.h>
28 
29 struct persistent_ram_buffer {
30 	uint32_t    sig;
31 	atomic_t    start;
32 	atomic_t    size;
33 	uint8_t     data[0];
34 };
35 
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37 
38 static inline size_t buffer_size(struct persistent_ram_zone *prz)
39 {
40 	return atomic_read(&prz->buffer->size);
41 }
42 
43 static inline size_t buffer_start(struct persistent_ram_zone *prz)
44 {
45 	return atomic_read(&prz->buffer->start);
46 }
47 
48 /* increase and wrap the start pointer, returning the old value */
49 static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
50 {
51 	int old;
52 	int new;
53 
54 	do {
55 		old = atomic_read(&prz->buffer->start);
56 		new = old + a;
57 		while (unlikely(new > prz->buffer_size))
58 			new -= prz->buffer_size;
59 	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
60 
61 	return old;
62 }
63 
64 /* increase the size counter until it hits the max size */
65 static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
66 {
67 	size_t old;
68 	size_t new;
69 
70 	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
71 		return;
72 
73 	do {
74 		old = atomic_read(&prz->buffer->size);
75 		new = old + a;
76 		if (new > prz->buffer_size)
77 			new = prz->buffer_size;
78 	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
79 }
80 
81 static DEFINE_RAW_SPINLOCK(buffer_lock);
82 
83 /* increase and wrap the start pointer, returning the old value */
84 static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
85 {
86 	int old;
87 	int new;
88 	unsigned long flags;
89 
90 	raw_spin_lock_irqsave(&buffer_lock, flags);
91 
92 	old = atomic_read(&prz->buffer->start);
93 	new = old + a;
94 	while (unlikely(new > prz->buffer_size))
95 		new -= prz->buffer_size;
96 	atomic_set(&prz->buffer->start, new);
97 
98 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
99 
100 	return old;
101 }
102 
103 /* increase the size counter until it hits the max size */
104 static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
105 {
106 	size_t old;
107 	size_t new;
108 	unsigned long flags;
109 
110 	raw_spin_lock_irqsave(&buffer_lock, flags);
111 
112 	old = atomic_read(&prz->buffer->size);
113 	if (old == prz->buffer_size)
114 		goto exit;
115 
116 	new = old + a;
117 	if (new > prz->buffer_size)
118 		new = prz->buffer_size;
119 	atomic_set(&prz->buffer->size, new);
120 
121 exit:
122 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
123 }
124 
125 static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
126 static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
127 
128 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
129 	uint8_t *data, size_t len, uint8_t *ecc)
130 {
131 	int i;
132 	uint16_t par[prz->ecc_info.ecc_size];
133 
134 	/* Initialize the parity buffer */
135 	memset(par, 0, sizeof(par));
136 	encode_rs8(prz->rs_decoder, data, len, par, 0);
137 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
138 		ecc[i] = par[i];
139 }
140 
141 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
142 	void *data, size_t len, uint8_t *ecc)
143 {
144 	int i;
145 	uint16_t par[prz->ecc_info.ecc_size];
146 
147 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
148 		par[i] = ecc[i];
149 	return decode_rs8(prz->rs_decoder, data, par, len,
150 				NULL, 0, NULL, 0, NULL);
151 }
152 
153 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
154 	unsigned int start, unsigned int count)
155 {
156 	struct persistent_ram_buffer *buffer = prz->buffer;
157 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
158 	uint8_t *block;
159 	uint8_t *par;
160 	int ecc_block_size = prz->ecc_info.block_size;
161 	int ecc_size = prz->ecc_info.ecc_size;
162 	int size = ecc_block_size;
163 
164 	if (!ecc_size)
165 		return;
166 
167 	block = buffer->data + (start & ~(ecc_block_size - 1));
168 	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
169 
170 	do {
171 		if (block + ecc_block_size > buffer_end)
172 			size = buffer_end - block;
173 		persistent_ram_encode_rs8(prz, block, size, par);
174 		block += ecc_block_size;
175 		par += ecc_size;
176 	} while (block < buffer->data + start + count);
177 }
178 
179 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
180 {
181 	struct persistent_ram_buffer *buffer = prz->buffer;
182 
183 	if (!prz->ecc_info.ecc_size)
184 		return;
185 
186 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
187 				  prz->par_header);
188 }
189 
190 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
191 {
192 	struct persistent_ram_buffer *buffer = prz->buffer;
193 	uint8_t *block;
194 	uint8_t *par;
195 
196 	if (!prz->ecc_info.ecc_size)
197 		return;
198 
199 	block = buffer->data;
200 	par = prz->par_buffer;
201 	while (block < buffer->data + buffer_size(prz)) {
202 		int numerr;
203 		int size = prz->ecc_info.block_size;
204 		if (block + size > buffer->data + prz->buffer_size)
205 			size = buffer->data + prz->buffer_size - block;
206 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
207 		if (numerr > 0) {
208 			pr_devel("persistent_ram: error in block %p, %d\n",
209 			       block, numerr);
210 			prz->corrected_bytes += numerr;
211 		} else if (numerr < 0) {
212 			pr_devel("persistent_ram: uncorrectable error in block %p\n",
213 				block);
214 			prz->bad_blocks++;
215 		}
216 		block += prz->ecc_info.block_size;
217 		par += prz->ecc_info.ecc_size;
218 	}
219 }
220 
221 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222 				   struct persistent_ram_ecc_info *ecc_info)
223 {
224 	int numerr;
225 	struct persistent_ram_buffer *buffer = prz->buffer;
226 	int ecc_blocks;
227 	size_t ecc_total;
228 
229 	if (!ecc_info || !ecc_info->ecc_size)
230 		return 0;
231 
232 	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233 	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234 	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235 	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
236 
237 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238 				  prz->ecc_info.block_size +
239 				  prz->ecc_info.ecc_size);
240 	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241 	if (ecc_total >= prz->buffer_size) {
242 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243 		       __func__, prz->ecc_info.ecc_size,
244 		       ecc_total, prz->buffer_size);
245 		return -EINVAL;
246 	}
247 
248 	prz->buffer_size -= ecc_total;
249 	prz->par_buffer = buffer->data + prz->buffer_size;
250 	prz->par_header = prz->par_buffer +
251 			  ecc_blocks * prz->ecc_info.ecc_size;
252 
253 	/*
254 	 * first consecutive root is 0
255 	 * primitive element to generate roots = 1
256 	 */
257 	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258 				  0, 1, prz->ecc_info.ecc_size);
259 	if (prz->rs_decoder == NULL) {
260 		pr_info("persistent_ram: init_rs failed\n");
261 		return -EINVAL;
262 	}
263 
264 	prz->corrected_bytes = 0;
265 	prz->bad_blocks = 0;
266 
267 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268 					   prz->par_header);
269 	if (numerr > 0) {
270 		pr_info("persistent_ram: error in header, %d\n", numerr);
271 		prz->corrected_bytes += numerr;
272 	} else if (numerr < 0) {
273 		pr_info("persistent_ram: uncorrectable error in header\n");
274 		prz->bad_blocks++;
275 	}
276 
277 	return 0;
278 }
279 
280 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281 	char *str, size_t len)
282 {
283 	ssize_t ret;
284 
285 	if (!prz->ecc_info.ecc_size)
286 		return 0;
287 
288 	if (prz->corrected_bytes || prz->bad_blocks)
289 		ret = snprintf(str, len, ""
290 			"\n%d Corrected bytes, %d unrecoverable blocks\n",
291 			prz->corrected_bytes, prz->bad_blocks);
292 	else
293 		ret = snprintf(str, len, "\nNo errors detected\n");
294 
295 	return ret;
296 }
297 
298 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299 	const void *s, unsigned int start, unsigned int count)
300 {
301 	struct persistent_ram_buffer *buffer = prz->buffer;
302 	memcpy(buffer->data + start, s, count);
303 	persistent_ram_update_ecc(prz, start, count);
304 }
305 
306 void persistent_ram_save_old(struct persistent_ram_zone *prz)
307 {
308 	struct persistent_ram_buffer *buffer = prz->buffer;
309 	size_t size = buffer_size(prz);
310 	size_t start = buffer_start(prz);
311 
312 	if (!size)
313 		return;
314 
315 	if (!prz->old_log) {
316 		persistent_ram_ecc_old(prz);
317 		prz->old_log = kmalloc(size, GFP_KERNEL);
318 	}
319 	if (!prz->old_log) {
320 		pr_err("persistent_ram: failed to allocate buffer\n");
321 		return;
322 	}
323 
324 	prz->old_log_size = size;
325 	memcpy(prz->old_log, &buffer->data[start], size - start);
326 	memcpy(prz->old_log + size - start, &buffer->data[0], start);
327 }
328 
329 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330 	const void *s, unsigned int count)
331 {
332 	int rem;
333 	int c = count;
334 	size_t start;
335 
336 	if (unlikely(c > prz->buffer_size)) {
337 		s += c - prz->buffer_size;
338 		c = prz->buffer_size;
339 	}
340 
341 	buffer_size_add(prz, c);
342 
343 	start = buffer_start_add(prz, c);
344 
345 	rem = prz->buffer_size - start;
346 	if (unlikely(rem < c)) {
347 		persistent_ram_update(prz, s, start, rem);
348 		s += rem;
349 		c -= rem;
350 		start = 0;
351 	}
352 	persistent_ram_update(prz, s, start, c);
353 
354 	persistent_ram_update_header_ecc(prz);
355 
356 	return count;
357 }
358 
359 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
360 {
361 	return prz->old_log_size;
362 }
363 
364 void *persistent_ram_old(struct persistent_ram_zone *prz)
365 {
366 	return prz->old_log;
367 }
368 
369 void persistent_ram_free_old(struct persistent_ram_zone *prz)
370 {
371 	kfree(prz->old_log);
372 	prz->old_log = NULL;
373 	prz->old_log_size = 0;
374 }
375 
376 void persistent_ram_zap(struct persistent_ram_zone *prz)
377 {
378 	atomic_set(&prz->buffer->start, 0);
379 	atomic_set(&prz->buffer->size, 0);
380 	persistent_ram_update_header_ecc(prz);
381 }
382 
383 static void *persistent_ram_vmap(phys_addr_t start, size_t size)
384 {
385 	struct page **pages;
386 	phys_addr_t page_start;
387 	unsigned int page_count;
388 	pgprot_t prot;
389 	unsigned int i;
390 	void *vaddr;
391 
392 	page_start = start - offset_in_page(start);
393 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
394 
395 	prot = pgprot_noncached(PAGE_KERNEL);
396 
397 	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
398 	if (!pages) {
399 		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
400 			page_count);
401 		return NULL;
402 	}
403 
404 	for (i = 0; i < page_count; i++) {
405 		phys_addr_t addr = page_start + i * PAGE_SIZE;
406 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
407 	}
408 	vaddr = vmap(pages, page_count, VM_MAP, prot);
409 	kfree(pages);
410 
411 	return vaddr;
412 }
413 
414 static void *persistent_ram_iomap(phys_addr_t start, size_t size)
415 {
416 	if (!request_mem_region(start, size, "persistent_ram")) {
417 		pr_err("request mem region (0x%llx@0x%llx) failed\n",
418 			(unsigned long long)size, (unsigned long long)start);
419 		return NULL;
420 	}
421 
422 	buffer_start_add = buffer_start_add_locked;
423 	buffer_size_add = buffer_size_add_locked;
424 
425 	return ioremap(start, size);
426 }
427 
428 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
429 		struct persistent_ram_zone *prz)
430 {
431 	prz->paddr = start;
432 	prz->size = size;
433 
434 	if (pfn_valid(start >> PAGE_SHIFT))
435 		prz->vaddr = persistent_ram_vmap(start, size);
436 	else
437 		prz->vaddr = persistent_ram_iomap(start, size);
438 
439 	if (!prz->vaddr) {
440 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
441 			(unsigned long long)size, (unsigned long long)start);
442 		return -ENOMEM;
443 	}
444 
445 	prz->buffer = prz->vaddr + offset_in_page(start);
446 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
447 
448 	return 0;
449 }
450 
451 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
452 				    struct persistent_ram_ecc_info *ecc_info)
453 {
454 	int ret;
455 
456 	ret = persistent_ram_init_ecc(prz, ecc_info);
457 	if (ret)
458 		return ret;
459 
460 	sig ^= PERSISTENT_RAM_SIG;
461 
462 	if (prz->buffer->sig == sig) {
463 		if (buffer_size(prz) > prz->buffer_size ||
464 		    buffer_start(prz) > buffer_size(prz))
465 			pr_info("persistent_ram: found existing invalid buffer,"
466 				" size %zu, start %zu\n",
467 			       buffer_size(prz), buffer_start(prz));
468 		else {
469 			pr_debug("persistent_ram: found existing buffer,"
470 				" size %zu, start %zu\n",
471 			       buffer_size(prz), buffer_start(prz));
472 			persistent_ram_save_old(prz);
473 			return 0;
474 		}
475 	} else {
476 		pr_debug("persistent_ram: no valid data in buffer"
477 			" (sig = 0x%08x)\n", prz->buffer->sig);
478 	}
479 
480 	prz->buffer->sig = sig;
481 	persistent_ram_zap(prz);
482 
483 	return 0;
484 }
485 
486 void persistent_ram_free(struct persistent_ram_zone *prz)
487 {
488 	if (!prz)
489 		return;
490 
491 	if (prz->vaddr) {
492 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
493 			vunmap(prz->vaddr);
494 		} else {
495 			iounmap(prz->vaddr);
496 			release_mem_region(prz->paddr, prz->size);
497 		}
498 		prz->vaddr = NULL;
499 	}
500 	persistent_ram_free_old(prz);
501 	kfree(prz);
502 }
503 
504 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
505 			u32 sig, struct persistent_ram_ecc_info *ecc_info)
506 {
507 	struct persistent_ram_zone *prz;
508 	int ret = -ENOMEM;
509 
510 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
511 	if (!prz) {
512 		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
513 		goto err;
514 	}
515 
516 	ret = persistent_ram_buffer_map(start, size, prz);
517 	if (ret)
518 		goto err;
519 
520 	ret = persistent_ram_post_init(prz, sig, ecc_info);
521 	if (ret)
522 		goto err;
523 
524 	return prz;
525 err:
526 	persistent_ram_free(prz);
527 	return ERR_PTR(ret);
528 }
529