1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/proc/vmcore.c Interface for accessing the crash 4 * dump from the system's previous life. 5 * Heavily borrowed from fs/proc/kcore.c 6 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 7 * Copyright (C) IBM Corporation, 2004. All rights reserved 8 * 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/kcore.h> 13 #include <linux/user.h> 14 #include <linux/elf.h> 15 #include <linux/elfcore.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/highmem.h> 19 #include <linux/printk.h> 20 #include <linux/memblock.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/list.h> 24 #include <linux/moduleparam.h> 25 #include <linux/mutex.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pagemap.h> 28 #include <linux/uaccess.h> 29 #include <linux/cc_platform.h> 30 #include <asm/io.h> 31 #include "internal.h" 32 33 /* List representing chunks of contiguous memory areas and their offsets in 34 * vmcore file. 35 */ 36 static LIST_HEAD(vmcore_list); 37 38 /* Stores the pointer to the buffer containing kernel elf core headers. */ 39 static char *elfcorebuf; 40 static size_t elfcorebuf_sz; 41 static size_t elfcorebuf_sz_orig; 42 43 static char *elfnotes_buf; 44 static size_t elfnotes_sz; 45 /* Size of all notes minus the device dump notes */ 46 static size_t elfnotes_orig_sz; 47 48 /* Total size of vmcore file. */ 49 static u64 vmcore_size; 50 51 static struct proc_dir_entry *proc_vmcore; 52 53 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 54 /* Device Dump list and mutex to synchronize access to list */ 55 static LIST_HEAD(vmcoredd_list); 56 static DEFINE_MUTEX(vmcoredd_mutex); 57 58 static bool vmcoredd_disabled; 59 core_param(novmcoredd, vmcoredd_disabled, bool, 0); 60 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 61 62 /* Device Dump Size */ 63 static size_t vmcoredd_orig_sz; 64 65 static DECLARE_RWSEM(vmcore_cb_rwsem); 66 /* List of registered vmcore callbacks. */ 67 static LIST_HEAD(vmcore_cb_list); 68 /* Whether we had a surprise unregistration of a callback. */ 69 static bool vmcore_cb_unstable; 70 /* Whether the vmcore has been opened once. */ 71 static bool vmcore_opened; 72 73 void register_vmcore_cb(struct vmcore_cb *cb) 74 { 75 down_write(&vmcore_cb_rwsem); 76 INIT_LIST_HEAD(&cb->next); 77 list_add_tail(&cb->next, &vmcore_cb_list); 78 /* 79 * Registering a vmcore callback after the vmcore was opened is 80 * very unusual (e.g., manual driver loading). 81 */ 82 if (vmcore_opened) 83 pr_warn_once("Unexpected vmcore callback registration\n"); 84 up_write(&vmcore_cb_rwsem); 85 } 86 EXPORT_SYMBOL_GPL(register_vmcore_cb); 87 88 void unregister_vmcore_cb(struct vmcore_cb *cb) 89 { 90 down_write(&vmcore_cb_rwsem); 91 list_del(&cb->next); 92 /* 93 * Unregistering a vmcore callback after the vmcore was opened is 94 * very unusual (e.g., forced driver removal), but we cannot stop 95 * unregistering. 96 */ 97 if (vmcore_opened) { 98 pr_warn_once("Unexpected vmcore callback unregistration\n"); 99 vmcore_cb_unstable = true; 100 } 101 up_write(&vmcore_cb_rwsem); 102 } 103 EXPORT_SYMBOL_GPL(unregister_vmcore_cb); 104 105 static bool pfn_is_ram(unsigned long pfn) 106 { 107 struct vmcore_cb *cb; 108 bool ret = true; 109 110 lockdep_assert_held_read(&vmcore_cb_rwsem); 111 if (unlikely(vmcore_cb_unstable)) 112 return false; 113 114 list_for_each_entry(cb, &vmcore_cb_list, next) { 115 if (unlikely(!cb->pfn_is_ram)) 116 continue; 117 ret = cb->pfn_is_ram(cb, pfn); 118 if (!ret) 119 break; 120 } 121 122 return ret; 123 } 124 125 static int open_vmcore(struct inode *inode, struct file *file) 126 { 127 down_read(&vmcore_cb_rwsem); 128 vmcore_opened = true; 129 up_read(&vmcore_cb_rwsem); 130 131 return 0; 132 } 133 134 /* Reads a page from the oldmem device from given offset. */ 135 ssize_t read_from_oldmem(char *buf, size_t count, 136 u64 *ppos, int userbuf, 137 bool encrypted) 138 { 139 unsigned long pfn, offset; 140 size_t nr_bytes; 141 ssize_t read = 0, tmp; 142 143 if (!count) 144 return 0; 145 146 offset = (unsigned long)(*ppos % PAGE_SIZE); 147 pfn = (unsigned long)(*ppos / PAGE_SIZE); 148 149 down_read(&vmcore_cb_rwsem); 150 do { 151 if (count > (PAGE_SIZE - offset)) 152 nr_bytes = PAGE_SIZE - offset; 153 else 154 nr_bytes = count; 155 156 /* If pfn is not ram, return zeros for sparse dump files */ 157 if (!pfn_is_ram(pfn)) 158 memset(buf, 0, nr_bytes); 159 else { 160 if (encrypted) 161 tmp = copy_oldmem_page_encrypted(pfn, buf, 162 nr_bytes, 163 offset, 164 userbuf); 165 else 166 tmp = copy_oldmem_page(pfn, buf, nr_bytes, 167 offset, userbuf); 168 169 if (tmp < 0) { 170 up_read(&vmcore_cb_rwsem); 171 return tmp; 172 } 173 } 174 *ppos += nr_bytes; 175 count -= nr_bytes; 176 buf += nr_bytes; 177 read += nr_bytes; 178 ++pfn; 179 offset = 0; 180 } while (count); 181 182 up_read(&vmcore_cb_rwsem); 183 return read; 184 } 185 186 /* 187 * Architectures may override this function to allocate ELF header in 2nd kernel 188 */ 189 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 190 { 191 return 0; 192 } 193 194 /* 195 * Architectures may override this function to free header 196 */ 197 void __weak elfcorehdr_free(unsigned long long addr) 198 {} 199 200 /* 201 * Architectures may override this function to read from ELF header 202 */ 203 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) 204 { 205 return read_from_oldmem(buf, count, ppos, 0, false); 206 } 207 208 /* 209 * Architectures may override this function to read from notes sections 210 */ 211 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 212 { 213 return read_from_oldmem(buf, count, ppos, 0, cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 214 } 215 216 /* 217 * Architectures may override this function to map oldmem 218 */ 219 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, 220 unsigned long from, unsigned long pfn, 221 unsigned long size, pgprot_t prot) 222 { 223 prot = pgprot_encrypted(prot); 224 return remap_pfn_range(vma, from, pfn, size, prot); 225 } 226 227 /* 228 * Architectures which support memory encryption override this. 229 */ 230 ssize_t __weak 231 copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize, 232 unsigned long offset, int userbuf) 233 { 234 return copy_oldmem_page(pfn, buf, csize, offset, userbuf); 235 } 236 237 /* 238 * Copy to either kernel or user space 239 */ 240 static int copy_to(void *target, void *src, size_t size, int userbuf) 241 { 242 if (userbuf) { 243 if (copy_to_user((char __user *) target, src, size)) 244 return -EFAULT; 245 } else { 246 memcpy(target, src, size); 247 } 248 return 0; 249 } 250 251 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 252 static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf) 253 { 254 struct vmcoredd_node *dump; 255 u64 offset = 0; 256 int ret = 0; 257 size_t tsz; 258 char *buf; 259 260 mutex_lock(&vmcoredd_mutex); 261 list_for_each_entry(dump, &vmcoredd_list, list) { 262 if (start < offset + dump->size) { 263 tsz = min(offset + (u64)dump->size - start, (u64)size); 264 buf = dump->buf + start - offset; 265 if (copy_to(dst, buf, tsz, userbuf)) { 266 ret = -EFAULT; 267 goto out_unlock; 268 } 269 270 size -= tsz; 271 start += tsz; 272 dst += tsz; 273 274 /* Leave now if buffer filled already */ 275 if (!size) 276 goto out_unlock; 277 } 278 offset += dump->size; 279 } 280 281 out_unlock: 282 mutex_unlock(&vmcoredd_mutex); 283 return ret; 284 } 285 286 #ifdef CONFIG_MMU 287 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, 288 u64 start, size_t size) 289 { 290 struct vmcoredd_node *dump; 291 u64 offset = 0; 292 int ret = 0; 293 size_t tsz; 294 char *buf; 295 296 mutex_lock(&vmcoredd_mutex); 297 list_for_each_entry(dump, &vmcoredd_list, list) { 298 if (start < offset + dump->size) { 299 tsz = min(offset + (u64)dump->size - start, (u64)size); 300 buf = dump->buf + start - offset; 301 if (remap_vmalloc_range_partial(vma, dst, buf, 0, 302 tsz)) { 303 ret = -EFAULT; 304 goto out_unlock; 305 } 306 307 size -= tsz; 308 start += tsz; 309 dst += tsz; 310 311 /* Leave now if buffer filled already */ 312 if (!size) 313 goto out_unlock; 314 } 315 offset += dump->size; 316 } 317 318 out_unlock: 319 mutex_unlock(&vmcoredd_mutex); 320 return ret; 321 } 322 #endif /* CONFIG_MMU */ 323 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 324 325 /* Read from the ELF header and then the crash dump. On error, negative value is 326 * returned otherwise number of bytes read are returned. 327 */ 328 static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos, 329 int userbuf) 330 { 331 ssize_t acc = 0, tmp; 332 size_t tsz; 333 u64 start; 334 struct vmcore *m = NULL; 335 336 if (buflen == 0 || *fpos >= vmcore_size) 337 return 0; 338 339 /* trim buflen to not go beyond EOF */ 340 if (buflen > vmcore_size - *fpos) 341 buflen = vmcore_size - *fpos; 342 343 /* Read ELF core header */ 344 if (*fpos < elfcorebuf_sz) { 345 tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen); 346 if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf)) 347 return -EFAULT; 348 buflen -= tsz; 349 *fpos += tsz; 350 buffer += tsz; 351 acc += tsz; 352 353 /* leave now if filled buffer already */ 354 if (buflen == 0) 355 return acc; 356 } 357 358 /* Read Elf note segment */ 359 if (*fpos < elfcorebuf_sz + elfnotes_sz) { 360 void *kaddr; 361 362 /* We add device dumps before other elf notes because the 363 * other elf notes may not fill the elf notes buffer 364 * completely and we will end up with zero-filled data 365 * between the elf notes and the device dumps. Tools will 366 * then try to decode this zero-filled data as valid notes 367 * and we don't want that. Hence, adding device dumps before 368 * the other elf notes ensure that zero-filled data can be 369 * avoided. 370 */ 371 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 372 /* Read device dumps */ 373 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { 374 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 375 (size_t)*fpos, buflen); 376 start = *fpos - elfcorebuf_sz; 377 if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf)) 378 return -EFAULT; 379 380 buflen -= tsz; 381 *fpos += tsz; 382 buffer += tsz; 383 acc += tsz; 384 385 /* leave now if filled buffer already */ 386 if (!buflen) 387 return acc; 388 } 389 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 390 391 /* Read remaining elf notes */ 392 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen); 393 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; 394 if (copy_to(buffer, kaddr, tsz, userbuf)) 395 return -EFAULT; 396 397 buflen -= tsz; 398 *fpos += tsz; 399 buffer += tsz; 400 acc += tsz; 401 402 /* leave now if filled buffer already */ 403 if (buflen == 0) 404 return acc; 405 } 406 407 list_for_each_entry(m, &vmcore_list, list) { 408 if (*fpos < m->offset + m->size) { 409 tsz = (size_t)min_t(unsigned long long, 410 m->offset + m->size - *fpos, 411 buflen); 412 start = m->paddr + *fpos - m->offset; 413 tmp = read_from_oldmem(buffer, tsz, &start, 414 userbuf, cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 415 if (tmp < 0) 416 return tmp; 417 buflen -= tsz; 418 *fpos += tsz; 419 buffer += tsz; 420 acc += tsz; 421 422 /* leave now if filled buffer already */ 423 if (buflen == 0) 424 return acc; 425 } 426 } 427 428 return acc; 429 } 430 431 static ssize_t read_vmcore(struct file *file, char __user *buffer, 432 size_t buflen, loff_t *fpos) 433 { 434 return __read_vmcore((__force char *) buffer, buflen, fpos, 1); 435 } 436 437 /* 438 * The vmcore fault handler uses the page cache and fills data using the 439 * standard __vmcore_read() function. 440 * 441 * On s390 the fault handler is used for memory regions that can't be mapped 442 * directly with remap_pfn_range(). 443 */ 444 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) 445 { 446 #ifdef CONFIG_S390 447 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 448 pgoff_t index = vmf->pgoff; 449 struct page *page; 450 loff_t offset; 451 char *buf; 452 int rc; 453 454 page = find_or_create_page(mapping, index, GFP_KERNEL); 455 if (!page) 456 return VM_FAULT_OOM; 457 if (!PageUptodate(page)) { 458 offset = (loff_t) index << PAGE_SHIFT; 459 buf = __va((page_to_pfn(page) << PAGE_SHIFT)); 460 rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0); 461 if (rc < 0) { 462 unlock_page(page); 463 put_page(page); 464 return vmf_error(rc); 465 } 466 SetPageUptodate(page); 467 } 468 unlock_page(page); 469 vmf->page = page; 470 return 0; 471 #else 472 return VM_FAULT_SIGBUS; 473 #endif 474 } 475 476 static const struct vm_operations_struct vmcore_mmap_ops = { 477 .fault = mmap_vmcore_fault, 478 }; 479 480 /** 481 * vmcore_alloc_buf - allocate buffer in vmalloc memory 482 * @sizez: size of buffer 483 * 484 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap 485 * the buffer to user-space by means of remap_vmalloc_range(). 486 * 487 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is 488 * disabled and there's no need to allow users to mmap the buffer. 489 */ 490 static inline char *vmcore_alloc_buf(size_t size) 491 { 492 #ifdef CONFIG_MMU 493 return vmalloc_user(size); 494 #else 495 return vzalloc(size); 496 #endif 497 } 498 499 /* 500 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is 501 * essential for mmap_vmcore() in order to map physically 502 * non-contiguous objects (ELF header, ELF note segment and memory 503 * regions in the 1st kernel pointed to by PT_LOAD entries) into 504 * virtually contiguous user-space in ELF layout. 505 */ 506 #ifdef CONFIG_MMU 507 /* 508 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages 509 * reported as not being ram with the zero page. 510 * 511 * @vma: vm_area_struct describing requested mapping 512 * @from: start remapping from 513 * @pfn: page frame number to start remapping to 514 * @size: remapping size 515 * @prot: protection bits 516 * 517 * Returns zero on success, -EAGAIN on failure. 518 */ 519 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, 520 unsigned long from, unsigned long pfn, 521 unsigned long size, pgprot_t prot) 522 { 523 unsigned long map_size; 524 unsigned long pos_start, pos_end, pos; 525 unsigned long zeropage_pfn = my_zero_pfn(0); 526 size_t len = 0; 527 528 pos_start = pfn; 529 pos_end = pfn + (size >> PAGE_SHIFT); 530 531 for (pos = pos_start; pos < pos_end; ++pos) { 532 if (!pfn_is_ram(pos)) { 533 /* 534 * We hit a page which is not ram. Remap the continuous 535 * region between pos_start and pos-1 and replace 536 * the non-ram page at pos with the zero page. 537 */ 538 if (pos > pos_start) { 539 /* Remap continuous region */ 540 map_size = (pos - pos_start) << PAGE_SHIFT; 541 if (remap_oldmem_pfn_range(vma, from + len, 542 pos_start, map_size, 543 prot)) 544 goto fail; 545 len += map_size; 546 } 547 /* Remap the zero page */ 548 if (remap_oldmem_pfn_range(vma, from + len, 549 zeropage_pfn, 550 PAGE_SIZE, prot)) 551 goto fail; 552 len += PAGE_SIZE; 553 pos_start = pos + 1; 554 } 555 } 556 if (pos > pos_start) { 557 /* Remap the rest */ 558 map_size = (pos - pos_start) << PAGE_SHIFT; 559 if (remap_oldmem_pfn_range(vma, from + len, pos_start, 560 map_size, prot)) 561 goto fail; 562 } 563 return 0; 564 fail: 565 do_munmap(vma->vm_mm, from, len, NULL); 566 return -EAGAIN; 567 } 568 569 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, 570 unsigned long from, unsigned long pfn, 571 unsigned long size, pgprot_t prot) 572 { 573 int ret; 574 575 /* 576 * Check if oldmem_pfn_is_ram was registered to avoid 577 * looping over all pages without a reason. 578 */ 579 down_read(&vmcore_cb_rwsem); 580 if (!list_empty(&vmcore_cb_list) || vmcore_cb_unstable) 581 ret = remap_oldmem_pfn_checked(vma, from, pfn, size, prot); 582 else 583 ret = remap_oldmem_pfn_range(vma, from, pfn, size, prot); 584 up_read(&vmcore_cb_rwsem); 585 return ret; 586 } 587 588 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 589 { 590 size_t size = vma->vm_end - vma->vm_start; 591 u64 start, end, len, tsz; 592 struct vmcore *m; 593 594 start = (u64)vma->vm_pgoff << PAGE_SHIFT; 595 end = start + size; 596 597 if (size > vmcore_size || end > vmcore_size) 598 return -EINVAL; 599 600 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 601 return -EPERM; 602 603 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 604 vma->vm_flags |= VM_MIXEDMAP; 605 vma->vm_ops = &vmcore_mmap_ops; 606 607 len = 0; 608 609 if (start < elfcorebuf_sz) { 610 u64 pfn; 611 612 tsz = min(elfcorebuf_sz - (size_t)start, size); 613 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; 614 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, 615 vma->vm_page_prot)) 616 return -EAGAIN; 617 size -= tsz; 618 start += tsz; 619 len += tsz; 620 621 if (size == 0) 622 return 0; 623 } 624 625 if (start < elfcorebuf_sz + elfnotes_sz) { 626 void *kaddr; 627 628 /* We add device dumps before other elf notes because the 629 * other elf notes may not fill the elf notes buffer 630 * completely and we will end up with zero-filled data 631 * between the elf notes and the device dumps. Tools will 632 * then try to decode this zero-filled data as valid notes 633 * and we don't want that. Hence, adding device dumps before 634 * the other elf notes ensure that zero-filled data can be 635 * avoided. This also ensures that the device dumps and 636 * other elf notes can be properly mmaped at page aligned 637 * address. 638 */ 639 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 640 /* Read device dumps */ 641 if (start < elfcorebuf_sz + vmcoredd_orig_sz) { 642 u64 start_off; 643 644 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 645 (size_t)start, size); 646 start_off = start - elfcorebuf_sz; 647 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, 648 start_off, tsz)) 649 goto fail; 650 651 size -= tsz; 652 start += tsz; 653 len += tsz; 654 655 /* leave now if filled buffer already */ 656 if (!size) 657 return 0; 658 } 659 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 660 661 /* Read remaining elf notes */ 662 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); 663 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; 664 if (remap_vmalloc_range_partial(vma, vma->vm_start + len, 665 kaddr, 0, tsz)) 666 goto fail; 667 668 size -= tsz; 669 start += tsz; 670 len += tsz; 671 672 if (size == 0) 673 return 0; 674 } 675 676 list_for_each_entry(m, &vmcore_list, list) { 677 if (start < m->offset + m->size) { 678 u64 paddr = 0; 679 680 tsz = (size_t)min_t(unsigned long long, 681 m->offset + m->size - start, size); 682 paddr = m->paddr + start - m->offset; 683 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, 684 paddr >> PAGE_SHIFT, tsz, 685 vma->vm_page_prot)) 686 goto fail; 687 size -= tsz; 688 start += tsz; 689 len += tsz; 690 691 if (size == 0) 692 return 0; 693 } 694 } 695 696 return 0; 697 fail: 698 do_munmap(vma->vm_mm, vma->vm_start, len, NULL); 699 return -EAGAIN; 700 } 701 #else 702 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 703 { 704 return -ENOSYS; 705 } 706 #endif 707 708 static const struct proc_ops vmcore_proc_ops = { 709 .proc_open = open_vmcore, 710 .proc_read = read_vmcore, 711 .proc_lseek = default_llseek, 712 .proc_mmap = mmap_vmcore, 713 }; 714 715 static struct vmcore* __init get_new_element(void) 716 { 717 return kzalloc(sizeof(struct vmcore), GFP_KERNEL); 718 } 719 720 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, 721 struct list_head *vc_list) 722 { 723 u64 size; 724 struct vmcore *m; 725 726 size = elfsz + elfnotesegsz; 727 list_for_each_entry(m, vc_list, list) { 728 size += m->size; 729 } 730 return size; 731 } 732 733 /** 734 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry 735 * 736 * @ehdr_ptr: ELF header 737 * 738 * This function updates p_memsz member of each PT_NOTE entry in the 739 * program header table pointed to by @ehdr_ptr to real size of ELF 740 * note segment. 741 */ 742 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) 743 { 744 int i, rc=0; 745 Elf64_Phdr *phdr_ptr; 746 Elf64_Nhdr *nhdr_ptr; 747 748 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 749 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 750 void *notes_section; 751 u64 offset, max_sz, sz, real_sz = 0; 752 if (phdr_ptr->p_type != PT_NOTE) 753 continue; 754 max_sz = phdr_ptr->p_memsz; 755 offset = phdr_ptr->p_offset; 756 notes_section = kmalloc(max_sz, GFP_KERNEL); 757 if (!notes_section) 758 return -ENOMEM; 759 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 760 if (rc < 0) { 761 kfree(notes_section); 762 return rc; 763 } 764 nhdr_ptr = notes_section; 765 while (nhdr_ptr->n_namesz != 0) { 766 sz = sizeof(Elf64_Nhdr) + 767 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 768 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 769 if ((real_sz + sz) > max_sz) { 770 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 771 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 772 break; 773 } 774 real_sz += sz; 775 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); 776 } 777 kfree(notes_section); 778 phdr_ptr->p_memsz = real_sz; 779 if (real_sz == 0) { 780 pr_warn("Warning: Zero PT_NOTE entries found\n"); 781 } 782 } 783 784 return 0; 785 } 786 787 /** 788 * get_note_number_and_size_elf64 - get the number of PT_NOTE program 789 * headers and sum of real size of their ELF note segment headers and 790 * data. 791 * 792 * @ehdr_ptr: ELF header 793 * @nr_ptnote: buffer for the number of PT_NOTE program headers 794 * @sz_ptnote: buffer for size of unique PT_NOTE program header 795 * 796 * This function is used to merge multiple PT_NOTE program headers 797 * into a unique single one. The resulting unique entry will have 798 * @sz_ptnote in its phdr->p_mem. 799 * 800 * It is assumed that program headers with PT_NOTE type pointed to by 801 * @ehdr_ptr has already been updated by update_note_header_size_elf64 802 * and each of PT_NOTE program headers has actual ELF note segment 803 * size in its p_memsz member. 804 */ 805 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, 806 int *nr_ptnote, u64 *sz_ptnote) 807 { 808 int i; 809 Elf64_Phdr *phdr_ptr; 810 811 *nr_ptnote = *sz_ptnote = 0; 812 813 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 814 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 815 if (phdr_ptr->p_type != PT_NOTE) 816 continue; 817 *nr_ptnote += 1; 818 *sz_ptnote += phdr_ptr->p_memsz; 819 } 820 821 return 0; 822 } 823 824 /** 825 * copy_notes_elf64 - copy ELF note segments in a given buffer 826 * 827 * @ehdr_ptr: ELF header 828 * @notes_buf: buffer into which ELF note segments are copied 829 * 830 * This function is used to copy ELF note segment in the 1st kernel 831 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 832 * size of the buffer @notes_buf is equal to or larger than sum of the 833 * real ELF note segment headers and data. 834 * 835 * It is assumed that program headers with PT_NOTE type pointed to by 836 * @ehdr_ptr has already been updated by update_note_header_size_elf64 837 * and each of PT_NOTE program headers has actual ELF note segment 838 * size in its p_memsz member. 839 */ 840 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) 841 { 842 int i, rc=0; 843 Elf64_Phdr *phdr_ptr; 844 845 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); 846 847 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 848 u64 offset; 849 if (phdr_ptr->p_type != PT_NOTE) 850 continue; 851 offset = phdr_ptr->p_offset; 852 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 853 &offset); 854 if (rc < 0) 855 return rc; 856 notes_buf += phdr_ptr->p_memsz; 857 } 858 859 return 0; 860 } 861 862 /* Merges all the PT_NOTE headers into one. */ 863 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, 864 char **notes_buf, size_t *notes_sz) 865 { 866 int i, nr_ptnote=0, rc=0; 867 char *tmp; 868 Elf64_Ehdr *ehdr_ptr; 869 Elf64_Phdr phdr; 870 u64 phdr_sz = 0, note_off; 871 872 ehdr_ptr = (Elf64_Ehdr *)elfptr; 873 874 rc = update_note_header_size_elf64(ehdr_ptr); 875 if (rc < 0) 876 return rc; 877 878 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); 879 if (rc < 0) 880 return rc; 881 882 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 883 *notes_buf = vmcore_alloc_buf(*notes_sz); 884 if (!*notes_buf) 885 return -ENOMEM; 886 887 rc = copy_notes_elf64(ehdr_ptr, *notes_buf); 888 if (rc < 0) 889 return rc; 890 891 /* Prepare merged PT_NOTE program header. */ 892 phdr.p_type = PT_NOTE; 893 phdr.p_flags = 0; 894 note_off = sizeof(Elf64_Ehdr) + 895 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); 896 phdr.p_offset = roundup(note_off, PAGE_SIZE); 897 phdr.p_vaddr = phdr.p_paddr = 0; 898 phdr.p_filesz = phdr.p_memsz = phdr_sz; 899 phdr.p_align = 0; 900 901 /* Add merged PT_NOTE program header*/ 902 tmp = elfptr + sizeof(Elf64_Ehdr); 903 memcpy(tmp, &phdr, sizeof(phdr)); 904 tmp += sizeof(phdr); 905 906 /* Remove unwanted PT_NOTE program headers. */ 907 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); 908 *elfsz = *elfsz - i; 909 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); 910 memset(elfptr + *elfsz, 0, i); 911 *elfsz = roundup(*elfsz, PAGE_SIZE); 912 913 /* Modify e_phnum to reflect merged headers. */ 914 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 915 916 /* Store the size of all notes. We need this to update the note 917 * header when the device dumps will be added. 918 */ 919 elfnotes_orig_sz = phdr.p_memsz; 920 921 return 0; 922 } 923 924 /** 925 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry 926 * 927 * @ehdr_ptr: ELF header 928 * 929 * This function updates p_memsz member of each PT_NOTE entry in the 930 * program header table pointed to by @ehdr_ptr to real size of ELF 931 * note segment. 932 */ 933 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) 934 { 935 int i, rc=0; 936 Elf32_Phdr *phdr_ptr; 937 Elf32_Nhdr *nhdr_ptr; 938 939 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 940 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 941 void *notes_section; 942 u64 offset, max_sz, sz, real_sz = 0; 943 if (phdr_ptr->p_type != PT_NOTE) 944 continue; 945 max_sz = phdr_ptr->p_memsz; 946 offset = phdr_ptr->p_offset; 947 notes_section = kmalloc(max_sz, GFP_KERNEL); 948 if (!notes_section) 949 return -ENOMEM; 950 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 951 if (rc < 0) { 952 kfree(notes_section); 953 return rc; 954 } 955 nhdr_ptr = notes_section; 956 while (nhdr_ptr->n_namesz != 0) { 957 sz = sizeof(Elf32_Nhdr) + 958 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 959 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 960 if ((real_sz + sz) > max_sz) { 961 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 962 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 963 break; 964 } 965 real_sz += sz; 966 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); 967 } 968 kfree(notes_section); 969 phdr_ptr->p_memsz = real_sz; 970 if (real_sz == 0) { 971 pr_warn("Warning: Zero PT_NOTE entries found\n"); 972 } 973 } 974 975 return 0; 976 } 977 978 /** 979 * get_note_number_and_size_elf32 - get the number of PT_NOTE program 980 * headers and sum of real size of their ELF note segment headers and 981 * data. 982 * 983 * @ehdr_ptr: ELF header 984 * @nr_ptnote: buffer for the number of PT_NOTE program headers 985 * @sz_ptnote: buffer for size of unique PT_NOTE program header 986 * 987 * This function is used to merge multiple PT_NOTE program headers 988 * into a unique single one. The resulting unique entry will have 989 * @sz_ptnote in its phdr->p_mem. 990 * 991 * It is assumed that program headers with PT_NOTE type pointed to by 992 * @ehdr_ptr has already been updated by update_note_header_size_elf32 993 * and each of PT_NOTE program headers has actual ELF note segment 994 * size in its p_memsz member. 995 */ 996 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, 997 int *nr_ptnote, u64 *sz_ptnote) 998 { 999 int i; 1000 Elf32_Phdr *phdr_ptr; 1001 1002 *nr_ptnote = *sz_ptnote = 0; 1003 1004 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 1005 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1006 if (phdr_ptr->p_type != PT_NOTE) 1007 continue; 1008 *nr_ptnote += 1; 1009 *sz_ptnote += phdr_ptr->p_memsz; 1010 } 1011 1012 return 0; 1013 } 1014 1015 /** 1016 * copy_notes_elf32 - copy ELF note segments in a given buffer 1017 * 1018 * @ehdr_ptr: ELF header 1019 * @notes_buf: buffer into which ELF note segments are copied 1020 * 1021 * This function is used to copy ELF note segment in the 1st kernel 1022 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 1023 * size of the buffer @notes_buf is equal to or larger than sum of the 1024 * real ELF note segment headers and data. 1025 * 1026 * It is assumed that program headers with PT_NOTE type pointed to by 1027 * @ehdr_ptr has already been updated by update_note_header_size_elf32 1028 * and each of PT_NOTE program headers has actual ELF note segment 1029 * size in its p_memsz member. 1030 */ 1031 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) 1032 { 1033 int i, rc=0; 1034 Elf32_Phdr *phdr_ptr; 1035 1036 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); 1037 1038 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1039 u64 offset; 1040 if (phdr_ptr->p_type != PT_NOTE) 1041 continue; 1042 offset = phdr_ptr->p_offset; 1043 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 1044 &offset); 1045 if (rc < 0) 1046 return rc; 1047 notes_buf += phdr_ptr->p_memsz; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /* Merges all the PT_NOTE headers into one. */ 1054 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, 1055 char **notes_buf, size_t *notes_sz) 1056 { 1057 int i, nr_ptnote=0, rc=0; 1058 char *tmp; 1059 Elf32_Ehdr *ehdr_ptr; 1060 Elf32_Phdr phdr; 1061 u64 phdr_sz = 0, note_off; 1062 1063 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1064 1065 rc = update_note_header_size_elf32(ehdr_ptr); 1066 if (rc < 0) 1067 return rc; 1068 1069 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); 1070 if (rc < 0) 1071 return rc; 1072 1073 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 1074 *notes_buf = vmcore_alloc_buf(*notes_sz); 1075 if (!*notes_buf) 1076 return -ENOMEM; 1077 1078 rc = copy_notes_elf32(ehdr_ptr, *notes_buf); 1079 if (rc < 0) 1080 return rc; 1081 1082 /* Prepare merged PT_NOTE program header. */ 1083 phdr.p_type = PT_NOTE; 1084 phdr.p_flags = 0; 1085 note_off = sizeof(Elf32_Ehdr) + 1086 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); 1087 phdr.p_offset = roundup(note_off, PAGE_SIZE); 1088 phdr.p_vaddr = phdr.p_paddr = 0; 1089 phdr.p_filesz = phdr.p_memsz = phdr_sz; 1090 phdr.p_align = 0; 1091 1092 /* Add merged PT_NOTE program header*/ 1093 tmp = elfptr + sizeof(Elf32_Ehdr); 1094 memcpy(tmp, &phdr, sizeof(phdr)); 1095 tmp += sizeof(phdr); 1096 1097 /* Remove unwanted PT_NOTE program headers. */ 1098 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); 1099 *elfsz = *elfsz - i; 1100 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); 1101 memset(elfptr + *elfsz, 0, i); 1102 *elfsz = roundup(*elfsz, PAGE_SIZE); 1103 1104 /* Modify e_phnum to reflect merged headers. */ 1105 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 1106 1107 /* Store the size of all notes. We need this to update the note 1108 * header when the device dumps will be added. 1109 */ 1110 elfnotes_orig_sz = phdr.p_memsz; 1111 1112 return 0; 1113 } 1114 1115 /* Add memory chunks represented by program headers to vmcore list. Also update 1116 * the new offset fields of exported program headers. */ 1117 static int __init process_ptload_program_headers_elf64(char *elfptr, 1118 size_t elfsz, 1119 size_t elfnotes_sz, 1120 struct list_head *vc_list) 1121 { 1122 int i; 1123 Elf64_Ehdr *ehdr_ptr; 1124 Elf64_Phdr *phdr_ptr; 1125 loff_t vmcore_off; 1126 struct vmcore *new; 1127 1128 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1129 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ 1130 1131 /* Skip Elf header, program headers and Elf note segment. */ 1132 vmcore_off = elfsz + elfnotes_sz; 1133 1134 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1135 u64 paddr, start, end, size; 1136 1137 if (phdr_ptr->p_type != PT_LOAD) 1138 continue; 1139 1140 paddr = phdr_ptr->p_offset; 1141 start = rounddown(paddr, PAGE_SIZE); 1142 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1143 size = end - start; 1144 1145 /* Add this contiguous chunk of memory to vmcore list.*/ 1146 new = get_new_element(); 1147 if (!new) 1148 return -ENOMEM; 1149 new->paddr = start; 1150 new->size = size; 1151 list_add_tail(&new->list, vc_list); 1152 1153 /* Update the program header offset. */ 1154 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1155 vmcore_off = vmcore_off + size; 1156 } 1157 return 0; 1158 } 1159 1160 static int __init process_ptload_program_headers_elf32(char *elfptr, 1161 size_t elfsz, 1162 size_t elfnotes_sz, 1163 struct list_head *vc_list) 1164 { 1165 int i; 1166 Elf32_Ehdr *ehdr_ptr; 1167 Elf32_Phdr *phdr_ptr; 1168 loff_t vmcore_off; 1169 struct vmcore *new; 1170 1171 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1172 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ 1173 1174 /* Skip Elf header, program headers and Elf note segment. */ 1175 vmcore_off = elfsz + elfnotes_sz; 1176 1177 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1178 u64 paddr, start, end, size; 1179 1180 if (phdr_ptr->p_type != PT_LOAD) 1181 continue; 1182 1183 paddr = phdr_ptr->p_offset; 1184 start = rounddown(paddr, PAGE_SIZE); 1185 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1186 size = end - start; 1187 1188 /* Add this contiguous chunk of memory to vmcore list.*/ 1189 new = get_new_element(); 1190 if (!new) 1191 return -ENOMEM; 1192 new->paddr = start; 1193 new->size = size; 1194 list_add_tail(&new->list, vc_list); 1195 1196 /* Update the program header offset */ 1197 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1198 vmcore_off = vmcore_off + size; 1199 } 1200 return 0; 1201 } 1202 1203 /* Sets offset fields of vmcore elements. */ 1204 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, 1205 struct list_head *vc_list) 1206 { 1207 loff_t vmcore_off; 1208 struct vmcore *m; 1209 1210 /* Skip Elf header, program headers and Elf note segment. */ 1211 vmcore_off = elfsz + elfnotes_sz; 1212 1213 list_for_each_entry(m, vc_list, list) { 1214 m->offset = vmcore_off; 1215 vmcore_off += m->size; 1216 } 1217 } 1218 1219 static void free_elfcorebuf(void) 1220 { 1221 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1222 elfcorebuf = NULL; 1223 vfree(elfnotes_buf); 1224 elfnotes_buf = NULL; 1225 } 1226 1227 static int __init parse_crash_elf64_headers(void) 1228 { 1229 int rc=0; 1230 Elf64_Ehdr ehdr; 1231 u64 addr; 1232 1233 addr = elfcorehdr_addr; 1234 1235 /* Read Elf header */ 1236 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); 1237 if (rc < 0) 1238 return rc; 1239 1240 /* Do some basic Verification. */ 1241 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1242 (ehdr.e_type != ET_CORE) || 1243 !vmcore_elf64_check_arch(&ehdr) || 1244 ehdr.e_ident[EI_CLASS] != ELFCLASS64 || 1245 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1246 ehdr.e_version != EV_CURRENT || 1247 ehdr.e_ehsize != sizeof(Elf64_Ehdr) || 1248 ehdr.e_phentsize != sizeof(Elf64_Phdr) || 1249 ehdr.e_phnum == 0) { 1250 pr_warn("Warning: Core image elf header is not sane\n"); 1251 return -EINVAL; 1252 } 1253 1254 /* Read in all elf headers. */ 1255 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + 1256 ehdr.e_phnum * sizeof(Elf64_Phdr); 1257 elfcorebuf_sz = elfcorebuf_sz_orig; 1258 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1259 get_order(elfcorebuf_sz_orig)); 1260 if (!elfcorebuf) 1261 return -ENOMEM; 1262 addr = elfcorehdr_addr; 1263 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1264 if (rc < 0) 1265 goto fail; 1266 1267 /* Merge all PT_NOTE headers into one. */ 1268 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, 1269 &elfnotes_buf, &elfnotes_sz); 1270 if (rc) 1271 goto fail; 1272 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, 1273 elfnotes_sz, &vmcore_list); 1274 if (rc) 1275 goto fail; 1276 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1277 return 0; 1278 fail: 1279 free_elfcorebuf(); 1280 return rc; 1281 } 1282 1283 static int __init parse_crash_elf32_headers(void) 1284 { 1285 int rc=0; 1286 Elf32_Ehdr ehdr; 1287 u64 addr; 1288 1289 addr = elfcorehdr_addr; 1290 1291 /* Read Elf header */ 1292 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); 1293 if (rc < 0) 1294 return rc; 1295 1296 /* Do some basic Verification. */ 1297 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1298 (ehdr.e_type != ET_CORE) || 1299 !vmcore_elf32_check_arch(&ehdr) || 1300 ehdr.e_ident[EI_CLASS] != ELFCLASS32|| 1301 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1302 ehdr.e_version != EV_CURRENT || 1303 ehdr.e_ehsize != sizeof(Elf32_Ehdr) || 1304 ehdr.e_phentsize != sizeof(Elf32_Phdr) || 1305 ehdr.e_phnum == 0) { 1306 pr_warn("Warning: Core image elf header is not sane\n"); 1307 return -EINVAL; 1308 } 1309 1310 /* Read in all elf headers. */ 1311 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); 1312 elfcorebuf_sz = elfcorebuf_sz_orig; 1313 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1314 get_order(elfcorebuf_sz_orig)); 1315 if (!elfcorebuf) 1316 return -ENOMEM; 1317 addr = elfcorehdr_addr; 1318 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1319 if (rc < 0) 1320 goto fail; 1321 1322 /* Merge all PT_NOTE headers into one. */ 1323 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, 1324 &elfnotes_buf, &elfnotes_sz); 1325 if (rc) 1326 goto fail; 1327 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, 1328 elfnotes_sz, &vmcore_list); 1329 if (rc) 1330 goto fail; 1331 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1332 return 0; 1333 fail: 1334 free_elfcorebuf(); 1335 return rc; 1336 } 1337 1338 static int __init parse_crash_elf_headers(void) 1339 { 1340 unsigned char e_ident[EI_NIDENT]; 1341 u64 addr; 1342 int rc=0; 1343 1344 addr = elfcorehdr_addr; 1345 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); 1346 if (rc < 0) 1347 return rc; 1348 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { 1349 pr_warn("Warning: Core image elf header not found\n"); 1350 return -EINVAL; 1351 } 1352 1353 if (e_ident[EI_CLASS] == ELFCLASS64) { 1354 rc = parse_crash_elf64_headers(); 1355 if (rc) 1356 return rc; 1357 } else if (e_ident[EI_CLASS] == ELFCLASS32) { 1358 rc = parse_crash_elf32_headers(); 1359 if (rc) 1360 return rc; 1361 } else { 1362 pr_warn("Warning: Core image elf header is not sane\n"); 1363 return -EINVAL; 1364 } 1365 1366 /* Determine vmcore size. */ 1367 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1368 &vmcore_list); 1369 1370 return 0; 1371 } 1372 1373 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1374 /** 1375 * vmcoredd_write_header - Write vmcore device dump header at the 1376 * beginning of the dump's buffer. 1377 * @buf: Output buffer where the note is written 1378 * @data: Dump info 1379 * @size: Size of the dump 1380 * 1381 * Fills beginning of the dump's buffer with vmcore device dump header. 1382 */ 1383 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, 1384 u32 size) 1385 { 1386 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; 1387 1388 vdd_hdr->n_namesz = sizeof(vdd_hdr->name); 1389 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); 1390 vdd_hdr->n_type = NT_VMCOREDD; 1391 1392 strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME, 1393 sizeof(vdd_hdr->name)); 1394 memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name)); 1395 } 1396 1397 /** 1398 * vmcoredd_update_program_headers - Update all Elf program headers 1399 * @elfptr: Pointer to elf header 1400 * @elfnotesz: Size of elf notes aligned to page size 1401 * @vmcoreddsz: Size of device dumps to be added to elf note header 1402 * 1403 * Determine type of Elf header (Elf64 or Elf32) and update the elf note size. 1404 * Also update the offsets of all the program headers after the elf note header. 1405 */ 1406 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, 1407 size_t vmcoreddsz) 1408 { 1409 unsigned char *e_ident = (unsigned char *)elfptr; 1410 u64 start, end, size; 1411 loff_t vmcore_off; 1412 u32 i; 1413 1414 vmcore_off = elfcorebuf_sz + elfnotesz; 1415 1416 if (e_ident[EI_CLASS] == ELFCLASS64) { 1417 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; 1418 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); 1419 1420 /* Update all program headers */ 1421 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1422 if (phdr->p_type == PT_NOTE) { 1423 /* Update note size */ 1424 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1425 phdr->p_filesz = phdr->p_memsz; 1426 continue; 1427 } 1428 1429 start = rounddown(phdr->p_offset, PAGE_SIZE); 1430 end = roundup(phdr->p_offset + phdr->p_memsz, 1431 PAGE_SIZE); 1432 size = end - start; 1433 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1434 vmcore_off += size; 1435 } 1436 } else { 1437 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; 1438 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); 1439 1440 /* Update all program headers */ 1441 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1442 if (phdr->p_type == PT_NOTE) { 1443 /* Update note size */ 1444 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1445 phdr->p_filesz = phdr->p_memsz; 1446 continue; 1447 } 1448 1449 start = rounddown(phdr->p_offset, PAGE_SIZE); 1450 end = roundup(phdr->p_offset + phdr->p_memsz, 1451 PAGE_SIZE); 1452 size = end - start; 1453 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1454 vmcore_off += size; 1455 } 1456 } 1457 } 1458 1459 /** 1460 * vmcoredd_update_size - Update the total size of the device dumps and update 1461 * Elf header 1462 * @dump_size: Size of the current device dump to be added to total size 1463 * 1464 * Update the total size of all the device dumps and update the Elf program 1465 * headers. Calculate the new offsets for the vmcore list and update the 1466 * total vmcore size. 1467 */ 1468 static void vmcoredd_update_size(size_t dump_size) 1469 { 1470 vmcoredd_orig_sz += dump_size; 1471 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; 1472 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, 1473 vmcoredd_orig_sz); 1474 1475 /* Update vmcore list offsets */ 1476 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1477 1478 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1479 &vmcore_list); 1480 proc_vmcore->size = vmcore_size; 1481 } 1482 1483 /** 1484 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore 1485 * @data: dump info. 1486 * 1487 * Allocate a buffer and invoke the calling driver's dump collect routine. 1488 * Write Elf note at the beginning of the buffer to indicate vmcore device 1489 * dump and add the dump to global list. 1490 */ 1491 int vmcore_add_device_dump(struct vmcoredd_data *data) 1492 { 1493 struct vmcoredd_node *dump; 1494 void *buf = NULL; 1495 size_t data_size; 1496 int ret; 1497 1498 if (vmcoredd_disabled) { 1499 pr_err_once("Device dump is disabled\n"); 1500 return -EINVAL; 1501 } 1502 1503 if (!data || !strlen(data->dump_name) || 1504 !data->vmcoredd_callback || !data->size) 1505 return -EINVAL; 1506 1507 dump = vzalloc(sizeof(*dump)); 1508 if (!dump) { 1509 ret = -ENOMEM; 1510 goto out_err; 1511 } 1512 1513 /* Keep size of the buffer page aligned so that it can be mmaped */ 1514 data_size = roundup(sizeof(struct vmcoredd_header) + data->size, 1515 PAGE_SIZE); 1516 1517 /* Allocate buffer for driver's to write their dumps */ 1518 buf = vmcore_alloc_buf(data_size); 1519 if (!buf) { 1520 ret = -ENOMEM; 1521 goto out_err; 1522 } 1523 1524 vmcoredd_write_header(buf, data, data_size - 1525 sizeof(struct vmcoredd_header)); 1526 1527 /* Invoke the driver's dump collection routing */ 1528 ret = data->vmcoredd_callback(data, buf + 1529 sizeof(struct vmcoredd_header)); 1530 if (ret) 1531 goto out_err; 1532 1533 dump->buf = buf; 1534 dump->size = data_size; 1535 1536 /* Add the dump to driver sysfs list */ 1537 mutex_lock(&vmcoredd_mutex); 1538 list_add_tail(&dump->list, &vmcoredd_list); 1539 mutex_unlock(&vmcoredd_mutex); 1540 1541 vmcoredd_update_size(data_size); 1542 return 0; 1543 1544 out_err: 1545 vfree(buf); 1546 vfree(dump); 1547 1548 return ret; 1549 } 1550 EXPORT_SYMBOL(vmcore_add_device_dump); 1551 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1552 1553 /* Free all dumps in vmcore device dump list */ 1554 static void vmcore_free_device_dumps(void) 1555 { 1556 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1557 mutex_lock(&vmcoredd_mutex); 1558 while (!list_empty(&vmcoredd_list)) { 1559 struct vmcoredd_node *dump; 1560 1561 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, 1562 list); 1563 list_del(&dump->list); 1564 vfree(dump->buf); 1565 vfree(dump); 1566 } 1567 mutex_unlock(&vmcoredd_mutex); 1568 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1569 } 1570 1571 /* Init function for vmcore module. */ 1572 static int __init vmcore_init(void) 1573 { 1574 int rc = 0; 1575 1576 /* Allow architectures to allocate ELF header in 2nd kernel */ 1577 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); 1578 if (rc) 1579 return rc; 1580 /* 1581 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, 1582 * then capture the dump. 1583 */ 1584 if (!(is_vmcore_usable())) 1585 return rc; 1586 rc = parse_crash_elf_headers(); 1587 if (rc) { 1588 pr_warn("Kdump: vmcore not initialized\n"); 1589 return rc; 1590 } 1591 elfcorehdr_free(elfcorehdr_addr); 1592 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1593 1594 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops); 1595 if (proc_vmcore) 1596 proc_vmcore->size = vmcore_size; 1597 return 0; 1598 } 1599 fs_initcall(vmcore_init); 1600 1601 /* Cleanup function for vmcore module. */ 1602 void vmcore_cleanup(void) 1603 { 1604 if (proc_vmcore) { 1605 proc_remove(proc_vmcore); 1606 proc_vmcore = NULL; 1607 } 1608 1609 /* clear the vmcore list. */ 1610 while (!list_empty(&vmcore_list)) { 1611 struct vmcore *m; 1612 1613 m = list_first_entry(&vmcore_list, struct vmcore, list); 1614 list_del(&m->list); 1615 kfree(m); 1616 } 1617 free_elfcorebuf(); 1618 1619 /* clear vmcore device dump list */ 1620 vmcore_free_device_dumps(); 1621 } 1622