xref: /openbmc/linux/fs/proc/task_mmu.c (revision fc56da79)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23 
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 
29 	anon = get_mm_counter(mm, MM_ANONPAGES);
30 	file = get_mm_counter(mm, MM_FILEPAGES);
31 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32 
33 	/*
34 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
36 	 * collector of these hiwater stats must therefore get total_vm
37 	 * and rss too, which will usually be the higher.  Barriers? not
38 	 * worth the effort, such snapshots can always be inconsistent.
39 	 */
40 	hiwater_vm = total_vm = mm->total_vm;
41 	if (hiwater_vm < mm->hiwater_vm)
42 		hiwater_vm = mm->hiwater_vm;
43 	hiwater_rss = total_rss = anon + file + shmem;
44 	if (hiwater_rss < mm->hiwater_rss)
45 		hiwater_rss = mm->hiwater_rss;
46 
47 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 	swap = get_mm_counter(mm, MM_SWAPENTS);
50 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 	seq_printf(m,
53 		"VmPeak:\t%8lu kB\n"
54 		"VmSize:\t%8lu kB\n"
55 		"VmLck:\t%8lu kB\n"
56 		"VmPin:\t%8lu kB\n"
57 		"VmHWM:\t%8lu kB\n"
58 		"VmRSS:\t%8lu kB\n"
59 		"RssAnon:\t%8lu kB\n"
60 		"RssFile:\t%8lu kB\n"
61 		"RssShmem:\t%8lu kB\n"
62 		"VmData:\t%8lu kB\n"
63 		"VmStk:\t%8lu kB\n"
64 		"VmExe:\t%8lu kB\n"
65 		"VmLib:\t%8lu kB\n"
66 		"VmPTE:\t%8lu kB\n"
67 		"VmPMD:\t%8lu kB\n"
68 		"VmSwap:\t%8lu kB\n",
69 		hiwater_vm << (PAGE_SHIFT-10),
70 		total_vm << (PAGE_SHIFT-10),
71 		mm->locked_vm << (PAGE_SHIFT-10),
72 		mm->pinned_vm << (PAGE_SHIFT-10),
73 		hiwater_rss << (PAGE_SHIFT-10),
74 		total_rss << (PAGE_SHIFT-10),
75 		anon << (PAGE_SHIFT-10),
76 		file << (PAGE_SHIFT-10),
77 		shmem << (PAGE_SHIFT-10),
78 		mm->data_vm << (PAGE_SHIFT-10),
79 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 		ptes >> 10,
81 		pmds >> 10,
82 		swap << (PAGE_SHIFT-10));
83 	hugetlb_report_usage(m, mm);
84 }
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 	struct mm_struct *mm = priv->mm;
133 
134 	release_task_mempolicy(priv);
135 	up_read(&mm->mmap_sem);
136 	mmput(mm);
137 }
138 
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 	if (vma == priv->tail_vma)
143 		return NULL;
144 	return vma->vm_next ?: priv->tail_vma;
145 }
146 
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 	if (m->count < m->size)	/* vma is copied successfully */
150 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152 
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 	struct proc_maps_private *priv = m->private;
156 	unsigned long last_addr = m->version;
157 	struct mm_struct *mm;
158 	struct vm_area_struct *vma;
159 	unsigned int pos = *ppos;
160 
161 	/* See m_cache_vma(). Zero at the start or after lseek. */
162 	if (last_addr == -1UL)
163 		return NULL;
164 
165 	priv->task = get_proc_task(priv->inode);
166 	if (!priv->task)
167 		return ERR_PTR(-ESRCH);
168 
169 	mm = priv->mm;
170 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 		return NULL;
172 
173 	down_read(&mm->mmap_sem);
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr);
179 		if (vma && (vma = m_next_vma(priv, vma)))
180 			return vma;
181 	}
182 
183 	m->version = 0;
184 	if (pos < mm->map_count) {
185 		for (vma = mm->mmap; pos; pos--) {
186 			m->version = vma->vm_start;
187 			vma = vma->vm_next;
188 		}
189 		return vma;
190 	}
191 
192 	/* we do not bother to update m->version in this case */
193 	if (pos == mm->map_count && priv->tail_vma)
194 		return priv->tail_vma;
195 
196 	vma_stop(priv);
197 	return NULL;
198 }
199 
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202 	struct proc_maps_private *priv = m->private;
203 	struct vm_area_struct *next;
204 
205 	(*pos)++;
206 	next = m_next_vma(priv, v);
207 	if (!next)
208 		vma_stop(priv);
209 	return next;
210 }
211 
212 static void m_stop(struct seq_file *m, void *v)
213 {
214 	struct proc_maps_private *priv = m->private;
215 
216 	if (!IS_ERR_OR_NULL(v))
217 		vma_stop(priv);
218 	if (priv->task) {
219 		put_task_struct(priv->task);
220 		priv->task = NULL;
221 	}
222 }
223 
224 static int proc_maps_open(struct inode *inode, struct file *file,
225 			const struct seq_operations *ops, int psize)
226 {
227 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228 
229 	if (!priv)
230 		return -ENOMEM;
231 
232 	priv->inode = inode;
233 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 	if (IS_ERR(priv->mm)) {
235 		int err = PTR_ERR(priv->mm);
236 
237 		seq_release_private(inode, file);
238 		return err;
239 	}
240 
241 	return 0;
242 }
243 
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246 	struct seq_file *seq = file->private_data;
247 	struct proc_maps_private *priv = seq->private;
248 
249 	if (priv->mm)
250 		mmdrop(priv->mm);
251 
252 	return seq_release_private(inode, file);
253 }
254 
255 static int do_maps_open(struct inode *inode, struct file *file,
256 			const struct seq_operations *ops)
257 {
258 	return proc_maps_open(inode, file, ops,
259 				sizeof(struct proc_maps_private));
260 }
261 
262 /*
263  * Indicate if the VMA is a stack for the given task; for
264  * /proc/PID/maps that is the stack of the main task.
265  */
266 static int is_stack(struct proc_maps_private *priv,
267 		    struct vm_area_struct *vma, int is_pid)
268 {
269 	int stack = 0;
270 
271 	if (is_pid) {
272 		stack = vma->vm_start <= vma->vm_mm->start_stack &&
273 			vma->vm_end >= vma->vm_mm->start_stack;
274 	} else {
275 		struct inode *inode = priv->inode;
276 		struct task_struct *task;
277 
278 		rcu_read_lock();
279 		task = pid_task(proc_pid(inode), PIDTYPE_PID);
280 		if (task)
281 			stack = vma_is_stack_for_task(vma, task);
282 		rcu_read_unlock();
283 	}
284 	return stack;
285 }
286 
287 static void
288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
289 {
290 	struct mm_struct *mm = vma->vm_mm;
291 	struct file *file = vma->vm_file;
292 	struct proc_maps_private *priv = m->private;
293 	vm_flags_t flags = vma->vm_flags;
294 	unsigned long ino = 0;
295 	unsigned long long pgoff = 0;
296 	unsigned long start, end;
297 	dev_t dev = 0;
298 	const char *name = NULL;
299 
300 	if (file) {
301 		struct inode *inode = file_inode(vma->vm_file);
302 		dev = inode->i_sb->s_dev;
303 		ino = inode->i_ino;
304 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
305 	}
306 
307 	/* We don't show the stack guard page in /proc/maps */
308 	start = vma->vm_start;
309 	if (stack_guard_page_start(vma, start))
310 		start += PAGE_SIZE;
311 	end = vma->vm_end;
312 	if (stack_guard_page_end(vma, end))
313 		end -= PAGE_SIZE;
314 
315 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
316 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
317 			start,
318 			end,
319 			flags & VM_READ ? 'r' : '-',
320 			flags & VM_WRITE ? 'w' : '-',
321 			flags & VM_EXEC ? 'x' : '-',
322 			flags & VM_MAYSHARE ? 's' : 'p',
323 			pgoff,
324 			MAJOR(dev), MINOR(dev), ino);
325 
326 	/*
327 	 * Print the dentry name for named mappings, and a
328 	 * special [heap] marker for the heap:
329 	 */
330 	if (file) {
331 		seq_pad(m, ' ');
332 		seq_file_path(m, file, "\n");
333 		goto done;
334 	}
335 
336 	if (vma->vm_ops && vma->vm_ops->name) {
337 		name = vma->vm_ops->name(vma);
338 		if (name)
339 			goto done;
340 	}
341 
342 	name = arch_vma_name(vma);
343 	if (!name) {
344 		if (!mm) {
345 			name = "[vdso]";
346 			goto done;
347 		}
348 
349 		if (vma->vm_start <= mm->brk &&
350 		    vma->vm_end >= mm->start_brk) {
351 			name = "[heap]";
352 			goto done;
353 		}
354 
355 		if (is_stack(priv, vma, is_pid))
356 			name = "[stack]";
357 	}
358 
359 done:
360 	if (name) {
361 		seq_pad(m, ' ');
362 		seq_puts(m, name);
363 	}
364 	seq_putc(m, '\n');
365 }
366 
367 static int show_map(struct seq_file *m, void *v, int is_pid)
368 {
369 	show_map_vma(m, v, is_pid);
370 	m_cache_vma(m, v);
371 	return 0;
372 }
373 
374 static int show_pid_map(struct seq_file *m, void *v)
375 {
376 	return show_map(m, v, 1);
377 }
378 
379 static int show_tid_map(struct seq_file *m, void *v)
380 {
381 	return show_map(m, v, 0);
382 }
383 
384 static const struct seq_operations proc_pid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_pid_map
389 };
390 
391 static const struct seq_operations proc_tid_maps_op = {
392 	.start	= m_start,
393 	.next	= m_next,
394 	.stop	= m_stop,
395 	.show	= show_tid_map
396 };
397 
398 static int pid_maps_open(struct inode *inode, struct file *file)
399 {
400 	return do_maps_open(inode, file, &proc_pid_maps_op);
401 }
402 
403 static int tid_maps_open(struct inode *inode, struct file *file)
404 {
405 	return do_maps_open(inode, file, &proc_tid_maps_op);
406 }
407 
408 const struct file_operations proc_pid_maps_operations = {
409 	.open		= pid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 const struct file_operations proc_tid_maps_operations = {
416 	.open		= tid_maps_open,
417 	.read		= seq_read,
418 	.llseek		= seq_lseek,
419 	.release	= proc_map_release,
420 };
421 
422 /*
423  * Proportional Set Size(PSS): my share of RSS.
424  *
425  * PSS of a process is the count of pages it has in memory, where each
426  * page is divided by the number of processes sharing it.  So if a
427  * process has 1000 pages all to itself, and 1000 shared with one other
428  * process, its PSS will be 1500.
429  *
430  * To keep (accumulated) division errors low, we adopt a 64bit
431  * fixed-point pss counter to minimize division errors. So (pss >>
432  * PSS_SHIFT) would be the real byte count.
433  *
434  * A shift of 12 before division means (assuming 4K page size):
435  * 	- 1M 3-user-pages add up to 8KB errors;
436  * 	- supports mapcount up to 2^24, or 16M;
437  * 	- supports PSS up to 2^52 bytes, or 4PB.
438  */
439 #define PSS_SHIFT 12
440 
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats {
443 	unsigned long resident;
444 	unsigned long shared_clean;
445 	unsigned long shared_dirty;
446 	unsigned long private_clean;
447 	unsigned long private_dirty;
448 	unsigned long referenced;
449 	unsigned long anonymous;
450 	unsigned long anonymous_thp;
451 	unsigned long shmem_thp;
452 	unsigned long swap;
453 	unsigned long shared_hugetlb;
454 	unsigned long private_hugetlb;
455 	u64 pss;
456 	u64 swap_pss;
457 	bool check_shmem_swap;
458 };
459 
460 static void smaps_account(struct mem_size_stats *mss, struct page *page,
461 		bool compound, bool young, bool dirty)
462 {
463 	int i, nr = compound ? 1 << compound_order(page) : 1;
464 	unsigned long size = nr * PAGE_SIZE;
465 
466 	if (PageAnon(page))
467 		mss->anonymous += size;
468 
469 	mss->resident += size;
470 	/* Accumulate the size in pages that have been accessed. */
471 	if (young || page_is_young(page) || PageReferenced(page))
472 		mss->referenced += size;
473 
474 	/*
475 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 	 * If any subpage of the compound page mapped with PTE it would elevate
477 	 * page_count().
478 	 */
479 	if (page_count(page) == 1) {
480 		if (dirty || PageDirty(page))
481 			mss->private_dirty += size;
482 		else
483 			mss->private_clean += size;
484 		mss->pss += (u64)size << PSS_SHIFT;
485 		return;
486 	}
487 
488 	for (i = 0; i < nr; i++, page++) {
489 		int mapcount = page_mapcount(page);
490 
491 		if (mapcount >= 2) {
492 			if (dirty || PageDirty(page))
493 				mss->shared_dirty += PAGE_SIZE;
494 			else
495 				mss->shared_clean += PAGE_SIZE;
496 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 		} else {
498 			if (dirty || PageDirty(page))
499 				mss->private_dirty += PAGE_SIZE;
500 			else
501 				mss->private_clean += PAGE_SIZE;
502 			mss->pss += PAGE_SIZE << PSS_SHIFT;
503 		}
504 	}
505 }
506 
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 		struct mm_walk *walk)
510 {
511 	struct mem_size_stats *mss = walk->private;
512 
513 	mss->swap += shmem_partial_swap_usage(
514 			walk->vma->vm_file->f_mapping, addr, end);
515 
516 	return 0;
517 }
518 #endif
519 
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 		struct mm_walk *walk)
522 {
523 	struct mem_size_stats *mss = walk->private;
524 	struct vm_area_struct *vma = walk->vma;
525 	struct page *page = NULL;
526 
527 	if (pte_present(*pte)) {
528 		page = vm_normal_page(vma, addr, *pte);
529 	} else if (is_swap_pte(*pte)) {
530 		swp_entry_t swpent = pte_to_swp_entry(*pte);
531 
532 		if (!non_swap_entry(swpent)) {
533 			int mapcount;
534 
535 			mss->swap += PAGE_SIZE;
536 			mapcount = swp_swapcount(swpent);
537 			if (mapcount >= 2) {
538 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539 
540 				do_div(pss_delta, mapcount);
541 				mss->swap_pss += pss_delta;
542 			} else {
543 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 			}
545 		} else if (is_migration_entry(swpent))
546 			page = migration_entry_to_page(swpent);
547 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
548 							&& pte_none(*pte))) {
549 		page = find_get_entry(vma->vm_file->f_mapping,
550 						linear_page_index(vma, addr));
551 		if (!page)
552 			return;
553 
554 		if (radix_tree_exceptional_entry(page))
555 			mss->swap += PAGE_SIZE;
556 		else
557 			put_page(page);
558 
559 		return;
560 	}
561 
562 	if (!page)
563 		return;
564 
565 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
566 }
567 
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
570 		struct mm_walk *walk)
571 {
572 	struct mem_size_stats *mss = walk->private;
573 	struct vm_area_struct *vma = walk->vma;
574 	struct page *page;
575 
576 	/* FOLL_DUMP will return -EFAULT on huge zero page */
577 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578 	if (IS_ERR_OR_NULL(page))
579 		return;
580 	if (PageAnon(page))
581 		mss->anonymous_thp += HPAGE_PMD_SIZE;
582 	else if (PageSwapBacked(page))
583 		mss->shmem_thp += HPAGE_PMD_SIZE;
584 	else
585 		VM_BUG_ON_PAGE(1, page);
586 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
587 }
588 #else
589 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
590 		struct mm_walk *walk)
591 {
592 }
593 #endif
594 
595 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
596 			   struct mm_walk *walk)
597 {
598 	struct vm_area_struct *vma = walk->vma;
599 	pte_t *pte;
600 	spinlock_t *ptl;
601 
602 	ptl = pmd_trans_huge_lock(pmd, vma);
603 	if (ptl) {
604 		smaps_pmd_entry(pmd, addr, walk);
605 		spin_unlock(ptl);
606 		return 0;
607 	}
608 
609 	if (pmd_trans_unstable(pmd))
610 		return 0;
611 	/*
612 	 * The mmap_sem held all the way back in m_start() is what
613 	 * keeps khugepaged out of here and from collapsing things
614 	 * in here.
615 	 */
616 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
617 	for (; addr != end; pte++, addr += PAGE_SIZE)
618 		smaps_pte_entry(pte, addr, walk);
619 	pte_unmap_unlock(pte - 1, ptl);
620 	cond_resched();
621 	return 0;
622 }
623 
624 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
625 {
626 	/*
627 	 * Don't forget to update Documentation/ on changes.
628 	 */
629 	static const char mnemonics[BITS_PER_LONG][2] = {
630 		/*
631 		 * In case if we meet a flag we don't know about.
632 		 */
633 		[0 ... (BITS_PER_LONG-1)] = "??",
634 
635 		[ilog2(VM_READ)]	= "rd",
636 		[ilog2(VM_WRITE)]	= "wr",
637 		[ilog2(VM_EXEC)]	= "ex",
638 		[ilog2(VM_SHARED)]	= "sh",
639 		[ilog2(VM_MAYREAD)]	= "mr",
640 		[ilog2(VM_MAYWRITE)]	= "mw",
641 		[ilog2(VM_MAYEXEC)]	= "me",
642 		[ilog2(VM_MAYSHARE)]	= "ms",
643 		[ilog2(VM_GROWSDOWN)]	= "gd",
644 		[ilog2(VM_PFNMAP)]	= "pf",
645 		[ilog2(VM_DENYWRITE)]	= "dw",
646 #ifdef CONFIG_X86_INTEL_MPX
647 		[ilog2(VM_MPX)]		= "mp",
648 #endif
649 		[ilog2(VM_LOCKED)]	= "lo",
650 		[ilog2(VM_IO)]		= "io",
651 		[ilog2(VM_SEQ_READ)]	= "sr",
652 		[ilog2(VM_RAND_READ)]	= "rr",
653 		[ilog2(VM_DONTCOPY)]	= "dc",
654 		[ilog2(VM_DONTEXPAND)]	= "de",
655 		[ilog2(VM_ACCOUNT)]	= "ac",
656 		[ilog2(VM_NORESERVE)]	= "nr",
657 		[ilog2(VM_HUGETLB)]	= "ht",
658 		[ilog2(VM_ARCH_1)]	= "ar",
659 		[ilog2(VM_DONTDUMP)]	= "dd",
660 #ifdef CONFIG_MEM_SOFT_DIRTY
661 		[ilog2(VM_SOFTDIRTY)]	= "sd",
662 #endif
663 		[ilog2(VM_MIXEDMAP)]	= "mm",
664 		[ilog2(VM_HUGEPAGE)]	= "hg",
665 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
666 		[ilog2(VM_MERGEABLE)]	= "mg",
667 		[ilog2(VM_UFFD_MISSING)]= "um",
668 		[ilog2(VM_UFFD_WP)]	= "uw",
669 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
670 		/* These come out via ProtectionKey: */
671 		[ilog2(VM_PKEY_BIT0)]	= "",
672 		[ilog2(VM_PKEY_BIT1)]	= "",
673 		[ilog2(VM_PKEY_BIT2)]	= "",
674 		[ilog2(VM_PKEY_BIT3)]	= "",
675 #endif
676 	};
677 	size_t i;
678 
679 	seq_puts(m, "VmFlags: ");
680 	for (i = 0; i < BITS_PER_LONG; i++) {
681 		if (!mnemonics[i][0])
682 			continue;
683 		if (vma->vm_flags & (1UL << i)) {
684 			seq_printf(m, "%c%c ",
685 				   mnemonics[i][0], mnemonics[i][1]);
686 		}
687 	}
688 	seq_putc(m, '\n');
689 }
690 
691 #ifdef CONFIG_HUGETLB_PAGE
692 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
693 				 unsigned long addr, unsigned long end,
694 				 struct mm_walk *walk)
695 {
696 	struct mem_size_stats *mss = walk->private;
697 	struct vm_area_struct *vma = walk->vma;
698 	struct page *page = NULL;
699 
700 	if (pte_present(*pte)) {
701 		page = vm_normal_page(vma, addr, *pte);
702 	} else if (is_swap_pte(*pte)) {
703 		swp_entry_t swpent = pte_to_swp_entry(*pte);
704 
705 		if (is_migration_entry(swpent))
706 			page = migration_entry_to_page(swpent);
707 	}
708 	if (page) {
709 		int mapcount = page_mapcount(page);
710 
711 		if (mapcount >= 2)
712 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
713 		else
714 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
715 	}
716 	return 0;
717 }
718 #endif /* HUGETLB_PAGE */
719 
720 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
721 {
722 }
723 
724 static int show_smap(struct seq_file *m, void *v, int is_pid)
725 {
726 	struct vm_area_struct *vma = v;
727 	struct mem_size_stats mss;
728 	struct mm_walk smaps_walk = {
729 		.pmd_entry = smaps_pte_range,
730 #ifdef CONFIG_HUGETLB_PAGE
731 		.hugetlb_entry = smaps_hugetlb_range,
732 #endif
733 		.mm = vma->vm_mm,
734 		.private = &mss,
735 	};
736 
737 	memset(&mss, 0, sizeof mss);
738 
739 #ifdef CONFIG_SHMEM
740 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741 		/*
742 		 * For shared or readonly shmem mappings we know that all
743 		 * swapped out pages belong to the shmem object, and we can
744 		 * obtain the swap value much more efficiently. For private
745 		 * writable mappings, we might have COW pages that are
746 		 * not affected by the parent swapped out pages of the shmem
747 		 * object, so we have to distinguish them during the page walk.
748 		 * Unless we know that the shmem object (or the part mapped by
749 		 * our VMA) has no swapped out pages at all.
750 		 */
751 		unsigned long shmem_swapped = shmem_swap_usage(vma);
752 
753 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754 					!(vma->vm_flags & VM_WRITE)) {
755 			mss.swap = shmem_swapped;
756 		} else {
757 			mss.check_shmem_swap = true;
758 			smaps_walk.pte_hole = smaps_pte_hole;
759 		}
760 	}
761 #endif
762 
763 	/* mmap_sem is held in m_start */
764 	walk_page_vma(vma, &smaps_walk);
765 
766 	show_map_vma(m, vma, is_pid);
767 
768 	seq_printf(m,
769 		   "Size:           %8lu kB\n"
770 		   "Rss:            %8lu kB\n"
771 		   "Pss:            %8lu kB\n"
772 		   "Shared_Clean:   %8lu kB\n"
773 		   "Shared_Dirty:   %8lu kB\n"
774 		   "Private_Clean:  %8lu kB\n"
775 		   "Private_Dirty:  %8lu kB\n"
776 		   "Referenced:     %8lu kB\n"
777 		   "Anonymous:      %8lu kB\n"
778 		   "AnonHugePages:  %8lu kB\n"
779 		   "ShmemPmdMapped: %8lu kB\n"
780 		   "Shared_Hugetlb: %8lu kB\n"
781 		   "Private_Hugetlb: %7lu kB\n"
782 		   "Swap:           %8lu kB\n"
783 		   "SwapPss:        %8lu kB\n"
784 		   "KernelPageSize: %8lu kB\n"
785 		   "MMUPageSize:    %8lu kB\n"
786 		   "Locked:         %8lu kB\n",
787 		   (vma->vm_end - vma->vm_start) >> 10,
788 		   mss.resident >> 10,
789 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
790 		   mss.shared_clean  >> 10,
791 		   mss.shared_dirty  >> 10,
792 		   mss.private_clean >> 10,
793 		   mss.private_dirty >> 10,
794 		   mss.referenced >> 10,
795 		   mss.anonymous >> 10,
796 		   mss.anonymous_thp >> 10,
797 		   mss.shmem_thp >> 10,
798 		   mss.shared_hugetlb >> 10,
799 		   mss.private_hugetlb >> 10,
800 		   mss.swap >> 10,
801 		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
802 		   vma_kernel_pagesize(vma) >> 10,
803 		   vma_mmu_pagesize(vma) >> 10,
804 		   (vma->vm_flags & VM_LOCKED) ?
805 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
806 
807 	arch_show_smap(m, vma);
808 	show_smap_vma_flags(m, vma);
809 	m_cache_vma(m, vma);
810 	return 0;
811 }
812 
813 static int show_pid_smap(struct seq_file *m, void *v)
814 {
815 	return show_smap(m, v, 1);
816 }
817 
818 static int show_tid_smap(struct seq_file *m, void *v)
819 {
820 	return show_smap(m, v, 0);
821 }
822 
823 static const struct seq_operations proc_pid_smaps_op = {
824 	.start	= m_start,
825 	.next	= m_next,
826 	.stop	= m_stop,
827 	.show	= show_pid_smap
828 };
829 
830 static const struct seq_operations proc_tid_smaps_op = {
831 	.start	= m_start,
832 	.next	= m_next,
833 	.stop	= m_stop,
834 	.show	= show_tid_smap
835 };
836 
837 static int pid_smaps_open(struct inode *inode, struct file *file)
838 {
839 	return do_maps_open(inode, file, &proc_pid_smaps_op);
840 }
841 
842 static int tid_smaps_open(struct inode *inode, struct file *file)
843 {
844 	return do_maps_open(inode, file, &proc_tid_smaps_op);
845 }
846 
847 const struct file_operations proc_pid_smaps_operations = {
848 	.open		= pid_smaps_open,
849 	.read		= seq_read,
850 	.llseek		= seq_lseek,
851 	.release	= proc_map_release,
852 };
853 
854 const struct file_operations proc_tid_smaps_operations = {
855 	.open		= tid_smaps_open,
856 	.read		= seq_read,
857 	.llseek		= seq_lseek,
858 	.release	= proc_map_release,
859 };
860 
861 enum clear_refs_types {
862 	CLEAR_REFS_ALL = 1,
863 	CLEAR_REFS_ANON,
864 	CLEAR_REFS_MAPPED,
865 	CLEAR_REFS_SOFT_DIRTY,
866 	CLEAR_REFS_MM_HIWATER_RSS,
867 	CLEAR_REFS_LAST,
868 };
869 
870 struct clear_refs_private {
871 	enum clear_refs_types type;
872 };
873 
874 #ifdef CONFIG_MEM_SOFT_DIRTY
875 static inline void clear_soft_dirty(struct vm_area_struct *vma,
876 		unsigned long addr, pte_t *pte)
877 {
878 	/*
879 	 * The soft-dirty tracker uses #PF-s to catch writes
880 	 * to pages, so write-protect the pte as well. See the
881 	 * Documentation/vm/soft-dirty.txt for full description
882 	 * of how soft-dirty works.
883 	 */
884 	pte_t ptent = *pte;
885 
886 	if (pte_present(ptent)) {
887 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
888 		ptent = pte_wrprotect(ptent);
889 		ptent = pte_clear_soft_dirty(ptent);
890 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
891 	} else if (is_swap_pte(ptent)) {
892 		ptent = pte_swp_clear_soft_dirty(ptent);
893 		set_pte_at(vma->vm_mm, addr, pte, ptent);
894 	}
895 }
896 #else
897 static inline void clear_soft_dirty(struct vm_area_struct *vma,
898 		unsigned long addr, pte_t *pte)
899 {
900 }
901 #endif
902 
903 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
904 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
905 		unsigned long addr, pmd_t *pmdp)
906 {
907 	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
908 
909 	pmd = pmd_wrprotect(pmd);
910 	pmd = pmd_clear_soft_dirty(pmd);
911 
912 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
913 }
914 #else
915 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
916 		unsigned long addr, pmd_t *pmdp)
917 {
918 }
919 #endif
920 
921 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
922 				unsigned long end, struct mm_walk *walk)
923 {
924 	struct clear_refs_private *cp = walk->private;
925 	struct vm_area_struct *vma = walk->vma;
926 	pte_t *pte, ptent;
927 	spinlock_t *ptl;
928 	struct page *page;
929 
930 	ptl = pmd_trans_huge_lock(pmd, vma);
931 	if (ptl) {
932 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
933 			clear_soft_dirty_pmd(vma, addr, pmd);
934 			goto out;
935 		}
936 
937 		page = pmd_page(*pmd);
938 
939 		/* Clear accessed and referenced bits. */
940 		pmdp_test_and_clear_young(vma, addr, pmd);
941 		test_and_clear_page_young(page);
942 		ClearPageReferenced(page);
943 out:
944 		spin_unlock(ptl);
945 		return 0;
946 	}
947 
948 	if (pmd_trans_unstable(pmd))
949 		return 0;
950 
951 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
952 	for (; addr != end; pte++, addr += PAGE_SIZE) {
953 		ptent = *pte;
954 
955 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
956 			clear_soft_dirty(vma, addr, pte);
957 			continue;
958 		}
959 
960 		if (!pte_present(ptent))
961 			continue;
962 
963 		page = vm_normal_page(vma, addr, ptent);
964 		if (!page)
965 			continue;
966 
967 		/* Clear accessed and referenced bits. */
968 		ptep_test_and_clear_young(vma, addr, pte);
969 		test_and_clear_page_young(page);
970 		ClearPageReferenced(page);
971 	}
972 	pte_unmap_unlock(pte - 1, ptl);
973 	cond_resched();
974 	return 0;
975 }
976 
977 static int clear_refs_test_walk(unsigned long start, unsigned long end,
978 				struct mm_walk *walk)
979 {
980 	struct clear_refs_private *cp = walk->private;
981 	struct vm_area_struct *vma = walk->vma;
982 
983 	if (vma->vm_flags & VM_PFNMAP)
984 		return 1;
985 
986 	/*
987 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
988 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
989 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
990 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
991 	 */
992 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
993 		return 1;
994 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
995 		return 1;
996 	return 0;
997 }
998 
999 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1000 				size_t count, loff_t *ppos)
1001 {
1002 	struct task_struct *task;
1003 	char buffer[PROC_NUMBUF];
1004 	struct mm_struct *mm;
1005 	struct vm_area_struct *vma;
1006 	enum clear_refs_types type;
1007 	int itype;
1008 	int rv;
1009 
1010 	memset(buffer, 0, sizeof(buffer));
1011 	if (count > sizeof(buffer) - 1)
1012 		count = sizeof(buffer) - 1;
1013 	if (copy_from_user(buffer, buf, count))
1014 		return -EFAULT;
1015 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1016 	if (rv < 0)
1017 		return rv;
1018 	type = (enum clear_refs_types)itype;
1019 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1020 		return -EINVAL;
1021 
1022 	task = get_proc_task(file_inode(file));
1023 	if (!task)
1024 		return -ESRCH;
1025 	mm = get_task_mm(task);
1026 	if (mm) {
1027 		struct clear_refs_private cp = {
1028 			.type = type,
1029 		};
1030 		struct mm_walk clear_refs_walk = {
1031 			.pmd_entry = clear_refs_pte_range,
1032 			.test_walk = clear_refs_test_walk,
1033 			.mm = mm,
1034 			.private = &cp,
1035 		};
1036 
1037 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1038 			if (down_write_killable(&mm->mmap_sem)) {
1039 				count = -EINTR;
1040 				goto out_mm;
1041 			}
1042 
1043 			/*
1044 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1045 			 * resident set size to this mm's current rss value.
1046 			 */
1047 			reset_mm_hiwater_rss(mm);
1048 			up_write(&mm->mmap_sem);
1049 			goto out_mm;
1050 		}
1051 
1052 		down_read(&mm->mmap_sem);
1053 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1054 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1055 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1056 					continue;
1057 				up_read(&mm->mmap_sem);
1058 				if (down_write_killable(&mm->mmap_sem)) {
1059 					count = -EINTR;
1060 					goto out_mm;
1061 				}
1062 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1063 					vma->vm_flags &= ~VM_SOFTDIRTY;
1064 					vma_set_page_prot(vma);
1065 				}
1066 				downgrade_write(&mm->mmap_sem);
1067 				break;
1068 			}
1069 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1070 		}
1071 		walk_page_range(0, ~0UL, &clear_refs_walk);
1072 		if (type == CLEAR_REFS_SOFT_DIRTY)
1073 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1074 		flush_tlb_mm(mm);
1075 		up_read(&mm->mmap_sem);
1076 out_mm:
1077 		mmput(mm);
1078 	}
1079 	put_task_struct(task);
1080 
1081 	return count;
1082 }
1083 
1084 const struct file_operations proc_clear_refs_operations = {
1085 	.write		= clear_refs_write,
1086 	.llseek		= noop_llseek,
1087 };
1088 
1089 typedef struct {
1090 	u64 pme;
1091 } pagemap_entry_t;
1092 
1093 struct pagemapread {
1094 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1095 	pagemap_entry_t *buffer;
1096 	bool show_pfn;
1097 };
1098 
1099 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1100 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1101 
1102 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1103 #define PM_PFRAME_BITS		55
1104 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1105 #define PM_SOFT_DIRTY		BIT_ULL(55)
1106 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1107 #define PM_FILE			BIT_ULL(61)
1108 #define PM_SWAP			BIT_ULL(62)
1109 #define PM_PRESENT		BIT_ULL(63)
1110 
1111 #define PM_END_OF_BUFFER    1
1112 
1113 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1114 {
1115 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1116 }
1117 
1118 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1119 			  struct pagemapread *pm)
1120 {
1121 	pm->buffer[pm->pos++] = *pme;
1122 	if (pm->pos >= pm->len)
1123 		return PM_END_OF_BUFFER;
1124 	return 0;
1125 }
1126 
1127 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1128 				struct mm_walk *walk)
1129 {
1130 	struct pagemapread *pm = walk->private;
1131 	unsigned long addr = start;
1132 	int err = 0;
1133 
1134 	while (addr < end) {
1135 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1136 		pagemap_entry_t pme = make_pme(0, 0);
1137 		/* End of address space hole, which we mark as non-present. */
1138 		unsigned long hole_end;
1139 
1140 		if (vma)
1141 			hole_end = min(end, vma->vm_start);
1142 		else
1143 			hole_end = end;
1144 
1145 		for (; addr < hole_end; addr += PAGE_SIZE) {
1146 			err = add_to_pagemap(addr, &pme, pm);
1147 			if (err)
1148 				goto out;
1149 		}
1150 
1151 		if (!vma)
1152 			break;
1153 
1154 		/* Addresses in the VMA. */
1155 		if (vma->vm_flags & VM_SOFTDIRTY)
1156 			pme = make_pme(0, PM_SOFT_DIRTY);
1157 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1158 			err = add_to_pagemap(addr, &pme, pm);
1159 			if (err)
1160 				goto out;
1161 		}
1162 	}
1163 out:
1164 	return err;
1165 }
1166 
1167 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1168 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1169 {
1170 	u64 frame = 0, flags = 0;
1171 	struct page *page = NULL;
1172 
1173 	if (pte_present(pte)) {
1174 		if (pm->show_pfn)
1175 			frame = pte_pfn(pte);
1176 		flags |= PM_PRESENT;
1177 		page = vm_normal_page(vma, addr, pte);
1178 		if (pte_soft_dirty(pte))
1179 			flags |= PM_SOFT_DIRTY;
1180 	} else if (is_swap_pte(pte)) {
1181 		swp_entry_t entry;
1182 		if (pte_swp_soft_dirty(pte))
1183 			flags |= PM_SOFT_DIRTY;
1184 		entry = pte_to_swp_entry(pte);
1185 		frame = swp_type(entry) |
1186 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1187 		flags |= PM_SWAP;
1188 		if (is_migration_entry(entry))
1189 			page = migration_entry_to_page(entry);
1190 	}
1191 
1192 	if (page && !PageAnon(page))
1193 		flags |= PM_FILE;
1194 	if (page && page_mapcount(page) == 1)
1195 		flags |= PM_MMAP_EXCLUSIVE;
1196 	if (vma->vm_flags & VM_SOFTDIRTY)
1197 		flags |= PM_SOFT_DIRTY;
1198 
1199 	return make_pme(frame, flags);
1200 }
1201 
1202 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1203 			     struct mm_walk *walk)
1204 {
1205 	struct vm_area_struct *vma = walk->vma;
1206 	struct pagemapread *pm = walk->private;
1207 	spinlock_t *ptl;
1208 	pte_t *pte, *orig_pte;
1209 	int err = 0;
1210 
1211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1212 	ptl = pmd_trans_huge_lock(pmdp, vma);
1213 	if (ptl) {
1214 		u64 flags = 0, frame = 0;
1215 		pmd_t pmd = *pmdp;
1216 
1217 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1218 			flags |= PM_SOFT_DIRTY;
1219 
1220 		/*
1221 		 * Currently pmd for thp is always present because thp
1222 		 * can not be swapped-out, migrated, or HWPOISONed
1223 		 * (split in such cases instead.)
1224 		 * This if-check is just to prepare for future implementation.
1225 		 */
1226 		if (pmd_present(pmd)) {
1227 			struct page *page = pmd_page(pmd);
1228 
1229 			if (page_mapcount(page) == 1)
1230 				flags |= PM_MMAP_EXCLUSIVE;
1231 
1232 			flags |= PM_PRESENT;
1233 			if (pm->show_pfn)
1234 				frame = pmd_pfn(pmd) +
1235 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1236 		}
1237 
1238 		for (; addr != end; addr += PAGE_SIZE) {
1239 			pagemap_entry_t pme = make_pme(frame, flags);
1240 
1241 			err = add_to_pagemap(addr, &pme, pm);
1242 			if (err)
1243 				break;
1244 			if (pm->show_pfn && (flags & PM_PRESENT))
1245 				frame++;
1246 		}
1247 		spin_unlock(ptl);
1248 		return err;
1249 	}
1250 
1251 	if (pmd_trans_unstable(pmdp))
1252 		return 0;
1253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254 
1255 	/*
1256 	 * We can assume that @vma always points to a valid one and @end never
1257 	 * goes beyond vma->vm_end.
1258 	 */
1259 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1260 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1261 		pagemap_entry_t pme;
1262 
1263 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1264 		err = add_to_pagemap(addr, &pme, pm);
1265 		if (err)
1266 			break;
1267 	}
1268 	pte_unmap_unlock(orig_pte, ptl);
1269 
1270 	cond_resched();
1271 
1272 	return err;
1273 }
1274 
1275 #ifdef CONFIG_HUGETLB_PAGE
1276 /* This function walks within one hugetlb entry in the single call */
1277 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1278 				 unsigned long addr, unsigned long end,
1279 				 struct mm_walk *walk)
1280 {
1281 	struct pagemapread *pm = walk->private;
1282 	struct vm_area_struct *vma = walk->vma;
1283 	u64 flags = 0, frame = 0;
1284 	int err = 0;
1285 	pte_t pte;
1286 
1287 	if (vma->vm_flags & VM_SOFTDIRTY)
1288 		flags |= PM_SOFT_DIRTY;
1289 
1290 	pte = huge_ptep_get(ptep);
1291 	if (pte_present(pte)) {
1292 		struct page *page = pte_page(pte);
1293 
1294 		if (!PageAnon(page))
1295 			flags |= PM_FILE;
1296 
1297 		if (page_mapcount(page) == 1)
1298 			flags |= PM_MMAP_EXCLUSIVE;
1299 
1300 		flags |= PM_PRESENT;
1301 		if (pm->show_pfn)
1302 			frame = pte_pfn(pte) +
1303 				((addr & ~hmask) >> PAGE_SHIFT);
1304 	}
1305 
1306 	for (; addr != end; addr += PAGE_SIZE) {
1307 		pagemap_entry_t pme = make_pme(frame, flags);
1308 
1309 		err = add_to_pagemap(addr, &pme, pm);
1310 		if (err)
1311 			return err;
1312 		if (pm->show_pfn && (flags & PM_PRESENT))
1313 			frame++;
1314 	}
1315 
1316 	cond_resched();
1317 
1318 	return err;
1319 }
1320 #endif /* HUGETLB_PAGE */
1321 
1322 /*
1323  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1324  *
1325  * For each page in the address space, this file contains one 64-bit entry
1326  * consisting of the following:
1327  *
1328  * Bits 0-54  page frame number (PFN) if present
1329  * Bits 0-4   swap type if swapped
1330  * Bits 5-54  swap offset if swapped
1331  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1332  * Bit  56    page exclusively mapped
1333  * Bits 57-60 zero
1334  * Bit  61    page is file-page or shared-anon
1335  * Bit  62    page swapped
1336  * Bit  63    page present
1337  *
1338  * If the page is not present but in swap, then the PFN contains an
1339  * encoding of the swap file number and the page's offset into the
1340  * swap. Unmapped pages return a null PFN. This allows determining
1341  * precisely which pages are mapped (or in swap) and comparing mapped
1342  * pages between processes.
1343  *
1344  * Efficient users of this interface will use /proc/pid/maps to
1345  * determine which areas of memory are actually mapped and llseek to
1346  * skip over unmapped regions.
1347  */
1348 static ssize_t pagemap_read(struct file *file, char __user *buf,
1349 			    size_t count, loff_t *ppos)
1350 {
1351 	struct mm_struct *mm = file->private_data;
1352 	struct pagemapread pm;
1353 	struct mm_walk pagemap_walk = {};
1354 	unsigned long src;
1355 	unsigned long svpfn;
1356 	unsigned long start_vaddr;
1357 	unsigned long end_vaddr;
1358 	int ret = 0, copied = 0;
1359 
1360 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1361 		goto out;
1362 
1363 	ret = -EINVAL;
1364 	/* file position must be aligned */
1365 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1366 		goto out_mm;
1367 
1368 	ret = 0;
1369 	if (!count)
1370 		goto out_mm;
1371 
1372 	/* do not disclose physical addresses: attack vector */
1373 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1374 
1375 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1376 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1377 	ret = -ENOMEM;
1378 	if (!pm.buffer)
1379 		goto out_mm;
1380 
1381 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1382 	pagemap_walk.pte_hole = pagemap_pte_hole;
1383 #ifdef CONFIG_HUGETLB_PAGE
1384 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1385 #endif
1386 	pagemap_walk.mm = mm;
1387 	pagemap_walk.private = &pm;
1388 
1389 	src = *ppos;
1390 	svpfn = src / PM_ENTRY_BYTES;
1391 	start_vaddr = svpfn << PAGE_SHIFT;
1392 	end_vaddr = mm->task_size;
1393 
1394 	/* watch out for wraparound */
1395 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1396 		start_vaddr = end_vaddr;
1397 
1398 	/*
1399 	 * The odds are that this will stop walking way
1400 	 * before end_vaddr, because the length of the
1401 	 * user buffer is tracked in "pm", and the walk
1402 	 * will stop when we hit the end of the buffer.
1403 	 */
1404 	ret = 0;
1405 	while (count && (start_vaddr < end_vaddr)) {
1406 		int len;
1407 		unsigned long end;
1408 
1409 		pm.pos = 0;
1410 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1411 		/* overflow ? */
1412 		if (end < start_vaddr || end > end_vaddr)
1413 			end = end_vaddr;
1414 		down_read(&mm->mmap_sem);
1415 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1416 		up_read(&mm->mmap_sem);
1417 		start_vaddr = end;
1418 
1419 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1420 		if (copy_to_user(buf, pm.buffer, len)) {
1421 			ret = -EFAULT;
1422 			goto out_free;
1423 		}
1424 		copied += len;
1425 		buf += len;
1426 		count -= len;
1427 	}
1428 	*ppos += copied;
1429 	if (!ret || ret == PM_END_OF_BUFFER)
1430 		ret = copied;
1431 
1432 out_free:
1433 	kfree(pm.buffer);
1434 out_mm:
1435 	mmput(mm);
1436 out:
1437 	return ret;
1438 }
1439 
1440 static int pagemap_open(struct inode *inode, struct file *file)
1441 {
1442 	struct mm_struct *mm;
1443 
1444 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1445 	if (IS_ERR(mm))
1446 		return PTR_ERR(mm);
1447 	file->private_data = mm;
1448 	return 0;
1449 }
1450 
1451 static int pagemap_release(struct inode *inode, struct file *file)
1452 {
1453 	struct mm_struct *mm = file->private_data;
1454 
1455 	if (mm)
1456 		mmdrop(mm);
1457 	return 0;
1458 }
1459 
1460 const struct file_operations proc_pagemap_operations = {
1461 	.llseek		= mem_lseek, /* borrow this */
1462 	.read		= pagemap_read,
1463 	.open		= pagemap_open,
1464 	.release	= pagemap_release,
1465 };
1466 #endif /* CONFIG_PROC_PAGE_MONITOR */
1467 
1468 #ifdef CONFIG_NUMA
1469 
1470 struct numa_maps {
1471 	unsigned long pages;
1472 	unsigned long anon;
1473 	unsigned long active;
1474 	unsigned long writeback;
1475 	unsigned long mapcount_max;
1476 	unsigned long dirty;
1477 	unsigned long swapcache;
1478 	unsigned long node[MAX_NUMNODES];
1479 };
1480 
1481 struct numa_maps_private {
1482 	struct proc_maps_private proc_maps;
1483 	struct numa_maps md;
1484 };
1485 
1486 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1487 			unsigned long nr_pages)
1488 {
1489 	int count = page_mapcount(page);
1490 
1491 	md->pages += nr_pages;
1492 	if (pte_dirty || PageDirty(page))
1493 		md->dirty += nr_pages;
1494 
1495 	if (PageSwapCache(page))
1496 		md->swapcache += nr_pages;
1497 
1498 	if (PageActive(page) || PageUnevictable(page))
1499 		md->active += nr_pages;
1500 
1501 	if (PageWriteback(page))
1502 		md->writeback += nr_pages;
1503 
1504 	if (PageAnon(page))
1505 		md->anon += nr_pages;
1506 
1507 	if (count > md->mapcount_max)
1508 		md->mapcount_max = count;
1509 
1510 	md->node[page_to_nid(page)] += nr_pages;
1511 }
1512 
1513 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1514 		unsigned long addr)
1515 {
1516 	struct page *page;
1517 	int nid;
1518 
1519 	if (!pte_present(pte))
1520 		return NULL;
1521 
1522 	page = vm_normal_page(vma, addr, pte);
1523 	if (!page)
1524 		return NULL;
1525 
1526 	if (PageReserved(page))
1527 		return NULL;
1528 
1529 	nid = page_to_nid(page);
1530 	if (!node_isset(nid, node_states[N_MEMORY]))
1531 		return NULL;
1532 
1533 	return page;
1534 }
1535 
1536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1538 					      struct vm_area_struct *vma,
1539 					      unsigned long addr)
1540 {
1541 	struct page *page;
1542 	int nid;
1543 
1544 	if (!pmd_present(pmd))
1545 		return NULL;
1546 
1547 	page = vm_normal_page_pmd(vma, addr, pmd);
1548 	if (!page)
1549 		return NULL;
1550 
1551 	if (PageReserved(page))
1552 		return NULL;
1553 
1554 	nid = page_to_nid(page);
1555 	if (!node_isset(nid, node_states[N_MEMORY]))
1556 		return NULL;
1557 
1558 	return page;
1559 }
1560 #endif
1561 
1562 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1563 		unsigned long end, struct mm_walk *walk)
1564 {
1565 	struct numa_maps *md = walk->private;
1566 	struct vm_area_struct *vma = walk->vma;
1567 	spinlock_t *ptl;
1568 	pte_t *orig_pte;
1569 	pte_t *pte;
1570 
1571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1572 	ptl = pmd_trans_huge_lock(pmd, vma);
1573 	if (ptl) {
1574 		struct page *page;
1575 
1576 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1577 		if (page)
1578 			gather_stats(page, md, pmd_dirty(*pmd),
1579 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1580 		spin_unlock(ptl);
1581 		return 0;
1582 	}
1583 
1584 	if (pmd_trans_unstable(pmd))
1585 		return 0;
1586 #endif
1587 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1588 	do {
1589 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1590 		if (!page)
1591 			continue;
1592 		gather_stats(page, md, pte_dirty(*pte), 1);
1593 
1594 	} while (pte++, addr += PAGE_SIZE, addr != end);
1595 	pte_unmap_unlock(orig_pte, ptl);
1596 	return 0;
1597 }
1598 #ifdef CONFIG_HUGETLB_PAGE
1599 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1600 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1601 {
1602 	pte_t huge_pte = huge_ptep_get(pte);
1603 	struct numa_maps *md;
1604 	struct page *page;
1605 
1606 	if (!pte_present(huge_pte))
1607 		return 0;
1608 
1609 	page = pte_page(huge_pte);
1610 	if (!page)
1611 		return 0;
1612 
1613 	md = walk->private;
1614 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1615 	return 0;
1616 }
1617 
1618 #else
1619 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1620 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1621 {
1622 	return 0;
1623 }
1624 #endif
1625 
1626 /*
1627  * Display pages allocated per node and memory policy via /proc.
1628  */
1629 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1630 {
1631 	struct numa_maps_private *numa_priv = m->private;
1632 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1633 	struct vm_area_struct *vma = v;
1634 	struct numa_maps *md = &numa_priv->md;
1635 	struct file *file = vma->vm_file;
1636 	struct mm_struct *mm = vma->vm_mm;
1637 	struct mm_walk walk = {
1638 		.hugetlb_entry = gather_hugetlb_stats,
1639 		.pmd_entry = gather_pte_stats,
1640 		.private = md,
1641 		.mm = mm,
1642 	};
1643 	struct mempolicy *pol;
1644 	char buffer[64];
1645 	int nid;
1646 
1647 	if (!mm)
1648 		return 0;
1649 
1650 	/* Ensure we start with an empty set of numa_maps statistics. */
1651 	memset(md, 0, sizeof(*md));
1652 
1653 	pol = __get_vma_policy(vma, vma->vm_start);
1654 	if (pol) {
1655 		mpol_to_str(buffer, sizeof(buffer), pol);
1656 		mpol_cond_put(pol);
1657 	} else {
1658 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1659 	}
1660 
1661 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1662 
1663 	if (file) {
1664 		seq_puts(m, " file=");
1665 		seq_file_path(m, file, "\n\t= ");
1666 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1667 		seq_puts(m, " heap");
1668 	} else if (is_stack(proc_priv, vma, is_pid)) {
1669 		seq_puts(m, " stack");
1670 	}
1671 
1672 	if (is_vm_hugetlb_page(vma))
1673 		seq_puts(m, " huge");
1674 
1675 	/* mmap_sem is held by m_start */
1676 	walk_page_vma(vma, &walk);
1677 
1678 	if (!md->pages)
1679 		goto out;
1680 
1681 	if (md->anon)
1682 		seq_printf(m, " anon=%lu", md->anon);
1683 
1684 	if (md->dirty)
1685 		seq_printf(m, " dirty=%lu", md->dirty);
1686 
1687 	if (md->pages != md->anon && md->pages != md->dirty)
1688 		seq_printf(m, " mapped=%lu", md->pages);
1689 
1690 	if (md->mapcount_max > 1)
1691 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1692 
1693 	if (md->swapcache)
1694 		seq_printf(m, " swapcache=%lu", md->swapcache);
1695 
1696 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1697 		seq_printf(m, " active=%lu", md->active);
1698 
1699 	if (md->writeback)
1700 		seq_printf(m, " writeback=%lu", md->writeback);
1701 
1702 	for_each_node_state(nid, N_MEMORY)
1703 		if (md->node[nid])
1704 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1705 
1706 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1707 out:
1708 	seq_putc(m, '\n');
1709 	m_cache_vma(m, vma);
1710 	return 0;
1711 }
1712 
1713 static int show_pid_numa_map(struct seq_file *m, void *v)
1714 {
1715 	return show_numa_map(m, v, 1);
1716 }
1717 
1718 static int show_tid_numa_map(struct seq_file *m, void *v)
1719 {
1720 	return show_numa_map(m, v, 0);
1721 }
1722 
1723 static const struct seq_operations proc_pid_numa_maps_op = {
1724 	.start  = m_start,
1725 	.next   = m_next,
1726 	.stop   = m_stop,
1727 	.show   = show_pid_numa_map,
1728 };
1729 
1730 static const struct seq_operations proc_tid_numa_maps_op = {
1731 	.start  = m_start,
1732 	.next   = m_next,
1733 	.stop   = m_stop,
1734 	.show   = show_tid_numa_map,
1735 };
1736 
1737 static int numa_maps_open(struct inode *inode, struct file *file,
1738 			  const struct seq_operations *ops)
1739 {
1740 	return proc_maps_open(inode, file, ops,
1741 				sizeof(struct numa_maps_private));
1742 }
1743 
1744 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1745 {
1746 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1747 }
1748 
1749 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1750 {
1751 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1752 }
1753 
1754 const struct file_operations proc_pid_numa_maps_operations = {
1755 	.open		= pid_numa_maps_open,
1756 	.read		= seq_read,
1757 	.llseek		= seq_lseek,
1758 	.release	= proc_map_release,
1759 };
1760 
1761 const struct file_operations proc_tid_numa_maps_operations = {
1762 	.open		= tid_numa_maps_open,
1763 	.read		= seq_read,
1764 	.llseek		= seq_lseek,
1765 	.release	= proc_map_release,
1766 };
1767 #endif /* CONFIG_NUMA */
1768