1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 #include <linux/shmem_fs.h> 18 19 #include <asm/elf.h> 20 #include <linux/uaccess.h> 21 #include <asm/tlbflush.h> 22 #include "internal.h" 23 24 void task_mem(struct seq_file *m, struct mm_struct *mm) 25 { 26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 28 29 anon = get_mm_counter(mm, MM_ANONPAGES); 30 file = get_mm_counter(mm, MM_FILEPAGES); 31 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 32 33 /* 34 * Note: to minimize their overhead, mm maintains hiwater_vm and 35 * hiwater_rss only when about to *lower* total_vm or rss. Any 36 * collector of these hiwater stats must therefore get total_vm 37 * and rss too, which will usually be the higher. Barriers? not 38 * worth the effort, such snapshots can always be inconsistent. 39 */ 40 hiwater_vm = total_vm = mm->total_vm; 41 if (hiwater_vm < mm->hiwater_vm) 42 hiwater_vm = mm->hiwater_vm; 43 hiwater_rss = total_rss = anon + file + shmem; 44 if (hiwater_rss < mm->hiwater_rss) 45 hiwater_rss = mm->hiwater_rss; 46 47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 49 swap = get_mm_counter(mm, MM_SWAPENTS); 50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 52 seq_printf(m, 53 "VmPeak:\t%8lu kB\n" 54 "VmSize:\t%8lu kB\n" 55 "VmLck:\t%8lu kB\n" 56 "VmPin:\t%8lu kB\n" 57 "VmHWM:\t%8lu kB\n" 58 "VmRSS:\t%8lu kB\n" 59 "RssAnon:\t%8lu kB\n" 60 "RssFile:\t%8lu kB\n" 61 "RssShmem:\t%8lu kB\n" 62 "VmData:\t%8lu kB\n" 63 "VmStk:\t%8lu kB\n" 64 "VmExe:\t%8lu kB\n" 65 "VmLib:\t%8lu kB\n" 66 "VmPTE:\t%8lu kB\n" 67 "VmPMD:\t%8lu kB\n" 68 "VmSwap:\t%8lu kB\n", 69 hiwater_vm << (PAGE_SHIFT-10), 70 total_vm << (PAGE_SHIFT-10), 71 mm->locked_vm << (PAGE_SHIFT-10), 72 mm->pinned_vm << (PAGE_SHIFT-10), 73 hiwater_rss << (PAGE_SHIFT-10), 74 total_rss << (PAGE_SHIFT-10), 75 anon << (PAGE_SHIFT-10), 76 file << (PAGE_SHIFT-10), 77 shmem << (PAGE_SHIFT-10), 78 mm->data_vm << (PAGE_SHIFT-10), 79 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 80 ptes >> 10, 81 pmds >> 10, 82 swap << (PAGE_SHIFT-10)); 83 hugetlb_report_usage(m, mm); 84 } 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static void vma_stop(struct proc_maps_private *priv) 131 { 132 struct mm_struct *mm = priv->mm; 133 134 release_task_mempolicy(priv); 135 up_read(&mm->mmap_sem); 136 mmput(mm); 137 } 138 139 static struct vm_area_struct * 140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 141 { 142 if (vma == priv->tail_vma) 143 return NULL; 144 return vma->vm_next ?: priv->tail_vma; 145 } 146 147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 148 { 149 if (m->count < m->size) /* vma is copied successfully */ 150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; 151 } 152 153 static void *m_start(struct seq_file *m, loff_t *ppos) 154 { 155 struct proc_maps_private *priv = m->private; 156 unsigned long last_addr = m->version; 157 struct mm_struct *mm; 158 struct vm_area_struct *vma; 159 unsigned int pos = *ppos; 160 161 /* See m_cache_vma(). Zero at the start or after lseek. */ 162 if (last_addr == -1UL) 163 return NULL; 164 165 priv->task = get_proc_task(priv->inode); 166 if (!priv->task) 167 return ERR_PTR(-ESRCH); 168 169 mm = priv->mm; 170 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 171 return NULL; 172 173 down_read(&mm->mmap_sem); 174 hold_task_mempolicy(priv); 175 priv->tail_vma = get_gate_vma(mm); 176 177 if (last_addr) { 178 vma = find_vma(mm, last_addr - 1); 179 if (vma && vma->vm_start <= last_addr) 180 vma = m_next_vma(priv, vma); 181 if (vma) 182 return vma; 183 } 184 185 m->version = 0; 186 if (pos < mm->map_count) { 187 for (vma = mm->mmap; pos; pos--) { 188 m->version = vma->vm_start; 189 vma = vma->vm_next; 190 } 191 return vma; 192 } 193 194 /* we do not bother to update m->version in this case */ 195 if (pos == mm->map_count && priv->tail_vma) 196 return priv->tail_vma; 197 198 vma_stop(priv); 199 return NULL; 200 } 201 202 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 203 { 204 struct proc_maps_private *priv = m->private; 205 struct vm_area_struct *next; 206 207 (*pos)++; 208 next = m_next_vma(priv, v); 209 if (!next) 210 vma_stop(priv); 211 return next; 212 } 213 214 static void m_stop(struct seq_file *m, void *v) 215 { 216 struct proc_maps_private *priv = m->private; 217 218 if (!IS_ERR_OR_NULL(v)) 219 vma_stop(priv); 220 if (priv->task) { 221 put_task_struct(priv->task); 222 priv->task = NULL; 223 } 224 } 225 226 static int proc_maps_open(struct inode *inode, struct file *file, 227 const struct seq_operations *ops, int psize) 228 { 229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 230 231 if (!priv) 232 return -ENOMEM; 233 234 priv->inode = inode; 235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 236 if (IS_ERR(priv->mm)) { 237 int err = PTR_ERR(priv->mm); 238 239 seq_release_private(inode, file); 240 return err; 241 } 242 243 return 0; 244 } 245 246 static int proc_map_release(struct inode *inode, struct file *file) 247 { 248 struct seq_file *seq = file->private_data; 249 struct proc_maps_private *priv = seq->private; 250 251 if (priv->mm) 252 mmdrop(priv->mm); 253 254 return seq_release_private(inode, file); 255 } 256 257 static int do_maps_open(struct inode *inode, struct file *file, 258 const struct seq_operations *ops) 259 { 260 return proc_maps_open(inode, file, ops, 261 sizeof(struct proc_maps_private)); 262 } 263 264 /* 265 * Indicate if the VMA is a stack for the given task; for 266 * /proc/PID/maps that is the stack of the main task. 267 */ 268 static int is_stack(struct proc_maps_private *priv, 269 struct vm_area_struct *vma) 270 { 271 /* 272 * We make no effort to guess what a given thread considers to be 273 * its "stack". It's not even well-defined for programs written 274 * languages like Go. 275 */ 276 return vma->vm_start <= vma->vm_mm->start_stack && 277 vma->vm_end >= vma->vm_mm->start_stack; 278 } 279 280 static void 281 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 282 { 283 struct mm_struct *mm = vma->vm_mm; 284 struct file *file = vma->vm_file; 285 struct proc_maps_private *priv = m->private; 286 vm_flags_t flags = vma->vm_flags; 287 unsigned long ino = 0; 288 unsigned long long pgoff = 0; 289 unsigned long start, end; 290 dev_t dev = 0; 291 const char *name = NULL; 292 293 if (file) { 294 struct inode *inode = file_inode(vma->vm_file); 295 dev = inode->i_sb->s_dev; 296 ino = inode->i_ino; 297 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 298 } 299 300 /* We don't show the stack guard page in /proc/maps */ 301 start = vma->vm_start; 302 if (stack_guard_page_start(vma, start)) 303 start += PAGE_SIZE; 304 end = vma->vm_end; 305 if (stack_guard_page_end(vma, end)) 306 end -= PAGE_SIZE; 307 308 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 309 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 310 start, 311 end, 312 flags & VM_READ ? 'r' : '-', 313 flags & VM_WRITE ? 'w' : '-', 314 flags & VM_EXEC ? 'x' : '-', 315 flags & VM_MAYSHARE ? 's' : 'p', 316 pgoff, 317 MAJOR(dev), MINOR(dev), ino); 318 319 /* 320 * Print the dentry name for named mappings, and a 321 * special [heap] marker for the heap: 322 */ 323 if (file) { 324 seq_pad(m, ' '); 325 seq_file_path(m, file, "\n"); 326 goto done; 327 } 328 329 if (vma->vm_ops && vma->vm_ops->name) { 330 name = vma->vm_ops->name(vma); 331 if (name) 332 goto done; 333 } 334 335 name = arch_vma_name(vma); 336 if (!name) { 337 if (!mm) { 338 name = "[vdso]"; 339 goto done; 340 } 341 342 if (vma->vm_start <= mm->brk && 343 vma->vm_end >= mm->start_brk) { 344 name = "[heap]"; 345 goto done; 346 } 347 348 if (is_stack(priv, vma)) 349 name = "[stack]"; 350 } 351 352 done: 353 if (name) { 354 seq_pad(m, ' '); 355 seq_puts(m, name); 356 } 357 seq_putc(m, '\n'); 358 } 359 360 static int show_map(struct seq_file *m, void *v, int is_pid) 361 { 362 show_map_vma(m, v, is_pid); 363 m_cache_vma(m, v); 364 return 0; 365 } 366 367 static int show_pid_map(struct seq_file *m, void *v) 368 { 369 return show_map(m, v, 1); 370 } 371 372 static int show_tid_map(struct seq_file *m, void *v) 373 { 374 return show_map(m, v, 0); 375 } 376 377 static const struct seq_operations proc_pid_maps_op = { 378 .start = m_start, 379 .next = m_next, 380 .stop = m_stop, 381 .show = show_pid_map 382 }; 383 384 static const struct seq_operations proc_tid_maps_op = { 385 .start = m_start, 386 .next = m_next, 387 .stop = m_stop, 388 .show = show_tid_map 389 }; 390 391 static int pid_maps_open(struct inode *inode, struct file *file) 392 { 393 return do_maps_open(inode, file, &proc_pid_maps_op); 394 } 395 396 static int tid_maps_open(struct inode *inode, struct file *file) 397 { 398 return do_maps_open(inode, file, &proc_tid_maps_op); 399 } 400 401 const struct file_operations proc_pid_maps_operations = { 402 .open = pid_maps_open, 403 .read = seq_read, 404 .llseek = seq_lseek, 405 .release = proc_map_release, 406 }; 407 408 const struct file_operations proc_tid_maps_operations = { 409 .open = tid_maps_open, 410 .read = seq_read, 411 .llseek = seq_lseek, 412 .release = proc_map_release, 413 }; 414 415 /* 416 * Proportional Set Size(PSS): my share of RSS. 417 * 418 * PSS of a process is the count of pages it has in memory, where each 419 * page is divided by the number of processes sharing it. So if a 420 * process has 1000 pages all to itself, and 1000 shared with one other 421 * process, its PSS will be 1500. 422 * 423 * To keep (accumulated) division errors low, we adopt a 64bit 424 * fixed-point pss counter to minimize division errors. So (pss >> 425 * PSS_SHIFT) would be the real byte count. 426 * 427 * A shift of 12 before division means (assuming 4K page size): 428 * - 1M 3-user-pages add up to 8KB errors; 429 * - supports mapcount up to 2^24, or 16M; 430 * - supports PSS up to 2^52 bytes, or 4PB. 431 */ 432 #define PSS_SHIFT 12 433 434 #ifdef CONFIG_PROC_PAGE_MONITOR 435 struct mem_size_stats { 436 unsigned long resident; 437 unsigned long shared_clean; 438 unsigned long shared_dirty; 439 unsigned long private_clean; 440 unsigned long private_dirty; 441 unsigned long referenced; 442 unsigned long anonymous; 443 unsigned long anonymous_thp; 444 unsigned long shmem_thp; 445 unsigned long swap; 446 unsigned long shared_hugetlb; 447 unsigned long private_hugetlb; 448 u64 pss; 449 u64 swap_pss; 450 bool check_shmem_swap; 451 }; 452 453 static void smaps_account(struct mem_size_stats *mss, struct page *page, 454 bool compound, bool young, bool dirty) 455 { 456 int i, nr = compound ? 1 << compound_order(page) : 1; 457 unsigned long size = nr * PAGE_SIZE; 458 459 if (PageAnon(page)) 460 mss->anonymous += size; 461 462 mss->resident += size; 463 /* Accumulate the size in pages that have been accessed. */ 464 if (young || page_is_young(page) || PageReferenced(page)) 465 mss->referenced += size; 466 467 /* 468 * page_count(page) == 1 guarantees the page is mapped exactly once. 469 * If any subpage of the compound page mapped with PTE it would elevate 470 * page_count(). 471 */ 472 if (page_count(page) == 1) { 473 if (dirty || PageDirty(page)) 474 mss->private_dirty += size; 475 else 476 mss->private_clean += size; 477 mss->pss += (u64)size << PSS_SHIFT; 478 return; 479 } 480 481 for (i = 0; i < nr; i++, page++) { 482 int mapcount = page_mapcount(page); 483 484 if (mapcount >= 2) { 485 if (dirty || PageDirty(page)) 486 mss->shared_dirty += PAGE_SIZE; 487 else 488 mss->shared_clean += PAGE_SIZE; 489 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 490 } else { 491 if (dirty || PageDirty(page)) 492 mss->private_dirty += PAGE_SIZE; 493 else 494 mss->private_clean += PAGE_SIZE; 495 mss->pss += PAGE_SIZE << PSS_SHIFT; 496 } 497 } 498 } 499 500 #ifdef CONFIG_SHMEM 501 static int smaps_pte_hole(unsigned long addr, unsigned long end, 502 struct mm_walk *walk) 503 { 504 struct mem_size_stats *mss = walk->private; 505 506 mss->swap += shmem_partial_swap_usage( 507 walk->vma->vm_file->f_mapping, addr, end); 508 509 return 0; 510 } 511 #endif 512 513 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 514 struct mm_walk *walk) 515 { 516 struct mem_size_stats *mss = walk->private; 517 struct vm_area_struct *vma = walk->vma; 518 struct page *page = NULL; 519 520 if (pte_present(*pte)) { 521 page = vm_normal_page(vma, addr, *pte); 522 } else if (is_swap_pte(*pte)) { 523 swp_entry_t swpent = pte_to_swp_entry(*pte); 524 525 if (!non_swap_entry(swpent)) { 526 int mapcount; 527 528 mss->swap += PAGE_SIZE; 529 mapcount = swp_swapcount(swpent); 530 if (mapcount >= 2) { 531 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 532 533 do_div(pss_delta, mapcount); 534 mss->swap_pss += pss_delta; 535 } else { 536 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 537 } 538 } else if (is_migration_entry(swpent)) 539 page = migration_entry_to_page(swpent); 540 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 541 && pte_none(*pte))) { 542 page = find_get_entry(vma->vm_file->f_mapping, 543 linear_page_index(vma, addr)); 544 if (!page) 545 return; 546 547 if (radix_tree_exceptional_entry(page)) 548 mss->swap += PAGE_SIZE; 549 else 550 put_page(page); 551 552 return; 553 } 554 555 if (!page) 556 return; 557 558 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 559 } 560 561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 562 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 563 struct mm_walk *walk) 564 { 565 struct mem_size_stats *mss = walk->private; 566 struct vm_area_struct *vma = walk->vma; 567 struct page *page; 568 569 /* FOLL_DUMP will return -EFAULT on huge zero page */ 570 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 571 if (IS_ERR_OR_NULL(page)) 572 return; 573 if (PageAnon(page)) 574 mss->anonymous_thp += HPAGE_PMD_SIZE; 575 else if (PageSwapBacked(page)) 576 mss->shmem_thp += HPAGE_PMD_SIZE; 577 else if (is_zone_device_page(page)) 578 /* pass */; 579 else 580 VM_BUG_ON_PAGE(1, page); 581 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 582 } 583 #else 584 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 585 struct mm_walk *walk) 586 { 587 } 588 #endif 589 590 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 591 struct mm_walk *walk) 592 { 593 struct vm_area_struct *vma = walk->vma; 594 pte_t *pte; 595 spinlock_t *ptl; 596 597 ptl = pmd_trans_huge_lock(pmd, vma); 598 if (ptl) { 599 smaps_pmd_entry(pmd, addr, walk); 600 spin_unlock(ptl); 601 return 0; 602 } 603 604 if (pmd_trans_unstable(pmd)) 605 return 0; 606 /* 607 * The mmap_sem held all the way back in m_start() is what 608 * keeps khugepaged out of here and from collapsing things 609 * in here. 610 */ 611 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 612 for (; addr != end; pte++, addr += PAGE_SIZE) 613 smaps_pte_entry(pte, addr, walk); 614 pte_unmap_unlock(pte - 1, ptl); 615 cond_resched(); 616 return 0; 617 } 618 619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 620 { 621 /* 622 * Don't forget to update Documentation/ on changes. 623 */ 624 static const char mnemonics[BITS_PER_LONG][2] = { 625 /* 626 * In case if we meet a flag we don't know about. 627 */ 628 [0 ... (BITS_PER_LONG-1)] = "??", 629 630 [ilog2(VM_READ)] = "rd", 631 [ilog2(VM_WRITE)] = "wr", 632 [ilog2(VM_EXEC)] = "ex", 633 [ilog2(VM_SHARED)] = "sh", 634 [ilog2(VM_MAYREAD)] = "mr", 635 [ilog2(VM_MAYWRITE)] = "mw", 636 [ilog2(VM_MAYEXEC)] = "me", 637 [ilog2(VM_MAYSHARE)] = "ms", 638 [ilog2(VM_GROWSDOWN)] = "gd", 639 [ilog2(VM_PFNMAP)] = "pf", 640 [ilog2(VM_DENYWRITE)] = "dw", 641 #ifdef CONFIG_X86_INTEL_MPX 642 [ilog2(VM_MPX)] = "mp", 643 #endif 644 [ilog2(VM_LOCKED)] = "lo", 645 [ilog2(VM_IO)] = "io", 646 [ilog2(VM_SEQ_READ)] = "sr", 647 [ilog2(VM_RAND_READ)] = "rr", 648 [ilog2(VM_DONTCOPY)] = "dc", 649 [ilog2(VM_DONTEXPAND)] = "de", 650 [ilog2(VM_ACCOUNT)] = "ac", 651 [ilog2(VM_NORESERVE)] = "nr", 652 [ilog2(VM_HUGETLB)] = "ht", 653 [ilog2(VM_ARCH_1)] = "ar", 654 [ilog2(VM_DONTDUMP)] = "dd", 655 #ifdef CONFIG_MEM_SOFT_DIRTY 656 [ilog2(VM_SOFTDIRTY)] = "sd", 657 #endif 658 [ilog2(VM_MIXEDMAP)] = "mm", 659 [ilog2(VM_HUGEPAGE)] = "hg", 660 [ilog2(VM_NOHUGEPAGE)] = "nh", 661 [ilog2(VM_MERGEABLE)] = "mg", 662 [ilog2(VM_UFFD_MISSING)]= "um", 663 [ilog2(VM_UFFD_WP)] = "uw", 664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 665 /* These come out via ProtectionKey: */ 666 [ilog2(VM_PKEY_BIT0)] = "", 667 [ilog2(VM_PKEY_BIT1)] = "", 668 [ilog2(VM_PKEY_BIT2)] = "", 669 [ilog2(VM_PKEY_BIT3)] = "", 670 #endif 671 }; 672 size_t i; 673 674 seq_puts(m, "VmFlags: "); 675 for (i = 0; i < BITS_PER_LONG; i++) { 676 if (!mnemonics[i][0]) 677 continue; 678 if (vma->vm_flags & (1UL << i)) { 679 seq_printf(m, "%c%c ", 680 mnemonics[i][0], mnemonics[i][1]); 681 } 682 } 683 seq_putc(m, '\n'); 684 } 685 686 #ifdef CONFIG_HUGETLB_PAGE 687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 688 unsigned long addr, unsigned long end, 689 struct mm_walk *walk) 690 { 691 struct mem_size_stats *mss = walk->private; 692 struct vm_area_struct *vma = walk->vma; 693 struct page *page = NULL; 694 695 if (pte_present(*pte)) { 696 page = vm_normal_page(vma, addr, *pte); 697 } else if (is_swap_pte(*pte)) { 698 swp_entry_t swpent = pte_to_swp_entry(*pte); 699 700 if (is_migration_entry(swpent)) 701 page = migration_entry_to_page(swpent); 702 } 703 if (page) { 704 int mapcount = page_mapcount(page); 705 706 if (mapcount >= 2) 707 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 708 else 709 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 710 } 711 return 0; 712 } 713 #endif /* HUGETLB_PAGE */ 714 715 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 716 { 717 } 718 719 static int show_smap(struct seq_file *m, void *v, int is_pid) 720 { 721 struct vm_area_struct *vma = v; 722 struct mem_size_stats mss; 723 struct mm_walk smaps_walk = { 724 .pmd_entry = smaps_pte_range, 725 #ifdef CONFIG_HUGETLB_PAGE 726 .hugetlb_entry = smaps_hugetlb_range, 727 #endif 728 .mm = vma->vm_mm, 729 .private = &mss, 730 }; 731 732 memset(&mss, 0, sizeof mss); 733 734 #ifdef CONFIG_SHMEM 735 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 736 /* 737 * For shared or readonly shmem mappings we know that all 738 * swapped out pages belong to the shmem object, and we can 739 * obtain the swap value much more efficiently. For private 740 * writable mappings, we might have COW pages that are 741 * not affected by the parent swapped out pages of the shmem 742 * object, so we have to distinguish them during the page walk. 743 * Unless we know that the shmem object (or the part mapped by 744 * our VMA) has no swapped out pages at all. 745 */ 746 unsigned long shmem_swapped = shmem_swap_usage(vma); 747 748 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 749 !(vma->vm_flags & VM_WRITE)) { 750 mss.swap = shmem_swapped; 751 } else { 752 mss.check_shmem_swap = true; 753 smaps_walk.pte_hole = smaps_pte_hole; 754 } 755 } 756 #endif 757 758 /* mmap_sem is held in m_start */ 759 walk_page_vma(vma, &smaps_walk); 760 761 show_map_vma(m, vma, is_pid); 762 763 seq_printf(m, 764 "Size: %8lu kB\n" 765 "Rss: %8lu kB\n" 766 "Pss: %8lu kB\n" 767 "Shared_Clean: %8lu kB\n" 768 "Shared_Dirty: %8lu kB\n" 769 "Private_Clean: %8lu kB\n" 770 "Private_Dirty: %8lu kB\n" 771 "Referenced: %8lu kB\n" 772 "Anonymous: %8lu kB\n" 773 "AnonHugePages: %8lu kB\n" 774 "ShmemPmdMapped: %8lu kB\n" 775 "Shared_Hugetlb: %8lu kB\n" 776 "Private_Hugetlb: %7lu kB\n" 777 "Swap: %8lu kB\n" 778 "SwapPss: %8lu kB\n" 779 "KernelPageSize: %8lu kB\n" 780 "MMUPageSize: %8lu kB\n" 781 "Locked: %8lu kB\n", 782 (vma->vm_end - vma->vm_start) >> 10, 783 mss.resident >> 10, 784 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 785 mss.shared_clean >> 10, 786 mss.shared_dirty >> 10, 787 mss.private_clean >> 10, 788 mss.private_dirty >> 10, 789 mss.referenced >> 10, 790 mss.anonymous >> 10, 791 mss.anonymous_thp >> 10, 792 mss.shmem_thp >> 10, 793 mss.shared_hugetlb >> 10, 794 mss.private_hugetlb >> 10, 795 mss.swap >> 10, 796 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 797 vma_kernel_pagesize(vma) >> 10, 798 vma_mmu_pagesize(vma) >> 10, 799 (vma->vm_flags & VM_LOCKED) ? 800 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 801 802 arch_show_smap(m, vma); 803 show_smap_vma_flags(m, vma); 804 m_cache_vma(m, vma); 805 return 0; 806 } 807 808 static int show_pid_smap(struct seq_file *m, void *v) 809 { 810 return show_smap(m, v, 1); 811 } 812 813 static int show_tid_smap(struct seq_file *m, void *v) 814 { 815 return show_smap(m, v, 0); 816 } 817 818 static const struct seq_operations proc_pid_smaps_op = { 819 .start = m_start, 820 .next = m_next, 821 .stop = m_stop, 822 .show = show_pid_smap 823 }; 824 825 static const struct seq_operations proc_tid_smaps_op = { 826 .start = m_start, 827 .next = m_next, 828 .stop = m_stop, 829 .show = show_tid_smap 830 }; 831 832 static int pid_smaps_open(struct inode *inode, struct file *file) 833 { 834 return do_maps_open(inode, file, &proc_pid_smaps_op); 835 } 836 837 static int tid_smaps_open(struct inode *inode, struct file *file) 838 { 839 return do_maps_open(inode, file, &proc_tid_smaps_op); 840 } 841 842 const struct file_operations proc_pid_smaps_operations = { 843 .open = pid_smaps_open, 844 .read = seq_read, 845 .llseek = seq_lseek, 846 .release = proc_map_release, 847 }; 848 849 const struct file_operations proc_tid_smaps_operations = { 850 .open = tid_smaps_open, 851 .read = seq_read, 852 .llseek = seq_lseek, 853 .release = proc_map_release, 854 }; 855 856 enum clear_refs_types { 857 CLEAR_REFS_ALL = 1, 858 CLEAR_REFS_ANON, 859 CLEAR_REFS_MAPPED, 860 CLEAR_REFS_SOFT_DIRTY, 861 CLEAR_REFS_MM_HIWATER_RSS, 862 CLEAR_REFS_LAST, 863 }; 864 865 struct clear_refs_private { 866 enum clear_refs_types type; 867 }; 868 869 #ifdef CONFIG_MEM_SOFT_DIRTY 870 static inline void clear_soft_dirty(struct vm_area_struct *vma, 871 unsigned long addr, pte_t *pte) 872 { 873 /* 874 * The soft-dirty tracker uses #PF-s to catch writes 875 * to pages, so write-protect the pte as well. See the 876 * Documentation/vm/soft-dirty.txt for full description 877 * of how soft-dirty works. 878 */ 879 pte_t ptent = *pte; 880 881 if (pte_present(ptent)) { 882 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 883 ptent = pte_wrprotect(ptent); 884 ptent = pte_clear_soft_dirty(ptent); 885 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 886 } else if (is_swap_pte(ptent)) { 887 ptent = pte_swp_clear_soft_dirty(ptent); 888 set_pte_at(vma->vm_mm, addr, pte, ptent); 889 } 890 } 891 #else 892 static inline void clear_soft_dirty(struct vm_area_struct *vma, 893 unsigned long addr, pte_t *pte) 894 { 895 } 896 #endif 897 898 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 899 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 900 unsigned long addr, pmd_t *pmdp) 901 { 902 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 903 904 pmd = pmd_wrprotect(pmd); 905 pmd = pmd_clear_soft_dirty(pmd); 906 907 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 908 } 909 #else 910 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 911 unsigned long addr, pmd_t *pmdp) 912 { 913 } 914 #endif 915 916 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 917 unsigned long end, struct mm_walk *walk) 918 { 919 struct clear_refs_private *cp = walk->private; 920 struct vm_area_struct *vma = walk->vma; 921 pte_t *pte, ptent; 922 spinlock_t *ptl; 923 struct page *page; 924 925 ptl = pmd_trans_huge_lock(pmd, vma); 926 if (ptl) { 927 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 928 clear_soft_dirty_pmd(vma, addr, pmd); 929 goto out; 930 } 931 932 page = pmd_page(*pmd); 933 934 /* Clear accessed and referenced bits. */ 935 pmdp_test_and_clear_young(vma, addr, pmd); 936 test_and_clear_page_young(page); 937 ClearPageReferenced(page); 938 out: 939 spin_unlock(ptl); 940 return 0; 941 } 942 943 if (pmd_trans_unstable(pmd)) 944 return 0; 945 946 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 947 for (; addr != end; pte++, addr += PAGE_SIZE) { 948 ptent = *pte; 949 950 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 951 clear_soft_dirty(vma, addr, pte); 952 continue; 953 } 954 955 if (!pte_present(ptent)) 956 continue; 957 958 page = vm_normal_page(vma, addr, ptent); 959 if (!page) 960 continue; 961 962 /* Clear accessed and referenced bits. */ 963 ptep_test_and_clear_young(vma, addr, pte); 964 test_and_clear_page_young(page); 965 ClearPageReferenced(page); 966 } 967 pte_unmap_unlock(pte - 1, ptl); 968 cond_resched(); 969 return 0; 970 } 971 972 static int clear_refs_test_walk(unsigned long start, unsigned long end, 973 struct mm_walk *walk) 974 { 975 struct clear_refs_private *cp = walk->private; 976 struct vm_area_struct *vma = walk->vma; 977 978 if (vma->vm_flags & VM_PFNMAP) 979 return 1; 980 981 /* 982 * Writing 1 to /proc/pid/clear_refs affects all pages. 983 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 984 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 985 * Writing 4 to /proc/pid/clear_refs affects all pages. 986 */ 987 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 988 return 1; 989 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 990 return 1; 991 return 0; 992 } 993 994 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 995 size_t count, loff_t *ppos) 996 { 997 struct task_struct *task; 998 char buffer[PROC_NUMBUF]; 999 struct mm_struct *mm; 1000 struct vm_area_struct *vma; 1001 enum clear_refs_types type; 1002 int itype; 1003 int rv; 1004 1005 memset(buffer, 0, sizeof(buffer)); 1006 if (count > sizeof(buffer) - 1) 1007 count = sizeof(buffer) - 1; 1008 if (copy_from_user(buffer, buf, count)) 1009 return -EFAULT; 1010 rv = kstrtoint(strstrip(buffer), 10, &itype); 1011 if (rv < 0) 1012 return rv; 1013 type = (enum clear_refs_types)itype; 1014 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1015 return -EINVAL; 1016 1017 task = get_proc_task(file_inode(file)); 1018 if (!task) 1019 return -ESRCH; 1020 mm = get_task_mm(task); 1021 if (mm) { 1022 struct clear_refs_private cp = { 1023 .type = type, 1024 }; 1025 struct mm_walk clear_refs_walk = { 1026 .pmd_entry = clear_refs_pte_range, 1027 .test_walk = clear_refs_test_walk, 1028 .mm = mm, 1029 .private = &cp, 1030 }; 1031 1032 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1033 if (down_write_killable(&mm->mmap_sem)) { 1034 count = -EINTR; 1035 goto out_mm; 1036 } 1037 1038 /* 1039 * Writing 5 to /proc/pid/clear_refs resets the peak 1040 * resident set size to this mm's current rss value. 1041 */ 1042 reset_mm_hiwater_rss(mm); 1043 up_write(&mm->mmap_sem); 1044 goto out_mm; 1045 } 1046 1047 down_read(&mm->mmap_sem); 1048 if (type == CLEAR_REFS_SOFT_DIRTY) { 1049 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1050 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1051 continue; 1052 up_read(&mm->mmap_sem); 1053 if (down_write_killable(&mm->mmap_sem)) { 1054 count = -EINTR; 1055 goto out_mm; 1056 } 1057 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1058 vma->vm_flags &= ~VM_SOFTDIRTY; 1059 vma_set_page_prot(vma); 1060 } 1061 downgrade_write(&mm->mmap_sem); 1062 break; 1063 } 1064 mmu_notifier_invalidate_range_start(mm, 0, -1); 1065 } 1066 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); 1067 if (type == CLEAR_REFS_SOFT_DIRTY) 1068 mmu_notifier_invalidate_range_end(mm, 0, -1); 1069 flush_tlb_mm(mm); 1070 up_read(&mm->mmap_sem); 1071 out_mm: 1072 mmput(mm); 1073 } 1074 put_task_struct(task); 1075 1076 return count; 1077 } 1078 1079 const struct file_operations proc_clear_refs_operations = { 1080 .write = clear_refs_write, 1081 .llseek = noop_llseek, 1082 }; 1083 1084 typedef struct { 1085 u64 pme; 1086 } pagemap_entry_t; 1087 1088 struct pagemapread { 1089 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1090 pagemap_entry_t *buffer; 1091 bool show_pfn; 1092 }; 1093 1094 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1095 #define PAGEMAP_WALK_MASK (PMD_MASK) 1096 1097 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1098 #define PM_PFRAME_BITS 55 1099 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1100 #define PM_SOFT_DIRTY BIT_ULL(55) 1101 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1102 #define PM_FILE BIT_ULL(61) 1103 #define PM_SWAP BIT_ULL(62) 1104 #define PM_PRESENT BIT_ULL(63) 1105 1106 #define PM_END_OF_BUFFER 1 1107 1108 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1109 { 1110 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1111 } 1112 1113 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1114 struct pagemapread *pm) 1115 { 1116 pm->buffer[pm->pos++] = *pme; 1117 if (pm->pos >= pm->len) 1118 return PM_END_OF_BUFFER; 1119 return 0; 1120 } 1121 1122 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1123 struct mm_walk *walk) 1124 { 1125 struct pagemapread *pm = walk->private; 1126 unsigned long addr = start; 1127 int err = 0; 1128 1129 while (addr < end) { 1130 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1131 pagemap_entry_t pme = make_pme(0, 0); 1132 /* End of address space hole, which we mark as non-present. */ 1133 unsigned long hole_end; 1134 1135 if (vma) 1136 hole_end = min(end, vma->vm_start); 1137 else 1138 hole_end = end; 1139 1140 for (; addr < hole_end; addr += PAGE_SIZE) { 1141 err = add_to_pagemap(addr, &pme, pm); 1142 if (err) 1143 goto out; 1144 } 1145 1146 if (!vma) 1147 break; 1148 1149 /* Addresses in the VMA. */ 1150 if (vma->vm_flags & VM_SOFTDIRTY) 1151 pme = make_pme(0, PM_SOFT_DIRTY); 1152 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1153 err = add_to_pagemap(addr, &pme, pm); 1154 if (err) 1155 goto out; 1156 } 1157 } 1158 out: 1159 return err; 1160 } 1161 1162 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1163 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1164 { 1165 u64 frame = 0, flags = 0; 1166 struct page *page = NULL; 1167 1168 if (pte_present(pte)) { 1169 if (pm->show_pfn) 1170 frame = pte_pfn(pte); 1171 flags |= PM_PRESENT; 1172 page = vm_normal_page(vma, addr, pte); 1173 if (pte_soft_dirty(pte)) 1174 flags |= PM_SOFT_DIRTY; 1175 } else if (is_swap_pte(pte)) { 1176 swp_entry_t entry; 1177 if (pte_swp_soft_dirty(pte)) 1178 flags |= PM_SOFT_DIRTY; 1179 entry = pte_to_swp_entry(pte); 1180 frame = swp_type(entry) | 1181 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1182 flags |= PM_SWAP; 1183 if (is_migration_entry(entry)) 1184 page = migration_entry_to_page(entry); 1185 } 1186 1187 if (page && !PageAnon(page)) 1188 flags |= PM_FILE; 1189 if (page && page_mapcount(page) == 1) 1190 flags |= PM_MMAP_EXCLUSIVE; 1191 if (vma->vm_flags & VM_SOFTDIRTY) 1192 flags |= PM_SOFT_DIRTY; 1193 1194 return make_pme(frame, flags); 1195 } 1196 1197 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1198 struct mm_walk *walk) 1199 { 1200 struct vm_area_struct *vma = walk->vma; 1201 struct pagemapread *pm = walk->private; 1202 spinlock_t *ptl; 1203 pte_t *pte, *orig_pte; 1204 int err = 0; 1205 1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1207 ptl = pmd_trans_huge_lock(pmdp, vma); 1208 if (ptl) { 1209 u64 flags = 0, frame = 0; 1210 pmd_t pmd = *pmdp; 1211 1212 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1213 flags |= PM_SOFT_DIRTY; 1214 1215 /* 1216 * Currently pmd for thp is always present because thp 1217 * can not be swapped-out, migrated, or HWPOISONed 1218 * (split in such cases instead.) 1219 * This if-check is just to prepare for future implementation. 1220 */ 1221 if (pmd_present(pmd)) { 1222 struct page *page = pmd_page(pmd); 1223 1224 if (page_mapcount(page) == 1) 1225 flags |= PM_MMAP_EXCLUSIVE; 1226 1227 flags |= PM_PRESENT; 1228 if (pm->show_pfn) 1229 frame = pmd_pfn(pmd) + 1230 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1231 } 1232 1233 for (; addr != end; addr += PAGE_SIZE) { 1234 pagemap_entry_t pme = make_pme(frame, flags); 1235 1236 err = add_to_pagemap(addr, &pme, pm); 1237 if (err) 1238 break; 1239 if (pm->show_pfn && (flags & PM_PRESENT)) 1240 frame++; 1241 } 1242 spin_unlock(ptl); 1243 return err; 1244 } 1245 1246 if (pmd_trans_unstable(pmdp)) 1247 return 0; 1248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1249 1250 /* 1251 * We can assume that @vma always points to a valid one and @end never 1252 * goes beyond vma->vm_end. 1253 */ 1254 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1255 for (; addr < end; pte++, addr += PAGE_SIZE) { 1256 pagemap_entry_t pme; 1257 1258 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1259 err = add_to_pagemap(addr, &pme, pm); 1260 if (err) 1261 break; 1262 } 1263 pte_unmap_unlock(orig_pte, ptl); 1264 1265 cond_resched(); 1266 1267 return err; 1268 } 1269 1270 #ifdef CONFIG_HUGETLB_PAGE 1271 /* This function walks within one hugetlb entry in the single call */ 1272 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1273 unsigned long addr, unsigned long end, 1274 struct mm_walk *walk) 1275 { 1276 struct pagemapread *pm = walk->private; 1277 struct vm_area_struct *vma = walk->vma; 1278 u64 flags = 0, frame = 0; 1279 int err = 0; 1280 pte_t pte; 1281 1282 if (vma->vm_flags & VM_SOFTDIRTY) 1283 flags |= PM_SOFT_DIRTY; 1284 1285 pte = huge_ptep_get(ptep); 1286 if (pte_present(pte)) { 1287 struct page *page = pte_page(pte); 1288 1289 if (!PageAnon(page)) 1290 flags |= PM_FILE; 1291 1292 if (page_mapcount(page) == 1) 1293 flags |= PM_MMAP_EXCLUSIVE; 1294 1295 flags |= PM_PRESENT; 1296 if (pm->show_pfn) 1297 frame = pte_pfn(pte) + 1298 ((addr & ~hmask) >> PAGE_SHIFT); 1299 } 1300 1301 for (; addr != end; addr += PAGE_SIZE) { 1302 pagemap_entry_t pme = make_pme(frame, flags); 1303 1304 err = add_to_pagemap(addr, &pme, pm); 1305 if (err) 1306 return err; 1307 if (pm->show_pfn && (flags & PM_PRESENT)) 1308 frame++; 1309 } 1310 1311 cond_resched(); 1312 1313 return err; 1314 } 1315 #endif /* HUGETLB_PAGE */ 1316 1317 /* 1318 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1319 * 1320 * For each page in the address space, this file contains one 64-bit entry 1321 * consisting of the following: 1322 * 1323 * Bits 0-54 page frame number (PFN) if present 1324 * Bits 0-4 swap type if swapped 1325 * Bits 5-54 swap offset if swapped 1326 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1327 * Bit 56 page exclusively mapped 1328 * Bits 57-60 zero 1329 * Bit 61 page is file-page or shared-anon 1330 * Bit 62 page swapped 1331 * Bit 63 page present 1332 * 1333 * If the page is not present but in swap, then the PFN contains an 1334 * encoding of the swap file number and the page's offset into the 1335 * swap. Unmapped pages return a null PFN. This allows determining 1336 * precisely which pages are mapped (or in swap) and comparing mapped 1337 * pages between processes. 1338 * 1339 * Efficient users of this interface will use /proc/pid/maps to 1340 * determine which areas of memory are actually mapped and llseek to 1341 * skip over unmapped regions. 1342 */ 1343 static ssize_t pagemap_read(struct file *file, char __user *buf, 1344 size_t count, loff_t *ppos) 1345 { 1346 struct mm_struct *mm = file->private_data; 1347 struct pagemapread pm; 1348 struct mm_walk pagemap_walk = {}; 1349 unsigned long src; 1350 unsigned long svpfn; 1351 unsigned long start_vaddr; 1352 unsigned long end_vaddr; 1353 int ret = 0, copied = 0; 1354 1355 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1356 goto out; 1357 1358 ret = -EINVAL; 1359 /* file position must be aligned */ 1360 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1361 goto out_mm; 1362 1363 ret = 0; 1364 if (!count) 1365 goto out_mm; 1366 1367 /* do not disclose physical addresses: attack vector */ 1368 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1369 1370 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1371 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1372 ret = -ENOMEM; 1373 if (!pm.buffer) 1374 goto out_mm; 1375 1376 pagemap_walk.pmd_entry = pagemap_pmd_range; 1377 pagemap_walk.pte_hole = pagemap_pte_hole; 1378 #ifdef CONFIG_HUGETLB_PAGE 1379 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1380 #endif 1381 pagemap_walk.mm = mm; 1382 pagemap_walk.private = ± 1383 1384 src = *ppos; 1385 svpfn = src / PM_ENTRY_BYTES; 1386 start_vaddr = svpfn << PAGE_SHIFT; 1387 end_vaddr = mm->task_size; 1388 1389 /* watch out for wraparound */ 1390 if (svpfn > mm->task_size >> PAGE_SHIFT) 1391 start_vaddr = end_vaddr; 1392 1393 /* 1394 * The odds are that this will stop walking way 1395 * before end_vaddr, because the length of the 1396 * user buffer is tracked in "pm", and the walk 1397 * will stop when we hit the end of the buffer. 1398 */ 1399 ret = 0; 1400 while (count && (start_vaddr < end_vaddr)) { 1401 int len; 1402 unsigned long end; 1403 1404 pm.pos = 0; 1405 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1406 /* overflow ? */ 1407 if (end < start_vaddr || end > end_vaddr) 1408 end = end_vaddr; 1409 down_read(&mm->mmap_sem); 1410 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1411 up_read(&mm->mmap_sem); 1412 start_vaddr = end; 1413 1414 len = min(count, PM_ENTRY_BYTES * pm.pos); 1415 if (copy_to_user(buf, pm.buffer, len)) { 1416 ret = -EFAULT; 1417 goto out_free; 1418 } 1419 copied += len; 1420 buf += len; 1421 count -= len; 1422 } 1423 *ppos += copied; 1424 if (!ret || ret == PM_END_OF_BUFFER) 1425 ret = copied; 1426 1427 out_free: 1428 kfree(pm.buffer); 1429 out_mm: 1430 mmput(mm); 1431 out: 1432 return ret; 1433 } 1434 1435 static int pagemap_open(struct inode *inode, struct file *file) 1436 { 1437 struct mm_struct *mm; 1438 1439 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1440 if (IS_ERR(mm)) 1441 return PTR_ERR(mm); 1442 file->private_data = mm; 1443 return 0; 1444 } 1445 1446 static int pagemap_release(struct inode *inode, struct file *file) 1447 { 1448 struct mm_struct *mm = file->private_data; 1449 1450 if (mm) 1451 mmdrop(mm); 1452 return 0; 1453 } 1454 1455 const struct file_operations proc_pagemap_operations = { 1456 .llseek = mem_lseek, /* borrow this */ 1457 .read = pagemap_read, 1458 .open = pagemap_open, 1459 .release = pagemap_release, 1460 }; 1461 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1462 1463 #ifdef CONFIG_NUMA 1464 1465 struct numa_maps { 1466 unsigned long pages; 1467 unsigned long anon; 1468 unsigned long active; 1469 unsigned long writeback; 1470 unsigned long mapcount_max; 1471 unsigned long dirty; 1472 unsigned long swapcache; 1473 unsigned long node[MAX_NUMNODES]; 1474 }; 1475 1476 struct numa_maps_private { 1477 struct proc_maps_private proc_maps; 1478 struct numa_maps md; 1479 }; 1480 1481 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1482 unsigned long nr_pages) 1483 { 1484 int count = page_mapcount(page); 1485 1486 md->pages += nr_pages; 1487 if (pte_dirty || PageDirty(page)) 1488 md->dirty += nr_pages; 1489 1490 if (PageSwapCache(page)) 1491 md->swapcache += nr_pages; 1492 1493 if (PageActive(page) || PageUnevictable(page)) 1494 md->active += nr_pages; 1495 1496 if (PageWriteback(page)) 1497 md->writeback += nr_pages; 1498 1499 if (PageAnon(page)) 1500 md->anon += nr_pages; 1501 1502 if (count > md->mapcount_max) 1503 md->mapcount_max = count; 1504 1505 md->node[page_to_nid(page)] += nr_pages; 1506 } 1507 1508 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1509 unsigned long addr) 1510 { 1511 struct page *page; 1512 int nid; 1513 1514 if (!pte_present(pte)) 1515 return NULL; 1516 1517 page = vm_normal_page(vma, addr, pte); 1518 if (!page) 1519 return NULL; 1520 1521 if (PageReserved(page)) 1522 return NULL; 1523 1524 nid = page_to_nid(page); 1525 if (!node_isset(nid, node_states[N_MEMORY])) 1526 return NULL; 1527 1528 return page; 1529 } 1530 1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1532 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1533 struct vm_area_struct *vma, 1534 unsigned long addr) 1535 { 1536 struct page *page; 1537 int nid; 1538 1539 if (!pmd_present(pmd)) 1540 return NULL; 1541 1542 page = vm_normal_page_pmd(vma, addr, pmd); 1543 if (!page) 1544 return NULL; 1545 1546 if (PageReserved(page)) 1547 return NULL; 1548 1549 nid = page_to_nid(page); 1550 if (!node_isset(nid, node_states[N_MEMORY])) 1551 return NULL; 1552 1553 return page; 1554 } 1555 #endif 1556 1557 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1558 unsigned long end, struct mm_walk *walk) 1559 { 1560 struct numa_maps *md = walk->private; 1561 struct vm_area_struct *vma = walk->vma; 1562 spinlock_t *ptl; 1563 pte_t *orig_pte; 1564 pte_t *pte; 1565 1566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1567 ptl = pmd_trans_huge_lock(pmd, vma); 1568 if (ptl) { 1569 struct page *page; 1570 1571 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1572 if (page) 1573 gather_stats(page, md, pmd_dirty(*pmd), 1574 HPAGE_PMD_SIZE/PAGE_SIZE); 1575 spin_unlock(ptl); 1576 return 0; 1577 } 1578 1579 if (pmd_trans_unstable(pmd)) 1580 return 0; 1581 #endif 1582 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1583 do { 1584 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1585 if (!page) 1586 continue; 1587 gather_stats(page, md, pte_dirty(*pte), 1); 1588 1589 } while (pte++, addr += PAGE_SIZE, addr != end); 1590 pte_unmap_unlock(orig_pte, ptl); 1591 cond_resched(); 1592 return 0; 1593 } 1594 #ifdef CONFIG_HUGETLB_PAGE 1595 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1596 unsigned long addr, unsigned long end, struct mm_walk *walk) 1597 { 1598 pte_t huge_pte = huge_ptep_get(pte); 1599 struct numa_maps *md; 1600 struct page *page; 1601 1602 if (!pte_present(huge_pte)) 1603 return 0; 1604 1605 page = pte_page(huge_pte); 1606 if (!page) 1607 return 0; 1608 1609 md = walk->private; 1610 gather_stats(page, md, pte_dirty(huge_pte), 1); 1611 return 0; 1612 } 1613 1614 #else 1615 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1616 unsigned long addr, unsigned long end, struct mm_walk *walk) 1617 { 1618 return 0; 1619 } 1620 #endif 1621 1622 /* 1623 * Display pages allocated per node and memory policy via /proc. 1624 */ 1625 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1626 { 1627 struct numa_maps_private *numa_priv = m->private; 1628 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1629 struct vm_area_struct *vma = v; 1630 struct numa_maps *md = &numa_priv->md; 1631 struct file *file = vma->vm_file; 1632 struct mm_struct *mm = vma->vm_mm; 1633 struct mm_walk walk = { 1634 .hugetlb_entry = gather_hugetlb_stats, 1635 .pmd_entry = gather_pte_stats, 1636 .private = md, 1637 .mm = mm, 1638 }; 1639 struct mempolicy *pol; 1640 char buffer[64]; 1641 int nid; 1642 1643 if (!mm) 1644 return 0; 1645 1646 /* Ensure we start with an empty set of numa_maps statistics. */ 1647 memset(md, 0, sizeof(*md)); 1648 1649 pol = __get_vma_policy(vma, vma->vm_start); 1650 if (pol) { 1651 mpol_to_str(buffer, sizeof(buffer), pol); 1652 mpol_cond_put(pol); 1653 } else { 1654 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1655 } 1656 1657 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1658 1659 if (file) { 1660 seq_puts(m, " file="); 1661 seq_file_path(m, file, "\n\t= "); 1662 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1663 seq_puts(m, " heap"); 1664 } else if (is_stack(proc_priv, vma)) { 1665 seq_puts(m, " stack"); 1666 } 1667 1668 if (is_vm_hugetlb_page(vma)) 1669 seq_puts(m, " huge"); 1670 1671 /* mmap_sem is held by m_start */ 1672 walk_page_vma(vma, &walk); 1673 1674 if (!md->pages) 1675 goto out; 1676 1677 if (md->anon) 1678 seq_printf(m, " anon=%lu", md->anon); 1679 1680 if (md->dirty) 1681 seq_printf(m, " dirty=%lu", md->dirty); 1682 1683 if (md->pages != md->anon && md->pages != md->dirty) 1684 seq_printf(m, " mapped=%lu", md->pages); 1685 1686 if (md->mapcount_max > 1) 1687 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1688 1689 if (md->swapcache) 1690 seq_printf(m, " swapcache=%lu", md->swapcache); 1691 1692 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1693 seq_printf(m, " active=%lu", md->active); 1694 1695 if (md->writeback) 1696 seq_printf(m, " writeback=%lu", md->writeback); 1697 1698 for_each_node_state(nid, N_MEMORY) 1699 if (md->node[nid]) 1700 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1701 1702 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1703 out: 1704 seq_putc(m, '\n'); 1705 m_cache_vma(m, vma); 1706 return 0; 1707 } 1708 1709 static int show_pid_numa_map(struct seq_file *m, void *v) 1710 { 1711 return show_numa_map(m, v, 1); 1712 } 1713 1714 static int show_tid_numa_map(struct seq_file *m, void *v) 1715 { 1716 return show_numa_map(m, v, 0); 1717 } 1718 1719 static const struct seq_operations proc_pid_numa_maps_op = { 1720 .start = m_start, 1721 .next = m_next, 1722 .stop = m_stop, 1723 .show = show_pid_numa_map, 1724 }; 1725 1726 static const struct seq_operations proc_tid_numa_maps_op = { 1727 .start = m_start, 1728 .next = m_next, 1729 .stop = m_stop, 1730 .show = show_tid_numa_map, 1731 }; 1732 1733 static int numa_maps_open(struct inode *inode, struct file *file, 1734 const struct seq_operations *ops) 1735 { 1736 return proc_maps_open(inode, file, ops, 1737 sizeof(struct numa_maps_private)); 1738 } 1739 1740 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1741 { 1742 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1743 } 1744 1745 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1746 { 1747 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1748 } 1749 1750 const struct file_operations proc_pid_numa_maps_operations = { 1751 .open = pid_numa_maps_open, 1752 .read = seq_read, 1753 .llseek = seq_lseek, 1754 .release = proc_map_release, 1755 }; 1756 1757 const struct file_operations proc_tid_numa_maps_operations = { 1758 .open = tid_numa_maps_open, 1759 .read = seq_read, 1760 .llseek = seq_lseek, 1761 .release = proc_map_release, 1762 }; 1763 #endif /* CONFIG_NUMA */ 1764