1 /* 2 * fs/proc/vmcore.c Interface for accessing the crash 3 * dump from the system's previous life. 4 * Heavily borrowed from fs/proc/kcore.c 5 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 6 * Copyright (C) IBM Corporation, 2004. All rights reserved 7 * 8 */ 9 10 #include <linux/mm.h> 11 #include <linux/kcore.h> 12 #include <linux/user.h> 13 #include <linux/elf.h> 14 #include <linux/elfcore.h> 15 #include <linux/export.h> 16 #include <linux/slab.h> 17 #include <linux/highmem.h> 18 #include <linux/printk.h> 19 #include <linux/bootmem.h> 20 #include <linux/init.h> 21 #include <linux/crash_dump.h> 22 #include <linux/list.h> 23 #include <linux/mutex.h> 24 #include <linux/vmalloc.h> 25 #include <linux/pagemap.h> 26 #include <linux/uaccess.h> 27 #include <asm/io.h> 28 #include "internal.h" 29 30 /* List representing chunks of contiguous memory areas and their offsets in 31 * vmcore file. 32 */ 33 static LIST_HEAD(vmcore_list); 34 35 /* Stores the pointer to the buffer containing kernel elf core headers. */ 36 static char *elfcorebuf; 37 static size_t elfcorebuf_sz; 38 static size_t elfcorebuf_sz_orig; 39 40 static char *elfnotes_buf; 41 static size_t elfnotes_sz; 42 /* Size of all notes minus the device dump notes */ 43 static size_t elfnotes_orig_sz; 44 45 /* Total size of vmcore file. */ 46 static u64 vmcore_size; 47 48 static struct proc_dir_entry *proc_vmcore; 49 50 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 51 /* Device Dump list and mutex to synchronize access to list */ 52 static LIST_HEAD(vmcoredd_list); 53 static DEFINE_MUTEX(vmcoredd_mutex); 54 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 55 56 /* Device Dump Size */ 57 static size_t vmcoredd_orig_sz; 58 59 /* 60 * Returns > 0 for RAM pages, 0 for non-RAM pages, < 0 on error 61 * The called function has to take care of module refcounting. 62 */ 63 static int (*oldmem_pfn_is_ram)(unsigned long pfn); 64 65 int register_oldmem_pfn_is_ram(int (*fn)(unsigned long pfn)) 66 { 67 if (oldmem_pfn_is_ram) 68 return -EBUSY; 69 oldmem_pfn_is_ram = fn; 70 return 0; 71 } 72 EXPORT_SYMBOL_GPL(register_oldmem_pfn_is_ram); 73 74 void unregister_oldmem_pfn_is_ram(void) 75 { 76 oldmem_pfn_is_ram = NULL; 77 wmb(); 78 } 79 EXPORT_SYMBOL_GPL(unregister_oldmem_pfn_is_ram); 80 81 static int pfn_is_ram(unsigned long pfn) 82 { 83 int (*fn)(unsigned long pfn); 84 /* pfn is ram unless fn() checks pagetype */ 85 int ret = 1; 86 87 /* 88 * Ask hypervisor if the pfn is really ram. 89 * A ballooned page contains no data and reading from such a page 90 * will cause high load in the hypervisor. 91 */ 92 fn = oldmem_pfn_is_ram; 93 if (fn) 94 ret = fn(pfn); 95 96 return ret; 97 } 98 99 /* Reads a page from the oldmem device from given offset. */ 100 static ssize_t read_from_oldmem(char *buf, size_t count, 101 u64 *ppos, int userbuf) 102 { 103 unsigned long pfn, offset; 104 size_t nr_bytes; 105 ssize_t read = 0, tmp; 106 107 if (!count) 108 return 0; 109 110 offset = (unsigned long)(*ppos % PAGE_SIZE); 111 pfn = (unsigned long)(*ppos / PAGE_SIZE); 112 113 do { 114 if (count > (PAGE_SIZE - offset)) 115 nr_bytes = PAGE_SIZE - offset; 116 else 117 nr_bytes = count; 118 119 /* If pfn is not ram, return zeros for sparse dump files */ 120 if (pfn_is_ram(pfn) == 0) 121 memset(buf, 0, nr_bytes); 122 else { 123 tmp = copy_oldmem_page(pfn, buf, nr_bytes, 124 offset, userbuf); 125 if (tmp < 0) 126 return tmp; 127 } 128 *ppos += nr_bytes; 129 count -= nr_bytes; 130 buf += nr_bytes; 131 read += nr_bytes; 132 ++pfn; 133 offset = 0; 134 } while (count); 135 136 return read; 137 } 138 139 /* 140 * Architectures may override this function to allocate ELF header in 2nd kernel 141 */ 142 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 143 { 144 return 0; 145 } 146 147 /* 148 * Architectures may override this function to free header 149 */ 150 void __weak elfcorehdr_free(unsigned long long addr) 151 {} 152 153 /* 154 * Architectures may override this function to read from ELF header 155 */ 156 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) 157 { 158 return read_from_oldmem(buf, count, ppos, 0); 159 } 160 161 /* 162 * Architectures may override this function to read from notes sections 163 */ 164 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 165 { 166 return read_from_oldmem(buf, count, ppos, 0); 167 } 168 169 /* 170 * Architectures may override this function to map oldmem 171 */ 172 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, 173 unsigned long from, unsigned long pfn, 174 unsigned long size, pgprot_t prot) 175 { 176 return remap_pfn_range(vma, from, pfn, size, prot); 177 } 178 179 /* 180 * Copy to either kernel or user space 181 */ 182 static int copy_to(void *target, void *src, size_t size, int userbuf) 183 { 184 if (userbuf) { 185 if (copy_to_user((char __user *) target, src, size)) 186 return -EFAULT; 187 } else { 188 memcpy(target, src, size); 189 } 190 return 0; 191 } 192 193 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 194 static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf) 195 { 196 struct vmcoredd_node *dump; 197 u64 offset = 0; 198 int ret = 0; 199 size_t tsz; 200 char *buf; 201 202 mutex_lock(&vmcoredd_mutex); 203 list_for_each_entry(dump, &vmcoredd_list, list) { 204 if (start < offset + dump->size) { 205 tsz = min(offset + (u64)dump->size - start, (u64)size); 206 buf = dump->buf + start - offset; 207 if (copy_to(dst, buf, tsz, userbuf)) { 208 ret = -EFAULT; 209 goto out_unlock; 210 } 211 212 size -= tsz; 213 start += tsz; 214 dst += tsz; 215 216 /* Leave now if buffer filled already */ 217 if (!size) 218 goto out_unlock; 219 } 220 offset += dump->size; 221 } 222 223 out_unlock: 224 mutex_unlock(&vmcoredd_mutex); 225 return ret; 226 } 227 228 #ifdef CONFIG_MMU 229 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, 230 u64 start, size_t size) 231 { 232 struct vmcoredd_node *dump; 233 u64 offset = 0; 234 int ret = 0; 235 size_t tsz; 236 char *buf; 237 238 mutex_lock(&vmcoredd_mutex); 239 list_for_each_entry(dump, &vmcoredd_list, list) { 240 if (start < offset + dump->size) { 241 tsz = min(offset + (u64)dump->size - start, (u64)size); 242 buf = dump->buf + start - offset; 243 if (remap_vmalloc_range_partial(vma, dst, buf, tsz)) { 244 ret = -EFAULT; 245 goto out_unlock; 246 } 247 248 size -= tsz; 249 start += tsz; 250 dst += tsz; 251 252 /* Leave now if buffer filled already */ 253 if (!size) 254 goto out_unlock; 255 } 256 offset += dump->size; 257 } 258 259 out_unlock: 260 mutex_unlock(&vmcoredd_mutex); 261 return ret; 262 } 263 #endif /* CONFIG_MMU */ 264 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 265 266 /* Read from the ELF header and then the crash dump. On error, negative value is 267 * returned otherwise number of bytes read are returned. 268 */ 269 static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos, 270 int userbuf) 271 { 272 ssize_t acc = 0, tmp; 273 size_t tsz; 274 u64 start; 275 struct vmcore *m = NULL; 276 277 if (buflen == 0 || *fpos >= vmcore_size) 278 return 0; 279 280 /* trim buflen to not go beyond EOF */ 281 if (buflen > vmcore_size - *fpos) 282 buflen = vmcore_size - *fpos; 283 284 /* Read ELF core header */ 285 if (*fpos < elfcorebuf_sz) { 286 tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen); 287 if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf)) 288 return -EFAULT; 289 buflen -= tsz; 290 *fpos += tsz; 291 buffer += tsz; 292 acc += tsz; 293 294 /* leave now if filled buffer already */ 295 if (buflen == 0) 296 return acc; 297 } 298 299 /* Read Elf note segment */ 300 if (*fpos < elfcorebuf_sz + elfnotes_sz) { 301 void *kaddr; 302 303 /* We add device dumps before other elf notes because the 304 * other elf notes may not fill the elf notes buffer 305 * completely and we will end up with zero-filled data 306 * between the elf notes and the device dumps. Tools will 307 * then try to decode this zero-filled data as valid notes 308 * and we don't want that. Hence, adding device dumps before 309 * the other elf notes ensure that zero-filled data can be 310 * avoided. 311 */ 312 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 313 /* Read device dumps */ 314 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { 315 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 316 (size_t)*fpos, buflen); 317 start = *fpos - elfcorebuf_sz; 318 if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf)) 319 return -EFAULT; 320 321 buflen -= tsz; 322 *fpos += tsz; 323 buffer += tsz; 324 acc += tsz; 325 326 /* leave now if filled buffer already */ 327 if (!buflen) 328 return acc; 329 } 330 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 331 332 /* Read remaining elf notes */ 333 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen); 334 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; 335 if (copy_to(buffer, kaddr, tsz, userbuf)) 336 return -EFAULT; 337 338 buflen -= tsz; 339 *fpos += tsz; 340 buffer += tsz; 341 acc += tsz; 342 343 /* leave now if filled buffer already */ 344 if (buflen == 0) 345 return acc; 346 } 347 348 list_for_each_entry(m, &vmcore_list, list) { 349 if (*fpos < m->offset + m->size) { 350 tsz = (size_t)min_t(unsigned long long, 351 m->offset + m->size - *fpos, 352 buflen); 353 start = m->paddr + *fpos - m->offset; 354 tmp = read_from_oldmem(buffer, tsz, &start, userbuf); 355 if (tmp < 0) 356 return tmp; 357 buflen -= tsz; 358 *fpos += tsz; 359 buffer += tsz; 360 acc += tsz; 361 362 /* leave now if filled buffer already */ 363 if (buflen == 0) 364 return acc; 365 } 366 } 367 368 return acc; 369 } 370 371 static ssize_t read_vmcore(struct file *file, char __user *buffer, 372 size_t buflen, loff_t *fpos) 373 { 374 return __read_vmcore((__force char *) buffer, buflen, fpos, 1); 375 } 376 377 /* 378 * The vmcore fault handler uses the page cache and fills data using the 379 * standard __vmcore_read() function. 380 * 381 * On s390 the fault handler is used for memory regions that can't be mapped 382 * directly with remap_pfn_range(). 383 */ 384 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) 385 { 386 #ifdef CONFIG_S390 387 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 388 pgoff_t index = vmf->pgoff; 389 struct page *page; 390 loff_t offset; 391 char *buf; 392 int rc; 393 394 page = find_or_create_page(mapping, index, GFP_KERNEL); 395 if (!page) 396 return VM_FAULT_OOM; 397 if (!PageUptodate(page)) { 398 offset = (loff_t) index << PAGE_SHIFT; 399 buf = __va((page_to_pfn(page) << PAGE_SHIFT)); 400 rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0); 401 if (rc < 0) { 402 unlock_page(page); 403 put_page(page); 404 return (rc == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS; 405 } 406 SetPageUptodate(page); 407 } 408 unlock_page(page); 409 vmf->page = page; 410 return 0; 411 #else 412 return VM_FAULT_SIGBUS; 413 #endif 414 } 415 416 static const struct vm_operations_struct vmcore_mmap_ops = { 417 .fault = mmap_vmcore_fault, 418 }; 419 420 /** 421 * vmcore_alloc_buf - allocate buffer in vmalloc memory 422 * @sizez: size of buffer 423 * 424 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap 425 * the buffer to user-space by means of remap_vmalloc_range(). 426 * 427 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is 428 * disabled and there's no need to allow users to mmap the buffer. 429 */ 430 static inline char *vmcore_alloc_buf(size_t size) 431 { 432 #ifdef CONFIG_MMU 433 return vmalloc_user(size); 434 #else 435 return vzalloc(size); 436 #endif 437 } 438 439 /* 440 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is 441 * essential for mmap_vmcore() in order to map physically 442 * non-contiguous objects (ELF header, ELF note segment and memory 443 * regions in the 1st kernel pointed to by PT_LOAD entries) into 444 * virtually contiguous user-space in ELF layout. 445 */ 446 #ifdef CONFIG_MMU 447 /* 448 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages 449 * reported as not being ram with the zero page. 450 * 451 * @vma: vm_area_struct describing requested mapping 452 * @from: start remapping from 453 * @pfn: page frame number to start remapping to 454 * @size: remapping size 455 * @prot: protection bits 456 * 457 * Returns zero on success, -EAGAIN on failure. 458 */ 459 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, 460 unsigned long from, unsigned long pfn, 461 unsigned long size, pgprot_t prot) 462 { 463 unsigned long map_size; 464 unsigned long pos_start, pos_end, pos; 465 unsigned long zeropage_pfn = my_zero_pfn(0); 466 size_t len = 0; 467 468 pos_start = pfn; 469 pos_end = pfn + (size >> PAGE_SHIFT); 470 471 for (pos = pos_start; pos < pos_end; ++pos) { 472 if (!pfn_is_ram(pos)) { 473 /* 474 * We hit a page which is not ram. Remap the continuous 475 * region between pos_start and pos-1 and replace 476 * the non-ram page at pos with the zero page. 477 */ 478 if (pos > pos_start) { 479 /* Remap continuous region */ 480 map_size = (pos - pos_start) << PAGE_SHIFT; 481 if (remap_oldmem_pfn_range(vma, from + len, 482 pos_start, map_size, 483 prot)) 484 goto fail; 485 len += map_size; 486 } 487 /* Remap the zero page */ 488 if (remap_oldmem_pfn_range(vma, from + len, 489 zeropage_pfn, 490 PAGE_SIZE, prot)) 491 goto fail; 492 len += PAGE_SIZE; 493 pos_start = pos + 1; 494 } 495 } 496 if (pos > pos_start) { 497 /* Remap the rest */ 498 map_size = (pos - pos_start) << PAGE_SHIFT; 499 if (remap_oldmem_pfn_range(vma, from + len, pos_start, 500 map_size, prot)) 501 goto fail; 502 } 503 return 0; 504 fail: 505 do_munmap(vma->vm_mm, from, len, NULL); 506 return -EAGAIN; 507 } 508 509 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, 510 unsigned long from, unsigned long pfn, 511 unsigned long size, pgprot_t prot) 512 { 513 /* 514 * Check if oldmem_pfn_is_ram was registered to avoid 515 * looping over all pages without a reason. 516 */ 517 if (oldmem_pfn_is_ram) 518 return remap_oldmem_pfn_checked(vma, from, pfn, size, prot); 519 else 520 return remap_oldmem_pfn_range(vma, from, pfn, size, prot); 521 } 522 523 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 524 { 525 size_t size = vma->vm_end - vma->vm_start; 526 u64 start, end, len, tsz; 527 struct vmcore *m; 528 529 start = (u64)vma->vm_pgoff << PAGE_SHIFT; 530 end = start + size; 531 532 if (size > vmcore_size || end > vmcore_size) 533 return -EINVAL; 534 535 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 536 return -EPERM; 537 538 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 539 vma->vm_flags |= VM_MIXEDMAP; 540 vma->vm_ops = &vmcore_mmap_ops; 541 542 len = 0; 543 544 if (start < elfcorebuf_sz) { 545 u64 pfn; 546 547 tsz = min(elfcorebuf_sz - (size_t)start, size); 548 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; 549 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, 550 vma->vm_page_prot)) 551 return -EAGAIN; 552 size -= tsz; 553 start += tsz; 554 len += tsz; 555 556 if (size == 0) 557 return 0; 558 } 559 560 if (start < elfcorebuf_sz + elfnotes_sz) { 561 void *kaddr; 562 563 /* We add device dumps before other elf notes because the 564 * other elf notes may not fill the elf notes buffer 565 * completely and we will end up with zero-filled data 566 * between the elf notes and the device dumps. Tools will 567 * then try to decode this zero-filled data as valid notes 568 * and we don't want that. Hence, adding device dumps before 569 * the other elf notes ensure that zero-filled data can be 570 * avoided. This also ensures that the device dumps and 571 * other elf notes can be properly mmaped at page aligned 572 * address. 573 */ 574 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 575 /* Read device dumps */ 576 if (start < elfcorebuf_sz + vmcoredd_orig_sz) { 577 u64 start_off; 578 579 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 580 (size_t)start, size); 581 start_off = start - elfcorebuf_sz; 582 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, 583 start_off, tsz)) 584 goto fail; 585 586 size -= tsz; 587 start += tsz; 588 len += tsz; 589 590 /* leave now if filled buffer already */ 591 if (!size) 592 return 0; 593 } 594 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 595 596 /* Read remaining elf notes */ 597 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); 598 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; 599 if (remap_vmalloc_range_partial(vma, vma->vm_start + len, 600 kaddr, tsz)) 601 goto fail; 602 603 size -= tsz; 604 start += tsz; 605 len += tsz; 606 607 if (size == 0) 608 return 0; 609 } 610 611 list_for_each_entry(m, &vmcore_list, list) { 612 if (start < m->offset + m->size) { 613 u64 paddr = 0; 614 615 tsz = (size_t)min_t(unsigned long long, 616 m->offset + m->size - start, size); 617 paddr = m->paddr + start - m->offset; 618 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, 619 paddr >> PAGE_SHIFT, tsz, 620 vma->vm_page_prot)) 621 goto fail; 622 size -= tsz; 623 start += tsz; 624 len += tsz; 625 626 if (size == 0) 627 return 0; 628 } 629 } 630 631 return 0; 632 fail: 633 do_munmap(vma->vm_mm, vma->vm_start, len, NULL); 634 return -EAGAIN; 635 } 636 #else 637 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 638 { 639 return -ENOSYS; 640 } 641 #endif 642 643 static const struct file_operations proc_vmcore_operations = { 644 .read = read_vmcore, 645 .llseek = default_llseek, 646 .mmap = mmap_vmcore, 647 }; 648 649 static struct vmcore* __init get_new_element(void) 650 { 651 return kzalloc(sizeof(struct vmcore), GFP_KERNEL); 652 } 653 654 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, 655 struct list_head *vc_list) 656 { 657 u64 size; 658 struct vmcore *m; 659 660 size = elfsz + elfnotesegsz; 661 list_for_each_entry(m, vc_list, list) { 662 size += m->size; 663 } 664 return size; 665 } 666 667 /** 668 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry 669 * 670 * @ehdr_ptr: ELF header 671 * 672 * This function updates p_memsz member of each PT_NOTE entry in the 673 * program header table pointed to by @ehdr_ptr to real size of ELF 674 * note segment. 675 */ 676 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) 677 { 678 int i, rc=0; 679 Elf64_Phdr *phdr_ptr; 680 Elf64_Nhdr *nhdr_ptr; 681 682 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 683 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 684 void *notes_section; 685 u64 offset, max_sz, sz, real_sz = 0; 686 if (phdr_ptr->p_type != PT_NOTE) 687 continue; 688 max_sz = phdr_ptr->p_memsz; 689 offset = phdr_ptr->p_offset; 690 notes_section = kmalloc(max_sz, GFP_KERNEL); 691 if (!notes_section) 692 return -ENOMEM; 693 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 694 if (rc < 0) { 695 kfree(notes_section); 696 return rc; 697 } 698 nhdr_ptr = notes_section; 699 while (nhdr_ptr->n_namesz != 0) { 700 sz = sizeof(Elf64_Nhdr) + 701 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 702 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 703 if ((real_sz + sz) > max_sz) { 704 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 705 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 706 break; 707 } 708 real_sz += sz; 709 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); 710 } 711 kfree(notes_section); 712 phdr_ptr->p_memsz = real_sz; 713 if (real_sz == 0) { 714 pr_warn("Warning: Zero PT_NOTE entries found\n"); 715 } 716 } 717 718 return 0; 719 } 720 721 /** 722 * get_note_number_and_size_elf64 - get the number of PT_NOTE program 723 * headers and sum of real size of their ELF note segment headers and 724 * data. 725 * 726 * @ehdr_ptr: ELF header 727 * @nr_ptnote: buffer for the number of PT_NOTE program headers 728 * @sz_ptnote: buffer for size of unique PT_NOTE program header 729 * 730 * This function is used to merge multiple PT_NOTE program headers 731 * into a unique single one. The resulting unique entry will have 732 * @sz_ptnote in its phdr->p_mem. 733 * 734 * It is assumed that program headers with PT_NOTE type pointed to by 735 * @ehdr_ptr has already been updated by update_note_header_size_elf64 736 * and each of PT_NOTE program headers has actual ELF note segment 737 * size in its p_memsz member. 738 */ 739 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, 740 int *nr_ptnote, u64 *sz_ptnote) 741 { 742 int i; 743 Elf64_Phdr *phdr_ptr; 744 745 *nr_ptnote = *sz_ptnote = 0; 746 747 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 748 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 749 if (phdr_ptr->p_type != PT_NOTE) 750 continue; 751 *nr_ptnote += 1; 752 *sz_ptnote += phdr_ptr->p_memsz; 753 } 754 755 return 0; 756 } 757 758 /** 759 * copy_notes_elf64 - copy ELF note segments in a given buffer 760 * 761 * @ehdr_ptr: ELF header 762 * @notes_buf: buffer into which ELF note segments are copied 763 * 764 * This function is used to copy ELF note segment in the 1st kernel 765 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 766 * size of the buffer @notes_buf is equal to or larger than sum of the 767 * real ELF note segment headers and data. 768 * 769 * It is assumed that program headers with PT_NOTE type pointed to by 770 * @ehdr_ptr has already been updated by update_note_header_size_elf64 771 * and each of PT_NOTE program headers has actual ELF note segment 772 * size in its p_memsz member. 773 */ 774 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) 775 { 776 int i, rc=0; 777 Elf64_Phdr *phdr_ptr; 778 779 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); 780 781 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 782 u64 offset; 783 if (phdr_ptr->p_type != PT_NOTE) 784 continue; 785 offset = phdr_ptr->p_offset; 786 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 787 &offset); 788 if (rc < 0) 789 return rc; 790 notes_buf += phdr_ptr->p_memsz; 791 } 792 793 return 0; 794 } 795 796 /* Merges all the PT_NOTE headers into one. */ 797 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, 798 char **notes_buf, size_t *notes_sz) 799 { 800 int i, nr_ptnote=0, rc=0; 801 char *tmp; 802 Elf64_Ehdr *ehdr_ptr; 803 Elf64_Phdr phdr; 804 u64 phdr_sz = 0, note_off; 805 806 ehdr_ptr = (Elf64_Ehdr *)elfptr; 807 808 rc = update_note_header_size_elf64(ehdr_ptr); 809 if (rc < 0) 810 return rc; 811 812 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); 813 if (rc < 0) 814 return rc; 815 816 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 817 *notes_buf = vmcore_alloc_buf(*notes_sz); 818 if (!*notes_buf) 819 return -ENOMEM; 820 821 rc = copy_notes_elf64(ehdr_ptr, *notes_buf); 822 if (rc < 0) 823 return rc; 824 825 /* Prepare merged PT_NOTE program header. */ 826 phdr.p_type = PT_NOTE; 827 phdr.p_flags = 0; 828 note_off = sizeof(Elf64_Ehdr) + 829 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); 830 phdr.p_offset = roundup(note_off, PAGE_SIZE); 831 phdr.p_vaddr = phdr.p_paddr = 0; 832 phdr.p_filesz = phdr.p_memsz = phdr_sz; 833 phdr.p_align = 0; 834 835 /* Add merged PT_NOTE program header*/ 836 tmp = elfptr + sizeof(Elf64_Ehdr); 837 memcpy(tmp, &phdr, sizeof(phdr)); 838 tmp += sizeof(phdr); 839 840 /* Remove unwanted PT_NOTE program headers. */ 841 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); 842 *elfsz = *elfsz - i; 843 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); 844 memset(elfptr + *elfsz, 0, i); 845 *elfsz = roundup(*elfsz, PAGE_SIZE); 846 847 /* Modify e_phnum to reflect merged headers. */ 848 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 849 850 /* Store the size of all notes. We need this to update the note 851 * header when the device dumps will be added. 852 */ 853 elfnotes_orig_sz = phdr.p_memsz; 854 855 return 0; 856 } 857 858 /** 859 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry 860 * 861 * @ehdr_ptr: ELF header 862 * 863 * This function updates p_memsz member of each PT_NOTE entry in the 864 * program header table pointed to by @ehdr_ptr to real size of ELF 865 * note segment. 866 */ 867 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) 868 { 869 int i, rc=0; 870 Elf32_Phdr *phdr_ptr; 871 Elf32_Nhdr *nhdr_ptr; 872 873 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 874 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 875 void *notes_section; 876 u64 offset, max_sz, sz, real_sz = 0; 877 if (phdr_ptr->p_type != PT_NOTE) 878 continue; 879 max_sz = phdr_ptr->p_memsz; 880 offset = phdr_ptr->p_offset; 881 notes_section = kmalloc(max_sz, GFP_KERNEL); 882 if (!notes_section) 883 return -ENOMEM; 884 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 885 if (rc < 0) { 886 kfree(notes_section); 887 return rc; 888 } 889 nhdr_ptr = notes_section; 890 while (nhdr_ptr->n_namesz != 0) { 891 sz = sizeof(Elf32_Nhdr) + 892 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 893 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 894 if ((real_sz + sz) > max_sz) { 895 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 896 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 897 break; 898 } 899 real_sz += sz; 900 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); 901 } 902 kfree(notes_section); 903 phdr_ptr->p_memsz = real_sz; 904 if (real_sz == 0) { 905 pr_warn("Warning: Zero PT_NOTE entries found\n"); 906 } 907 } 908 909 return 0; 910 } 911 912 /** 913 * get_note_number_and_size_elf32 - get the number of PT_NOTE program 914 * headers and sum of real size of their ELF note segment headers and 915 * data. 916 * 917 * @ehdr_ptr: ELF header 918 * @nr_ptnote: buffer for the number of PT_NOTE program headers 919 * @sz_ptnote: buffer for size of unique PT_NOTE program header 920 * 921 * This function is used to merge multiple PT_NOTE program headers 922 * into a unique single one. The resulting unique entry will have 923 * @sz_ptnote in its phdr->p_mem. 924 * 925 * It is assumed that program headers with PT_NOTE type pointed to by 926 * @ehdr_ptr has already been updated by update_note_header_size_elf32 927 * and each of PT_NOTE program headers has actual ELF note segment 928 * size in its p_memsz member. 929 */ 930 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, 931 int *nr_ptnote, u64 *sz_ptnote) 932 { 933 int i; 934 Elf32_Phdr *phdr_ptr; 935 936 *nr_ptnote = *sz_ptnote = 0; 937 938 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 939 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 940 if (phdr_ptr->p_type != PT_NOTE) 941 continue; 942 *nr_ptnote += 1; 943 *sz_ptnote += phdr_ptr->p_memsz; 944 } 945 946 return 0; 947 } 948 949 /** 950 * copy_notes_elf32 - copy ELF note segments in a given buffer 951 * 952 * @ehdr_ptr: ELF header 953 * @notes_buf: buffer into which ELF note segments are copied 954 * 955 * This function is used to copy ELF note segment in the 1st kernel 956 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 957 * size of the buffer @notes_buf is equal to or larger than sum of the 958 * real ELF note segment headers and data. 959 * 960 * It is assumed that program headers with PT_NOTE type pointed to by 961 * @ehdr_ptr has already been updated by update_note_header_size_elf32 962 * and each of PT_NOTE program headers has actual ELF note segment 963 * size in its p_memsz member. 964 */ 965 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) 966 { 967 int i, rc=0; 968 Elf32_Phdr *phdr_ptr; 969 970 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); 971 972 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 973 u64 offset; 974 if (phdr_ptr->p_type != PT_NOTE) 975 continue; 976 offset = phdr_ptr->p_offset; 977 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 978 &offset); 979 if (rc < 0) 980 return rc; 981 notes_buf += phdr_ptr->p_memsz; 982 } 983 984 return 0; 985 } 986 987 /* Merges all the PT_NOTE headers into one. */ 988 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, 989 char **notes_buf, size_t *notes_sz) 990 { 991 int i, nr_ptnote=0, rc=0; 992 char *tmp; 993 Elf32_Ehdr *ehdr_ptr; 994 Elf32_Phdr phdr; 995 u64 phdr_sz = 0, note_off; 996 997 ehdr_ptr = (Elf32_Ehdr *)elfptr; 998 999 rc = update_note_header_size_elf32(ehdr_ptr); 1000 if (rc < 0) 1001 return rc; 1002 1003 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); 1004 if (rc < 0) 1005 return rc; 1006 1007 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 1008 *notes_buf = vmcore_alloc_buf(*notes_sz); 1009 if (!*notes_buf) 1010 return -ENOMEM; 1011 1012 rc = copy_notes_elf32(ehdr_ptr, *notes_buf); 1013 if (rc < 0) 1014 return rc; 1015 1016 /* Prepare merged PT_NOTE program header. */ 1017 phdr.p_type = PT_NOTE; 1018 phdr.p_flags = 0; 1019 note_off = sizeof(Elf32_Ehdr) + 1020 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); 1021 phdr.p_offset = roundup(note_off, PAGE_SIZE); 1022 phdr.p_vaddr = phdr.p_paddr = 0; 1023 phdr.p_filesz = phdr.p_memsz = phdr_sz; 1024 phdr.p_align = 0; 1025 1026 /* Add merged PT_NOTE program header*/ 1027 tmp = elfptr + sizeof(Elf32_Ehdr); 1028 memcpy(tmp, &phdr, sizeof(phdr)); 1029 tmp += sizeof(phdr); 1030 1031 /* Remove unwanted PT_NOTE program headers. */ 1032 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); 1033 *elfsz = *elfsz - i; 1034 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); 1035 memset(elfptr + *elfsz, 0, i); 1036 *elfsz = roundup(*elfsz, PAGE_SIZE); 1037 1038 /* Modify e_phnum to reflect merged headers. */ 1039 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 1040 1041 /* Store the size of all notes. We need this to update the note 1042 * header when the device dumps will be added. 1043 */ 1044 elfnotes_orig_sz = phdr.p_memsz; 1045 1046 return 0; 1047 } 1048 1049 /* Add memory chunks represented by program headers to vmcore list. Also update 1050 * the new offset fields of exported program headers. */ 1051 static int __init process_ptload_program_headers_elf64(char *elfptr, 1052 size_t elfsz, 1053 size_t elfnotes_sz, 1054 struct list_head *vc_list) 1055 { 1056 int i; 1057 Elf64_Ehdr *ehdr_ptr; 1058 Elf64_Phdr *phdr_ptr; 1059 loff_t vmcore_off; 1060 struct vmcore *new; 1061 1062 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1063 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ 1064 1065 /* Skip Elf header, program headers and Elf note segment. */ 1066 vmcore_off = elfsz + elfnotes_sz; 1067 1068 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1069 u64 paddr, start, end, size; 1070 1071 if (phdr_ptr->p_type != PT_LOAD) 1072 continue; 1073 1074 paddr = phdr_ptr->p_offset; 1075 start = rounddown(paddr, PAGE_SIZE); 1076 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1077 size = end - start; 1078 1079 /* Add this contiguous chunk of memory to vmcore list.*/ 1080 new = get_new_element(); 1081 if (!new) 1082 return -ENOMEM; 1083 new->paddr = start; 1084 new->size = size; 1085 list_add_tail(&new->list, vc_list); 1086 1087 /* Update the program header offset. */ 1088 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1089 vmcore_off = vmcore_off + size; 1090 } 1091 return 0; 1092 } 1093 1094 static int __init process_ptload_program_headers_elf32(char *elfptr, 1095 size_t elfsz, 1096 size_t elfnotes_sz, 1097 struct list_head *vc_list) 1098 { 1099 int i; 1100 Elf32_Ehdr *ehdr_ptr; 1101 Elf32_Phdr *phdr_ptr; 1102 loff_t vmcore_off; 1103 struct vmcore *new; 1104 1105 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1106 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ 1107 1108 /* Skip Elf header, program headers and Elf note segment. */ 1109 vmcore_off = elfsz + elfnotes_sz; 1110 1111 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1112 u64 paddr, start, end, size; 1113 1114 if (phdr_ptr->p_type != PT_LOAD) 1115 continue; 1116 1117 paddr = phdr_ptr->p_offset; 1118 start = rounddown(paddr, PAGE_SIZE); 1119 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1120 size = end - start; 1121 1122 /* Add this contiguous chunk of memory to vmcore list.*/ 1123 new = get_new_element(); 1124 if (!new) 1125 return -ENOMEM; 1126 new->paddr = start; 1127 new->size = size; 1128 list_add_tail(&new->list, vc_list); 1129 1130 /* Update the program header offset */ 1131 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1132 vmcore_off = vmcore_off + size; 1133 } 1134 return 0; 1135 } 1136 1137 /* Sets offset fields of vmcore elements. */ 1138 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, 1139 struct list_head *vc_list) 1140 { 1141 loff_t vmcore_off; 1142 struct vmcore *m; 1143 1144 /* Skip Elf header, program headers and Elf note segment. */ 1145 vmcore_off = elfsz + elfnotes_sz; 1146 1147 list_for_each_entry(m, vc_list, list) { 1148 m->offset = vmcore_off; 1149 vmcore_off += m->size; 1150 } 1151 } 1152 1153 static void free_elfcorebuf(void) 1154 { 1155 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1156 elfcorebuf = NULL; 1157 vfree(elfnotes_buf); 1158 elfnotes_buf = NULL; 1159 } 1160 1161 static int __init parse_crash_elf64_headers(void) 1162 { 1163 int rc=0; 1164 Elf64_Ehdr ehdr; 1165 u64 addr; 1166 1167 addr = elfcorehdr_addr; 1168 1169 /* Read Elf header */ 1170 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); 1171 if (rc < 0) 1172 return rc; 1173 1174 /* Do some basic Verification. */ 1175 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1176 (ehdr.e_type != ET_CORE) || 1177 !vmcore_elf64_check_arch(&ehdr) || 1178 ehdr.e_ident[EI_CLASS] != ELFCLASS64 || 1179 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1180 ehdr.e_version != EV_CURRENT || 1181 ehdr.e_ehsize != sizeof(Elf64_Ehdr) || 1182 ehdr.e_phentsize != sizeof(Elf64_Phdr) || 1183 ehdr.e_phnum == 0) { 1184 pr_warn("Warning: Core image elf header is not sane\n"); 1185 return -EINVAL; 1186 } 1187 1188 /* Read in all elf headers. */ 1189 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + 1190 ehdr.e_phnum * sizeof(Elf64_Phdr); 1191 elfcorebuf_sz = elfcorebuf_sz_orig; 1192 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1193 get_order(elfcorebuf_sz_orig)); 1194 if (!elfcorebuf) 1195 return -ENOMEM; 1196 addr = elfcorehdr_addr; 1197 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1198 if (rc < 0) 1199 goto fail; 1200 1201 /* Merge all PT_NOTE headers into one. */ 1202 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, 1203 &elfnotes_buf, &elfnotes_sz); 1204 if (rc) 1205 goto fail; 1206 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, 1207 elfnotes_sz, &vmcore_list); 1208 if (rc) 1209 goto fail; 1210 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1211 return 0; 1212 fail: 1213 free_elfcorebuf(); 1214 return rc; 1215 } 1216 1217 static int __init parse_crash_elf32_headers(void) 1218 { 1219 int rc=0; 1220 Elf32_Ehdr ehdr; 1221 u64 addr; 1222 1223 addr = elfcorehdr_addr; 1224 1225 /* Read Elf header */ 1226 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); 1227 if (rc < 0) 1228 return rc; 1229 1230 /* Do some basic Verification. */ 1231 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1232 (ehdr.e_type != ET_CORE) || 1233 !vmcore_elf32_check_arch(&ehdr) || 1234 ehdr.e_ident[EI_CLASS] != ELFCLASS32|| 1235 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1236 ehdr.e_version != EV_CURRENT || 1237 ehdr.e_ehsize != sizeof(Elf32_Ehdr) || 1238 ehdr.e_phentsize != sizeof(Elf32_Phdr) || 1239 ehdr.e_phnum == 0) { 1240 pr_warn("Warning: Core image elf header is not sane\n"); 1241 return -EINVAL; 1242 } 1243 1244 /* Read in all elf headers. */ 1245 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); 1246 elfcorebuf_sz = elfcorebuf_sz_orig; 1247 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1248 get_order(elfcorebuf_sz_orig)); 1249 if (!elfcorebuf) 1250 return -ENOMEM; 1251 addr = elfcorehdr_addr; 1252 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1253 if (rc < 0) 1254 goto fail; 1255 1256 /* Merge all PT_NOTE headers into one. */ 1257 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, 1258 &elfnotes_buf, &elfnotes_sz); 1259 if (rc) 1260 goto fail; 1261 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, 1262 elfnotes_sz, &vmcore_list); 1263 if (rc) 1264 goto fail; 1265 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1266 return 0; 1267 fail: 1268 free_elfcorebuf(); 1269 return rc; 1270 } 1271 1272 static int __init parse_crash_elf_headers(void) 1273 { 1274 unsigned char e_ident[EI_NIDENT]; 1275 u64 addr; 1276 int rc=0; 1277 1278 addr = elfcorehdr_addr; 1279 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); 1280 if (rc < 0) 1281 return rc; 1282 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { 1283 pr_warn("Warning: Core image elf header not found\n"); 1284 return -EINVAL; 1285 } 1286 1287 if (e_ident[EI_CLASS] == ELFCLASS64) { 1288 rc = parse_crash_elf64_headers(); 1289 if (rc) 1290 return rc; 1291 } else if (e_ident[EI_CLASS] == ELFCLASS32) { 1292 rc = parse_crash_elf32_headers(); 1293 if (rc) 1294 return rc; 1295 } else { 1296 pr_warn("Warning: Core image elf header is not sane\n"); 1297 return -EINVAL; 1298 } 1299 1300 /* Determine vmcore size. */ 1301 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1302 &vmcore_list); 1303 1304 return 0; 1305 } 1306 1307 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1308 /** 1309 * vmcoredd_write_header - Write vmcore device dump header at the 1310 * beginning of the dump's buffer. 1311 * @buf: Output buffer where the note is written 1312 * @data: Dump info 1313 * @size: Size of the dump 1314 * 1315 * Fills beginning of the dump's buffer with vmcore device dump header. 1316 */ 1317 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, 1318 u32 size) 1319 { 1320 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; 1321 1322 vdd_hdr->n_namesz = sizeof(vdd_hdr->name); 1323 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); 1324 vdd_hdr->n_type = NT_VMCOREDD; 1325 1326 strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME, 1327 sizeof(vdd_hdr->name)); 1328 memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name)); 1329 } 1330 1331 /** 1332 * vmcoredd_update_program_headers - Update all Elf program headers 1333 * @elfptr: Pointer to elf header 1334 * @elfnotesz: Size of elf notes aligned to page size 1335 * @vmcoreddsz: Size of device dumps to be added to elf note header 1336 * 1337 * Determine type of Elf header (Elf64 or Elf32) and update the elf note size. 1338 * Also update the offsets of all the program headers after the elf note header. 1339 */ 1340 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, 1341 size_t vmcoreddsz) 1342 { 1343 unsigned char *e_ident = (unsigned char *)elfptr; 1344 u64 start, end, size; 1345 loff_t vmcore_off; 1346 u32 i; 1347 1348 vmcore_off = elfcorebuf_sz + elfnotesz; 1349 1350 if (e_ident[EI_CLASS] == ELFCLASS64) { 1351 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; 1352 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); 1353 1354 /* Update all program headers */ 1355 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1356 if (phdr->p_type == PT_NOTE) { 1357 /* Update note size */ 1358 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1359 phdr->p_filesz = phdr->p_memsz; 1360 continue; 1361 } 1362 1363 start = rounddown(phdr->p_offset, PAGE_SIZE); 1364 end = roundup(phdr->p_offset + phdr->p_memsz, 1365 PAGE_SIZE); 1366 size = end - start; 1367 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1368 vmcore_off += size; 1369 } 1370 } else { 1371 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; 1372 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); 1373 1374 /* Update all program headers */ 1375 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1376 if (phdr->p_type == PT_NOTE) { 1377 /* Update note size */ 1378 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1379 phdr->p_filesz = phdr->p_memsz; 1380 continue; 1381 } 1382 1383 start = rounddown(phdr->p_offset, PAGE_SIZE); 1384 end = roundup(phdr->p_offset + phdr->p_memsz, 1385 PAGE_SIZE); 1386 size = end - start; 1387 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1388 vmcore_off += size; 1389 } 1390 } 1391 } 1392 1393 /** 1394 * vmcoredd_update_size - Update the total size of the device dumps and update 1395 * Elf header 1396 * @dump_size: Size of the current device dump to be added to total size 1397 * 1398 * Update the total size of all the device dumps and update the Elf program 1399 * headers. Calculate the new offsets for the vmcore list and update the 1400 * total vmcore size. 1401 */ 1402 static void vmcoredd_update_size(size_t dump_size) 1403 { 1404 vmcoredd_orig_sz += dump_size; 1405 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; 1406 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, 1407 vmcoredd_orig_sz); 1408 1409 /* Update vmcore list offsets */ 1410 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1411 1412 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1413 &vmcore_list); 1414 proc_vmcore->size = vmcore_size; 1415 } 1416 1417 /** 1418 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore 1419 * @data: dump info. 1420 * 1421 * Allocate a buffer and invoke the calling driver's dump collect routine. 1422 * Write Elf note at the beginning of the buffer to indicate vmcore device 1423 * dump and add the dump to global list. 1424 */ 1425 int vmcore_add_device_dump(struct vmcoredd_data *data) 1426 { 1427 struct vmcoredd_node *dump; 1428 void *buf = NULL; 1429 size_t data_size; 1430 int ret; 1431 1432 if (!data || !strlen(data->dump_name) || 1433 !data->vmcoredd_callback || !data->size) 1434 return -EINVAL; 1435 1436 dump = vzalloc(sizeof(*dump)); 1437 if (!dump) { 1438 ret = -ENOMEM; 1439 goto out_err; 1440 } 1441 1442 /* Keep size of the buffer page aligned so that it can be mmaped */ 1443 data_size = roundup(sizeof(struct vmcoredd_header) + data->size, 1444 PAGE_SIZE); 1445 1446 /* Allocate buffer for driver's to write their dumps */ 1447 buf = vmcore_alloc_buf(data_size); 1448 if (!buf) { 1449 ret = -ENOMEM; 1450 goto out_err; 1451 } 1452 1453 vmcoredd_write_header(buf, data, data_size - 1454 sizeof(struct vmcoredd_header)); 1455 1456 /* Invoke the driver's dump collection routing */ 1457 ret = data->vmcoredd_callback(data, buf + 1458 sizeof(struct vmcoredd_header)); 1459 if (ret) 1460 goto out_err; 1461 1462 dump->buf = buf; 1463 dump->size = data_size; 1464 1465 /* Add the dump to driver sysfs list */ 1466 mutex_lock(&vmcoredd_mutex); 1467 list_add_tail(&dump->list, &vmcoredd_list); 1468 mutex_unlock(&vmcoredd_mutex); 1469 1470 vmcoredd_update_size(data_size); 1471 return 0; 1472 1473 out_err: 1474 if (buf) 1475 vfree(buf); 1476 1477 if (dump) 1478 vfree(dump); 1479 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(vmcore_add_device_dump); 1483 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1484 1485 /* Free all dumps in vmcore device dump list */ 1486 static void vmcore_free_device_dumps(void) 1487 { 1488 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1489 mutex_lock(&vmcoredd_mutex); 1490 while (!list_empty(&vmcoredd_list)) { 1491 struct vmcoredd_node *dump; 1492 1493 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, 1494 list); 1495 list_del(&dump->list); 1496 vfree(dump->buf); 1497 vfree(dump); 1498 } 1499 mutex_unlock(&vmcoredd_mutex); 1500 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1501 } 1502 1503 /* Init function for vmcore module. */ 1504 static int __init vmcore_init(void) 1505 { 1506 int rc = 0; 1507 1508 /* Allow architectures to allocate ELF header in 2nd kernel */ 1509 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); 1510 if (rc) 1511 return rc; 1512 /* 1513 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, 1514 * then capture the dump. 1515 */ 1516 if (!(is_vmcore_usable())) 1517 return rc; 1518 rc = parse_crash_elf_headers(); 1519 if (rc) { 1520 pr_warn("Kdump: vmcore not initialized\n"); 1521 return rc; 1522 } 1523 elfcorehdr_free(elfcorehdr_addr); 1524 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1525 1526 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &proc_vmcore_operations); 1527 if (proc_vmcore) 1528 proc_vmcore->size = vmcore_size; 1529 return 0; 1530 } 1531 fs_initcall(vmcore_init); 1532 1533 /* Cleanup function for vmcore module. */ 1534 void vmcore_cleanup(void) 1535 { 1536 if (proc_vmcore) { 1537 proc_remove(proc_vmcore); 1538 proc_vmcore = NULL; 1539 } 1540 1541 /* clear the vmcore list. */ 1542 while (!list_empty(&vmcore_list)) { 1543 struct vmcore *m; 1544 1545 m = list_first_entry(&vmcore_list, struct vmcore, list); 1546 list_del(&m->list); 1547 kfree(m); 1548 } 1549 free_elfcorebuf(); 1550 1551 /* clear vmcore device dump list */ 1552 vmcore_free_device_dumps(); 1553 } 1554