1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 18 #include <asm/elf.h> 19 #include <asm/uaccess.h> 20 #include <asm/tlbflush.h> 21 #include "internal.h" 22 23 void task_mem(struct seq_file *m, struct mm_struct *mm) 24 { 25 unsigned long data, text, lib, swap, ptes, pmds; 26 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 27 28 /* 29 * Note: to minimize their overhead, mm maintains hiwater_vm and 30 * hiwater_rss only when about to *lower* total_vm or rss. Any 31 * collector of these hiwater stats must therefore get total_vm 32 * and rss too, which will usually be the higher. Barriers? not 33 * worth the effort, such snapshots can always be inconsistent. 34 */ 35 hiwater_vm = total_vm = mm->total_vm; 36 if (hiwater_vm < mm->hiwater_vm) 37 hiwater_vm = mm->hiwater_vm; 38 hiwater_rss = total_rss = get_mm_rss(mm); 39 if (hiwater_rss < mm->hiwater_rss) 40 hiwater_rss = mm->hiwater_rss; 41 42 data = mm->total_vm - mm->shared_vm - mm->stack_vm; 43 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 44 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 45 swap = get_mm_counter(mm, MM_SWAPENTS); 46 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 47 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 48 seq_printf(m, 49 "VmPeak:\t%8lu kB\n" 50 "VmSize:\t%8lu kB\n" 51 "VmLck:\t%8lu kB\n" 52 "VmPin:\t%8lu kB\n" 53 "VmHWM:\t%8lu kB\n" 54 "VmRSS:\t%8lu kB\n" 55 "VmData:\t%8lu kB\n" 56 "VmStk:\t%8lu kB\n" 57 "VmExe:\t%8lu kB\n" 58 "VmLib:\t%8lu kB\n" 59 "VmPTE:\t%8lu kB\n" 60 "VmPMD:\t%8lu kB\n" 61 "VmSwap:\t%8lu kB\n", 62 hiwater_vm << (PAGE_SHIFT-10), 63 total_vm << (PAGE_SHIFT-10), 64 mm->locked_vm << (PAGE_SHIFT-10), 65 mm->pinned_vm << (PAGE_SHIFT-10), 66 hiwater_rss << (PAGE_SHIFT-10), 67 total_rss << (PAGE_SHIFT-10), 68 data << (PAGE_SHIFT-10), 69 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 70 ptes >> 10, 71 pmds >> 10, 72 swap << (PAGE_SHIFT-10)); 73 } 74 75 unsigned long task_vsize(struct mm_struct *mm) 76 { 77 return PAGE_SIZE * mm->total_vm; 78 } 79 80 unsigned long task_statm(struct mm_struct *mm, 81 unsigned long *shared, unsigned long *text, 82 unsigned long *data, unsigned long *resident) 83 { 84 *shared = get_mm_counter(mm, MM_FILEPAGES); 85 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 86 >> PAGE_SHIFT; 87 *data = mm->total_vm - mm->shared_vm; 88 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 89 return mm->total_vm; 90 } 91 92 #ifdef CONFIG_NUMA 93 /* 94 * Save get_task_policy() for show_numa_map(). 95 */ 96 static void hold_task_mempolicy(struct proc_maps_private *priv) 97 { 98 struct task_struct *task = priv->task; 99 100 task_lock(task); 101 priv->task_mempolicy = get_task_policy(task); 102 mpol_get(priv->task_mempolicy); 103 task_unlock(task); 104 } 105 static void release_task_mempolicy(struct proc_maps_private *priv) 106 { 107 mpol_put(priv->task_mempolicy); 108 } 109 #else 110 static void hold_task_mempolicy(struct proc_maps_private *priv) 111 { 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 } 116 #endif 117 118 static void vma_stop(struct proc_maps_private *priv) 119 { 120 struct mm_struct *mm = priv->mm; 121 122 release_task_mempolicy(priv); 123 up_read(&mm->mmap_sem); 124 mmput(mm); 125 } 126 127 static struct vm_area_struct * 128 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 129 { 130 if (vma == priv->tail_vma) 131 return NULL; 132 return vma->vm_next ?: priv->tail_vma; 133 } 134 135 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 136 { 137 if (m->count < m->size) /* vma is copied successfully */ 138 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = m->version; 145 struct mm_struct *mm; 146 struct vm_area_struct *vma; 147 unsigned int pos = *ppos; 148 149 /* See m_cache_vma(). Zero at the start or after lseek. */ 150 if (last_addr == -1UL) 151 return NULL; 152 153 priv->task = get_proc_task(priv->inode); 154 if (!priv->task) 155 return ERR_PTR(-ESRCH); 156 157 mm = priv->mm; 158 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 159 return NULL; 160 161 down_read(&mm->mmap_sem); 162 hold_task_mempolicy(priv); 163 priv->tail_vma = get_gate_vma(mm); 164 165 if (last_addr) { 166 vma = find_vma(mm, last_addr); 167 if (vma && (vma = m_next_vma(priv, vma))) 168 return vma; 169 } 170 171 m->version = 0; 172 if (pos < mm->map_count) { 173 for (vma = mm->mmap; pos; pos--) { 174 m->version = vma->vm_start; 175 vma = vma->vm_next; 176 } 177 return vma; 178 } 179 180 /* we do not bother to update m->version in this case */ 181 if (pos == mm->map_count && priv->tail_vma) 182 return priv->tail_vma; 183 184 vma_stop(priv); 185 return NULL; 186 } 187 188 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 189 { 190 struct proc_maps_private *priv = m->private; 191 struct vm_area_struct *next; 192 193 (*pos)++; 194 next = m_next_vma(priv, v); 195 if (!next) 196 vma_stop(priv); 197 return next; 198 } 199 200 static void m_stop(struct seq_file *m, void *v) 201 { 202 struct proc_maps_private *priv = m->private; 203 204 if (!IS_ERR_OR_NULL(v)) 205 vma_stop(priv); 206 if (priv->task) { 207 put_task_struct(priv->task); 208 priv->task = NULL; 209 } 210 } 211 212 static int proc_maps_open(struct inode *inode, struct file *file, 213 const struct seq_operations *ops, int psize) 214 { 215 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 216 217 if (!priv) 218 return -ENOMEM; 219 220 priv->inode = inode; 221 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 222 if (IS_ERR(priv->mm)) { 223 int err = PTR_ERR(priv->mm); 224 225 seq_release_private(inode, file); 226 return err; 227 } 228 229 return 0; 230 } 231 232 static int proc_map_release(struct inode *inode, struct file *file) 233 { 234 struct seq_file *seq = file->private_data; 235 struct proc_maps_private *priv = seq->private; 236 237 if (priv->mm) 238 mmdrop(priv->mm); 239 240 return seq_release_private(inode, file); 241 } 242 243 static int do_maps_open(struct inode *inode, struct file *file, 244 const struct seq_operations *ops) 245 { 246 return proc_maps_open(inode, file, ops, 247 sizeof(struct proc_maps_private)); 248 } 249 250 static pid_t pid_of_stack(struct proc_maps_private *priv, 251 struct vm_area_struct *vma, bool is_pid) 252 { 253 struct inode *inode = priv->inode; 254 struct task_struct *task; 255 pid_t ret = 0; 256 257 rcu_read_lock(); 258 task = pid_task(proc_pid(inode), PIDTYPE_PID); 259 if (task) { 260 task = task_of_stack(task, vma, is_pid); 261 if (task) 262 ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info); 263 } 264 rcu_read_unlock(); 265 266 return ret; 267 } 268 269 static void 270 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 271 { 272 struct mm_struct *mm = vma->vm_mm; 273 struct file *file = vma->vm_file; 274 struct proc_maps_private *priv = m->private; 275 vm_flags_t flags = vma->vm_flags; 276 unsigned long ino = 0; 277 unsigned long long pgoff = 0; 278 unsigned long start, end; 279 dev_t dev = 0; 280 const char *name = NULL; 281 282 if (file) { 283 struct inode *inode = file_inode(vma->vm_file); 284 dev = inode->i_sb->s_dev; 285 ino = inode->i_ino; 286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 287 } 288 289 /* We don't show the stack guard page in /proc/maps */ 290 start = vma->vm_start; 291 if (stack_guard_page_start(vma, start)) 292 start += PAGE_SIZE; 293 end = vma->vm_end; 294 if (stack_guard_page_end(vma, end)) 295 end -= PAGE_SIZE; 296 297 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 298 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 299 start, 300 end, 301 flags & VM_READ ? 'r' : '-', 302 flags & VM_WRITE ? 'w' : '-', 303 flags & VM_EXEC ? 'x' : '-', 304 flags & VM_MAYSHARE ? 's' : 'p', 305 pgoff, 306 MAJOR(dev), MINOR(dev), ino); 307 308 /* 309 * Print the dentry name for named mappings, and a 310 * special [heap] marker for the heap: 311 */ 312 if (file) { 313 seq_pad(m, ' '); 314 seq_file_path(m, file, "\n"); 315 goto done; 316 } 317 318 if (vma->vm_ops && vma->vm_ops->name) { 319 name = vma->vm_ops->name(vma); 320 if (name) 321 goto done; 322 } 323 324 name = arch_vma_name(vma); 325 if (!name) { 326 pid_t tid; 327 328 if (!mm) { 329 name = "[vdso]"; 330 goto done; 331 } 332 333 if (vma->vm_start <= mm->brk && 334 vma->vm_end >= mm->start_brk) { 335 name = "[heap]"; 336 goto done; 337 } 338 339 tid = pid_of_stack(priv, vma, is_pid); 340 if (tid != 0) { 341 /* 342 * Thread stack in /proc/PID/task/TID/maps or 343 * the main process stack. 344 */ 345 if (!is_pid || (vma->vm_start <= mm->start_stack && 346 vma->vm_end >= mm->start_stack)) { 347 name = "[stack]"; 348 } else { 349 /* Thread stack in /proc/PID/maps */ 350 seq_pad(m, ' '); 351 seq_printf(m, "[stack:%d]", tid); 352 } 353 } 354 } 355 356 done: 357 if (name) { 358 seq_pad(m, ' '); 359 seq_puts(m, name); 360 } 361 seq_putc(m, '\n'); 362 } 363 364 static int show_map(struct seq_file *m, void *v, int is_pid) 365 { 366 show_map_vma(m, v, is_pid); 367 m_cache_vma(m, v); 368 return 0; 369 } 370 371 static int show_pid_map(struct seq_file *m, void *v) 372 { 373 return show_map(m, v, 1); 374 } 375 376 static int show_tid_map(struct seq_file *m, void *v) 377 { 378 return show_map(m, v, 0); 379 } 380 381 static const struct seq_operations proc_pid_maps_op = { 382 .start = m_start, 383 .next = m_next, 384 .stop = m_stop, 385 .show = show_pid_map 386 }; 387 388 static const struct seq_operations proc_tid_maps_op = { 389 .start = m_start, 390 .next = m_next, 391 .stop = m_stop, 392 .show = show_tid_map 393 }; 394 395 static int pid_maps_open(struct inode *inode, struct file *file) 396 { 397 return do_maps_open(inode, file, &proc_pid_maps_op); 398 } 399 400 static int tid_maps_open(struct inode *inode, struct file *file) 401 { 402 return do_maps_open(inode, file, &proc_tid_maps_op); 403 } 404 405 const struct file_operations proc_pid_maps_operations = { 406 .open = pid_maps_open, 407 .read = seq_read, 408 .llseek = seq_lseek, 409 .release = proc_map_release, 410 }; 411 412 const struct file_operations proc_tid_maps_operations = { 413 .open = tid_maps_open, 414 .read = seq_read, 415 .llseek = seq_lseek, 416 .release = proc_map_release, 417 }; 418 419 /* 420 * Proportional Set Size(PSS): my share of RSS. 421 * 422 * PSS of a process is the count of pages it has in memory, where each 423 * page is divided by the number of processes sharing it. So if a 424 * process has 1000 pages all to itself, and 1000 shared with one other 425 * process, its PSS will be 1500. 426 * 427 * To keep (accumulated) division errors low, we adopt a 64bit 428 * fixed-point pss counter to minimize division errors. So (pss >> 429 * PSS_SHIFT) would be the real byte count. 430 * 431 * A shift of 12 before division means (assuming 4K page size): 432 * - 1M 3-user-pages add up to 8KB errors; 433 * - supports mapcount up to 2^24, or 16M; 434 * - supports PSS up to 2^52 bytes, or 4PB. 435 */ 436 #define PSS_SHIFT 12 437 438 #ifdef CONFIG_PROC_PAGE_MONITOR 439 struct mem_size_stats { 440 unsigned long resident; 441 unsigned long shared_clean; 442 unsigned long shared_dirty; 443 unsigned long private_clean; 444 unsigned long private_dirty; 445 unsigned long referenced; 446 unsigned long anonymous; 447 unsigned long anonymous_thp; 448 unsigned long swap; 449 u64 pss; 450 u64 swap_pss; 451 }; 452 453 static void smaps_account(struct mem_size_stats *mss, struct page *page, 454 unsigned long size, bool young, bool dirty) 455 { 456 int mapcount; 457 458 if (PageAnon(page)) 459 mss->anonymous += size; 460 461 mss->resident += size; 462 /* Accumulate the size in pages that have been accessed. */ 463 if (young || page_is_young(page) || PageReferenced(page)) 464 mss->referenced += size; 465 mapcount = page_mapcount(page); 466 if (mapcount >= 2) { 467 u64 pss_delta; 468 469 if (dirty || PageDirty(page)) 470 mss->shared_dirty += size; 471 else 472 mss->shared_clean += size; 473 pss_delta = (u64)size << PSS_SHIFT; 474 do_div(pss_delta, mapcount); 475 mss->pss += pss_delta; 476 } else { 477 if (dirty || PageDirty(page)) 478 mss->private_dirty += size; 479 else 480 mss->private_clean += size; 481 mss->pss += (u64)size << PSS_SHIFT; 482 } 483 } 484 485 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 486 struct mm_walk *walk) 487 { 488 struct mem_size_stats *mss = walk->private; 489 struct vm_area_struct *vma = walk->vma; 490 struct page *page = NULL; 491 492 if (pte_present(*pte)) { 493 page = vm_normal_page(vma, addr, *pte); 494 } else if (is_swap_pte(*pte)) { 495 swp_entry_t swpent = pte_to_swp_entry(*pte); 496 497 if (!non_swap_entry(swpent)) { 498 int mapcount; 499 500 mss->swap += PAGE_SIZE; 501 mapcount = swp_swapcount(swpent); 502 if (mapcount >= 2) { 503 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 504 505 do_div(pss_delta, mapcount); 506 mss->swap_pss += pss_delta; 507 } else { 508 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 509 } 510 } else if (is_migration_entry(swpent)) 511 page = migration_entry_to_page(swpent); 512 } 513 514 if (!page) 515 return; 516 smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte)); 517 } 518 519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 520 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 521 struct mm_walk *walk) 522 { 523 struct mem_size_stats *mss = walk->private; 524 struct vm_area_struct *vma = walk->vma; 525 struct page *page; 526 527 /* FOLL_DUMP will return -EFAULT on huge zero page */ 528 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 529 if (IS_ERR_OR_NULL(page)) 530 return; 531 mss->anonymous_thp += HPAGE_PMD_SIZE; 532 smaps_account(mss, page, HPAGE_PMD_SIZE, 533 pmd_young(*pmd), pmd_dirty(*pmd)); 534 } 535 #else 536 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 537 struct mm_walk *walk) 538 { 539 } 540 #endif 541 542 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 543 struct mm_walk *walk) 544 { 545 struct vm_area_struct *vma = walk->vma; 546 pte_t *pte; 547 spinlock_t *ptl; 548 549 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 550 smaps_pmd_entry(pmd, addr, walk); 551 spin_unlock(ptl); 552 return 0; 553 } 554 555 if (pmd_trans_unstable(pmd)) 556 return 0; 557 /* 558 * The mmap_sem held all the way back in m_start() is what 559 * keeps khugepaged out of here and from collapsing things 560 * in here. 561 */ 562 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 563 for (; addr != end; pte++, addr += PAGE_SIZE) 564 smaps_pte_entry(pte, addr, walk); 565 pte_unmap_unlock(pte - 1, ptl); 566 cond_resched(); 567 return 0; 568 } 569 570 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 571 { 572 /* 573 * Don't forget to update Documentation/ on changes. 574 */ 575 static const char mnemonics[BITS_PER_LONG][2] = { 576 /* 577 * In case if we meet a flag we don't know about. 578 */ 579 [0 ... (BITS_PER_LONG-1)] = "??", 580 581 [ilog2(VM_READ)] = "rd", 582 [ilog2(VM_WRITE)] = "wr", 583 [ilog2(VM_EXEC)] = "ex", 584 [ilog2(VM_SHARED)] = "sh", 585 [ilog2(VM_MAYREAD)] = "mr", 586 [ilog2(VM_MAYWRITE)] = "mw", 587 [ilog2(VM_MAYEXEC)] = "me", 588 [ilog2(VM_MAYSHARE)] = "ms", 589 [ilog2(VM_GROWSDOWN)] = "gd", 590 [ilog2(VM_PFNMAP)] = "pf", 591 [ilog2(VM_DENYWRITE)] = "dw", 592 #ifdef CONFIG_X86_INTEL_MPX 593 [ilog2(VM_MPX)] = "mp", 594 #endif 595 [ilog2(VM_LOCKED)] = "lo", 596 [ilog2(VM_IO)] = "io", 597 [ilog2(VM_SEQ_READ)] = "sr", 598 [ilog2(VM_RAND_READ)] = "rr", 599 [ilog2(VM_DONTCOPY)] = "dc", 600 [ilog2(VM_DONTEXPAND)] = "de", 601 [ilog2(VM_ACCOUNT)] = "ac", 602 [ilog2(VM_NORESERVE)] = "nr", 603 [ilog2(VM_HUGETLB)] = "ht", 604 [ilog2(VM_ARCH_1)] = "ar", 605 [ilog2(VM_DONTDUMP)] = "dd", 606 #ifdef CONFIG_MEM_SOFT_DIRTY 607 [ilog2(VM_SOFTDIRTY)] = "sd", 608 #endif 609 [ilog2(VM_MIXEDMAP)] = "mm", 610 [ilog2(VM_HUGEPAGE)] = "hg", 611 [ilog2(VM_NOHUGEPAGE)] = "nh", 612 [ilog2(VM_MERGEABLE)] = "mg", 613 [ilog2(VM_UFFD_MISSING)]= "um", 614 [ilog2(VM_UFFD_WP)] = "uw", 615 }; 616 size_t i; 617 618 seq_puts(m, "VmFlags: "); 619 for (i = 0; i < BITS_PER_LONG; i++) { 620 if (vma->vm_flags & (1UL << i)) { 621 seq_printf(m, "%c%c ", 622 mnemonics[i][0], mnemonics[i][1]); 623 } 624 } 625 seq_putc(m, '\n'); 626 } 627 628 static int show_smap(struct seq_file *m, void *v, int is_pid) 629 { 630 struct vm_area_struct *vma = v; 631 struct mem_size_stats mss; 632 struct mm_walk smaps_walk = { 633 .pmd_entry = smaps_pte_range, 634 .mm = vma->vm_mm, 635 .private = &mss, 636 }; 637 638 memset(&mss, 0, sizeof mss); 639 /* mmap_sem is held in m_start */ 640 walk_page_vma(vma, &smaps_walk); 641 642 show_map_vma(m, vma, is_pid); 643 644 seq_printf(m, 645 "Size: %8lu kB\n" 646 "Rss: %8lu kB\n" 647 "Pss: %8lu kB\n" 648 "Shared_Clean: %8lu kB\n" 649 "Shared_Dirty: %8lu kB\n" 650 "Private_Clean: %8lu kB\n" 651 "Private_Dirty: %8lu kB\n" 652 "Referenced: %8lu kB\n" 653 "Anonymous: %8lu kB\n" 654 "AnonHugePages: %8lu kB\n" 655 "Swap: %8lu kB\n" 656 "SwapPss: %8lu kB\n" 657 "KernelPageSize: %8lu kB\n" 658 "MMUPageSize: %8lu kB\n" 659 "Locked: %8lu kB\n", 660 (vma->vm_end - vma->vm_start) >> 10, 661 mss.resident >> 10, 662 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 663 mss.shared_clean >> 10, 664 mss.shared_dirty >> 10, 665 mss.private_clean >> 10, 666 mss.private_dirty >> 10, 667 mss.referenced >> 10, 668 mss.anonymous >> 10, 669 mss.anonymous_thp >> 10, 670 mss.swap >> 10, 671 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 672 vma_kernel_pagesize(vma) >> 10, 673 vma_mmu_pagesize(vma) >> 10, 674 (vma->vm_flags & VM_LOCKED) ? 675 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 676 677 show_smap_vma_flags(m, vma); 678 m_cache_vma(m, vma); 679 return 0; 680 } 681 682 static int show_pid_smap(struct seq_file *m, void *v) 683 { 684 return show_smap(m, v, 1); 685 } 686 687 static int show_tid_smap(struct seq_file *m, void *v) 688 { 689 return show_smap(m, v, 0); 690 } 691 692 static const struct seq_operations proc_pid_smaps_op = { 693 .start = m_start, 694 .next = m_next, 695 .stop = m_stop, 696 .show = show_pid_smap 697 }; 698 699 static const struct seq_operations proc_tid_smaps_op = { 700 .start = m_start, 701 .next = m_next, 702 .stop = m_stop, 703 .show = show_tid_smap 704 }; 705 706 static int pid_smaps_open(struct inode *inode, struct file *file) 707 { 708 return do_maps_open(inode, file, &proc_pid_smaps_op); 709 } 710 711 static int tid_smaps_open(struct inode *inode, struct file *file) 712 { 713 return do_maps_open(inode, file, &proc_tid_smaps_op); 714 } 715 716 const struct file_operations proc_pid_smaps_operations = { 717 .open = pid_smaps_open, 718 .read = seq_read, 719 .llseek = seq_lseek, 720 .release = proc_map_release, 721 }; 722 723 const struct file_operations proc_tid_smaps_operations = { 724 .open = tid_smaps_open, 725 .read = seq_read, 726 .llseek = seq_lseek, 727 .release = proc_map_release, 728 }; 729 730 enum clear_refs_types { 731 CLEAR_REFS_ALL = 1, 732 CLEAR_REFS_ANON, 733 CLEAR_REFS_MAPPED, 734 CLEAR_REFS_SOFT_DIRTY, 735 CLEAR_REFS_MM_HIWATER_RSS, 736 CLEAR_REFS_LAST, 737 }; 738 739 struct clear_refs_private { 740 enum clear_refs_types type; 741 }; 742 743 #ifdef CONFIG_MEM_SOFT_DIRTY 744 static inline void clear_soft_dirty(struct vm_area_struct *vma, 745 unsigned long addr, pte_t *pte) 746 { 747 /* 748 * The soft-dirty tracker uses #PF-s to catch writes 749 * to pages, so write-protect the pte as well. See the 750 * Documentation/vm/soft-dirty.txt for full description 751 * of how soft-dirty works. 752 */ 753 pte_t ptent = *pte; 754 755 if (pte_present(ptent)) { 756 ptent = pte_wrprotect(ptent); 757 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY); 758 } else if (is_swap_pte(ptent)) { 759 ptent = pte_swp_clear_soft_dirty(ptent); 760 } 761 762 set_pte_at(vma->vm_mm, addr, pte, ptent); 763 } 764 765 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 766 unsigned long addr, pmd_t *pmdp) 767 { 768 pmd_t pmd = *pmdp; 769 770 pmd = pmd_wrprotect(pmd); 771 pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 772 773 if (vma->vm_flags & VM_SOFTDIRTY) 774 vma->vm_flags &= ~VM_SOFTDIRTY; 775 776 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 777 } 778 779 #else 780 781 static inline void clear_soft_dirty(struct vm_area_struct *vma, 782 unsigned long addr, pte_t *pte) 783 { 784 } 785 786 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 787 unsigned long addr, pmd_t *pmdp) 788 { 789 } 790 #endif 791 792 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 793 unsigned long end, struct mm_walk *walk) 794 { 795 struct clear_refs_private *cp = walk->private; 796 struct vm_area_struct *vma = walk->vma; 797 pte_t *pte, ptent; 798 spinlock_t *ptl; 799 struct page *page; 800 801 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 802 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 803 clear_soft_dirty_pmd(vma, addr, pmd); 804 goto out; 805 } 806 807 page = pmd_page(*pmd); 808 809 /* Clear accessed and referenced bits. */ 810 pmdp_test_and_clear_young(vma, addr, pmd); 811 test_and_clear_page_young(page); 812 ClearPageReferenced(page); 813 out: 814 spin_unlock(ptl); 815 return 0; 816 } 817 818 if (pmd_trans_unstable(pmd)) 819 return 0; 820 821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 822 for (; addr != end; pte++, addr += PAGE_SIZE) { 823 ptent = *pte; 824 825 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 826 clear_soft_dirty(vma, addr, pte); 827 continue; 828 } 829 830 if (!pte_present(ptent)) 831 continue; 832 833 page = vm_normal_page(vma, addr, ptent); 834 if (!page) 835 continue; 836 837 /* Clear accessed and referenced bits. */ 838 ptep_test_and_clear_young(vma, addr, pte); 839 test_and_clear_page_young(page); 840 ClearPageReferenced(page); 841 } 842 pte_unmap_unlock(pte - 1, ptl); 843 cond_resched(); 844 return 0; 845 } 846 847 static int clear_refs_test_walk(unsigned long start, unsigned long end, 848 struct mm_walk *walk) 849 { 850 struct clear_refs_private *cp = walk->private; 851 struct vm_area_struct *vma = walk->vma; 852 853 if (vma->vm_flags & VM_PFNMAP) 854 return 1; 855 856 /* 857 * Writing 1 to /proc/pid/clear_refs affects all pages. 858 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 859 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 860 * Writing 4 to /proc/pid/clear_refs affects all pages. 861 */ 862 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 863 return 1; 864 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 865 return 1; 866 return 0; 867 } 868 869 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 870 size_t count, loff_t *ppos) 871 { 872 struct task_struct *task; 873 char buffer[PROC_NUMBUF]; 874 struct mm_struct *mm; 875 struct vm_area_struct *vma; 876 enum clear_refs_types type; 877 int itype; 878 int rv; 879 880 memset(buffer, 0, sizeof(buffer)); 881 if (count > sizeof(buffer) - 1) 882 count = sizeof(buffer) - 1; 883 if (copy_from_user(buffer, buf, count)) 884 return -EFAULT; 885 rv = kstrtoint(strstrip(buffer), 10, &itype); 886 if (rv < 0) 887 return rv; 888 type = (enum clear_refs_types)itype; 889 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 890 return -EINVAL; 891 892 task = get_proc_task(file_inode(file)); 893 if (!task) 894 return -ESRCH; 895 mm = get_task_mm(task); 896 if (mm) { 897 struct clear_refs_private cp = { 898 .type = type, 899 }; 900 struct mm_walk clear_refs_walk = { 901 .pmd_entry = clear_refs_pte_range, 902 .test_walk = clear_refs_test_walk, 903 .mm = mm, 904 .private = &cp, 905 }; 906 907 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 908 /* 909 * Writing 5 to /proc/pid/clear_refs resets the peak 910 * resident set size to this mm's current rss value. 911 */ 912 down_write(&mm->mmap_sem); 913 reset_mm_hiwater_rss(mm); 914 up_write(&mm->mmap_sem); 915 goto out_mm; 916 } 917 918 down_read(&mm->mmap_sem); 919 if (type == CLEAR_REFS_SOFT_DIRTY) { 920 for (vma = mm->mmap; vma; vma = vma->vm_next) { 921 if (!(vma->vm_flags & VM_SOFTDIRTY)) 922 continue; 923 up_read(&mm->mmap_sem); 924 down_write(&mm->mmap_sem); 925 for (vma = mm->mmap; vma; vma = vma->vm_next) { 926 vma->vm_flags &= ~VM_SOFTDIRTY; 927 vma_set_page_prot(vma); 928 } 929 downgrade_write(&mm->mmap_sem); 930 break; 931 } 932 mmu_notifier_invalidate_range_start(mm, 0, -1); 933 } 934 walk_page_range(0, ~0UL, &clear_refs_walk); 935 if (type == CLEAR_REFS_SOFT_DIRTY) 936 mmu_notifier_invalidate_range_end(mm, 0, -1); 937 flush_tlb_mm(mm); 938 up_read(&mm->mmap_sem); 939 out_mm: 940 mmput(mm); 941 } 942 put_task_struct(task); 943 944 return count; 945 } 946 947 const struct file_operations proc_clear_refs_operations = { 948 .write = clear_refs_write, 949 .llseek = noop_llseek, 950 }; 951 952 typedef struct { 953 u64 pme; 954 } pagemap_entry_t; 955 956 struct pagemapread { 957 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 958 pagemap_entry_t *buffer; 959 bool show_pfn; 960 }; 961 962 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 963 #define PAGEMAP_WALK_MASK (PMD_MASK) 964 965 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 966 #define PM_PFRAME_BITS 55 967 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 968 #define PM_SOFT_DIRTY BIT_ULL(55) 969 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 970 #define PM_FILE BIT_ULL(61) 971 #define PM_SWAP BIT_ULL(62) 972 #define PM_PRESENT BIT_ULL(63) 973 974 #define PM_END_OF_BUFFER 1 975 976 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 977 { 978 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 979 } 980 981 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 982 struct pagemapread *pm) 983 { 984 pm->buffer[pm->pos++] = *pme; 985 if (pm->pos >= pm->len) 986 return PM_END_OF_BUFFER; 987 return 0; 988 } 989 990 static int pagemap_pte_hole(unsigned long start, unsigned long end, 991 struct mm_walk *walk) 992 { 993 struct pagemapread *pm = walk->private; 994 unsigned long addr = start; 995 int err = 0; 996 997 while (addr < end) { 998 struct vm_area_struct *vma = find_vma(walk->mm, addr); 999 pagemap_entry_t pme = make_pme(0, 0); 1000 /* End of address space hole, which we mark as non-present. */ 1001 unsigned long hole_end; 1002 1003 if (vma) 1004 hole_end = min(end, vma->vm_start); 1005 else 1006 hole_end = end; 1007 1008 for (; addr < hole_end; addr += PAGE_SIZE) { 1009 err = add_to_pagemap(addr, &pme, pm); 1010 if (err) 1011 goto out; 1012 } 1013 1014 if (!vma) 1015 break; 1016 1017 /* Addresses in the VMA. */ 1018 if (vma->vm_flags & VM_SOFTDIRTY) 1019 pme = make_pme(0, PM_SOFT_DIRTY); 1020 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1021 err = add_to_pagemap(addr, &pme, pm); 1022 if (err) 1023 goto out; 1024 } 1025 } 1026 out: 1027 return err; 1028 } 1029 1030 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1031 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1032 { 1033 u64 frame = 0, flags = 0; 1034 struct page *page = NULL; 1035 1036 if (pte_present(pte)) { 1037 if (pm->show_pfn) 1038 frame = pte_pfn(pte); 1039 flags |= PM_PRESENT; 1040 page = vm_normal_page(vma, addr, pte); 1041 if (pte_soft_dirty(pte)) 1042 flags |= PM_SOFT_DIRTY; 1043 } else if (is_swap_pte(pte)) { 1044 swp_entry_t entry; 1045 if (pte_swp_soft_dirty(pte)) 1046 flags |= PM_SOFT_DIRTY; 1047 entry = pte_to_swp_entry(pte); 1048 frame = swp_type(entry) | 1049 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1050 flags |= PM_SWAP; 1051 if (is_migration_entry(entry)) 1052 page = migration_entry_to_page(entry); 1053 } 1054 1055 if (page && !PageAnon(page)) 1056 flags |= PM_FILE; 1057 if (page && page_mapcount(page) == 1) 1058 flags |= PM_MMAP_EXCLUSIVE; 1059 if (vma->vm_flags & VM_SOFTDIRTY) 1060 flags |= PM_SOFT_DIRTY; 1061 1062 return make_pme(frame, flags); 1063 } 1064 1065 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1066 struct mm_walk *walk) 1067 { 1068 struct vm_area_struct *vma = walk->vma; 1069 struct pagemapread *pm = walk->private; 1070 spinlock_t *ptl; 1071 pte_t *pte, *orig_pte; 1072 int err = 0; 1073 1074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1075 if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) { 1076 u64 flags = 0, frame = 0; 1077 pmd_t pmd = *pmdp; 1078 1079 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1080 flags |= PM_SOFT_DIRTY; 1081 1082 /* 1083 * Currently pmd for thp is always present because thp 1084 * can not be swapped-out, migrated, or HWPOISONed 1085 * (split in such cases instead.) 1086 * This if-check is just to prepare for future implementation. 1087 */ 1088 if (pmd_present(pmd)) { 1089 struct page *page = pmd_page(pmd); 1090 1091 if (page_mapcount(page) == 1) 1092 flags |= PM_MMAP_EXCLUSIVE; 1093 1094 flags |= PM_PRESENT; 1095 if (pm->show_pfn) 1096 frame = pmd_pfn(pmd) + 1097 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1098 } 1099 1100 for (; addr != end; addr += PAGE_SIZE) { 1101 pagemap_entry_t pme = make_pme(frame, flags); 1102 1103 err = add_to_pagemap(addr, &pme, pm); 1104 if (err) 1105 break; 1106 if (pm->show_pfn && (flags & PM_PRESENT)) 1107 frame++; 1108 } 1109 spin_unlock(ptl); 1110 return err; 1111 } 1112 1113 if (pmd_trans_unstable(pmdp)) 1114 return 0; 1115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1116 1117 /* 1118 * We can assume that @vma always points to a valid one and @end never 1119 * goes beyond vma->vm_end. 1120 */ 1121 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1122 for (; addr < end; pte++, addr += PAGE_SIZE) { 1123 pagemap_entry_t pme; 1124 1125 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1126 err = add_to_pagemap(addr, &pme, pm); 1127 if (err) 1128 break; 1129 } 1130 pte_unmap_unlock(orig_pte, ptl); 1131 1132 cond_resched(); 1133 1134 return err; 1135 } 1136 1137 #ifdef CONFIG_HUGETLB_PAGE 1138 /* This function walks within one hugetlb entry in the single call */ 1139 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1140 unsigned long addr, unsigned long end, 1141 struct mm_walk *walk) 1142 { 1143 struct pagemapread *pm = walk->private; 1144 struct vm_area_struct *vma = walk->vma; 1145 u64 flags = 0, frame = 0; 1146 int err = 0; 1147 pte_t pte; 1148 1149 if (vma->vm_flags & VM_SOFTDIRTY) 1150 flags |= PM_SOFT_DIRTY; 1151 1152 pte = huge_ptep_get(ptep); 1153 if (pte_present(pte)) { 1154 struct page *page = pte_page(pte); 1155 1156 if (!PageAnon(page)) 1157 flags |= PM_FILE; 1158 1159 if (page_mapcount(page) == 1) 1160 flags |= PM_MMAP_EXCLUSIVE; 1161 1162 flags |= PM_PRESENT; 1163 if (pm->show_pfn) 1164 frame = pte_pfn(pte) + 1165 ((addr & ~hmask) >> PAGE_SHIFT); 1166 } 1167 1168 for (; addr != end; addr += PAGE_SIZE) { 1169 pagemap_entry_t pme = make_pme(frame, flags); 1170 1171 err = add_to_pagemap(addr, &pme, pm); 1172 if (err) 1173 return err; 1174 if (pm->show_pfn && (flags & PM_PRESENT)) 1175 frame++; 1176 } 1177 1178 cond_resched(); 1179 1180 return err; 1181 } 1182 #endif /* HUGETLB_PAGE */ 1183 1184 /* 1185 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1186 * 1187 * For each page in the address space, this file contains one 64-bit entry 1188 * consisting of the following: 1189 * 1190 * Bits 0-54 page frame number (PFN) if present 1191 * Bits 0-4 swap type if swapped 1192 * Bits 5-54 swap offset if swapped 1193 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1194 * Bit 56 page exclusively mapped 1195 * Bits 57-60 zero 1196 * Bit 61 page is file-page or shared-anon 1197 * Bit 62 page swapped 1198 * Bit 63 page present 1199 * 1200 * If the page is not present but in swap, then the PFN contains an 1201 * encoding of the swap file number and the page's offset into the 1202 * swap. Unmapped pages return a null PFN. This allows determining 1203 * precisely which pages are mapped (or in swap) and comparing mapped 1204 * pages between processes. 1205 * 1206 * Efficient users of this interface will use /proc/pid/maps to 1207 * determine which areas of memory are actually mapped and llseek to 1208 * skip over unmapped regions. 1209 */ 1210 static ssize_t pagemap_read(struct file *file, char __user *buf, 1211 size_t count, loff_t *ppos) 1212 { 1213 struct mm_struct *mm = file->private_data; 1214 struct pagemapread pm; 1215 struct mm_walk pagemap_walk = {}; 1216 unsigned long src; 1217 unsigned long svpfn; 1218 unsigned long start_vaddr; 1219 unsigned long end_vaddr; 1220 int ret = 0, copied = 0; 1221 1222 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1223 goto out; 1224 1225 ret = -EINVAL; 1226 /* file position must be aligned */ 1227 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1228 goto out_mm; 1229 1230 ret = 0; 1231 if (!count) 1232 goto out_mm; 1233 1234 /* do not disclose physical addresses: attack vector */ 1235 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1236 1237 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1238 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1239 ret = -ENOMEM; 1240 if (!pm.buffer) 1241 goto out_mm; 1242 1243 pagemap_walk.pmd_entry = pagemap_pmd_range; 1244 pagemap_walk.pte_hole = pagemap_pte_hole; 1245 #ifdef CONFIG_HUGETLB_PAGE 1246 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1247 #endif 1248 pagemap_walk.mm = mm; 1249 pagemap_walk.private = ± 1250 1251 src = *ppos; 1252 svpfn = src / PM_ENTRY_BYTES; 1253 start_vaddr = svpfn << PAGE_SHIFT; 1254 end_vaddr = mm->task_size; 1255 1256 /* watch out for wraparound */ 1257 if (svpfn > mm->task_size >> PAGE_SHIFT) 1258 start_vaddr = end_vaddr; 1259 1260 /* 1261 * The odds are that this will stop walking way 1262 * before end_vaddr, because the length of the 1263 * user buffer is tracked in "pm", and the walk 1264 * will stop when we hit the end of the buffer. 1265 */ 1266 ret = 0; 1267 while (count && (start_vaddr < end_vaddr)) { 1268 int len; 1269 unsigned long end; 1270 1271 pm.pos = 0; 1272 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1273 /* overflow ? */ 1274 if (end < start_vaddr || end > end_vaddr) 1275 end = end_vaddr; 1276 down_read(&mm->mmap_sem); 1277 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1278 up_read(&mm->mmap_sem); 1279 start_vaddr = end; 1280 1281 len = min(count, PM_ENTRY_BYTES * pm.pos); 1282 if (copy_to_user(buf, pm.buffer, len)) { 1283 ret = -EFAULT; 1284 goto out_free; 1285 } 1286 copied += len; 1287 buf += len; 1288 count -= len; 1289 } 1290 *ppos += copied; 1291 if (!ret || ret == PM_END_OF_BUFFER) 1292 ret = copied; 1293 1294 out_free: 1295 kfree(pm.buffer); 1296 out_mm: 1297 mmput(mm); 1298 out: 1299 return ret; 1300 } 1301 1302 static int pagemap_open(struct inode *inode, struct file *file) 1303 { 1304 struct mm_struct *mm; 1305 1306 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1307 if (IS_ERR(mm)) 1308 return PTR_ERR(mm); 1309 file->private_data = mm; 1310 return 0; 1311 } 1312 1313 static int pagemap_release(struct inode *inode, struct file *file) 1314 { 1315 struct mm_struct *mm = file->private_data; 1316 1317 if (mm) 1318 mmdrop(mm); 1319 return 0; 1320 } 1321 1322 const struct file_operations proc_pagemap_operations = { 1323 .llseek = mem_lseek, /* borrow this */ 1324 .read = pagemap_read, 1325 .open = pagemap_open, 1326 .release = pagemap_release, 1327 }; 1328 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1329 1330 #ifdef CONFIG_NUMA 1331 1332 struct numa_maps { 1333 unsigned long pages; 1334 unsigned long anon; 1335 unsigned long active; 1336 unsigned long writeback; 1337 unsigned long mapcount_max; 1338 unsigned long dirty; 1339 unsigned long swapcache; 1340 unsigned long node[MAX_NUMNODES]; 1341 }; 1342 1343 struct numa_maps_private { 1344 struct proc_maps_private proc_maps; 1345 struct numa_maps md; 1346 }; 1347 1348 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1349 unsigned long nr_pages) 1350 { 1351 int count = page_mapcount(page); 1352 1353 md->pages += nr_pages; 1354 if (pte_dirty || PageDirty(page)) 1355 md->dirty += nr_pages; 1356 1357 if (PageSwapCache(page)) 1358 md->swapcache += nr_pages; 1359 1360 if (PageActive(page) || PageUnevictable(page)) 1361 md->active += nr_pages; 1362 1363 if (PageWriteback(page)) 1364 md->writeback += nr_pages; 1365 1366 if (PageAnon(page)) 1367 md->anon += nr_pages; 1368 1369 if (count > md->mapcount_max) 1370 md->mapcount_max = count; 1371 1372 md->node[page_to_nid(page)] += nr_pages; 1373 } 1374 1375 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1376 unsigned long addr) 1377 { 1378 struct page *page; 1379 int nid; 1380 1381 if (!pte_present(pte)) 1382 return NULL; 1383 1384 page = vm_normal_page(vma, addr, pte); 1385 if (!page) 1386 return NULL; 1387 1388 if (PageReserved(page)) 1389 return NULL; 1390 1391 nid = page_to_nid(page); 1392 if (!node_isset(nid, node_states[N_MEMORY])) 1393 return NULL; 1394 1395 return page; 1396 } 1397 1398 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1399 unsigned long end, struct mm_walk *walk) 1400 { 1401 struct numa_maps *md = walk->private; 1402 struct vm_area_struct *vma = walk->vma; 1403 spinlock_t *ptl; 1404 pte_t *orig_pte; 1405 pte_t *pte; 1406 1407 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1408 pte_t huge_pte = *(pte_t *)pmd; 1409 struct page *page; 1410 1411 page = can_gather_numa_stats(huge_pte, vma, addr); 1412 if (page) 1413 gather_stats(page, md, pte_dirty(huge_pte), 1414 HPAGE_PMD_SIZE/PAGE_SIZE); 1415 spin_unlock(ptl); 1416 return 0; 1417 } 1418 1419 if (pmd_trans_unstable(pmd)) 1420 return 0; 1421 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1422 do { 1423 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1424 if (!page) 1425 continue; 1426 gather_stats(page, md, pte_dirty(*pte), 1); 1427 1428 } while (pte++, addr += PAGE_SIZE, addr != end); 1429 pte_unmap_unlock(orig_pte, ptl); 1430 return 0; 1431 } 1432 #ifdef CONFIG_HUGETLB_PAGE 1433 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1434 unsigned long addr, unsigned long end, struct mm_walk *walk) 1435 { 1436 struct numa_maps *md; 1437 struct page *page; 1438 1439 if (!pte_present(*pte)) 1440 return 0; 1441 1442 page = pte_page(*pte); 1443 if (!page) 1444 return 0; 1445 1446 md = walk->private; 1447 gather_stats(page, md, pte_dirty(*pte), 1); 1448 return 0; 1449 } 1450 1451 #else 1452 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1453 unsigned long addr, unsigned long end, struct mm_walk *walk) 1454 { 1455 return 0; 1456 } 1457 #endif 1458 1459 /* 1460 * Display pages allocated per node and memory policy via /proc. 1461 */ 1462 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1463 { 1464 struct numa_maps_private *numa_priv = m->private; 1465 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1466 struct vm_area_struct *vma = v; 1467 struct numa_maps *md = &numa_priv->md; 1468 struct file *file = vma->vm_file; 1469 struct mm_struct *mm = vma->vm_mm; 1470 struct mm_walk walk = { 1471 .hugetlb_entry = gather_hugetlb_stats, 1472 .pmd_entry = gather_pte_stats, 1473 .private = md, 1474 .mm = mm, 1475 }; 1476 struct mempolicy *pol; 1477 char buffer[64]; 1478 int nid; 1479 1480 if (!mm) 1481 return 0; 1482 1483 /* Ensure we start with an empty set of numa_maps statistics. */ 1484 memset(md, 0, sizeof(*md)); 1485 1486 pol = __get_vma_policy(vma, vma->vm_start); 1487 if (pol) { 1488 mpol_to_str(buffer, sizeof(buffer), pol); 1489 mpol_cond_put(pol); 1490 } else { 1491 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1492 } 1493 1494 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1495 1496 if (file) { 1497 seq_puts(m, " file="); 1498 seq_file_path(m, file, "\n\t= "); 1499 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1500 seq_puts(m, " heap"); 1501 } else { 1502 pid_t tid = pid_of_stack(proc_priv, vma, is_pid); 1503 if (tid != 0) { 1504 /* 1505 * Thread stack in /proc/PID/task/TID/maps or 1506 * the main process stack. 1507 */ 1508 if (!is_pid || (vma->vm_start <= mm->start_stack && 1509 vma->vm_end >= mm->start_stack)) 1510 seq_puts(m, " stack"); 1511 else 1512 seq_printf(m, " stack:%d", tid); 1513 } 1514 } 1515 1516 if (is_vm_hugetlb_page(vma)) 1517 seq_puts(m, " huge"); 1518 1519 /* mmap_sem is held by m_start */ 1520 walk_page_vma(vma, &walk); 1521 1522 if (!md->pages) 1523 goto out; 1524 1525 if (md->anon) 1526 seq_printf(m, " anon=%lu", md->anon); 1527 1528 if (md->dirty) 1529 seq_printf(m, " dirty=%lu", md->dirty); 1530 1531 if (md->pages != md->anon && md->pages != md->dirty) 1532 seq_printf(m, " mapped=%lu", md->pages); 1533 1534 if (md->mapcount_max > 1) 1535 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1536 1537 if (md->swapcache) 1538 seq_printf(m, " swapcache=%lu", md->swapcache); 1539 1540 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1541 seq_printf(m, " active=%lu", md->active); 1542 1543 if (md->writeback) 1544 seq_printf(m, " writeback=%lu", md->writeback); 1545 1546 for_each_node_state(nid, N_MEMORY) 1547 if (md->node[nid]) 1548 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1549 1550 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1551 out: 1552 seq_putc(m, '\n'); 1553 m_cache_vma(m, vma); 1554 return 0; 1555 } 1556 1557 static int show_pid_numa_map(struct seq_file *m, void *v) 1558 { 1559 return show_numa_map(m, v, 1); 1560 } 1561 1562 static int show_tid_numa_map(struct seq_file *m, void *v) 1563 { 1564 return show_numa_map(m, v, 0); 1565 } 1566 1567 static const struct seq_operations proc_pid_numa_maps_op = { 1568 .start = m_start, 1569 .next = m_next, 1570 .stop = m_stop, 1571 .show = show_pid_numa_map, 1572 }; 1573 1574 static const struct seq_operations proc_tid_numa_maps_op = { 1575 .start = m_start, 1576 .next = m_next, 1577 .stop = m_stop, 1578 .show = show_tid_numa_map, 1579 }; 1580 1581 static int numa_maps_open(struct inode *inode, struct file *file, 1582 const struct seq_operations *ops) 1583 { 1584 return proc_maps_open(inode, file, ops, 1585 sizeof(struct numa_maps_private)); 1586 } 1587 1588 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1589 { 1590 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1591 } 1592 1593 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1594 { 1595 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1596 } 1597 1598 const struct file_operations proc_pid_numa_maps_operations = { 1599 .open = pid_numa_maps_open, 1600 .read = seq_read, 1601 .llseek = seq_lseek, 1602 .release = proc_map_release, 1603 }; 1604 1605 const struct file_operations proc_tid_numa_maps_operations = { 1606 .open = tid_numa_maps_open, 1607 .read = seq_read, 1608 .llseek = seq_lseek, 1609 .release = proc_map_release, 1610 }; 1611 #endif /* CONFIG_NUMA */ 1612