1 /* 2 * Copyright (C) 2012 Google, Inc. 3 * 4 * This software is licensed under the terms of the GNU General Public 5 * License version 2, as published by the Free Software Foundation, and 6 * may be copied, distributed, and modified under those terms. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 */ 14 15 #include <linux/device.h> 16 #include <linux/err.h> 17 #include <linux/errno.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/io.h> 21 #include <linux/list.h> 22 #include <linux/memblock.h> 23 #include <linux/rslib.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/pstore_ram.h> 27 #include <asm/page.h> 28 29 struct persistent_ram_buffer { 30 uint32_t sig; 31 atomic_t start; 32 atomic_t size; 33 uint8_t data[0]; 34 }; 35 36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */ 37 38 static inline size_t buffer_size(struct persistent_ram_zone *prz) 39 { 40 return atomic_read(&prz->buffer->size); 41 } 42 43 static inline size_t buffer_start(struct persistent_ram_zone *prz) 44 { 45 return atomic_read(&prz->buffer->start); 46 } 47 48 /* increase and wrap the start pointer, returning the old value */ 49 static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a) 50 { 51 int old; 52 int new; 53 54 do { 55 old = atomic_read(&prz->buffer->start); 56 new = old + a; 57 while (unlikely(new > prz->buffer_size)) 58 new -= prz->buffer_size; 59 } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old); 60 61 return old; 62 } 63 64 /* increase the size counter until it hits the max size */ 65 static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a) 66 { 67 size_t old; 68 size_t new; 69 70 if (atomic_read(&prz->buffer->size) == prz->buffer_size) 71 return; 72 73 do { 74 old = atomic_read(&prz->buffer->size); 75 new = old + a; 76 if (new > prz->buffer_size) 77 new = prz->buffer_size; 78 } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old); 79 } 80 81 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz, 82 uint8_t *data, size_t len, uint8_t *ecc) 83 { 84 int i; 85 uint16_t par[prz->ecc_size]; 86 87 /* Initialize the parity buffer */ 88 memset(par, 0, sizeof(par)); 89 encode_rs8(prz->rs_decoder, data, len, par, 0); 90 for (i = 0; i < prz->ecc_size; i++) 91 ecc[i] = par[i]; 92 } 93 94 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz, 95 void *data, size_t len, uint8_t *ecc) 96 { 97 int i; 98 uint16_t par[prz->ecc_size]; 99 100 for (i = 0; i < prz->ecc_size; i++) 101 par[i] = ecc[i]; 102 return decode_rs8(prz->rs_decoder, data, par, len, 103 NULL, 0, NULL, 0, NULL); 104 } 105 106 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz, 107 unsigned int start, unsigned int count) 108 { 109 struct persistent_ram_buffer *buffer = prz->buffer; 110 uint8_t *buffer_end = buffer->data + prz->buffer_size; 111 uint8_t *block; 112 uint8_t *par; 113 int ecc_block_size = prz->ecc_block_size; 114 int ecc_size = prz->ecc_size; 115 int size = prz->ecc_block_size; 116 117 if (!prz->ecc_size) 118 return; 119 120 block = buffer->data + (start & ~(ecc_block_size - 1)); 121 par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size; 122 123 do { 124 if (block + ecc_block_size > buffer_end) 125 size = buffer_end - block; 126 persistent_ram_encode_rs8(prz, block, size, par); 127 block += ecc_block_size; 128 par += ecc_size; 129 } while (block < buffer->data + start + count); 130 } 131 132 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz) 133 { 134 struct persistent_ram_buffer *buffer = prz->buffer; 135 136 if (!prz->ecc_size) 137 return; 138 139 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer), 140 prz->par_header); 141 } 142 143 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz) 144 { 145 struct persistent_ram_buffer *buffer = prz->buffer; 146 uint8_t *block; 147 uint8_t *par; 148 149 if (!prz->ecc_size) 150 return; 151 152 block = buffer->data; 153 par = prz->par_buffer; 154 while (block < buffer->data + buffer_size(prz)) { 155 int numerr; 156 int size = prz->ecc_block_size; 157 if (block + size > buffer->data + prz->buffer_size) 158 size = buffer->data + prz->buffer_size - block; 159 numerr = persistent_ram_decode_rs8(prz, block, size, par); 160 if (numerr > 0) { 161 pr_devel("persistent_ram: error in block %p, %d\n", 162 block, numerr); 163 prz->corrected_bytes += numerr; 164 } else if (numerr < 0) { 165 pr_devel("persistent_ram: uncorrectable error in block %p\n", 166 block); 167 prz->bad_blocks++; 168 } 169 block += prz->ecc_block_size; 170 par += prz->ecc_size; 171 } 172 } 173 174 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz, 175 int ecc_size) 176 { 177 int numerr; 178 struct persistent_ram_buffer *buffer = prz->buffer; 179 int ecc_blocks; 180 size_t ecc_total; 181 int ecc_symsize = 8; 182 int ecc_poly = 0x11d; 183 184 if (!ecc_size) 185 return 0; 186 187 prz->ecc_block_size = 128; 188 prz->ecc_size = ecc_size; 189 190 ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size); 191 ecc_total = (ecc_blocks + 1) * prz->ecc_size; 192 if (ecc_total >= prz->buffer_size) { 193 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n", 194 __func__, prz->ecc_size, ecc_total, prz->buffer_size); 195 return -EINVAL; 196 } 197 198 prz->buffer_size -= ecc_total; 199 prz->par_buffer = buffer->data + prz->buffer_size; 200 prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size; 201 202 /* 203 * first consecutive root is 0 204 * primitive element to generate roots = 1 205 */ 206 prz->rs_decoder = init_rs(ecc_symsize, ecc_poly, 0, 1, prz->ecc_size); 207 if (prz->rs_decoder == NULL) { 208 pr_info("persistent_ram: init_rs failed\n"); 209 return -EINVAL; 210 } 211 212 prz->corrected_bytes = 0; 213 prz->bad_blocks = 0; 214 215 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer), 216 prz->par_header); 217 if (numerr > 0) { 218 pr_info("persistent_ram: error in header, %d\n", numerr); 219 prz->corrected_bytes += numerr; 220 } else if (numerr < 0) { 221 pr_info("persistent_ram: uncorrectable error in header\n"); 222 prz->bad_blocks++; 223 } 224 225 return 0; 226 } 227 228 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz, 229 char *str, size_t len) 230 { 231 ssize_t ret; 232 233 if (prz->corrected_bytes || prz->bad_blocks) 234 ret = snprintf(str, len, "" 235 "\n%d Corrected bytes, %d unrecoverable blocks\n", 236 prz->corrected_bytes, prz->bad_blocks); 237 else 238 ret = snprintf(str, len, "\nNo errors detected\n"); 239 240 return ret; 241 } 242 243 static void notrace persistent_ram_update(struct persistent_ram_zone *prz, 244 const void *s, unsigned int start, unsigned int count) 245 { 246 struct persistent_ram_buffer *buffer = prz->buffer; 247 memcpy(buffer->data + start, s, count); 248 persistent_ram_update_ecc(prz, start, count); 249 } 250 251 void persistent_ram_save_old(struct persistent_ram_zone *prz) 252 { 253 struct persistent_ram_buffer *buffer = prz->buffer; 254 size_t size = buffer_size(prz); 255 size_t start = buffer_start(prz); 256 257 if (!size) 258 return; 259 260 if (!prz->old_log) { 261 persistent_ram_ecc_old(prz); 262 prz->old_log = kmalloc(size, GFP_KERNEL); 263 } 264 if (!prz->old_log) { 265 pr_err("persistent_ram: failed to allocate buffer\n"); 266 return; 267 } 268 269 prz->old_log_size = size; 270 memcpy(prz->old_log, &buffer->data[start], size - start); 271 memcpy(prz->old_log + size - start, &buffer->data[0], start); 272 } 273 274 int notrace persistent_ram_write(struct persistent_ram_zone *prz, 275 const void *s, unsigned int count) 276 { 277 int rem; 278 int c = count; 279 size_t start; 280 281 if (unlikely(c > prz->buffer_size)) { 282 s += c - prz->buffer_size; 283 c = prz->buffer_size; 284 } 285 286 buffer_size_add(prz, c); 287 288 start = buffer_start_add(prz, c); 289 290 rem = prz->buffer_size - start; 291 if (unlikely(rem < c)) { 292 persistent_ram_update(prz, s, start, rem); 293 s += rem; 294 c -= rem; 295 start = 0; 296 } 297 persistent_ram_update(prz, s, start, c); 298 299 persistent_ram_update_header_ecc(prz); 300 301 return count; 302 } 303 304 size_t persistent_ram_old_size(struct persistent_ram_zone *prz) 305 { 306 return prz->old_log_size; 307 } 308 309 void *persistent_ram_old(struct persistent_ram_zone *prz) 310 { 311 return prz->old_log; 312 } 313 314 void persistent_ram_free_old(struct persistent_ram_zone *prz) 315 { 316 kfree(prz->old_log); 317 prz->old_log = NULL; 318 prz->old_log_size = 0; 319 } 320 321 void persistent_ram_zap(struct persistent_ram_zone *prz) 322 { 323 atomic_set(&prz->buffer->start, 0); 324 atomic_set(&prz->buffer->size, 0); 325 persistent_ram_update_header_ecc(prz); 326 } 327 328 static void *persistent_ram_vmap(phys_addr_t start, size_t size) 329 { 330 struct page **pages; 331 phys_addr_t page_start; 332 unsigned int page_count; 333 pgprot_t prot; 334 unsigned int i; 335 void *vaddr; 336 337 page_start = start - offset_in_page(start); 338 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE); 339 340 prot = pgprot_noncached(PAGE_KERNEL); 341 342 pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL); 343 if (!pages) { 344 pr_err("%s: Failed to allocate array for %u pages\n", __func__, 345 page_count); 346 return NULL; 347 } 348 349 for (i = 0; i < page_count; i++) { 350 phys_addr_t addr = page_start + i * PAGE_SIZE; 351 pages[i] = pfn_to_page(addr >> PAGE_SHIFT); 352 } 353 vaddr = vmap(pages, page_count, VM_MAP, prot); 354 kfree(pages); 355 356 return vaddr; 357 } 358 359 static void *persistent_ram_iomap(phys_addr_t start, size_t size) 360 { 361 if (!request_mem_region(start, size, "persistent_ram")) { 362 pr_err("request mem region (0x%llx@0x%llx) failed\n", 363 (unsigned long long)size, (unsigned long long)start); 364 return NULL; 365 } 366 367 return ioremap(start, size); 368 } 369 370 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size, 371 struct persistent_ram_zone *prz) 372 { 373 prz->paddr = start; 374 prz->size = size; 375 376 if (pfn_valid(start >> PAGE_SHIFT)) 377 prz->vaddr = persistent_ram_vmap(start, size); 378 else 379 prz->vaddr = persistent_ram_iomap(start, size); 380 381 if (!prz->vaddr) { 382 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__, 383 (unsigned long long)size, (unsigned long long)start); 384 return -ENOMEM; 385 } 386 387 prz->buffer = prz->vaddr + offset_in_page(start); 388 prz->buffer_size = size - sizeof(struct persistent_ram_buffer); 389 390 return 0; 391 } 392 393 static int __devinit persistent_ram_post_init(struct persistent_ram_zone *prz, 394 u32 sig, int ecc_size) 395 { 396 int ret; 397 398 ret = persistent_ram_init_ecc(prz, ecc_size); 399 if (ret) 400 return ret; 401 402 sig ^= PERSISTENT_RAM_SIG; 403 404 if (prz->buffer->sig == sig) { 405 if (buffer_size(prz) > prz->buffer_size || 406 buffer_start(prz) > buffer_size(prz)) 407 pr_info("persistent_ram: found existing invalid buffer," 408 " size %zu, start %zu\n", 409 buffer_size(prz), buffer_start(prz)); 410 else { 411 pr_debug("persistent_ram: found existing buffer," 412 " size %zu, start %zu\n", 413 buffer_size(prz), buffer_start(prz)); 414 persistent_ram_save_old(prz); 415 return 0; 416 } 417 } else { 418 pr_debug("persistent_ram: no valid data in buffer" 419 " (sig = 0x%08x)\n", prz->buffer->sig); 420 } 421 422 prz->buffer->sig = sig; 423 persistent_ram_zap(prz); 424 425 return 0; 426 } 427 428 void persistent_ram_free(struct persistent_ram_zone *prz) 429 { 430 if (!prz) 431 return; 432 433 if (prz->vaddr) { 434 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) { 435 vunmap(prz->vaddr); 436 } else { 437 iounmap(prz->vaddr); 438 release_mem_region(prz->paddr, prz->size); 439 } 440 prz->vaddr = NULL; 441 } 442 persistent_ram_free_old(prz); 443 kfree(prz); 444 } 445 446 struct persistent_ram_zone * __devinit persistent_ram_new(phys_addr_t start, 447 size_t size, u32 sig, 448 int ecc_size) 449 { 450 struct persistent_ram_zone *prz; 451 int ret = -ENOMEM; 452 453 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL); 454 if (!prz) { 455 pr_err("persistent_ram: failed to allocate persistent ram zone\n"); 456 goto err; 457 } 458 459 ret = persistent_ram_buffer_map(start, size, prz); 460 if (ret) 461 goto err; 462 463 ret = persistent_ram_post_init(prz, sig, ecc_size); 464 if (ret) 465 goto err; 466 467 return prz; 468 err: 469 persistent_ram_free(prz); 470 return ERR_PTR(ret); 471 } 472