xref: /openbmc/linux/fs/proc/vmcore.c (revision dfd4f649)
1 /*
2  *	fs/proc/vmcore.c Interface for accessing the crash
3  * 				 dump from the system's previous life.
4  * 	Heavily borrowed from fs/proc/kcore.c
5  *	Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6  *	Copyright (C) IBM Corporation, 2004. All rights reserved
7  *
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/kcore.h>
12 #include <linux/user.h>
13 #include <linux/elf.h>
14 #include <linux/elfcore.h>
15 #include <linux/export.h>
16 #include <linux/slab.h>
17 #include <linux/highmem.h>
18 #include <linux/printk.h>
19 #include <linux/memblock.h>
20 #include <linux/init.h>
21 #include <linux/crash_dump.h>
22 #include <linux/list.h>
23 #include <linux/mutex.h>
24 #include <linux/vmalloc.h>
25 #include <linux/pagemap.h>
26 #include <linux/uaccess.h>
27 #include <linux/mem_encrypt.h>
28 #include <asm/pgtable.h>
29 #include <asm/io.h>
30 #include "internal.h"
31 
32 /* List representing chunks of contiguous memory areas and their offsets in
33  * vmcore file.
34  */
35 static LIST_HEAD(vmcore_list);
36 
37 /* Stores the pointer to the buffer containing kernel elf core headers. */
38 static char *elfcorebuf;
39 static size_t elfcorebuf_sz;
40 static size_t elfcorebuf_sz_orig;
41 
42 static char *elfnotes_buf;
43 static size_t elfnotes_sz;
44 /* Size of all notes minus the device dump notes */
45 static size_t elfnotes_orig_sz;
46 
47 /* Total size of vmcore file. */
48 static u64 vmcore_size;
49 
50 static struct proc_dir_entry *proc_vmcore;
51 
52 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
53 /* Device Dump list and mutex to synchronize access to list */
54 static LIST_HEAD(vmcoredd_list);
55 static DEFINE_MUTEX(vmcoredd_mutex);
56 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
57 
58 /* Device Dump Size */
59 static size_t vmcoredd_orig_sz;
60 
61 /*
62  * Returns > 0 for RAM pages, 0 for non-RAM pages, < 0 on error
63  * The called function has to take care of module refcounting.
64  */
65 static int (*oldmem_pfn_is_ram)(unsigned long pfn);
66 
67 int register_oldmem_pfn_is_ram(int (*fn)(unsigned long pfn))
68 {
69 	if (oldmem_pfn_is_ram)
70 		return -EBUSY;
71 	oldmem_pfn_is_ram = fn;
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(register_oldmem_pfn_is_ram);
75 
76 void unregister_oldmem_pfn_is_ram(void)
77 {
78 	oldmem_pfn_is_ram = NULL;
79 	wmb();
80 }
81 EXPORT_SYMBOL_GPL(unregister_oldmem_pfn_is_ram);
82 
83 static int pfn_is_ram(unsigned long pfn)
84 {
85 	int (*fn)(unsigned long pfn);
86 	/* pfn is ram unless fn() checks pagetype */
87 	int ret = 1;
88 
89 	/*
90 	 * Ask hypervisor if the pfn is really ram.
91 	 * A ballooned page contains no data and reading from such a page
92 	 * will cause high load in the hypervisor.
93 	 */
94 	fn = oldmem_pfn_is_ram;
95 	if (fn)
96 		ret = fn(pfn);
97 
98 	return ret;
99 }
100 
101 /* Reads a page from the oldmem device from given offset. */
102 static ssize_t read_from_oldmem(char *buf, size_t count,
103 				u64 *ppos, int userbuf,
104 				bool encrypted)
105 {
106 	unsigned long pfn, offset;
107 	size_t nr_bytes;
108 	ssize_t read = 0, tmp;
109 
110 	if (!count)
111 		return 0;
112 
113 	offset = (unsigned long)(*ppos % PAGE_SIZE);
114 	pfn = (unsigned long)(*ppos / PAGE_SIZE);
115 
116 	do {
117 		if (count > (PAGE_SIZE - offset))
118 			nr_bytes = PAGE_SIZE - offset;
119 		else
120 			nr_bytes = count;
121 
122 		/* If pfn is not ram, return zeros for sparse dump files */
123 		if (pfn_is_ram(pfn) == 0)
124 			memset(buf, 0, nr_bytes);
125 		else {
126 			if (encrypted)
127 				tmp = copy_oldmem_page_encrypted(pfn, buf,
128 								 nr_bytes,
129 								 offset,
130 								 userbuf);
131 			else
132 				tmp = copy_oldmem_page(pfn, buf, nr_bytes,
133 						       offset, userbuf);
134 
135 			if (tmp < 0)
136 				return tmp;
137 		}
138 		*ppos += nr_bytes;
139 		count -= nr_bytes;
140 		buf += nr_bytes;
141 		read += nr_bytes;
142 		++pfn;
143 		offset = 0;
144 	} while (count);
145 
146 	return read;
147 }
148 
149 /*
150  * Architectures may override this function to allocate ELF header in 2nd kernel
151  */
152 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
153 {
154 	return 0;
155 }
156 
157 /*
158  * Architectures may override this function to free header
159  */
160 void __weak elfcorehdr_free(unsigned long long addr)
161 {}
162 
163 /*
164  * Architectures may override this function to read from ELF header
165  */
166 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos)
167 {
168 	return read_from_oldmem(buf, count, ppos, 0, false);
169 }
170 
171 /*
172  * Architectures may override this function to read from notes sections
173  */
174 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
175 {
176 	return read_from_oldmem(buf, count, ppos, 0, sme_active());
177 }
178 
179 /*
180  * Architectures may override this function to map oldmem
181  */
182 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma,
183 				  unsigned long from, unsigned long pfn,
184 				  unsigned long size, pgprot_t prot)
185 {
186 	prot = pgprot_encrypted(prot);
187 	return remap_pfn_range(vma, from, pfn, size, prot);
188 }
189 
190 /*
191  * Architectures which support memory encryption override this.
192  */
193 ssize_t __weak
194 copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize,
195 			   unsigned long offset, int userbuf)
196 {
197 	return copy_oldmem_page(pfn, buf, csize, offset, userbuf);
198 }
199 
200 /*
201  * Copy to either kernel or user space
202  */
203 static int copy_to(void *target, void *src, size_t size, int userbuf)
204 {
205 	if (userbuf) {
206 		if (copy_to_user((char __user *) target, src, size))
207 			return -EFAULT;
208 	} else {
209 		memcpy(target, src, size);
210 	}
211 	return 0;
212 }
213 
214 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
215 static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf)
216 {
217 	struct vmcoredd_node *dump;
218 	u64 offset = 0;
219 	int ret = 0;
220 	size_t tsz;
221 	char *buf;
222 
223 	mutex_lock(&vmcoredd_mutex);
224 	list_for_each_entry(dump, &vmcoredd_list, list) {
225 		if (start < offset + dump->size) {
226 			tsz = min(offset + (u64)dump->size - start, (u64)size);
227 			buf = dump->buf + start - offset;
228 			if (copy_to(dst, buf, tsz, userbuf)) {
229 				ret = -EFAULT;
230 				goto out_unlock;
231 			}
232 
233 			size -= tsz;
234 			start += tsz;
235 			dst += tsz;
236 
237 			/* Leave now if buffer filled already */
238 			if (!size)
239 				goto out_unlock;
240 		}
241 		offset += dump->size;
242 	}
243 
244 out_unlock:
245 	mutex_unlock(&vmcoredd_mutex);
246 	return ret;
247 }
248 
249 #ifdef CONFIG_MMU
250 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst,
251 			       u64 start, size_t size)
252 {
253 	struct vmcoredd_node *dump;
254 	u64 offset = 0;
255 	int ret = 0;
256 	size_t tsz;
257 	char *buf;
258 
259 	mutex_lock(&vmcoredd_mutex);
260 	list_for_each_entry(dump, &vmcoredd_list, list) {
261 		if (start < offset + dump->size) {
262 			tsz = min(offset + (u64)dump->size - start, (u64)size);
263 			buf = dump->buf + start - offset;
264 			if (remap_vmalloc_range_partial(vma, dst, buf, tsz)) {
265 				ret = -EFAULT;
266 				goto out_unlock;
267 			}
268 
269 			size -= tsz;
270 			start += tsz;
271 			dst += tsz;
272 
273 			/* Leave now if buffer filled already */
274 			if (!size)
275 				goto out_unlock;
276 		}
277 		offset += dump->size;
278 	}
279 
280 out_unlock:
281 	mutex_unlock(&vmcoredd_mutex);
282 	return ret;
283 }
284 #endif /* CONFIG_MMU */
285 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
286 
287 /* Read from the ELF header and then the crash dump. On error, negative value is
288  * returned otherwise number of bytes read are returned.
289  */
290 static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos,
291 			     int userbuf)
292 {
293 	ssize_t acc = 0, tmp;
294 	size_t tsz;
295 	u64 start;
296 	struct vmcore *m = NULL;
297 
298 	if (buflen == 0 || *fpos >= vmcore_size)
299 		return 0;
300 
301 	/* trim buflen to not go beyond EOF */
302 	if (buflen > vmcore_size - *fpos)
303 		buflen = vmcore_size - *fpos;
304 
305 	/* Read ELF core header */
306 	if (*fpos < elfcorebuf_sz) {
307 		tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen);
308 		if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf))
309 			return -EFAULT;
310 		buflen -= tsz;
311 		*fpos += tsz;
312 		buffer += tsz;
313 		acc += tsz;
314 
315 		/* leave now if filled buffer already */
316 		if (buflen == 0)
317 			return acc;
318 	}
319 
320 	/* Read Elf note segment */
321 	if (*fpos < elfcorebuf_sz + elfnotes_sz) {
322 		void *kaddr;
323 
324 		/* We add device dumps before other elf notes because the
325 		 * other elf notes may not fill the elf notes buffer
326 		 * completely and we will end up with zero-filled data
327 		 * between the elf notes and the device dumps. Tools will
328 		 * then try to decode this zero-filled data as valid notes
329 		 * and we don't want that. Hence, adding device dumps before
330 		 * the other elf notes ensure that zero-filled data can be
331 		 * avoided.
332 		 */
333 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
334 		/* Read device dumps */
335 		if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) {
336 			tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
337 				  (size_t)*fpos, buflen);
338 			start = *fpos - elfcorebuf_sz;
339 			if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf))
340 				return -EFAULT;
341 
342 			buflen -= tsz;
343 			*fpos += tsz;
344 			buffer += tsz;
345 			acc += tsz;
346 
347 			/* leave now if filled buffer already */
348 			if (!buflen)
349 				return acc;
350 		}
351 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
352 
353 		/* Read remaining elf notes */
354 		tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen);
355 		kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz;
356 		if (copy_to(buffer, kaddr, tsz, userbuf))
357 			return -EFAULT;
358 
359 		buflen -= tsz;
360 		*fpos += tsz;
361 		buffer += tsz;
362 		acc += tsz;
363 
364 		/* leave now if filled buffer already */
365 		if (buflen == 0)
366 			return acc;
367 	}
368 
369 	list_for_each_entry(m, &vmcore_list, list) {
370 		if (*fpos < m->offset + m->size) {
371 			tsz = (size_t)min_t(unsigned long long,
372 					    m->offset + m->size - *fpos,
373 					    buflen);
374 			start = m->paddr + *fpos - m->offset;
375 			tmp = read_from_oldmem(buffer, tsz, &start,
376 					       userbuf, sme_active());
377 			if (tmp < 0)
378 				return tmp;
379 			buflen -= tsz;
380 			*fpos += tsz;
381 			buffer += tsz;
382 			acc += tsz;
383 
384 			/* leave now if filled buffer already */
385 			if (buflen == 0)
386 				return acc;
387 		}
388 	}
389 
390 	return acc;
391 }
392 
393 static ssize_t read_vmcore(struct file *file, char __user *buffer,
394 			   size_t buflen, loff_t *fpos)
395 {
396 	return __read_vmcore((__force char *) buffer, buflen, fpos, 1);
397 }
398 
399 /*
400  * The vmcore fault handler uses the page cache and fills data using the
401  * standard __vmcore_read() function.
402  *
403  * On s390 the fault handler is used for memory regions that can't be mapped
404  * directly with remap_pfn_range().
405  */
406 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf)
407 {
408 #ifdef CONFIG_S390
409 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
410 	pgoff_t index = vmf->pgoff;
411 	struct page *page;
412 	loff_t offset;
413 	char *buf;
414 	int rc;
415 
416 	page = find_or_create_page(mapping, index, GFP_KERNEL);
417 	if (!page)
418 		return VM_FAULT_OOM;
419 	if (!PageUptodate(page)) {
420 		offset = (loff_t) index << PAGE_SHIFT;
421 		buf = __va((page_to_pfn(page) << PAGE_SHIFT));
422 		rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0);
423 		if (rc < 0) {
424 			unlock_page(page);
425 			put_page(page);
426 			return vmf_error(rc);
427 		}
428 		SetPageUptodate(page);
429 	}
430 	unlock_page(page);
431 	vmf->page = page;
432 	return 0;
433 #else
434 	return VM_FAULT_SIGBUS;
435 #endif
436 }
437 
438 static const struct vm_operations_struct vmcore_mmap_ops = {
439 	.fault = mmap_vmcore_fault,
440 };
441 
442 /**
443  * vmcore_alloc_buf - allocate buffer in vmalloc memory
444  * @sizez: size of buffer
445  *
446  * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap
447  * the buffer to user-space by means of remap_vmalloc_range().
448  *
449  * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is
450  * disabled and there's no need to allow users to mmap the buffer.
451  */
452 static inline char *vmcore_alloc_buf(size_t size)
453 {
454 #ifdef CONFIG_MMU
455 	return vmalloc_user(size);
456 #else
457 	return vzalloc(size);
458 #endif
459 }
460 
461 /*
462  * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is
463  * essential for mmap_vmcore() in order to map physically
464  * non-contiguous objects (ELF header, ELF note segment and memory
465  * regions in the 1st kernel pointed to by PT_LOAD entries) into
466  * virtually contiguous user-space in ELF layout.
467  */
468 #ifdef CONFIG_MMU
469 /*
470  * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages
471  * reported as not being ram with the zero page.
472  *
473  * @vma: vm_area_struct describing requested mapping
474  * @from: start remapping from
475  * @pfn: page frame number to start remapping to
476  * @size: remapping size
477  * @prot: protection bits
478  *
479  * Returns zero on success, -EAGAIN on failure.
480  */
481 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma,
482 				    unsigned long from, unsigned long pfn,
483 				    unsigned long size, pgprot_t prot)
484 {
485 	unsigned long map_size;
486 	unsigned long pos_start, pos_end, pos;
487 	unsigned long zeropage_pfn = my_zero_pfn(0);
488 	size_t len = 0;
489 
490 	pos_start = pfn;
491 	pos_end = pfn + (size >> PAGE_SHIFT);
492 
493 	for (pos = pos_start; pos < pos_end; ++pos) {
494 		if (!pfn_is_ram(pos)) {
495 			/*
496 			 * We hit a page which is not ram. Remap the continuous
497 			 * region between pos_start and pos-1 and replace
498 			 * the non-ram page at pos with the zero page.
499 			 */
500 			if (pos > pos_start) {
501 				/* Remap continuous region */
502 				map_size = (pos - pos_start) << PAGE_SHIFT;
503 				if (remap_oldmem_pfn_range(vma, from + len,
504 							   pos_start, map_size,
505 							   prot))
506 					goto fail;
507 				len += map_size;
508 			}
509 			/* Remap the zero page */
510 			if (remap_oldmem_pfn_range(vma, from + len,
511 						   zeropage_pfn,
512 						   PAGE_SIZE, prot))
513 				goto fail;
514 			len += PAGE_SIZE;
515 			pos_start = pos + 1;
516 		}
517 	}
518 	if (pos > pos_start) {
519 		/* Remap the rest */
520 		map_size = (pos - pos_start) << PAGE_SHIFT;
521 		if (remap_oldmem_pfn_range(vma, from + len, pos_start,
522 					   map_size, prot))
523 			goto fail;
524 	}
525 	return 0;
526 fail:
527 	do_munmap(vma->vm_mm, from, len, NULL);
528 	return -EAGAIN;
529 }
530 
531 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma,
532 			    unsigned long from, unsigned long pfn,
533 			    unsigned long size, pgprot_t prot)
534 {
535 	/*
536 	 * Check if oldmem_pfn_is_ram was registered to avoid
537 	 * looping over all pages without a reason.
538 	 */
539 	if (oldmem_pfn_is_ram)
540 		return remap_oldmem_pfn_checked(vma, from, pfn, size, prot);
541 	else
542 		return remap_oldmem_pfn_range(vma, from, pfn, size, prot);
543 }
544 
545 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
546 {
547 	size_t size = vma->vm_end - vma->vm_start;
548 	u64 start, end, len, tsz;
549 	struct vmcore *m;
550 
551 	start = (u64)vma->vm_pgoff << PAGE_SHIFT;
552 	end = start + size;
553 
554 	if (size > vmcore_size || end > vmcore_size)
555 		return -EINVAL;
556 
557 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
558 		return -EPERM;
559 
560 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
561 	vma->vm_flags |= VM_MIXEDMAP;
562 	vma->vm_ops = &vmcore_mmap_ops;
563 
564 	len = 0;
565 
566 	if (start < elfcorebuf_sz) {
567 		u64 pfn;
568 
569 		tsz = min(elfcorebuf_sz - (size_t)start, size);
570 		pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT;
571 		if (remap_pfn_range(vma, vma->vm_start, pfn, tsz,
572 				    vma->vm_page_prot))
573 			return -EAGAIN;
574 		size -= tsz;
575 		start += tsz;
576 		len += tsz;
577 
578 		if (size == 0)
579 			return 0;
580 	}
581 
582 	if (start < elfcorebuf_sz + elfnotes_sz) {
583 		void *kaddr;
584 
585 		/* We add device dumps before other elf notes because the
586 		 * other elf notes may not fill the elf notes buffer
587 		 * completely and we will end up with zero-filled data
588 		 * between the elf notes and the device dumps. Tools will
589 		 * then try to decode this zero-filled data as valid notes
590 		 * and we don't want that. Hence, adding device dumps before
591 		 * the other elf notes ensure that zero-filled data can be
592 		 * avoided. This also ensures that the device dumps and
593 		 * other elf notes can be properly mmaped at page aligned
594 		 * address.
595 		 */
596 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
597 		/* Read device dumps */
598 		if (start < elfcorebuf_sz + vmcoredd_orig_sz) {
599 			u64 start_off;
600 
601 			tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
602 				  (size_t)start, size);
603 			start_off = start - elfcorebuf_sz;
604 			if (vmcoredd_mmap_dumps(vma, vma->vm_start + len,
605 						start_off, tsz))
606 				goto fail;
607 
608 			size -= tsz;
609 			start += tsz;
610 			len += tsz;
611 
612 			/* leave now if filled buffer already */
613 			if (!size)
614 				return 0;
615 		}
616 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
617 
618 		/* Read remaining elf notes */
619 		tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size);
620 		kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz;
621 		if (remap_vmalloc_range_partial(vma, vma->vm_start + len,
622 						kaddr, tsz))
623 			goto fail;
624 
625 		size -= tsz;
626 		start += tsz;
627 		len += tsz;
628 
629 		if (size == 0)
630 			return 0;
631 	}
632 
633 	list_for_each_entry(m, &vmcore_list, list) {
634 		if (start < m->offset + m->size) {
635 			u64 paddr = 0;
636 
637 			tsz = (size_t)min_t(unsigned long long,
638 					    m->offset + m->size - start, size);
639 			paddr = m->paddr + start - m->offset;
640 			if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len,
641 						    paddr >> PAGE_SHIFT, tsz,
642 						    vma->vm_page_prot))
643 				goto fail;
644 			size -= tsz;
645 			start += tsz;
646 			len += tsz;
647 
648 			if (size == 0)
649 				return 0;
650 		}
651 	}
652 
653 	return 0;
654 fail:
655 	do_munmap(vma->vm_mm, vma->vm_start, len, NULL);
656 	return -EAGAIN;
657 }
658 #else
659 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
660 {
661 	return -ENOSYS;
662 }
663 #endif
664 
665 static const struct file_operations proc_vmcore_operations = {
666 	.read		= read_vmcore,
667 	.llseek		= default_llseek,
668 	.mmap		= mmap_vmcore,
669 };
670 
671 static struct vmcore* __init get_new_element(void)
672 {
673 	return kzalloc(sizeof(struct vmcore), GFP_KERNEL);
674 }
675 
676 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz,
677 			   struct list_head *vc_list)
678 {
679 	u64 size;
680 	struct vmcore *m;
681 
682 	size = elfsz + elfnotesegsz;
683 	list_for_each_entry(m, vc_list, list) {
684 		size += m->size;
685 	}
686 	return size;
687 }
688 
689 /**
690  * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry
691  *
692  * @ehdr_ptr: ELF header
693  *
694  * This function updates p_memsz member of each PT_NOTE entry in the
695  * program header table pointed to by @ehdr_ptr to real size of ELF
696  * note segment.
697  */
698 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr)
699 {
700 	int i, rc=0;
701 	Elf64_Phdr *phdr_ptr;
702 	Elf64_Nhdr *nhdr_ptr;
703 
704 	phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
705 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
706 		void *notes_section;
707 		u64 offset, max_sz, sz, real_sz = 0;
708 		if (phdr_ptr->p_type != PT_NOTE)
709 			continue;
710 		max_sz = phdr_ptr->p_memsz;
711 		offset = phdr_ptr->p_offset;
712 		notes_section = kmalloc(max_sz, GFP_KERNEL);
713 		if (!notes_section)
714 			return -ENOMEM;
715 		rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
716 		if (rc < 0) {
717 			kfree(notes_section);
718 			return rc;
719 		}
720 		nhdr_ptr = notes_section;
721 		while (nhdr_ptr->n_namesz != 0) {
722 			sz = sizeof(Elf64_Nhdr) +
723 				(((u64)nhdr_ptr->n_namesz + 3) & ~3) +
724 				(((u64)nhdr_ptr->n_descsz + 3) & ~3);
725 			if ((real_sz + sz) > max_sz) {
726 				pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
727 					nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
728 				break;
729 			}
730 			real_sz += sz;
731 			nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz);
732 		}
733 		kfree(notes_section);
734 		phdr_ptr->p_memsz = real_sz;
735 		if (real_sz == 0) {
736 			pr_warn("Warning: Zero PT_NOTE entries found\n");
737 		}
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  * get_note_number_and_size_elf64 - get the number of PT_NOTE program
745  * headers and sum of real size of their ELF note segment headers and
746  * data.
747  *
748  * @ehdr_ptr: ELF header
749  * @nr_ptnote: buffer for the number of PT_NOTE program headers
750  * @sz_ptnote: buffer for size of unique PT_NOTE program header
751  *
752  * This function is used to merge multiple PT_NOTE program headers
753  * into a unique single one. The resulting unique entry will have
754  * @sz_ptnote in its phdr->p_mem.
755  *
756  * It is assumed that program headers with PT_NOTE type pointed to by
757  * @ehdr_ptr has already been updated by update_note_header_size_elf64
758  * and each of PT_NOTE program headers has actual ELF note segment
759  * size in its p_memsz member.
760  */
761 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr,
762 						 int *nr_ptnote, u64 *sz_ptnote)
763 {
764 	int i;
765 	Elf64_Phdr *phdr_ptr;
766 
767 	*nr_ptnote = *sz_ptnote = 0;
768 
769 	phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
770 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
771 		if (phdr_ptr->p_type != PT_NOTE)
772 			continue;
773 		*nr_ptnote += 1;
774 		*sz_ptnote += phdr_ptr->p_memsz;
775 	}
776 
777 	return 0;
778 }
779 
780 /**
781  * copy_notes_elf64 - copy ELF note segments in a given buffer
782  *
783  * @ehdr_ptr: ELF header
784  * @notes_buf: buffer into which ELF note segments are copied
785  *
786  * This function is used to copy ELF note segment in the 1st kernel
787  * into the buffer @notes_buf in the 2nd kernel. It is assumed that
788  * size of the buffer @notes_buf is equal to or larger than sum of the
789  * real ELF note segment headers and data.
790  *
791  * It is assumed that program headers with PT_NOTE type pointed to by
792  * @ehdr_ptr has already been updated by update_note_header_size_elf64
793  * and each of PT_NOTE program headers has actual ELF note segment
794  * size in its p_memsz member.
795  */
796 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf)
797 {
798 	int i, rc=0;
799 	Elf64_Phdr *phdr_ptr;
800 
801 	phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1);
802 
803 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
804 		u64 offset;
805 		if (phdr_ptr->p_type != PT_NOTE)
806 			continue;
807 		offset = phdr_ptr->p_offset;
808 		rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
809 					   &offset);
810 		if (rc < 0)
811 			return rc;
812 		notes_buf += phdr_ptr->p_memsz;
813 	}
814 
815 	return 0;
816 }
817 
818 /* Merges all the PT_NOTE headers into one. */
819 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz,
820 					   char **notes_buf, size_t *notes_sz)
821 {
822 	int i, nr_ptnote=0, rc=0;
823 	char *tmp;
824 	Elf64_Ehdr *ehdr_ptr;
825 	Elf64_Phdr phdr;
826 	u64 phdr_sz = 0, note_off;
827 
828 	ehdr_ptr = (Elf64_Ehdr *)elfptr;
829 
830 	rc = update_note_header_size_elf64(ehdr_ptr);
831 	if (rc < 0)
832 		return rc;
833 
834 	rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz);
835 	if (rc < 0)
836 		return rc;
837 
838 	*notes_sz = roundup(phdr_sz, PAGE_SIZE);
839 	*notes_buf = vmcore_alloc_buf(*notes_sz);
840 	if (!*notes_buf)
841 		return -ENOMEM;
842 
843 	rc = copy_notes_elf64(ehdr_ptr, *notes_buf);
844 	if (rc < 0)
845 		return rc;
846 
847 	/* Prepare merged PT_NOTE program header. */
848 	phdr.p_type    = PT_NOTE;
849 	phdr.p_flags   = 0;
850 	note_off = sizeof(Elf64_Ehdr) +
851 			(ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr);
852 	phdr.p_offset  = roundup(note_off, PAGE_SIZE);
853 	phdr.p_vaddr   = phdr.p_paddr = 0;
854 	phdr.p_filesz  = phdr.p_memsz = phdr_sz;
855 	phdr.p_align   = 0;
856 
857 	/* Add merged PT_NOTE program header*/
858 	tmp = elfptr + sizeof(Elf64_Ehdr);
859 	memcpy(tmp, &phdr, sizeof(phdr));
860 	tmp += sizeof(phdr);
861 
862 	/* Remove unwanted PT_NOTE program headers. */
863 	i = (nr_ptnote - 1) * sizeof(Elf64_Phdr);
864 	*elfsz = *elfsz - i;
865 	memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr)));
866 	memset(elfptr + *elfsz, 0, i);
867 	*elfsz = roundup(*elfsz, PAGE_SIZE);
868 
869 	/* Modify e_phnum to reflect merged headers. */
870 	ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
871 
872 	/* Store the size of all notes.  We need this to update the note
873 	 * header when the device dumps will be added.
874 	 */
875 	elfnotes_orig_sz = phdr.p_memsz;
876 
877 	return 0;
878 }
879 
880 /**
881  * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry
882  *
883  * @ehdr_ptr: ELF header
884  *
885  * This function updates p_memsz member of each PT_NOTE entry in the
886  * program header table pointed to by @ehdr_ptr to real size of ELF
887  * note segment.
888  */
889 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr)
890 {
891 	int i, rc=0;
892 	Elf32_Phdr *phdr_ptr;
893 	Elf32_Nhdr *nhdr_ptr;
894 
895 	phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
896 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
897 		void *notes_section;
898 		u64 offset, max_sz, sz, real_sz = 0;
899 		if (phdr_ptr->p_type != PT_NOTE)
900 			continue;
901 		max_sz = phdr_ptr->p_memsz;
902 		offset = phdr_ptr->p_offset;
903 		notes_section = kmalloc(max_sz, GFP_KERNEL);
904 		if (!notes_section)
905 			return -ENOMEM;
906 		rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
907 		if (rc < 0) {
908 			kfree(notes_section);
909 			return rc;
910 		}
911 		nhdr_ptr = notes_section;
912 		while (nhdr_ptr->n_namesz != 0) {
913 			sz = sizeof(Elf32_Nhdr) +
914 				(((u64)nhdr_ptr->n_namesz + 3) & ~3) +
915 				(((u64)nhdr_ptr->n_descsz + 3) & ~3);
916 			if ((real_sz + sz) > max_sz) {
917 				pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
918 					nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
919 				break;
920 			}
921 			real_sz += sz;
922 			nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz);
923 		}
924 		kfree(notes_section);
925 		phdr_ptr->p_memsz = real_sz;
926 		if (real_sz == 0) {
927 			pr_warn("Warning: Zero PT_NOTE entries found\n");
928 		}
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  * get_note_number_and_size_elf32 - get the number of PT_NOTE program
936  * headers and sum of real size of their ELF note segment headers and
937  * data.
938  *
939  * @ehdr_ptr: ELF header
940  * @nr_ptnote: buffer for the number of PT_NOTE program headers
941  * @sz_ptnote: buffer for size of unique PT_NOTE program header
942  *
943  * This function is used to merge multiple PT_NOTE program headers
944  * into a unique single one. The resulting unique entry will have
945  * @sz_ptnote in its phdr->p_mem.
946  *
947  * It is assumed that program headers with PT_NOTE type pointed to by
948  * @ehdr_ptr has already been updated by update_note_header_size_elf32
949  * and each of PT_NOTE program headers has actual ELF note segment
950  * size in its p_memsz member.
951  */
952 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr,
953 						 int *nr_ptnote, u64 *sz_ptnote)
954 {
955 	int i;
956 	Elf32_Phdr *phdr_ptr;
957 
958 	*nr_ptnote = *sz_ptnote = 0;
959 
960 	phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
961 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
962 		if (phdr_ptr->p_type != PT_NOTE)
963 			continue;
964 		*nr_ptnote += 1;
965 		*sz_ptnote += phdr_ptr->p_memsz;
966 	}
967 
968 	return 0;
969 }
970 
971 /**
972  * copy_notes_elf32 - copy ELF note segments in a given buffer
973  *
974  * @ehdr_ptr: ELF header
975  * @notes_buf: buffer into which ELF note segments are copied
976  *
977  * This function is used to copy ELF note segment in the 1st kernel
978  * into the buffer @notes_buf in the 2nd kernel. It is assumed that
979  * size of the buffer @notes_buf is equal to or larger than sum of the
980  * real ELF note segment headers and data.
981  *
982  * It is assumed that program headers with PT_NOTE type pointed to by
983  * @ehdr_ptr has already been updated by update_note_header_size_elf32
984  * and each of PT_NOTE program headers has actual ELF note segment
985  * size in its p_memsz member.
986  */
987 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf)
988 {
989 	int i, rc=0;
990 	Elf32_Phdr *phdr_ptr;
991 
992 	phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1);
993 
994 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
995 		u64 offset;
996 		if (phdr_ptr->p_type != PT_NOTE)
997 			continue;
998 		offset = phdr_ptr->p_offset;
999 		rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
1000 					   &offset);
1001 		if (rc < 0)
1002 			return rc;
1003 		notes_buf += phdr_ptr->p_memsz;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /* Merges all the PT_NOTE headers into one. */
1010 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz,
1011 					   char **notes_buf, size_t *notes_sz)
1012 {
1013 	int i, nr_ptnote=0, rc=0;
1014 	char *tmp;
1015 	Elf32_Ehdr *ehdr_ptr;
1016 	Elf32_Phdr phdr;
1017 	u64 phdr_sz = 0, note_off;
1018 
1019 	ehdr_ptr = (Elf32_Ehdr *)elfptr;
1020 
1021 	rc = update_note_header_size_elf32(ehdr_ptr);
1022 	if (rc < 0)
1023 		return rc;
1024 
1025 	rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz);
1026 	if (rc < 0)
1027 		return rc;
1028 
1029 	*notes_sz = roundup(phdr_sz, PAGE_SIZE);
1030 	*notes_buf = vmcore_alloc_buf(*notes_sz);
1031 	if (!*notes_buf)
1032 		return -ENOMEM;
1033 
1034 	rc = copy_notes_elf32(ehdr_ptr, *notes_buf);
1035 	if (rc < 0)
1036 		return rc;
1037 
1038 	/* Prepare merged PT_NOTE program header. */
1039 	phdr.p_type    = PT_NOTE;
1040 	phdr.p_flags   = 0;
1041 	note_off = sizeof(Elf32_Ehdr) +
1042 			(ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr);
1043 	phdr.p_offset  = roundup(note_off, PAGE_SIZE);
1044 	phdr.p_vaddr   = phdr.p_paddr = 0;
1045 	phdr.p_filesz  = phdr.p_memsz = phdr_sz;
1046 	phdr.p_align   = 0;
1047 
1048 	/* Add merged PT_NOTE program header*/
1049 	tmp = elfptr + sizeof(Elf32_Ehdr);
1050 	memcpy(tmp, &phdr, sizeof(phdr));
1051 	tmp += sizeof(phdr);
1052 
1053 	/* Remove unwanted PT_NOTE program headers. */
1054 	i = (nr_ptnote - 1) * sizeof(Elf32_Phdr);
1055 	*elfsz = *elfsz - i;
1056 	memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr)));
1057 	memset(elfptr + *elfsz, 0, i);
1058 	*elfsz = roundup(*elfsz, PAGE_SIZE);
1059 
1060 	/* Modify e_phnum to reflect merged headers. */
1061 	ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
1062 
1063 	/* Store the size of all notes.  We need this to update the note
1064 	 * header when the device dumps will be added.
1065 	 */
1066 	elfnotes_orig_sz = phdr.p_memsz;
1067 
1068 	return 0;
1069 }
1070 
1071 /* Add memory chunks represented by program headers to vmcore list. Also update
1072  * the new offset fields of exported program headers. */
1073 static int __init process_ptload_program_headers_elf64(char *elfptr,
1074 						size_t elfsz,
1075 						size_t elfnotes_sz,
1076 						struct list_head *vc_list)
1077 {
1078 	int i;
1079 	Elf64_Ehdr *ehdr_ptr;
1080 	Elf64_Phdr *phdr_ptr;
1081 	loff_t vmcore_off;
1082 	struct vmcore *new;
1083 
1084 	ehdr_ptr = (Elf64_Ehdr *)elfptr;
1085 	phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */
1086 
1087 	/* Skip Elf header, program headers and Elf note segment. */
1088 	vmcore_off = elfsz + elfnotes_sz;
1089 
1090 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1091 		u64 paddr, start, end, size;
1092 
1093 		if (phdr_ptr->p_type != PT_LOAD)
1094 			continue;
1095 
1096 		paddr = phdr_ptr->p_offset;
1097 		start = rounddown(paddr, PAGE_SIZE);
1098 		end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
1099 		size = end - start;
1100 
1101 		/* Add this contiguous chunk of memory to vmcore list.*/
1102 		new = get_new_element();
1103 		if (!new)
1104 			return -ENOMEM;
1105 		new->paddr = start;
1106 		new->size = size;
1107 		list_add_tail(&new->list, vc_list);
1108 
1109 		/* Update the program header offset. */
1110 		phdr_ptr->p_offset = vmcore_off + (paddr - start);
1111 		vmcore_off = vmcore_off + size;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int __init process_ptload_program_headers_elf32(char *elfptr,
1117 						size_t elfsz,
1118 						size_t elfnotes_sz,
1119 						struct list_head *vc_list)
1120 {
1121 	int i;
1122 	Elf32_Ehdr *ehdr_ptr;
1123 	Elf32_Phdr *phdr_ptr;
1124 	loff_t vmcore_off;
1125 	struct vmcore *new;
1126 
1127 	ehdr_ptr = (Elf32_Ehdr *)elfptr;
1128 	phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */
1129 
1130 	/* Skip Elf header, program headers and Elf note segment. */
1131 	vmcore_off = elfsz + elfnotes_sz;
1132 
1133 	for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1134 		u64 paddr, start, end, size;
1135 
1136 		if (phdr_ptr->p_type != PT_LOAD)
1137 			continue;
1138 
1139 		paddr = phdr_ptr->p_offset;
1140 		start = rounddown(paddr, PAGE_SIZE);
1141 		end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
1142 		size = end - start;
1143 
1144 		/* Add this contiguous chunk of memory to vmcore list.*/
1145 		new = get_new_element();
1146 		if (!new)
1147 			return -ENOMEM;
1148 		new->paddr = start;
1149 		new->size = size;
1150 		list_add_tail(&new->list, vc_list);
1151 
1152 		/* Update the program header offset */
1153 		phdr_ptr->p_offset = vmcore_off + (paddr - start);
1154 		vmcore_off = vmcore_off + size;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /* Sets offset fields of vmcore elements. */
1160 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz,
1161 				    struct list_head *vc_list)
1162 {
1163 	loff_t vmcore_off;
1164 	struct vmcore *m;
1165 
1166 	/* Skip Elf header, program headers and Elf note segment. */
1167 	vmcore_off = elfsz + elfnotes_sz;
1168 
1169 	list_for_each_entry(m, vc_list, list) {
1170 		m->offset = vmcore_off;
1171 		vmcore_off += m->size;
1172 	}
1173 }
1174 
1175 static void free_elfcorebuf(void)
1176 {
1177 	free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig));
1178 	elfcorebuf = NULL;
1179 	vfree(elfnotes_buf);
1180 	elfnotes_buf = NULL;
1181 }
1182 
1183 static int __init parse_crash_elf64_headers(void)
1184 {
1185 	int rc=0;
1186 	Elf64_Ehdr ehdr;
1187 	u64 addr;
1188 
1189 	addr = elfcorehdr_addr;
1190 
1191 	/* Read Elf header */
1192 	rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr);
1193 	if (rc < 0)
1194 		return rc;
1195 
1196 	/* Do some basic Verification. */
1197 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
1198 		(ehdr.e_type != ET_CORE) ||
1199 		!vmcore_elf64_check_arch(&ehdr) ||
1200 		ehdr.e_ident[EI_CLASS] != ELFCLASS64 ||
1201 		ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
1202 		ehdr.e_version != EV_CURRENT ||
1203 		ehdr.e_ehsize != sizeof(Elf64_Ehdr) ||
1204 		ehdr.e_phentsize != sizeof(Elf64_Phdr) ||
1205 		ehdr.e_phnum == 0) {
1206 		pr_warn("Warning: Core image elf header is not sane\n");
1207 		return -EINVAL;
1208 	}
1209 
1210 	/* Read in all elf headers. */
1211 	elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) +
1212 				ehdr.e_phnum * sizeof(Elf64_Phdr);
1213 	elfcorebuf_sz = elfcorebuf_sz_orig;
1214 	elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1215 					      get_order(elfcorebuf_sz_orig));
1216 	if (!elfcorebuf)
1217 		return -ENOMEM;
1218 	addr = elfcorehdr_addr;
1219 	rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
1220 	if (rc < 0)
1221 		goto fail;
1222 
1223 	/* Merge all PT_NOTE headers into one. */
1224 	rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz,
1225 				      &elfnotes_buf, &elfnotes_sz);
1226 	if (rc)
1227 		goto fail;
1228 	rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz,
1229 						  elfnotes_sz, &vmcore_list);
1230 	if (rc)
1231 		goto fail;
1232 	set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1233 	return 0;
1234 fail:
1235 	free_elfcorebuf();
1236 	return rc;
1237 }
1238 
1239 static int __init parse_crash_elf32_headers(void)
1240 {
1241 	int rc=0;
1242 	Elf32_Ehdr ehdr;
1243 	u64 addr;
1244 
1245 	addr = elfcorehdr_addr;
1246 
1247 	/* Read Elf header */
1248 	rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr);
1249 	if (rc < 0)
1250 		return rc;
1251 
1252 	/* Do some basic Verification. */
1253 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
1254 		(ehdr.e_type != ET_CORE) ||
1255 		!vmcore_elf32_check_arch(&ehdr) ||
1256 		ehdr.e_ident[EI_CLASS] != ELFCLASS32||
1257 		ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
1258 		ehdr.e_version != EV_CURRENT ||
1259 		ehdr.e_ehsize != sizeof(Elf32_Ehdr) ||
1260 		ehdr.e_phentsize != sizeof(Elf32_Phdr) ||
1261 		ehdr.e_phnum == 0) {
1262 		pr_warn("Warning: Core image elf header is not sane\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	/* Read in all elf headers. */
1267 	elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr);
1268 	elfcorebuf_sz = elfcorebuf_sz_orig;
1269 	elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1270 					      get_order(elfcorebuf_sz_orig));
1271 	if (!elfcorebuf)
1272 		return -ENOMEM;
1273 	addr = elfcorehdr_addr;
1274 	rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
1275 	if (rc < 0)
1276 		goto fail;
1277 
1278 	/* Merge all PT_NOTE headers into one. */
1279 	rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz,
1280 				      &elfnotes_buf, &elfnotes_sz);
1281 	if (rc)
1282 		goto fail;
1283 	rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz,
1284 						  elfnotes_sz, &vmcore_list);
1285 	if (rc)
1286 		goto fail;
1287 	set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1288 	return 0;
1289 fail:
1290 	free_elfcorebuf();
1291 	return rc;
1292 }
1293 
1294 static int __init parse_crash_elf_headers(void)
1295 {
1296 	unsigned char e_ident[EI_NIDENT];
1297 	u64 addr;
1298 	int rc=0;
1299 
1300 	addr = elfcorehdr_addr;
1301 	rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr);
1302 	if (rc < 0)
1303 		return rc;
1304 	if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
1305 		pr_warn("Warning: Core image elf header not found\n");
1306 		return -EINVAL;
1307 	}
1308 
1309 	if (e_ident[EI_CLASS] == ELFCLASS64) {
1310 		rc = parse_crash_elf64_headers();
1311 		if (rc)
1312 			return rc;
1313 	} else if (e_ident[EI_CLASS] == ELFCLASS32) {
1314 		rc = parse_crash_elf32_headers();
1315 		if (rc)
1316 			return rc;
1317 	} else {
1318 		pr_warn("Warning: Core image elf header is not sane\n");
1319 		return -EINVAL;
1320 	}
1321 
1322 	/* Determine vmcore size. */
1323 	vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
1324 				      &vmcore_list);
1325 
1326 	return 0;
1327 }
1328 
1329 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
1330 /**
1331  * vmcoredd_write_header - Write vmcore device dump header at the
1332  * beginning of the dump's buffer.
1333  * @buf: Output buffer where the note is written
1334  * @data: Dump info
1335  * @size: Size of the dump
1336  *
1337  * Fills beginning of the dump's buffer with vmcore device dump header.
1338  */
1339 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data,
1340 				  u32 size)
1341 {
1342 	struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf;
1343 
1344 	vdd_hdr->n_namesz = sizeof(vdd_hdr->name);
1345 	vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name);
1346 	vdd_hdr->n_type = NT_VMCOREDD;
1347 
1348 	strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME,
1349 		sizeof(vdd_hdr->name));
1350 	memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name));
1351 }
1352 
1353 /**
1354  * vmcoredd_update_program_headers - Update all Elf program headers
1355  * @elfptr: Pointer to elf header
1356  * @elfnotesz: Size of elf notes aligned to page size
1357  * @vmcoreddsz: Size of device dumps to be added to elf note header
1358  *
1359  * Determine type of Elf header (Elf64 or Elf32) and update the elf note size.
1360  * Also update the offsets of all the program headers after the elf note header.
1361  */
1362 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz,
1363 					    size_t vmcoreddsz)
1364 {
1365 	unsigned char *e_ident = (unsigned char *)elfptr;
1366 	u64 start, end, size;
1367 	loff_t vmcore_off;
1368 	u32 i;
1369 
1370 	vmcore_off = elfcorebuf_sz + elfnotesz;
1371 
1372 	if (e_ident[EI_CLASS] == ELFCLASS64) {
1373 		Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr;
1374 		Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr));
1375 
1376 		/* Update all program headers */
1377 		for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
1378 			if (phdr->p_type == PT_NOTE) {
1379 				/* Update note size */
1380 				phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
1381 				phdr->p_filesz = phdr->p_memsz;
1382 				continue;
1383 			}
1384 
1385 			start = rounddown(phdr->p_offset, PAGE_SIZE);
1386 			end = roundup(phdr->p_offset + phdr->p_memsz,
1387 				      PAGE_SIZE);
1388 			size = end - start;
1389 			phdr->p_offset = vmcore_off + (phdr->p_offset - start);
1390 			vmcore_off += size;
1391 		}
1392 	} else {
1393 		Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr;
1394 		Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr));
1395 
1396 		/* Update all program headers */
1397 		for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
1398 			if (phdr->p_type == PT_NOTE) {
1399 				/* Update note size */
1400 				phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
1401 				phdr->p_filesz = phdr->p_memsz;
1402 				continue;
1403 			}
1404 
1405 			start = rounddown(phdr->p_offset, PAGE_SIZE);
1406 			end = roundup(phdr->p_offset + phdr->p_memsz,
1407 				      PAGE_SIZE);
1408 			size = end - start;
1409 			phdr->p_offset = vmcore_off + (phdr->p_offset - start);
1410 			vmcore_off += size;
1411 		}
1412 	}
1413 }
1414 
1415 /**
1416  * vmcoredd_update_size - Update the total size of the device dumps and update
1417  * Elf header
1418  * @dump_size: Size of the current device dump to be added to total size
1419  *
1420  * Update the total size of all the device dumps and update the Elf program
1421  * headers. Calculate the new offsets for the vmcore list and update the
1422  * total vmcore size.
1423  */
1424 static void vmcoredd_update_size(size_t dump_size)
1425 {
1426 	vmcoredd_orig_sz += dump_size;
1427 	elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz;
1428 	vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz,
1429 					vmcoredd_orig_sz);
1430 
1431 	/* Update vmcore list offsets */
1432 	set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1433 
1434 	vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
1435 				      &vmcore_list);
1436 	proc_vmcore->size = vmcore_size;
1437 }
1438 
1439 /**
1440  * vmcore_add_device_dump - Add a buffer containing device dump to vmcore
1441  * @data: dump info.
1442  *
1443  * Allocate a buffer and invoke the calling driver's dump collect routine.
1444  * Write Elf note at the beginning of the buffer to indicate vmcore device
1445  * dump and add the dump to global list.
1446  */
1447 int vmcore_add_device_dump(struct vmcoredd_data *data)
1448 {
1449 	struct vmcoredd_node *dump;
1450 	void *buf = NULL;
1451 	size_t data_size;
1452 	int ret;
1453 
1454 	if (!data || !strlen(data->dump_name) ||
1455 	    !data->vmcoredd_callback || !data->size)
1456 		return -EINVAL;
1457 
1458 	dump = vzalloc(sizeof(*dump));
1459 	if (!dump) {
1460 		ret = -ENOMEM;
1461 		goto out_err;
1462 	}
1463 
1464 	/* Keep size of the buffer page aligned so that it can be mmaped */
1465 	data_size = roundup(sizeof(struct vmcoredd_header) + data->size,
1466 			    PAGE_SIZE);
1467 
1468 	/* Allocate buffer for driver's to write their dumps */
1469 	buf = vmcore_alloc_buf(data_size);
1470 	if (!buf) {
1471 		ret = -ENOMEM;
1472 		goto out_err;
1473 	}
1474 
1475 	vmcoredd_write_header(buf, data, data_size -
1476 			      sizeof(struct vmcoredd_header));
1477 
1478 	/* Invoke the driver's dump collection routing */
1479 	ret = data->vmcoredd_callback(data, buf +
1480 				      sizeof(struct vmcoredd_header));
1481 	if (ret)
1482 		goto out_err;
1483 
1484 	dump->buf = buf;
1485 	dump->size = data_size;
1486 
1487 	/* Add the dump to driver sysfs list */
1488 	mutex_lock(&vmcoredd_mutex);
1489 	list_add_tail(&dump->list, &vmcoredd_list);
1490 	mutex_unlock(&vmcoredd_mutex);
1491 
1492 	vmcoredd_update_size(data_size);
1493 	return 0;
1494 
1495 out_err:
1496 	if (buf)
1497 		vfree(buf);
1498 
1499 	if (dump)
1500 		vfree(dump);
1501 
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL(vmcore_add_device_dump);
1505 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
1506 
1507 /* Free all dumps in vmcore device dump list */
1508 static void vmcore_free_device_dumps(void)
1509 {
1510 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
1511 	mutex_lock(&vmcoredd_mutex);
1512 	while (!list_empty(&vmcoredd_list)) {
1513 		struct vmcoredd_node *dump;
1514 
1515 		dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node,
1516 					list);
1517 		list_del(&dump->list);
1518 		vfree(dump->buf);
1519 		vfree(dump);
1520 	}
1521 	mutex_unlock(&vmcoredd_mutex);
1522 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
1523 }
1524 
1525 /* Init function for vmcore module. */
1526 static int __init vmcore_init(void)
1527 {
1528 	int rc = 0;
1529 
1530 	/* Allow architectures to allocate ELF header in 2nd kernel */
1531 	rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size);
1532 	if (rc)
1533 		return rc;
1534 	/*
1535 	 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel,
1536 	 * then capture the dump.
1537 	 */
1538 	if (!(is_vmcore_usable()))
1539 		return rc;
1540 	rc = parse_crash_elf_headers();
1541 	if (rc) {
1542 		pr_warn("Kdump: vmcore not initialized\n");
1543 		return rc;
1544 	}
1545 	elfcorehdr_free(elfcorehdr_addr);
1546 	elfcorehdr_addr = ELFCORE_ADDR_ERR;
1547 
1548 	proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &proc_vmcore_operations);
1549 	if (proc_vmcore)
1550 		proc_vmcore->size = vmcore_size;
1551 	return 0;
1552 }
1553 fs_initcall(vmcore_init);
1554 
1555 /* Cleanup function for vmcore module. */
1556 void vmcore_cleanup(void)
1557 {
1558 	if (proc_vmcore) {
1559 		proc_remove(proc_vmcore);
1560 		proc_vmcore = NULL;
1561 	}
1562 
1563 	/* clear the vmcore list. */
1564 	while (!list_empty(&vmcore_list)) {
1565 		struct vmcore *m;
1566 
1567 		m = list_first_entry(&vmcore_list, struct vmcore, list);
1568 		list_del(&m->list);
1569 		kfree(m);
1570 	}
1571 	free_elfcorebuf();
1572 
1573 	/* clear vmcore device dump list */
1574 	vmcore_free_device_dumps();
1575 }
1576