xref: /openbmc/linux/fs/pstore/ram_core.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/pstore_ram.h>
27 #include <asm/page.h>
28 
29 struct persistent_ram_buffer {
30 	uint32_t    sig;
31 	atomic_t    start;
32 	atomic_t    size;
33 	uint8_t     data[0];
34 };
35 
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37 
38 static inline size_t buffer_size(struct persistent_ram_zone *prz)
39 {
40 	return atomic_read(&prz->buffer->size);
41 }
42 
43 static inline size_t buffer_start(struct persistent_ram_zone *prz)
44 {
45 	return atomic_read(&prz->buffer->start);
46 }
47 
48 /* increase and wrap the start pointer, returning the old value */
49 static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
50 {
51 	int old;
52 	int new;
53 
54 	do {
55 		old = atomic_read(&prz->buffer->start);
56 		new = old + a;
57 		while (unlikely(new > prz->buffer_size))
58 			new -= prz->buffer_size;
59 	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
60 
61 	return old;
62 }
63 
64 /* increase the size counter until it hits the max size */
65 static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
66 {
67 	size_t old;
68 	size_t new;
69 
70 	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
71 		return;
72 
73 	do {
74 		old = atomic_read(&prz->buffer->size);
75 		new = old + a;
76 		if (new > prz->buffer_size)
77 			new = prz->buffer_size;
78 	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
79 }
80 
81 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82 	uint8_t *data, size_t len, uint8_t *ecc)
83 {
84 	int i;
85 	uint16_t par[prz->ecc_size];
86 
87 	/* Initialize the parity buffer */
88 	memset(par, 0, sizeof(par));
89 	encode_rs8(prz->rs_decoder, data, len, par, 0);
90 	for (i = 0; i < prz->ecc_size; i++)
91 		ecc[i] = par[i];
92 }
93 
94 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
95 	void *data, size_t len, uint8_t *ecc)
96 {
97 	int i;
98 	uint16_t par[prz->ecc_size];
99 
100 	for (i = 0; i < prz->ecc_size; i++)
101 		par[i] = ecc[i];
102 	return decode_rs8(prz->rs_decoder, data, par, len,
103 				NULL, 0, NULL, 0, NULL);
104 }
105 
106 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107 	unsigned int start, unsigned int count)
108 {
109 	struct persistent_ram_buffer *buffer = prz->buffer;
110 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
111 	uint8_t *block;
112 	uint8_t *par;
113 	int ecc_block_size = prz->ecc_block_size;
114 	int ecc_size = prz->ecc_size;
115 	int size = prz->ecc_block_size;
116 
117 	if (!prz->ecc_size)
118 		return;
119 
120 	block = buffer->data + (start & ~(ecc_block_size - 1));
121 	par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;
122 
123 	do {
124 		if (block + ecc_block_size > buffer_end)
125 			size = buffer_end - block;
126 		persistent_ram_encode_rs8(prz, block, size, par);
127 		block += ecc_block_size;
128 		par += ecc_size;
129 	} while (block < buffer->data + start + count);
130 }
131 
132 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 {
134 	struct persistent_ram_buffer *buffer = prz->buffer;
135 
136 	if (!prz->ecc_size)
137 		return;
138 
139 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
140 				  prz->par_header);
141 }
142 
143 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 {
145 	struct persistent_ram_buffer *buffer = prz->buffer;
146 	uint8_t *block;
147 	uint8_t *par;
148 
149 	if (!prz->ecc_size)
150 		return;
151 
152 	block = buffer->data;
153 	par = prz->par_buffer;
154 	while (block < buffer->data + buffer_size(prz)) {
155 		int numerr;
156 		int size = prz->ecc_block_size;
157 		if (block + size > buffer->data + prz->buffer_size)
158 			size = buffer->data + prz->buffer_size - block;
159 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
160 		if (numerr > 0) {
161 			pr_devel("persistent_ram: error in block %p, %d\n",
162 			       block, numerr);
163 			prz->corrected_bytes += numerr;
164 		} else if (numerr < 0) {
165 			pr_devel("persistent_ram: uncorrectable error in block %p\n",
166 				block);
167 			prz->bad_blocks++;
168 		}
169 		block += prz->ecc_block_size;
170 		par += prz->ecc_size;
171 	}
172 }
173 
174 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
175 				   int ecc_size)
176 {
177 	int numerr;
178 	struct persistent_ram_buffer *buffer = prz->buffer;
179 	int ecc_blocks;
180 	size_t ecc_total;
181 	int ecc_symsize = 8;
182 	int ecc_poly = 0x11d;
183 
184 	if (!ecc_size)
185 		return 0;
186 
187 	prz->ecc_block_size = 128;
188 	prz->ecc_size = ecc_size;
189 
190 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
191 	ecc_total = (ecc_blocks + 1) * prz->ecc_size;
192 	if (ecc_total >= prz->buffer_size) {
193 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
194 		       __func__, prz->ecc_size, ecc_total, prz->buffer_size);
195 		return -EINVAL;
196 	}
197 
198 	prz->buffer_size -= ecc_total;
199 	prz->par_buffer = buffer->data + prz->buffer_size;
200 	prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;
201 
202 	/*
203 	 * first consecutive root is 0
204 	 * primitive element to generate roots = 1
205 	 */
206 	prz->rs_decoder = init_rs(ecc_symsize, ecc_poly, 0, 1, prz->ecc_size);
207 	if (prz->rs_decoder == NULL) {
208 		pr_info("persistent_ram: init_rs failed\n");
209 		return -EINVAL;
210 	}
211 
212 	prz->corrected_bytes = 0;
213 	prz->bad_blocks = 0;
214 
215 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
216 					   prz->par_header);
217 	if (numerr > 0) {
218 		pr_info("persistent_ram: error in header, %d\n", numerr);
219 		prz->corrected_bytes += numerr;
220 	} else if (numerr < 0) {
221 		pr_info("persistent_ram: uncorrectable error in header\n");
222 		prz->bad_blocks++;
223 	}
224 
225 	return 0;
226 }
227 
228 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
229 	char *str, size_t len)
230 {
231 	ssize_t ret;
232 
233 	if (prz->corrected_bytes || prz->bad_blocks)
234 		ret = snprintf(str, len, ""
235 			"\n%d Corrected bytes, %d unrecoverable blocks\n",
236 			prz->corrected_bytes, prz->bad_blocks);
237 	else
238 		ret = snprintf(str, len, "\nNo errors detected\n");
239 
240 	return ret;
241 }
242 
243 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
244 	const void *s, unsigned int start, unsigned int count)
245 {
246 	struct persistent_ram_buffer *buffer = prz->buffer;
247 	memcpy(buffer->data + start, s, count);
248 	persistent_ram_update_ecc(prz, start, count);
249 }
250 
251 void persistent_ram_save_old(struct persistent_ram_zone *prz)
252 {
253 	struct persistent_ram_buffer *buffer = prz->buffer;
254 	size_t size = buffer_size(prz);
255 	size_t start = buffer_start(prz);
256 
257 	if (!size)
258 		return;
259 
260 	if (!prz->old_log) {
261 		persistent_ram_ecc_old(prz);
262 		prz->old_log = kmalloc(size, GFP_KERNEL);
263 	}
264 	if (!prz->old_log) {
265 		pr_err("persistent_ram: failed to allocate buffer\n");
266 		return;
267 	}
268 
269 	prz->old_log_size = size;
270 	memcpy(prz->old_log, &buffer->data[start], size - start);
271 	memcpy(prz->old_log + size - start, &buffer->data[0], start);
272 }
273 
274 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
275 	const void *s, unsigned int count)
276 {
277 	int rem;
278 	int c = count;
279 	size_t start;
280 
281 	if (unlikely(c > prz->buffer_size)) {
282 		s += c - prz->buffer_size;
283 		c = prz->buffer_size;
284 	}
285 
286 	buffer_size_add(prz, c);
287 
288 	start = buffer_start_add(prz, c);
289 
290 	rem = prz->buffer_size - start;
291 	if (unlikely(rem < c)) {
292 		persistent_ram_update(prz, s, start, rem);
293 		s += rem;
294 		c -= rem;
295 		start = 0;
296 	}
297 	persistent_ram_update(prz, s, start, c);
298 
299 	persistent_ram_update_header_ecc(prz);
300 
301 	return count;
302 }
303 
304 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
305 {
306 	return prz->old_log_size;
307 }
308 
309 void *persistent_ram_old(struct persistent_ram_zone *prz)
310 {
311 	return prz->old_log;
312 }
313 
314 void persistent_ram_free_old(struct persistent_ram_zone *prz)
315 {
316 	kfree(prz->old_log);
317 	prz->old_log = NULL;
318 	prz->old_log_size = 0;
319 }
320 
321 void persistent_ram_zap(struct persistent_ram_zone *prz)
322 {
323 	atomic_set(&prz->buffer->start, 0);
324 	atomic_set(&prz->buffer->size, 0);
325 	persistent_ram_update_header_ecc(prz);
326 }
327 
328 static void *persistent_ram_vmap(phys_addr_t start, size_t size)
329 {
330 	struct page **pages;
331 	phys_addr_t page_start;
332 	unsigned int page_count;
333 	pgprot_t prot;
334 	unsigned int i;
335 	void *vaddr;
336 
337 	page_start = start - offset_in_page(start);
338 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
339 
340 	prot = pgprot_noncached(PAGE_KERNEL);
341 
342 	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
343 	if (!pages) {
344 		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
345 			page_count);
346 		return NULL;
347 	}
348 
349 	for (i = 0; i < page_count; i++) {
350 		phys_addr_t addr = page_start + i * PAGE_SIZE;
351 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
352 	}
353 	vaddr = vmap(pages, page_count, VM_MAP, prot);
354 	kfree(pages);
355 
356 	return vaddr;
357 }
358 
359 static void *persistent_ram_iomap(phys_addr_t start, size_t size)
360 {
361 	if (!request_mem_region(start, size, "persistent_ram")) {
362 		pr_err("request mem region (0x%llx@0x%llx) failed\n",
363 			(unsigned long long)size, (unsigned long long)start);
364 		return NULL;
365 	}
366 
367 	return ioremap(start, size);
368 }
369 
370 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
371 		struct persistent_ram_zone *prz)
372 {
373 	prz->paddr = start;
374 	prz->size = size;
375 
376 	if (pfn_valid(start >> PAGE_SHIFT))
377 		prz->vaddr = persistent_ram_vmap(start, size);
378 	else
379 		prz->vaddr = persistent_ram_iomap(start, size);
380 
381 	if (!prz->vaddr) {
382 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
383 			(unsigned long long)size, (unsigned long long)start);
384 		return -ENOMEM;
385 	}
386 
387 	prz->buffer = prz->vaddr + offset_in_page(start);
388 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
389 
390 	return 0;
391 }
392 
393 static int __devinit persistent_ram_post_init(struct persistent_ram_zone *prz,
394 					      u32 sig, int ecc_size)
395 {
396 	int ret;
397 
398 	ret = persistent_ram_init_ecc(prz, ecc_size);
399 	if (ret)
400 		return ret;
401 
402 	sig ^= PERSISTENT_RAM_SIG;
403 
404 	if (prz->buffer->sig == sig) {
405 		if (buffer_size(prz) > prz->buffer_size ||
406 		    buffer_start(prz) > buffer_size(prz))
407 			pr_info("persistent_ram: found existing invalid buffer,"
408 				" size %zu, start %zu\n",
409 			       buffer_size(prz), buffer_start(prz));
410 		else {
411 			pr_debug("persistent_ram: found existing buffer,"
412 				" size %zu, start %zu\n",
413 			       buffer_size(prz), buffer_start(prz));
414 			persistent_ram_save_old(prz);
415 			return 0;
416 		}
417 	} else {
418 		pr_debug("persistent_ram: no valid data in buffer"
419 			" (sig = 0x%08x)\n", prz->buffer->sig);
420 	}
421 
422 	prz->buffer->sig = sig;
423 	persistent_ram_zap(prz);
424 
425 	return 0;
426 }
427 
428 void persistent_ram_free(struct persistent_ram_zone *prz)
429 {
430 	if (!prz)
431 		return;
432 
433 	if (prz->vaddr) {
434 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
435 			vunmap(prz->vaddr);
436 		} else {
437 			iounmap(prz->vaddr);
438 			release_mem_region(prz->paddr, prz->size);
439 		}
440 		prz->vaddr = NULL;
441 	}
442 	persistent_ram_free_old(prz);
443 	kfree(prz);
444 }
445 
446 struct persistent_ram_zone * __devinit persistent_ram_new(phys_addr_t start,
447 							  size_t size, u32 sig,
448 							  int ecc_size)
449 {
450 	struct persistent_ram_zone *prz;
451 	int ret = -ENOMEM;
452 
453 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
454 	if (!prz) {
455 		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
456 		goto err;
457 	}
458 
459 	ret = persistent_ram_buffer_map(start, size, prz);
460 	if (ret)
461 		goto err;
462 
463 	ret = persistent_ram_post_init(prz, sig, ecc_size);
464 	if (ret)
465 		goto err;
466 
467 	return prz;
468 err:
469 	persistent_ram_free(prz);
470 	return ERR_PTR(ret);
471 }
472