xref: /openbmc/linux/fs/proc/task_mmu.c (revision f21453b0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_pfn_swap_entry(swpent))
518 			page = pfn_swap_entry_to_page(swpent);
519 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520 							&& pte_none(*pte))) {
521 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
522 						linear_page_index(vma, addr));
523 		if (xa_is_value(page))
524 			mss->swap += PAGE_SIZE;
525 		return;
526 	}
527 
528 	if (!page)
529 		return;
530 
531 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532 }
533 
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536 		struct mm_walk *walk)
537 {
538 	struct mem_size_stats *mss = walk->private;
539 	struct vm_area_struct *vma = walk->vma;
540 	bool locked = !!(vma->vm_flags & VM_LOCKED);
541 	struct page *page = NULL;
542 
543 	if (pmd_present(*pmd)) {
544 		/* FOLL_DUMP will return -EFAULT on huge zero page */
545 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
548 
549 		if (is_migration_entry(entry))
550 			page = pfn_swap_entry_to_page(entry);
551 	}
552 	if (IS_ERR_OR_NULL(page))
553 		return;
554 	if (PageAnon(page))
555 		mss->anonymous_thp += HPAGE_PMD_SIZE;
556 	else if (PageSwapBacked(page))
557 		mss->shmem_thp += HPAGE_PMD_SIZE;
558 	else if (is_zone_device_page(page))
559 		/* pass */;
560 	else
561 		mss->file_thp += HPAGE_PMD_SIZE;
562 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563 }
564 #else
565 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 		struct mm_walk *walk)
567 {
568 }
569 #endif
570 
571 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572 			   struct mm_walk *walk)
573 {
574 	struct vm_area_struct *vma = walk->vma;
575 	pte_t *pte;
576 	spinlock_t *ptl;
577 
578 	ptl = pmd_trans_huge_lock(pmd, vma);
579 	if (ptl) {
580 		smaps_pmd_entry(pmd, addr, walk);
581 		spin_unlock(ptl);
582 		goto out;
583 	}
584 
585 	if (pmd_trans_unstable(pmd))
586 		goto out;
587 	/*
588 	 * The mmap_lock held all the way back in m_start() is what
589 	 * keeps khugepaged out of here and from collapsing things
590 	 * in here.
591 	 */
592 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593 	for (; addr != end; pte++, addr += PAGE_SIZE)
594 		smaps_pte_entry(pte, addr, walk);
595 	pte_unmap_unlock(pte - 1, ptl);
596 out:
597 	cond_resched();
598 	return 0;
599 }
600 
601 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602 {
603 	/*
604 	 * Don't forget to update Documentation/ on changes.
605 	 */
606 	static const char mnemonics[BITS_PER_LONG][2] = {
607 		/*
608 		 * In case if we meet a flag we don't know about.
609 		 */
610 		[0 ... (BITS_PER_LONG-1)] = "??",
611 
612 		[ilog2(VM_READ)]	= "rd",
613 		[ilog2(VM_WRITE)]	= "wr",
614 		[ilog2(VM_EXEC)]	= "ex",
615 		[ilog2(VM_SHARED)]	= "sh",
616 		[ilog2(VM_MAYREAD)]	= "mr",
617 		[ilog2(VM_MAYWRITE)]	= "mw",
618 		[ilog2(VM_MAYEXEC)]	= "me",
619 		[ilog2(VM_MAYSHARE)]	= "ms",
620 		[ilog2(VM_GROWSDOWN)]	= "gd",
621 		[ilog2(VM_PFNMAP)]	= "pf",
622 		[ilog2(VM_DENYWRITE)]	= "dw",
623 		[ilog2(VM_LOCKED)]	= "lo",
624 		[ilog2(VM_IO)]		= "io",
625 		[ilog2(VM_SEQ_READ)]	= "sr",
626 		[ilog2(VM_RAND_READ)]	= "rr",
627 		[ilog2(VM_DONTCOPY)]	= "dc",
628 		[ilog2(VM_DONTEXPAND)]	= "de",
629 		[ilog2(VM_ACCOUNT)]	= "ac",
630 		[ilog2(VM_NORESERVE)]	= "nr",
631 		[ilog2(VM_HUGETLB)]	= "ht",
632 		[ilog2(VM_SYNC)]	= "sf",
633 		[ilog2(VM_ARCH_1)]	= "ar",
634 		[ilog2(VM_WIPEONFORK)]	= "wf",
635 		[ilog2(VM_DONTDUMP)]	= "dd",
636 #ifdef CONFIG_ARM64_BTI
637 		[ilog2(VM_ARM64_BTI)]	= "bt",
638 #endif
639 #ifdef CONFIG_MEM_SOFT_DIRTY
640 		[ilog2(VM_SOFTDIRTY)]	= "sd",
641 #endif
642 		[ilog2(VM_MIXEDMAP)]	= "mm",
643 		[ilog2(VM_HUGEPAGE)]	= "hg",
644 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
645 		[ilog2(VM_MERGEABLE)]	= "mg",
646 		[ilog2(VM_UFFD_MISSING)]= "um",
647 		[ilog2(VM_UFFD_WP)]	= "uw",
648 #ifdef CONFIG_ARM64_MTE
649 		[ilog2(VM_MTE)]		= "mt",
650 		[ilog2(VM_MTE_ALLOWED)]	= "",
651 #endif
652 #ifdef CONFIG_ARCH_HAS_PKEYS
653 		/* These come out via ProtectionKey: */
654 		[ilog2(VM_PKEY_BIT0)]	= "",
655 		[ilog2(VM_PKEY_BIT1)]	= "",
656 		[ilog2(VM_PKEY_BIT2)]	= "",
657 		[ilog2(VM_PKEY_BIT3)]	= "",
658 #if VM_PKEY_BIT4
659 		[ilog2(VM_PKEY_BIT4)]	= "",
660 #endif
661 #endif /* CONFIG_ARCH_HAS_PKEYS */
662 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
663 		[ilog2(VM_UFFD_MINOR)]	= "ui",
664 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
665 	};
666 	size_t i;
667 
668 	seq_puts(m, "VmFlags: ");
669 	for (i = 0; i < BITS_PER_LONG; i++) {
670 		if (!mnemonics[i][0])
671 			continue;
672 		if (vma->vm_flags & (1UL << i)) {
673 			seq_putc(m, mnemonics[i][0]);
674 			seq_putc(m, mnemonics[i][1]);
675 			seq_putc(m, ' ');
676 		}
677 	}
678 	seq_putc(m, '\n');
679 }
680 
681 #ifdef CONFIG_HUGETLB_PAGE
682 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
683 				 unsigned long addr, unsigned long end,
684 				 struct mm_walk *walk)
685 {
686 	struct mem_size_stats *mss = walk->private;
687 	struct vm_area_struct *vma = walk->vma;
688 	struct page *page = NULL;
689 
690 	if (pte_present(*pte)) {
691 		page = vm_normal_page(vma, addr, *pte);
692 	} else if (is_swap_pte(*pte)) {
693 		swp_entry_t swpent = pte_to_swp_entry(*pte);
694 
695 		if (is_pfn_swap_entry(swpent))
696 			page = pfn_swap_entry_to_page(swpent);
697 	}
698 	if (page) {
699 		int mapcount = page_mapcount(page);
700 
701 		if (mapcount >= 2)
702 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
703 		else
704 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
705 	}
706 	return 0;
707 }
708 #else
709 #define smaps_hugetlb_range	NULL
710 #endif /* HUGETLB_PAGE */
711 
712 static const struct mm_walk_ops smaps_walk_ops = {
713 	.pmd_entry		= smaps_pte_range,
714 	.hugetlb_entry		= smaps_hugetlb_range,
715 };
716 
717 static const struct mm_walk_ops smaps_shmem_walk_ops = {
718 	.pmd_entry		= smaps_pte_range,
719 	.hugetlb_entry		= smaps_hugetlb_range,
720 	.pte_hole		= smaps_pte_hole,
721 };
722 
723 /*
724  * Gather mem stats from @vma with the indicated beginning
725  * address @start, and keep them in @mss.
726  *
727  * Use vm_start of @vma as the beginning address if @start is 0.
728  */
729 static void smap_gather_stats(struct vm_area_struct *vma,
730 		struct mem_size_stats *mss, unsigned long start)
731 {
732 	const struct mm_walk_ops *ops = &smaps_walk_ops;
733 
734 	/* Invalid start */
735 	if (start >= vma->vm_end)
736 		return;
737 
738 #ifdef CONFIG_SHMEM
739 	/* In case of smaps_rollup, reset the value from previous vma */
740 	mss->check_shmem_swap = false;
741 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
742 		/*
743 		 * For shared or readonly shmem mappings we know that all
744 		 * swapped out pages belong to the shmem object, and we can
745 		 * obtain the swap value much more efficiently. For private
746 		 * writable mappings, we might have COW pages that are
747 		 * not affected by the parent swapped out pages of the shmem
748 		 * object, so we have to distinguish them during the page walk.
749 		 * Unless we know that the shmem object (or the part mapped by
750 		 * our VMA) has no swapped out pages at all.
751 		 */
752 		unsigned long shmem_swapped = shmem_swap_usage(vma);
753 
754 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
755 					!(vma->vm_flags & VM_WRITE))) {
756 			mss->swap += shmem_swapped;
757 		} else {
758 			mss->check_shmem_swap = true;
759 			ops = &smaps_shmem_walk_ops;
760 		}
761 	}
762 #endif
763 	/* mmap_lock is held in m_start */
764 	if (!start)
765 		walk_page_vma(vma, ops, mss);
766 	else
767 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
768 }
769 
770 #define SEQ_PUT_DEC(str, val) \
771 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
772 
773 /* Show the contents common for smaps and smaps_rollup */
774 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
775 	bool rollup_mode)
776 {
777 	SEQ_PUT_DEC("Rss:            ", mss->resident);
778 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
779 	if (rollup_mode) {
780 		/*
781 		 * These are meaningful only for smaps_rollup, otherwise two of
782 		 * them are zero, and the other one is the same as Pss.
783 		 */
784 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
785 			mss->pss_anon >> PSS_SHIFT);
786 		SEQ_PUT_DEC(" kB\nPss_File:       ",
787 			mss->pss_file >> PSS_SHIFT);
788 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
789 			mss->pss_shmem >> PSS_SHIFT);
790 	}
791 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
792 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
793 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
794 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
795 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
796 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
797 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
798 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
799 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
800 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
801 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
802 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
803 				  mss->private_hugetlb >> 10, 7);
804 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
805 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
806 					mss->swap_pss >> PSS_SHIFT);
807 	SEQ_PUT_DEC(" kB\nLocked:         ",
808 					mss->pss_locked >> PSS_SHIFT);
809 	seq_puts(m, " kB\n");
810 }
811 
812 static int show_smap(struct seq_file *m, void *v)
813 {
814 	struct vm_area_struct *vma = v;
815 	struct mem_size_stats mss;
816 
817 	memset(&mss, 0, sizeof(mss));
818 
819 	smap_gather_stats(vma, &mss, 0);
820 
821 	show_map_vma(m, vma);
822 
823 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
824 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
825 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
826 	seq_puts(m, " kB\n");
827 
828 	__show_smap(m, &mss, false);
829 
830 	seq_printf(m, "THPeligible:    %d\n",
831 		   transparent_hugepage_active(vma));
832 
833 	if (arch_pkeys_enabled())
834 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
835 	show_smap_vma_flags(m, vma);
836 
837 	return 0;
838 }
839 
840 static int show_smaps_rollup(struct seq_file *m, void *v)
841 {
842 	struct proc_maps_private *priv = m->private;
843 	struct mem_size_stats mss;
844 	struct mm_struct *mm;
845 	struct vm_area_struct *vma;
846 	unsigned long last_vma_end = 0;
847 	int ret = 0;
848 
849 	priv->task = get_proc_task(priv->inode);
850 	if (!priv->task)
851 		return -ESRCH;
852 
853 	mm = priv->mm;
854 	if (!mm || !mmget_not_zero(mm)) {
855 		ret = -ESRCH;
856 		goto out_put_task;
857 	}
858 
859 	memset(&mss, 0, sizeof(mss));
860 
861 	ret = mmap_read_lock_killable(mm);
862 	if (ret)
863 		goto out_put_mm;
864 
865 	hold_task_mempolicy(priv);
866 
867 	for (vma = priv->mm->mmap; vma;) {
868 		smap_gather_stats(vma, &mss, 0);
869 		last_vma_end = vma->vm_end;
870 
871 		/*
872 		 * Release mmap_lock temporarily if someone wants to
873 		 * access it for write request.
874 		 */
875 		if (mmap_lock_is_contended(mm)) {
876 			mmap_read_unlock(mm);
877 			ret = mmap_read_lock_killable(mm);
878 			if (ret) {
879 				release_task_mempolicy(priv);
880 				goto out_put_mm;
881 			}
882 
883 			/*
884 			 * After dropping the lock, there are four cases to
885 			 * consider. See the following example for explanation.
886 			 *
887 			 *   +------+------+-----------+
888 			 *   | VMA1 | VMA2 | VMA3      |
889 			 *   +------+------+-----------+
890 			 *   |      |      |           |
891 			 *  4k     8k     16k         400k
892 			 *
893 			 * Suppose we drop the lock after reading VMA2 due to
894 			 * contention, then we get:
895 			 *
896 			 *	last_vma_end = 16k
897 			 *
898 			 * 1) VMA2 is freed, but VMA3 exists:
899 			 *
900 			 *    find_vma(mm, 16k - 1) will return VMA3.
901 			 *    In this case, just continue from VMA3.
902 			 *
903 			 * 2) VMA2 still exists:
904 			 *
905 			 *    find_vma(mm, 16k - 1) will return VMA2.
906 			 *    Iterate the loop like the original one.
907 			 *
908 			 * 3) No more VMAs can be found:
909 			 *
910 			 *    find_vma(mm, 16k - 1) will return NULL.
911 			 *    No more things to do, just break.
912 			 *
913 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
914 			 *
915 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
916 			 *    contains last_vma_end.
917 			 *    Iterate VMA' from last_vma_end.
918 			 */
919 			vma = find_vma(mm, last_vma_end - 1);
920 			/* Case 3 above */
921 			if (!vma)
922 				break;
923 
924 			/* Case 1 above */
925 			if (vma->vm_start >= last_vma_end)
926 				continue;
927 
928 			/* Case 4 above */
929 			if (vma->vm_end > last_vma_end)
930 				smap_gather_stats(vma, &mss, last_vma_end);
931 		}
932 		/* Case 2 above */
933 		vma = vma->vm_next;
934 	}
935 
936 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
937 			       last_vma_end, 0, 0, 0, 0);
938 	seq_pad(m, ' ');
939 	seq_puts(m, "[rollup]\n");
940 
941 	__show_smap(m, &mss, true);
942 
943 	release_task_mempolicy(priv);
944 	mmap_read_unlock(mm);
945 
946 out_put_mm:
947 	mmput(mm);
948 out_put_task:
949 	put_task_struct(priv->task);
950 	priv->task = NULL;
951 
952 	return ret;
953 }
954 #undef SEQ_PUT_DEC
955 
956 static const struct seq_operations proc_pid_smaps_op = {
957 	.start	= m_start,
958 	.next	= m_next,
959 	.stop	= m_stop,
960 	.show	= show_smap
961 };
962 
963 static int pid_smaps_open(struct inode *inode, struct file *file)
964 {
965 	return do_maps_open(inode, file, &proc_pid_smaps_op);
966 }
967 
968 static int smaps_rollup_open(struct inode *inode, struct file *file)
969 {
970 	int ret;
971 	struct proc_maps_private *priv;
972 
973 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
974 	if (!priv)
975 		return -ENOMEM;
976 
977 	ret = single_open(file, show_smaps_rollup, priv);
978 	if (ret)
979 		goto out_free;
980 
981 	priv->inode = inode;
982 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
983 	if (IS_ERR(priv->mm)) {
984 		ret = PTR_ERR(priv->mm);
985 
986 		single_release(inode, file);
987 		goto out_free;
988 	}
989 
990 	return 0;
991 
992 out_free:
993 	kfree(priv);
994 	return ret;
995 }
996 
997 static int smaps_rollup_release(struct inode *inode, struct file *file)
998 {
999 	struct seq_file *seq = file->private_data;
1000 	struct proc_maps_private *priv = seq->private;
1001 
1002 	if (priv->mm)
1003 		mmdrop(priv->mm);
1004 
1005 	kfree(priv);
1006 	return single_release(inode, file);
1007 }
1008 
1009 const struct file_operations proc_pid_smaps_operations = {
1010 	.open		= pid_smaps_open,
1011 	.read		= seq_read,
1012 	.llseek		= seq_lseek,
1013 	.release	= proc_map_release,
1014 };
1015 
1016 const struct file_operations proc_pid_smaps_rollup_operations = {
1017 	.open		= smaps_rollup_open,
1018 	.read		= seq_read,
1019 	.llseek		= seq_lseek,
1020 	.release	= smaps_rollup_release,
1021 };
1022 
1023 enum clear_refs_types {
1024 	CLEAR_REFS_ALL = 1,
1025 	CLEAR_REFS_ANON,
1026 	CLEAR_REFS_MAPPED,
1027 	CLEAR_REFS_SOFT_DIRTY,
1028 	CLEAR_REFS_MM_HIWATER_RSS,
1029 	CLEAR_REFS_LAST,
1030 };
1031 
1032 struct clear_refs_private {
1033 	enum clear_refs_types type;
1034 };
1035 
1036 #ifdef CONFIG_MEM_SOFT_DIRTY
1037 
1038 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1039 {
1040 	struct page *page;
1041 
1042 	if (!pte_write(pte))
1043 		return false;
1044 	if (!is_cow_mapping(vma->vm_flags))
1045 		return false;
1046 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1047 		return false;
1048 	page = vm_normal_page(vma, addr, pte);
1049 	if (!page)
1050 		return false;
1051 	return page_maybe_dma_pinned(page);
1052 }
1053 
1054 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1055 		unsigned long addr, pte_t *pte)
1056 {
1057 	/*
1058 	 * The soft-dirty tracker uses #PF-s to catch writes
1059 	 * to pages, so write-protect the pte as well. See the
1060 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1061 	 * of how soft-dirty works.
1062 	 */
1063 	pte_t ptent = *pte;
1064 
1065 	if (pte_present(ptent)) {
1066 		pte_t old_pte;
1067 
1068 		if (pte_is_pinned(vma, addr, ptent))
1069 			return;
1070 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1071 		ptent = pte_wrprotect(old_pte);
1072 		ptent = pte_clear_soft_dirty(ptent);
1073 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1074 	} else if (is_swap_pte(ptent)) {
1075 		ptent = pte_swp_clear_soft_dirty(ptent);
1076 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1077 	}
1078 }
1079 #else
1080 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1081 		unsigned long addr, pte_t *pte)
1082 {
1083 }
1084 #endif
1085 
1086 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1087 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1088 		unsigned long addr, pmd_t *pmdp)
1089 {
1090 	pmd_t old, pmd = *pmdp;
1091 
1092 	if (pmd_present(pmd)) {
1093 		/* See comment in change_huge_pmd() */
1094 		old = pmdp_invalidate(vma, addr, pmdp);
1095 		if (pmd_dirty(old))
1096 			pmd = pmd_mkdirty(pmd);
1097 		if (pmd_young(old))
1098 			pmd = pmd_mkyoung(pmd);
1099 
1100 		pmd = pmd_wrprotect(pmd);
1101 		pmd = pmd_clear_soft_dirty(pmd);
1102 
1103 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1104 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1105 		pmd = pmd_swp_clear_soft_dirty(pmd);
1106 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107 	}
1108 }
1109 #else
1110 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1111 		unsigned long addr, pmd_t *pmdp)
1112 {
1113 }
1114 #endif
1115 
1116 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1117 				unsigned long end, struct mm_walk *walk)
1118 {
1119 	struct clear_refs_private *cp = walk->private;
1120 	struct vm_area_struct *vma = walk->vma;
1121 	pte_t *pte, ptent;
1122 	spinlock_t *ptl;
1123 	struct page *page;
1124 
1125 	ptl = pmd_trans_huge_lock(pmd, vma);
1126 	if (ptl) {
1127 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1128 			clear_soft_dirty_pmd(vma, addr, pmd);
1129 			goto out;
1130 		}
1131 
1132 		if (!pmd_present(*pmd))
1133 			goto out;
1134 
1135 		page = pmd_page(*pmd);
1136 
1137 		/* Clear accessed and referenced bits. */
1138 		pmdp_test_and_clear_young(vma, addr, pmd);
1139 		test_and_clear_page_young(page);
1140 		ClearPageReferenced(page);
1141 out:
1142 		spin_unlock(ptl);
1143 		return 0;
1144 	}
1145 
1146 	if (pmd_trans_unstable(pmd))
1147 		return 0;
1148 
1149 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1151 		ptent = *pte;
1152 
1153 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1154 			clear_soft_dirty(vma, addr, pte);
1155 			continue;
1156 		}
1157 
1158 		if (!pte_present(ptent))
1159 			continue;
1160 
1161 		page = vm_normal_page(vma, addr, ptent);
1162 		if (!page)
1163 			continue;
1164 
1165 		/* Clear accessed and referenced bits. */
1166 		ptep_test_and_clear_young(vma, addr, pte);
1167 		test_and_clear_page_young(page);
1168 		ClearPageReferenced(page);
1169 	}
1170 	pte_unmap_unlock(pte - 1, ptl);
1171 	cond_resched();
1172 	return 0;
1173 }
1174 
1175 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1176 				struct mm_walk *walk)
1177 {
1178 	struct clear_refs_private *cp = walk->private;
1179 	struct vm_area_struct *vma = walk->vma;
1180 
1181 	if (vma->vm_flags & VM_PFNMAP)
1182 		return 1;
1183 
1184 	/*
1185 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1186 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1187 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1188 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1189 	 */
1190 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1191 		return 1;
1192 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1193 		return 1;
1194 	return 0;
1195 }
1196 
1197 static const struct mm_walk_ops clear_refs_walk_ops = {
1198 	.pmd_entry		= clear_refs_pte_range,
1199 	.test_walk		= clear_refs_test_walk,
1200 };
1201 
1202 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1203 				size_t count, loff_t *ppos)
1204 {
1205 	struct task_struct *task;
1206 	char buffer[PROC_NUMBUF];
1207 	struct mm_struct *mm;
1208 	struct vm_area_struct *vma;
1209 	enum clear_refs_types type;
1210 	int itype;
1211 	int rv;
1212 
1213 	memset(buffer, 0, sizeof(buffer));
1214 	if (count > sizeof(buffer) - 1)
1215 		count = sizeof(buffer) - 1;
1216 	if (copy_from_user(buffer, buf, count))
1217 		return -EFAULT;
1218 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1219 	if (rv < 0)
1220 		return rv;
1221 	type = (enum clear_refs_types)itype;
1222 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1223 		return -EINVAL;
1224 
1225 	task = get_proc_task(file_inode(file));
1226 	if (!task)
1227 		return -ESRCH;
1228 	mm = get_task_mm(task);
1229 	if (mm) {
1230 		struct mmu_notifier_range range;
1231 		struct clear_refs_private cp = {
1232 			.type = type,
1233 		};
1234 
1235 		if (mmap_write_lock_killable(mm)) {
1236 			count = -EINTR;
1237 			goto out_mm;
1238 		}
1239 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1240 			/*
1241 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1242 			 * resident set size to this mm's current rss value.
1243 			 */
1244 			reset_mm_hiwater_rss(mm);
1245 			goto out_unlock;
1246 		}
1247 
1248 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1249 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1250 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1251 					continue;
1252 				vma->vm_flags &= ~VM_SOFTDIRTY;
1253 				vma_set_page_prot(vma);
1254 			}
1255 
1256 			inc_tlb_flush_pending(mm);
1257 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1258 						0, NULL, mm, 0, -1UL);
1259 			mmu_notifier_invalidate_range_start(&range);
1260 		}
1261 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1262 				&cp);
1263 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1264 			mmu_notifier_invalidate_range_end(&range);
1265 			flush_tlb_mm(mm);
1266 			dec_tlb_flush_pending(mm);
1267 		}
1268 out_unlock:
1269 		mmap_write_unlock(mm);
1270 out_mm:
1271 		mmput(mm);
1272 	}
1273 	put_task_struct(task);
1274 
1275 	return count;
1276 }
1277 
1278 const struct file_operations proc_clear_refs_operations = {
1279 	.write		= clear_refs_write,
1280 	.llseek		= noop_llseek,
1281 };
1282 
1283 typedef struct {
1284 	u64 pme;
1285 } pagemap_entry_t;
1286 
1287 struct pagemapread {
1288 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1289 	pagemap_entry_t *buffer;
1290 	bool show_pfn;
1291 };
1292 
1293 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1294 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1295 
1296 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1297 #define PM_PFRAME_BITS		55
1298 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1299 #define PM_SOFT_DIRTY		BIT_ULL(55)
1300 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1301 #define PM_UFFD_WP		BIT_ULL(57)
1302 #define PM_FILE			BIT_ULL(61)
1303 #define PM_SWAP			BIT_ULL(62)
1304 #define PM_PRESENT		BIT_ULL(63)
1305 
1306 #define PM_END_OF_BUFFER    1
1307 
1308 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1309 {
1310 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1311 }
1312 
1313 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1314 			  struct pagemapread *pm)
1315 {
1316 	pm->buffer[pm->pos++] = *pme;
1317 	if (pm->pos >= pm->len)
1318 		return PM_END_OF_BUFFER;
1319 	return 0;
1320 }
1321 
1322 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1323 			    __always_unused int depth, struct mm_walk *walk)
1324 {
1325 	struct pagemapread *pm = walk->private;
1326 	unsigned long addr = start;
1327 	int err = 0;
1328 
1329 	while (addr < end) {
1330 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1331 		pagemap_entry_t pme = make_pme(0, 0);
1332 		/* End of address space hole, which we mark as non-present. */
1333 		unsigned long hole_end;
1334 
1335 		if (vma)
1336 			hole_end = min(end, vma->vm_start);
1337 		else
1338 			hole_end = end;
1339 
1340 		for (; addr < hole_end; addr += PAGE_SIZE) {
1341 			err = add_to_pagemap(addr, &pme, pm);
1342 			if (err)
1343 				goto out;
1344 		}
1345 
1346 		if (!vma)
1347 			break;
1348 
1349 		/* Addresses in the VMA. */
1350 		if (vma->vm_flags & VM_SOFTDIRTY)
1351 			pme = make_pme(0, PM_SOFT_DIRTY);
1352 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1353 			err = add_to_pagemap(addr, &pme, pm);
1354 			if (err)
1355 				goto out;
1356 		}
1357 	}
1358 out:
1359 	return err;
1360 }
1361 
1362 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1363 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1364 {
1365 	u64 frame = 0, flags = 0;
1366 	struct page *page = NULL;
1367 
1368 	if (pte_present(pte)) {
1369 		if (pm->show_pfn)
1370 			frame = pte_pfn(pte);
1371 		flags |= PM_PRESENT;
1372 		page = vm_normal_page(vma, addr, pte);
1373 		if (pte_soft_dirty(pte))
1374 			flags |= PM_SOFT_DIRTY;
1375 		if (pte_uffd_wp(pte))
1376 			flags |= PM_UFFD_WP;
1377 	} else if (is_swap_pte(pte)) {
1378 		swp_entry_t entry;
1379 		if (pte_swp_soft_dirty(pte))
1380 			flags |= PM_SOFT_DIRTY;
1381 		if (pte_swp_uffd_wp(pte))
1382 			flags |= PM_UFFD_WP;
1383 		entry = pte_to_swp_entry(pte);
1384 		if (pm->show_pfn)
1385 			frame = swp_type(entry) |
1386 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1387 		flags |= PM_SWAP;
1388 		if (is_pfn_swap_entry(entry))
1389 			page = pfn_swap_entry_to_page(entry);
1390 	}
1391 
1392 	if (page && !PageAnon(page))
1393 		flags |= PM_FILE;
1394 	if (page && page_mapcount(page) == 1)
1395 		flags |= PM_MMAP_EXCLUSIVE;
1396 	if (vma->vm_flags & VM_SOFTDIRTY)
1397 		flags |= PM_SOFT_DIRTY;
1398 
1399 	return make_pme(frame, flags);
1400 }
1401 
1402 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1403 			     struct mm_walk *walk)
1404 {
1405 	struct vm_area_struct *vma = walk->vma;
1406 	struct pagemapread *pm = walk->private;
1407 	spinlock_t *ptl;
1408 	pte_t *pte, *orig_pte;
1409 	int err = 0;
1410 
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	ptl = pmd_trans_huge_lock(pmdp, vma);
1413 	if (ptl) {
1414 		u64 flags = 0, frame = 0;
1415 		pmd_t pmd = *pmdp;
1416 		struct page *page = NULL;
1417 
1418 		if (vma->vm_flags & VM_SOFTDIRTY)
1419 			flags |= PM_SOFT_DIRTY;
1420 
1421 		if (pmd_present(pmd)) {
1422 			page = pmd_page(pmd);
1423 
1424 			flags |= PM_PRESENT;
1425 			if (pmd_soft_dirty(pmd))
1426 				flags |= PM_SOFT_DIRTY;
1427 			if (pmd_uffd_wp(pmd))
1428 				flags |= PM_UFFD_WP;
1429 			if (pm->show_pfn)
1430 				frame = pmd_pfn(pmd) +
1431 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432 		}
1433 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434 		else if (is_swap_pmd(pmd)) {
1435 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1436 			unsigned long offset;
1437 
1438 			if (pm->show_pfn) {
1439 				offset = swp_offset(entry) +
1440 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441 				frame = swp_type(entry) |
1442 					(offset << MAX_SWAPFILES_SHIFT);
1443 			}
1444 			flags |= PM_SWAP;
1445 			if (pmd_swp_soft_dirty(pmd))
1446 				flags |= PM_SOFT_DIRTY;
1447 			if (pmd_swp_uffd_wp(pmd))
1448 				flags |= PM_UFFD_WP;
1449 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1450 			page = pfn_swap_entry_to_page(entry);
1451 		}
1452 #endif
1453 
1454 		if (page && page_mapcount(page) == 1)
1455 			flags |= PM_MMAP_EXCLUSIVE;
1456 
1457 		for (; addr != end; addr += PAGE_SIZE) {
1458 			pagemap_entry_t pme = make_pme(frame, flags);
1459 
1460 			err = add_to_pagemap(addr, &pme, pm);
1461 			if (err)
1462 				break;
1463 			if (pm->show_pfn) {
1464 				if (flags & PM_PRESENT)
1465 					frame++;
1466 				else if (flags & PM_SWAP)
1467 					frame += (1 << MAX_SWAPFILES_SHIFT);
1468 			}
1469 		}
1470 		spin_unlock(ptl);
1471 		return err;
1472 	}
1473 
1474 	if (pmd_trans_unstable(pmdp))
1475 		return 0;
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477 
1478 	/*
1479 	 * We can assume that @vma always points to a valid one and @end never
1480 	 * goes beyond vma->vm_end.
1481 	 */
1482 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1483 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1484 		pagemap_entry_t pme;
1485 
1486 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1487 		err = add_to_pagemap(addr, &pme, pm);
1488 		if (err)
1489 			break;
1490 	}
1491 	pte_unmap_unlock(orig_pte, ptl);
1492 
1493 	cond_resched();
1494 
1495 	return err;
1496 }
1497 
1498 #ifdef CONFIG_HUGETLB_PAGE
1499 /* This function walks within one hugetlb entry in the single call */
1500 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1501 				 unsigned long addr, unsigned long end,
1502 				 struct mm_walk *walk)
1503 {
1504 	struct pagemapread *pm = walk->private;
1505 	struct vm_area_struct *vma = walk->vma;
1506 	u64 flags = 0, frame = 0;
1507 	int err = 0;
1508 	pte_t pte;
1509 
1510 	if (vma->vm_flags & VM_SOFTDIRTY)
1511 		flags |= PM_SOFT_DIRTY;
1512 
1513 	pte = huge_ptep_get(ptep);
1514 	if (pte_present(pte)) {
1515 		struct page *page = pte_page(pte);
1516 
1517 		if (!PageAnon(page))
1518 			flags |= PM_FILE;
1519 
1520 		if (page_mapcount(page) == 1)
1521 			flags |= PM_MMAP_EXCLUSIVE;
1522 
1523 		flags |= PM_PRESENT;
1524 		if (pm->show_pfn)
1525 			frame = pte_pfn(pte) +
1526 				((addr & ~hmask) >> PAGE_SHIFT);
1527 	}
1528 
1529 	for (; addr != end; addr += PAGE_SIZE) {
1530 		pagemap_entry_t pme = make_pme(frame, flags);
1531 
1532 		err = add_to_pagemap(addr, &pme, pm);
1533 		if (err)
1534 			return err;
1535 		if (pm->show_pfn && (flags & PM_PRESENT))
1536 			frame++;
1537 	}
1538 
1539 	cond_resched();
1540 
1541 	return err;
1542 }
1543 #else
1544 #define pagemap_hugetlb_range	NULL
1545 #endif /* HUGETLB_PAGE */
1546 
1547 static const struct mm_walk_ops pagemap_ops = {
1548 	.pmd_entry	= pagemap_pmd_range,
1549 	.pte_hole	= pagemap_pte_hole,
1550 	.hugetlb_entry	= pagemap_hugetlb_range,
1551 };
1552 
1553 /*
1554  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1555  *
1556  * For each page in the address space, this file contains one 64-bit entry
1557  * consisting of the following:
1558  *
1559  * Bits 0-54  page frame number (PFN) if present
1560  * Bits 0-4   swap type if swapped
1561  * Bits 5-54  swap offset if swapped
1562  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1563  * Bit  56    page exclusively mapped
1564  * Bits 57-60 zero
1565  * Bit  61    page is file-page or shared-anon
1566  * Bit  62    page swapped
1567  * Bit  63    page present
1568  *
1569  * If the page is not present but in swap, then the PFN contains an
1570  * encoding of the swap file number and the page's offset into the
1571  * swap. Unmapped pages return a null PFN. This allows determining
1572  * precisely which pages are mapped (or in swap) and comparing mapped
1573  * pages between processes.
1574  *
1575  * Efficient users of this interface will use /proc/pid/maps to
1576  * determine which areas of memory are actually mapped and llseek to
1577  * skip over unmapped regions.
1578  */
1579 static ssize_t pagemap_read(struct file *file, char __user *buf,
1580 			    size_t count, loff_t *ppos)
1581 {
1582 	struct mm_struct *mm = file->private_data;
1583 	struct pagemapread pm;
1584 	unsigned long src;
1585 	unsigned long svpfn;
1586 	unsigned long start_vaddr;
1587 	unsigned long end_vaddr;
1588 	int ret = 0, copied = 0;
1589 
1590 	if (!mm || !mmget_not_zero(mm))
1591 		goto out;
1592 
1593 	ret = -EINVAL;
1594 	/* file position must be aligned */
1595 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1596 		goto out_mm;
1597 
1598 	ret = 0;
1599 	if (!count)
1600 		goto out_mm;
1601 
1602 	/* do not disclose physical addresses: attack vector */
1603 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1604 
1605 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1606 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1607 	ret = -ENOMEM;
1608 	if (!pm.buffer)
1609 		goto out_mm;
1610 
1611 	src = *ppos;
1612 	svpfn = src / PM_ENTRY_BYTES;
1613 	end_vaddr = mm->task_size;
1614 
1615 	/* watch out for wraparound */
1616 	start_vaddr = end_vaddr;
1617 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1618 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1619 
1620 	/* Ensure the address is inside the task */
1621 	if (start_vaddr > mm->task_size)
1622 		start_vaddr = end_vaddr;
1623 
1624 	/*
1625 	 * The odds are that this will stop walking way
1626 	 * before end_vaddr, because the length of the
1627 	 * user buffer is tracked in "pm", and the walk
1628 	 * will stop when we hit the end of the buffer.
1629 	 */
1630 	ret = 0;
1631 	while (count && (start_vaddr < end_vaddr)) {
1632 		int len;
1633 		unsigned long end;
1634 
1635 		pm.pos = 0;
1636 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1637 		/* overflow ? */
1638 		if (end < start_vaddr || end > end_vaddr)
1639 			end = end_vaddr;
1640 		ret = mmap_read_lock_killable(mm);
1641 		if (ret)
1642 			goto out_free;
1643 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1644 		mmap_read_unlock(mm);
1645 		start_vaddr = end;
1646 
1647 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1648 		if (copy_to_user(buf, pm.buffer, len)) {
1649 			ret = -EFAULT;
1650 			goto out_free;
1651 		}
1652 		copied += len;
1653 		buf += len;
1654 		count -= len;
1655 	}
1656 	*ppos += copied;
1657 	if (!ret || ret == PM_END_OF_BUFFER)
1658 		ret = copied;
1659 
1660 out_free:
1661 	kfree(pm.buffer);
1662 out_mm:
1663 	mmput(mm);
1664 out:
1665 	return ret;
1666 }
1667 
1668 static int pagemap_open(struct inode *inode, struct file *file)
1669 {
1670 	struct mm_struct *mm;
1671 
1672 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1673 	if (IS_ERR(mm))
1674 		return PTR_ERR(mm);
1675 	file->private_data = mm;
1676 	return 0;
1677 }
1678 
1679 static int pagemap_release(struct inode *inode, struct file *file)
1680 {
1681 	struct mm_struct *mm = file->private_data;
1682 
1683 	if (mm)
1684 		mmdrop(mm);
1685 	return 0;
1686 }
1687 
1688 const struct file_operations proc_pagemap_operations = {
1689 	.llseek		= mem_lseek, /* borrow this */
1690 	.read		= pagemap_read,
1691 	.open		= pagemap_open,
1692 	.release	= pagemap_release,
1693 };
1694 #endif /* CONFIG_PROC_PAGE_MONITOR */
1695 
1696 #ifdef CONFIG_NUMA
1697 
1698 struct numa_maps {
1699 	unsigned long pages;
1700 	unsigned long anon;
1701 	unsigned long active;
1702 	unsigned long writeback;
1703 	unsigned long mapcount_max;
1704 	unsigned long dirty;
1705 	unsigned long swapcache;
1706 	unsigned long node[MAX_NUMNODES];
1707 };
1708 
1709 struct numa_maps_private {
1710 	struct proc_maps_private proc_maps;
1711 	struct numa_maps md;
1712 };
1713 
1714 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1715 			unsigned long nr_pages)
1716 {
1717 	int count = page_mapcount(page);
1718 
1719 	md->pages += nr_pages;
1720 	if (pte_dirty || PageDirty(page))
1721 		md->dirty += nr_pages;
1722 
1723 	if (PageSwapCache(page))
1724 		md->swapcache += nr_pages;
1725 
1726 	if (PageActive(page) || PageUnevictable(page))
1727 		md->active += nr_pages;
1728 
1729 	if (PageWriteback(page))
1730 		md->writeback += nr_pages;
1731 
1732 	if (PageAnon(page))
1733 		md->anon += nr_pages;
1734 
1735 	if (count > md->mapcount_max)
1736 		md->mapcount_max = count;
1737 
1738 	md->node[page_to_nid(page)] += nr_pages;
1739 }
1740 
1741 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1742 		unsigned long addr)
1743 {
1744 	struct page *page;
1745 	int nid;
1746 
1747 	if (!pte_present(pte))
1748 		return NULL;
1749 
1750 	page = vm_normal_page(vma, addr, pte);
1751 	if (!page)
1752 		return NULL;
1753 
1754 	if (PageReserved(page))
1755 		return NULL;
1756 
1757 	nid = page_to_nid(page);
1758 	if (!node_isset(nid, node_states[N_MEMORY]))
1759 		return NULL;
1760 
1761 	return page;
1762 }
1763 
1764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1765 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1766 					      struct vm_area_struct *vma,
1767 					      unsigned long addr)
1768 {
1769 	struct page *page;
1770 	int nid;
1771 
1772 	if (!pmd_present(pmd))
1773 		return NULL;
1774 
1775 	page = vm_normal_page_pmd(vma, addr, pmd);
1776 	if (!page)
1777 		return NULL;
1778 
1779 	if (PageReserved(page))
1780 		return NULL;
1781 
1782 	nid = page_to_nid(page);
1783 	if (!node_isset(nid, node_states[N_MEMORY]))
1784 		return NULL;
1785 
1786 	return page;
1787 }
1788 #endif
1789 
1790 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1791 		unsigned long end, struct mm_walk *walk)
1792 {
1793 	struct numa_maps *md = walk->private;
1794 	struct vm_area_struct *vma = walk->vma;
1795 	spinlock_t *ptl;
1796 	pte_t *orig_pte;
1797 	pte_t *pte;
1798 
1799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1800 	ptl = pmd_trans_huge_lock(pmd, vma);
1801 	if (ptl) {
1802 		struct page *page;
1803 
1804 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1805 		if (page)
1806 			gather_stats(page, md, pmd_dirty(*pmd),
1807 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1808 		spin_unlock(ptl);
1809 		return 0;
1810 	}
1811 
1812 	if (pmd_trans_unstable(pmd))
1813 		return 0;
1814 #endif
1815 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1816 	do {
1817 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1818 		if (!page)
1819 			continue;
1820 		gather_stats(page, md, pte_dirty(*pte), 1);
1821 
1822 	} while (pte++, addr += PAGE_SIZE, addr != end);
1823 	pte_unmap_unlock(orig_pte, ptl);
1824 	cond_resched();
1825 	return 0;
1826 }
1827 #ifdef CONFIG_HUGETLB_PAGE
1828 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1829 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1830 {
1831 	pte_t huge_pte = huge_ptep_get(pte);
1832 	struct numa_maps *md;
1833 	struct page *page;
1834 
1835 	if (!pte_present(huge_pte))
1836 		return 0;
1837 
1838 	page = pte_page(huge_pte);
1839 	if (!page)
1840 		return 0;
1841 
1842 	md = walk->private;
1843 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1844 	return 0;
1845 }
1846 
1847 #else
1848 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1849 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1850 {
1851 	return 0;
1852 }
1853 #endif
1854 
1855 static const struct mm_walk_ops show_numa_ops = {
1856 	.hugetlb_entry = gather_hugetlb_stats,
1857 	.pmd_entry = gather_pte_stats,
1858 };
1859 
1860 /*
1861  * Display pages allocated per node and memory policy via /proc.
1862  */
1863 static int show_numa_map(struct seq_file *m, void *v)
1864 {
1865 	struct numa_maps_private *numa_priv = m->private;
1866 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1867 	struct vm_area_struct *vma = v;
1868 	struct numa_maps *md = &numa_priv->md;
1869 	struct file *file = vma->vm_file;
1870 	struct mm_struct *mm = vma->vm_mm;
1871 	struct mempolicy *pol;
1872 	char buffer[64];
1873 	int nid;
1874 
1875 	if (!mm)
1876 		return 0;
1877 
1878 	/* Ensure we start with an empty set of numa_maps statistics. */
1879 	memset(md, 0, sizeof(*md));
1880 
1881 	pol = __get_vma_policy(vma, vma->vm_start);
1882 	if (pol) {
1883 		mpol_to_str(buffer, sizeof(buffer), pol);
1884 		mpol_cond_put(pol);
1885 	} else {
1886 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1887 	}
1888 
1889 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1890 
1891 	if (file) {
1892 		seq_puts(m, " file=");
1893 		seq_file_path(m, file, "\n\t= ");
1894 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1895 		seq_puts(m, " heap");
1896 	} else if (is_stack(vma)) {
1897 		seq_puts(m, " stack");
1898 	}
1899 
1900 	if (is_vm_hugetlb_page(vma))
1901 		seq_puts(m, " huge");
1902 
1903 	/* mmap_lock is held by m_start */
1904 	walk_page_vma(vma, &show_numa_ops, md);
1905 
1906 	if (!md->pages)
1907 		goto out;
1908 
1909 	if (md->anon)
1910 		seq_printf(m, " anon=%lu", md->anon);
1911 
1912 	if (md->dirty)
1913 		seq_printf(m, " dirty=%lu", md->dirty);
1914 
1915 	if (md->pages != md->anon && md->pages != md->dirty)
1916 		seq_printf(m, " mapped=%lu", md->pages);
1917 
1918 	if (md->mapcount_max > 1)
1919 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1920 
1921 	if (md->swapcache)
1922 		seq_printf(m, " swapcache=%lu", md->swapcache);
1923 
1924 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1925 		seq_printf(m, " active=%lu", md->active);
1926 
1927 	if (md->writeback)
1928 		seq_printf(m, " writeback=%lu", md->writeback);
1929 
1930 	for_each_node_state(nid, N_MEMORY)
1931 		if (md->node[nid])
1932 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1933 
1934 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1935 out:
1936 	seq_putc(m, '\n');
1937 	return 0;
1938 }
1939 
1940 static const struct seq_operations proc_pid_numa_maps_op = {
1941 	.start  = m_start,
1942 	.next   = m_next,
1943 	.stop   = m_stop,
1944 	.show   = show_numa_map,
1945 };
1946 
1947 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1948 {
1949 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1950 				sizeof(struct numa_maps_private));
1951 }
1952 
1953 const struct file_operations proc_pid_numa_maps_operations = {
1954 	.open		= pid_numa_maps_open,
1955 	.read		= seq_read,
1956 	.llseek		= seq_lseek,
1957 	.release	= proc_map_release,
1958 };
1959 
1960 #endif /* CONFIG_NUMA */
1961