xref: /openbmc/linux/fs/proc/task_mmu.c (revision e4781421e883340b796da5a724bda7226817990b)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/elf.h>
20 #include <linux/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23 
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 
29 	anon = get_mm_counter(mm, MM_ANONPAGES);
30 	file = get_mm_counter(mm, MM_FILEPAGES);
31 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32 
33 	/*
34 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
36 	 * collector of these hiwater stats must therefore get total_vm
37 	 * and rss too, which will usually be the higher.  Barriers? not
38 	 * worth the effort, such snapshots can always be inconsistent.
39 	 */
40 	hiwater_vm = total_vm = mm->total_vm;
41 	if (hiwater_vm < mm->hiwater_vm)
42 		hiwater_vm = mm->hiwater_vm;
43 	hiwater_rss = total_rss = anon + file + shmem;
44 	if (hiwater_rss < mm->hiwater_rss)
45 		hiwater_rss = mm->hiwater_rss;
46 
47 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 	swap = get_mm_counter(mm, MM_SWAPENTS);
50 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 	seq_printf(m,
53 		"VmPeak:\t%8lu kB\n"
54 		"VmSize:\t%8lu kB\n"
55 		"VmLck:\t%8lu kB\n"
56 		"VmPin:\t%8lu kB\n"
57 		"VmHWM:\t%8lu kB\n"
58 		"VmRSS:\t%8lu kB\n"
59 		"RssAnon:\t%8lu kB\n"
60 		"RssFile:\t%8lu kB\n"
61 		"RssShmem:\t%8lu kB\n"
62 		"VmData:\t%8lu kB\n"
63 		"VmStk:\t%8lu kB\n"
64 		"VmExe:\t%8lu kB\n"
65 		"VmLib:\t%8lu kB\n"
66 		"VmPTE:\t%8lu kB\n"
67 		"VmPMD:\t%8lu kB\n"
68 		"VmSwap:\t%8lu kB\n",
69 		hiwater_vm << (PAGE_SHIFT-10),
70 		total_vm << (PAGE_SHIFT-10),
71 		mm->locked_vm << (PAGE_SHIFT-10),
72 		mm->pinned_vm << (PAGE_SHIFT-10),
73 		hiwater_rss << (PAGE_SHIFT-10),
74 		total_rss << (PAGE_SHIFT-10),
75 		anon << (PAGE_SHIFT-10),
76 		file << (PAGE_SHIFT-10),
77 		shmem << (PAGE_SHIFT-10),
78 		mm->data_vm << (PAGE_SHIFT-10),
79 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 		ptes >> 10,
81 		pmds >> 10,
82 		swap << (PAGE_SHIFT-10));
83 	hugetlb_report_usage(m, mm);
84 }
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 	struct mm_struct *mm = priv->mm;
133 
134 	release_task_mempolicy(priv);
135 	up_read(&mm->mmap_sem);
136 	mmput(mm);
137 }
138 
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 	if (vma == priv->tail_vma)
143 		return NULL;
144 	return vma->vm_next ?: priv->tail_vma;
145 }
146 
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 	if (m->count < m->size)	/* vma is copied successfully */
150 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 }
152 
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 	struct proc_maps_private *priv = m->private;
156 	unsigned long last_addr = m->version;
157 	struct mm_struct *mm;
158 	struct vm_area_struct *vma;
159 	unsigned int pos = *ppos;
160 
161 	/* See m_cache_vma(). Zero at the start or after lseek. */
162 	if (last_addr == -1UL)
163 		return NULL;
164 
165 	priv->task = get_proc_task(priv->inode);
166 	if (!priv->task)
167 		return ERR_PTR(-ESRCH);
168 
169 	mm = priv->mm;
170 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 		return NULL;
172 
173 	down_read(&mm->mmap_sem);
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr - 1);
179 		if (vma && vma->vm_start <= last_addr)
180 			vma = m_next_vma(priv, vma);
181 		if (vma)
182 			return vma;
183 	}
184 
185 	m->version = 0;
186 	if (pos < mm->map_count) {
187 		for (vma = mm->mmap; pos; pos--) {
188 			m->version = vma->vm_start;
189 			vma = vma->vm_next;
190 		}
191 		return vma;
192 	}
193 
194 	/* we do not bother to update m->version in this case */
195 	if (pos == mm->map_count && priv->tail_vma)
196 		return priv->tail_vma;
197 
198 	vma_stop(priv);
199 	return NULL;
200 }
201 
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 	struct proc_maps_private *priv = m->private;
205 	struct vm_area_struct *next;
206 
207 	(*pos)++;
208 	next = m_next_vma(priv, v);
209 	if (!next)
210 		vma_stop(priv);
211 	return next;
212 }
213 
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 	struct proc_maps_private *priv = m->private;
217 
218 	if (!IS_ERR_OR_NULL(v))
219 		vma_stop(priv);
220 	if (priv->task) {
221 		put_task_struct(priv->task);
222 		priv->task = NULL;
223 	}
224 }
225 
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 			const struct seq_operations *ops, int psize)
228 {
229 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230 
231 	if (!priv)
232 		return -ENOMEM;
233 
234 	priv->inode = inode;
235 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 	if (IS_ERR(priv->mm)) {
237 		int err = PTR_ERR(priv->mm);
238 
239 		seq_release_private(inode, file);
240 		return err;
241 	}
242 
243 	return 0;
244 }
245 
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 	struct seq_file *seq = file->private_data;
249 	struct proc_maps_private *priv = seq->private;
250 
251 	if (priv->mm)
252 		mmdrop(priv->mm);
253 
254 	return seq_release_private(inode, file);
255 }
256 
257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct proc_maps_private *priv,
269 		    struct vm_area_struct *vma)
270 {
271 	/*
272 	 * We make no effort to guess what a given thread considers to be
273 	 * its "stack".  It's not even well-defined for programs written
274 	 * languages like Go.
275 	 */
276 	return vma->vm_start <= vma->vm_mm->start_stack &&
277 		vma->vm_end >= vma->vm_mm->start_stack;
278 }
279 
280 static void
281 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
282 {
283 	struct mm_struct *mm = vma->vm_mm;
284 	struct file *file = vma->vm_file;
285 	struct proc_maps_private *priv = m->private;
286 	vm_flags_t flags = vma->vm_flags;
287 	unsigned long ino = 0;
288 	unsigned long long pgoff = 0;
289 	unsigned long start, end;
290 	dev_t dev = 0;
291 	const char *name = NULL;
292 
293 	if (file) {
294 		struct inode *inode = file_inode(vma->vm_file);
295 		dev = inode->i_sb->s_dev;
296 		ino = inode->i_ino;
297 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
298 	}
299 
300 	/* We don't show the stack guard page in /proc/maps */
301 	start = vma->vm_start;
302 	if (stack_guard_page_start(vma, start))
303 		start += PAGE_SIZE;
304 	end = vma->vm_end;
305 	if (stack_guard_page_end(vma, end))
306 		end -= PAGE_SIZE;
307 
308 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
309 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310 			start,
311 			end,
312 			flags & VM_READ ? 'r' : '-',
313 			flags & VM_WRITE ? 'w' : '-',
314 			flags & VM_EXEC ? 'x' : '-',
315 			flags & VM_MAYSHARE ? 's' : 'p',
316 			pgoff,
317 			MAJOR(dev), MINOR(dev), ino);
318 
319 	/*
320 	 * Print the dentry name for named mappings, and a
321 	 * special [heap] marker for the heap:
322 	 */
323 	if (file) {
324 		seq_pad(m, ' ');
325 		seq_file_path(m, file, "\n");
326 		goto done;
327 	}
328 
329 	if (vma->vm_ops && vma->vm_ops->name) {
330 		name = vma->vm_ops->name(vma);
331 		if (name)
332 			goto done;
333 	}
334 
335 	name = arch_vma_name(vma);
336 	if (!name) {
337 		if (!mm) {
338 			name = "[vdso]";
339 			goto done;
340 		}
341 
342 		if (vma->vm_start <= mm->brk &&
343 		    vma->vm_end >= mm->start_brk) {
344 			name = "[heap]";
345 			goto done;
346 		}
347 
348 		if (is_stack(priv, vma))
349 			name = "[stack]";
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	unsigned long resident;
437 	unsigned long shared_clean;
438 	unsigned long shared_dirty;
439 	unsigned long private_clean;
440 	unsigned long private_dirty;
441 	unsigned long referenced;
442 	unsigned long anonymous;
443 	unsigned long anonymous_thp;
444 	unsigned long shmem_thp;
445 	unsigned long swap;
446 	unsigned long shared_hugetlb;
447 	unsigned long private_hugetlb;
448 	u64 pss;
449 	u64 swap_pss;
450 	bool check_shmem_swap;
451 };
452 
453 static void smaps_account(struct mem_size_stats *mss, struct page *page,
454 		bool compound, bool young, bool dirty)
455 {
456 	int i, nr = compound ? 1 << compound_order(page) : 1;
457 	unsigned long size = nr * PAGE_SIZE;
458 
459 	if (PageAnon(page))
460 		mss->anonymous += size;
461 
462 	mss->resident += size;
463 	/* Accumulate the size in pages that have been accessed. */
464 	if (young || page_is_young(page) || PageReferenced(page))
465 		mss->referenced += size;
466 
467 	/*
468 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 	 * If any subpage of the compound page mapped with PTE it would elevate
470 	 * page_count().
471 	 */
472 	if (page_count(page) == 1) {
473 		if (dirty || PageDirty(page))
474 			mss->private_dirty += size;
475 		else
476 			mss->private_clean += size;
477 		mss->pss += (u64)size << PSS_SHIFT;
478 		return;
479 	}
480 
481 	for (i = 0; i < nr; i++, page++) {
482 		int mapcount = page_mapcount(page);
483 
484 		if (mapcount >= 2) {
485 			if (dirty || PageDirty(page))
486 				mss->shared_dirty += PAGE_SIZE;
487 			else
488 				mss->shared_clean += PAGE_SIZE;
489 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
490 		} else {
491 			if (dirty || PageDirty(page))
492 				mss->private_dirty += PAGE_SIZE;
493 			else
494 				mss->private_clean += PAGE_SIZE;
495 			mss->pss += PAGE_SIZE << PSS_SHIFT;
496 		}
497 	}
498 }
499 
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502 		struct mm_walk *walk)
503 {
504 	struct mem_size_stats *mss = walk->private;
505 
506 	mss->swap += shmem_partial_swap_usage(
507 			walk->vma->vm_file->f_mapping, addr, end);
508 
509 	return 0;
510 }
511 #endif
512 
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514 		struct mm_walk *walk)
515 {
516 	struct mem_size_stats *mss = walk->private;
517 	struct vm_area_struct *vma = walk->vma;
518 	struct page *page = NULL;
519 
520 	if (pte_present(*pte)) {
521 		page = vm_normal_page(vma, addr, *pte);
522 	} else if (is_swap_pte(*pte)) {
523 		swp_entry_t swpent = pte_to_swp_entry(*pte);
524 
525 		if (!non_swap_entry(swpent)) {
526 			int mapcount;
527 
528 			mss->swap += PAGE_SIZE;
529 			mapcount = swp_swapcount(swpent);
530 			if (mapcount >= 2) {
531 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
532 
533 				do_div(pss_delta, mapcount);
534 				mss->swap_pss += pss_delta;
535 			} else {
536 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
537 			}
538 		} else if (is_migration_entry(swpent))
539 			page = migration_entry_to_page(swpent);
540 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
541 							&& pte_none(*pte))) {
542 		page = find_get_entry(vma->vm_file->f_mapping,
543 						linear_page_index(vma, addr));
544 		if (!page)
545 			return;
546 
547 		if (radix_tree_exceptional_entry(page))
548 			mss->swap += PAGE_SIZE;
549 		else
550 			put_page(page);
551 
552 		return;
553 	}
554 
555 	if (!page)
556 		return;
557 
558 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559 }
560 
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
563 		struct mm_walk *walk)
564 {
565 	struct mem_size_stats *mss = walk->private;
566 	struct vm_area_struct *vma = walk->vma;
567 	struct page *page;
568 
569 	/* FOLL_DUMP will return -EFAULT on huge zero page */
570 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
571 	if (IS_ERR_OR_NULL(page))
572 		return;
573 	if (PageAnon(page))
574 		mss->anonymous_thp += HPAGE_PMD_SIZE;
575 	else if (PageSwapBacked(page))
576 		mss->shmem_thp += HPAGE_PMD_SIZE;
577 	else if (is_zone_device_page(page))
578 		/* pass */;
579 	else
580 		VM_BUG_ON_PAGE(1, page);
581 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582 }
583 #else
584 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
585 		struct mm_walk *walk)
586 {
587 }
588 #endif
589 
590 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591 			   struct mm_walk *walk)
592 {
593 	struct vm_area_struct *vma = walk->vma;
594 	pte_t *pte;
595 	spinlock_t *ptl;
596 
597 	ptl = pmd_trans_huge_lock(pmd, vma);
598 	if (ptl) {
599 		smaps_pmd_entry(pmd, addr, walk);
600 		spin_unlock(ptl);
601 		return 0;
602 	}
603 
604 	if (pmd_trans_unstable(pmd))
605 		return 0;
606 	/*
607 	 * The mmap_sem held all the way back in m_start() is what
608 	 * keeps khugepaged out of here and from collapsing things
609 	 * in here.
610 	 */
611 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612 	for (; addr != end; pte++, addr += PAGE_SIZE)
613 		smaps_pte_entry(pte, addr, walk);
614 	pte_unmap_unlock(pte - 1, ptl);
615 	cond_resched();
616 	return 0;
617 }
618 
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621 	/*
622 	 * Don't forget to update Documentation/ on changes.
623 	 */
624 	static const char mnemonics[BITS_PER_LONG][2] = {
625 		/*
626 		 * In case if we meet a flag we don't know about.
627 		 */
628 		[0 ... (BITS_PER_LONG-1)] = "??",
629 
630 		[ilog2(VM_READ)]	= "rd",
631 		[ilog2(VM_WRITE)]	= "wr",
632 		[ilog2(VM_EXEC)]	= "ex",
633 		[ilog2(VM_SHARED)]	= "sh",
634 		[ilog2(VM_MAYREAD)]	= "mr",
635 		[ilog2(VM_MAYWRITE)]	= "mw",
636 		[ilog2(VM_MAYEXEC)]	= "me",
637 		[ilog2(VM_MAYSHARE)]	= "ms",
638 		[ilog2(VM_GROWSDOWN)]	= "gd",
639 		[ilog2(VM_PFNMAP)]	= "pf",
640 		[ilog2(VM_DENYWRITE)]	= "dw",
641 #ifdef CONFIG_X86_INTEL_MPX
642 		[ilog2(VM_MPX)]		= "mp",
643 #endif
644 		[ilog2(VM_LOCKED)]	= "lo",
645 		[ilog2(VM_IO)]		= "io",
646 		[ilog2(VM_SEQ_READ)]	= "sr",
647 		[ilog2(VM_RAND_READ)]	= "rr",
648 		[ilog2(VM_DONTCOPY)]	= "dc",
649 		[ilog2(VM_DONTEXPAND)]	= "de",
650 		[ilog2(VM_ACCOUNT)]	= "ac",
651 		[ilog2(VM_NORESERVE)]	= "nr",
652 		[ilog2(VM_HUGETLB)]	= "ht",
653 		[ilog2(VM_ARCH_1)]	= "ar",
654 		[ilog2(VM_DONTDUMP)]	= "dd",
655 #ifdef CONFIG_MEM_SOFT_DIRTY
656 		[ilog2(VM_SOFTDIRTY)]	= "sd",
657 #endif
658 		[ilog2(VM_MIXEDMAP)]	= "mm",
659 		[ilog2(VM_HUGEPAGE)]	= "hg",
660 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
661 		[ilog2(VM_MERGEABLE)]	= "mg",
662 		[ilog2(VM_UFFD_MISSING)]= "um",
663 		[ilog2(VM_UFFD_WP)]	= "uw",
664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665 		/* These come out via ProtectionKey: */
666 		[ilog2(VM_PKEY_BIT0)]	= "",
667 		[ilog2(VM_PKEY_BIT1)]	= "",
668 		[ilog2(VM_PKEY_BIT2)]	= "",
669 		[ilog2(VM_PKEY_BIT3)]	= "",
670 #endif
671 	};
672 	size_t i;
673 
674 	seq_puts(m, "VmFlags: ");
675 	for (i = 0; i < BITS_PER_LONG; i++) {
676 		if (!mnemonics[i][0])
677 			continue;
678 		if (vma->vm_flags & (1UL << i)) {
679 			seq_printf(m, "%c%c ",
680 				   mnemonics[i][0], mnemonics[i][1]);
681 		}
682 	}
683 	seq_putc(m, '\n');
684 }
685 
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688 				 unsigned long addr, unsigned long end,
689 				 struct mm_walk *walk)
690 {
691 	struct mem_size_stats *mss = walk->private;
692 	struct vm_area_struct *vma = walk->vma;
693 	struct page *page = NULL;
694 
695 	if (pte_present(*pte)) {
696 		page = vm_normal_page(vma, addr, *pte);
697 	} else if (is_swap_pte(*pte)) {
698 		swp_entry_t swpent = pte_to_swp_entry(*pte);
699 
700 		if (is_migration_entry(swpent))
701 			page = migration_entry_to_page(swpent);
702 	}
703 	if (page) {
704 		int mapcount = page_mapcount(page);
705 
706 		if (mapcount >= 2)
707 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
708 		else
709 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
710 	}
711 	return 0;
712 }
713 #endif /* HUGETLB_PAGE */
714 
715 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
716 {
717 }
718 
719 static int show_smap(struct seq_file *m, void *v, int is_pid)
720 {
721 	struct vm_area_struct *vma = v;
722 	struct mem_size_stats mss;
723 	struct mm_walk smaps_walk = {
724 		.pmd_entry = smaps_pte_range,
725 #ifdef CONFIG_HUGETLB_PAGE
726 		.hugetlb_entry = smaps_hugetlb_range,
727 #endif
728 		.mm = vma->vm_mm,
729 		.private = &mss,
730 	};
731 
732 	memset(&mss, 0, sizeof mss);
733 
734 #ifdef CONFIG_SHMEM
735 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736 		/*
737 		 * For shared or readonly shmem mappings we know that all
738 		 * swapped out pages belong to the shmem object, and we can
739 		 * obtain the swap value much more efficiently. For private
740 		 * writable mappings, we might have COW pages that are
741 		 * not affected by the parent swapped out pages of the shmem
742 		 * object, so we have to distinguish them during the page walk.
743 		 * Unless we know that the shmem object (or the part mapped by
744 		 * our VMA) has no swapped out pages at all.
745 		 */
746 		unsigned long shmem_swapped = shmem_swap_usage(vma);
747 
748 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
749 					!(vma->vm_flags & VM_WRITE)) {
750 			mss.swap = shmem_swapped;
751 		} else {
752 			mss.check_shmem_swap = true;
753 			smaps_walk.pte_hole = smaps_pte_hole;
754 		}
755 	}
756 #endif
757 
758 	/* mmap_sem is held in m_start */
759 	walk_page_vma(vma, &smaps_walk);
760 
761 	show_map_vma(m, vma, is_pid);
762 
763 	seq_printf(m,
764 		   "Size:           %8lu kB\n"
765 		   "Rss:            %8lu kB\n"
766 		   "Pss:            %8lu kB\n"
767 		   "Shared_Clean:   %8lu kB\n"
768 		   "Shared_Dirty:   %8lu kB\n"
769 		   "Private_Clean:  %8lu kB\n"
770 		   "Private_Dirty:  %8lu kB\n"
771 		   "Referenced:     %8lu kB\n"
772 		   "Anonymous:      %8lu kB\n"
773 		   "AnonHugePages:  %8lu kB\n"
774 		   "ShmemPmdMapped: %8lu kB\n"
775 		   "Shared_Hugetlb: %8lu kB\n"
776 		   "Private_Hugetlb: %7lu kB\n"
777 		   "Swap:           %8lu kB\n"
778 		   "SwapPss:        %8lu kB\n"
779 		   "KernelPageSize: %8lu kB\n"
780 		   "MMUPageSize:    %8lu kB\n"
781 		   "Locked:         %8lu kB\n",
782 		   (vma->vm_end - vma->vm_start) >> 10,
783 		   mss.resident >> 10,
784 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
785 		   mss.shared_clean  >> 10,
786 		   mss.shared_dirty  >> 10,
787 		   mss.private_clean >> 10,
788 		   mss.private_dirty >> 10,
789 		   mss.referenced >> 10,
790 		   mss.anonymous >> 10,
791 		   mss.anonymous_thp >> 10,
792 		   mss.shmem_thp >> 10,
793 		   mss.shared_hugetlb >> 10,
794 		   mss.private_hugetlb >> 10,
795 		   mss.swap >> 10,
796 		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
797 		   vma_kernel_pagesize(vma) >> 10,
798 		   vma_mmu_pagesize(vma) >> 10,
799 		   (vma->vm_flags & VM_LOCKED) ?
800 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
801 
802 	arch_show_smap(m, vma);
803 	show_smap_vma_flags(m, vma);
804 	m_cache_vma(m, vma);
805 	return 0;
806 }
807 
808 static int show_pid_smap(struct seq_file *m, void *v)
809 {
810 	return show_smap(m, v, 1);
811 }
812 
813 static int show_tid_smap(struct seq_file *m, void *v)
814 {
815 	return show_smap(m, v, 0);
816 }
817 
818 static const struct seq_operations proc_pid_smaps_op = {
819 	.start	= m_start,
820 	.next	= m_next,
821 	.stop	= m_stop,
822 	.show	= show_pid_smap
823 };
824 
825 static const struct seq_operations proc_tid_smaps_op = {
826 	.start	= m_start,
827 	.next	= m_next,
828 	.stop	= m_stop,
829 	.show	= show_tid_smap
830 };
831 
832 static int pid_smaps_open(struct inode *inode, struct file *file)
833 {
834 	return do_maps_open(inode, file, &proc_pid_smaps_op);
835 }
836 
837 static int tid_smaps_open(struct inode *inode, struct file *file)
838 {
839 	return do_maps_open(inode, file, &proc_tid_smaps_op);
840 }
841 
842 const struct file_operations proc_pid_smaps_operations = {
843 	.open		= pid_smaps_open,
844 	.read		= seq_read,
845 	.llseek		= seq_lseek,
846 	.release	= proc_map_release,
847 };
848 
849 const struct file_operations proc_tid_smaps_operations = {
850 	.open		= tid_smaps_open,
851 	.read		= seq_read,
852 	.llseek		= seq_lseek,
853 	.release	= proc_map_release,
854 };
855 
856 enum clear_refs_types {
857 	CLEAR_REFS_ALL = 1,
858 	CLEAR_REFS_ANON,
859 	CLEAR_REFS_MAPPED,
860 	CLEAR_REFS_SOFT_DIRTY,
861 	CLEAR_REFS_MM_HIWATER_RSS,
862 	CLEAR_REFS_LAST,
863 };
864 
865 struct clear_refs_private {
866 	enum clear_refs_types type;
867 };
868 
869 #ifdef CONFIG_MEM_SOFT_DIRTY
870 static inline void clear_soft_dirty(struct vm_area_struct *vma,
871 		unsigned long addr, pte_t *pte)
872 {
873 	/*
874 	 * The soft-dirty tracker uses #PF-s to catch writes
875 	 * to pages, so write-protect the pte as well. See the
876 	 * Documentation/vm/soft-dirty.txt for full description
877 	 * of how soft-dirty works.
878 	 */
879 	pte_t ptent = *pte;
880 
881 	if (pte_present(ptent)) {
882 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
883 		ptent = pte_wrprotect(ptent);
884 		ptent = pte_clear_soft_dirty(ptent);
885 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
886 	} else if (is_swap_pte(ptent)) {
887 		ptent = pte_swp_clear_soft_dirty(ptent);
888 		set_pte_at(vma->vm_mm, addr, pte, ptent);
889 	}
890 }
891 #else
892 static inline void clear_soft_dirty(struct vm_area_struct *vma,
893 		unsigned long addr, pte_t *pte)
894 {
895 }
896 #endif
897 
898 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
900 		unsigned long addr, pmd_t *pmdp)
901 {
902 	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
903 
904 	pmd = pmd_wrprotect(pmd);
905 	pmd = pmd_clear_soft_dirty(pmd);
906 
907 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
908 }
909 #else
910 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
911 		unsigned long addr, pmd_t *pmdp)
912 {
913 }
914 #endif
915 
916 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
917 				unsigned long end, struct mm_walk *walk)
918 {
919 	struct clear_refs_private *cp = walk->private;
920 	struct vm_area_struct *vma = walk->vma;
921 	pte_t *pte, ptent;
922 	spinlock_t *ptl;
923 	struct page *page;
924 
925 	ptl = pmd_trans_huge_lock(pmd, vma);
926 	if (ptl) {
927 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
928 			clear_soft_dirty_pmd(vma, addr, pmd);
929 			goto out;
930 		}
931 
932 		page = pmd_page(*pmd);
933 
934 		/* Clear accessed and referenced bits. */
935 		pmdp_test_and_clear_young(vma, addr, pmd);
936 		test_and_clear_page_young(page);
937 		ClearPageReferenced(page);
938 out:
939 		spin_unlock(ptl);
940 		return 0;
941 	}
942 
943 	if (pmd_trans_unstable(pmd))
944 		return 0;
945 
946 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
947 	for (; addr != end; pte++, addr += PAGE_SIZE) {
948 		ptent = *pte;
949 
950 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
951 			clear_soft_dirty(vma, addr, pte);
952 			continue;
953 		}
954 
955 		if (!pte_present(ptent))
956 			continue;
957 
958 		page = vm_normal_page(vma, addr, ptent);
959 		if (!page)
960 			continue;
961 
962 		/* Clear accessed and referenced bits. */
963 		ptep_test_and_clear_young(vma, addr, pte);
964 		test_and_clear_page_young(page);
965 		ClearPageReferenced(page);
966 	}
967 	pte_unmap_unlock(pte - 1, ptl);
968 	cond_resched();
969 	return 0;
970 }
971 
972 static int clear_refs_test_walk(unsigned long start, unsigned long end,
973 				struct mm_walk *walk)
974 {
975 	struct clear_refs_private *cp = walk->private;
976 	struct vm_area_struct *vma = walk->vma;
977 
978 	if (vma->vm_flags & VM_PFNMAP)
979 		return 1;
980 
981 	/*
982 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
983 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
984 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
985 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
986 	 */
987 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
988 		return 1;
989 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
990 		return 1;
991 	return 0;
992 }
993 
994 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
995 				size_t count, loff_t *ppos)
996 {
997 	struct task_struct *task;
998 	char buffer[PROC_NUMBUF];
999 	struct mm_struct *mm;
1000 	struct vm_area_struct *vma;
1001 	enum clear_refs_types type;
1002 	int itype;
1003 	int rv;
1004 
1005 	memset(buffer, 0, sizeof(buffer));
1006 	if (count > sizeof(buffer) - 1)
1007 		count = sizeof(buffer) - 1;
1008 	if (copy_from_user(buffer, buf, count))
1009 		return -EFAULT;
1010 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1011 	if (rv < 0)
1012 		return rv;
1013 	type = (enum clear_refs_types)itype;
1014 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1015 		return -EINVAL;
1016 
1017 	task = get_proc_task(file_inode(file));
1018 	if (!task)
1019 		return -ESRCH;
1020 	mm = get_task_mm(task);
1021 	if (mm) {
1022 		struct clear_refs_private cp = {
1023 			.type = type,
1024 		};
1025 		struct mm_walk clear_refs_walk = {
1026 			.pmd_entry = clear_refs_pte_range,
1027 			.test_walk = clear_refs_test_walk,
1028 			.mm = mm,
1029 			.private = &cp,
1030 		};
1031 
1032 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1033 			if (down_write_killable(&mm->mmap_sem)) {
1034 				count = -EINTR;
1035 				goto out_mm;
1036 			}
1037 
1038 			/*
1039 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1040 			 * resident set size to this mm's current rss value.
1041 			 */
1042 			reset_mm_hiwater_rss(mm);
1043 			up_write(&mm->mmap_sem);
1044 			goto out_mm;
1045 		}
1046 
1047 		down_read(&mm->mmap_sem);
1048 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1049 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1050 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1051 					continue;
1052 				up_read(&mm->mmap_sem);
1053 				if (down_write_killable(&mm->mmap_sem)) {
1054 					count = -EINTR;
1055 					goto out_mm;
1056 				}
1057 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1058 					vma->vm_flags &= ~VM_SOFTDIRTY;
1059 					vma_set_page_prot(vma);
1060 				}
1061 				downgrade_write(&mm->mmap_sem);
1062 				break;
1063 			}
1064 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1065 		}
1066 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1067 		if (type == CLEAR_REFS_SOFT_DIRTY)
1068 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1069 		flush_tlb_mm(mm);
1070 		up_read(&mm->mmap_sem);
1071 out_mm:
1072 		mmput(mm);
1073 	}
1074 	put_task_struct(task);
1075 
1076 	return count;
1077 }
1078 
1079 const struct file_operations proc_clear_refs_operations = {
1080 	.write		= clear_refs_write,
1081 	.llseek		= noop_llseek,
1082 };
1083 
1084 typedef struct {
1085 	u64 pme;
1086 } pagemap_entry_t;
1087 
1088 struct pagemapread {
1089 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1090 	pagemap_entry_t *buffer;
1091 	bool show_pfn;
1092 };
1093 
1094 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1095 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1096 
1097 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1098 #define PM_PFRAME_BITS		55
1099 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1100 #define PM_SOFT_DIRTY		BIT_ULL(55)
1101 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1102 #define PM_FILE			BIT_ULL(61)
1103 #define PM_SWAP			BIT_ULL(62)
1104 #define PM_PRESENT		BIT_ULL(63)
1105 
1106 #define PM_END_OF_BUFFER    1
1107 
1108 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1109 {
1110 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1111 }
1112 
1113 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1114 			  struct pagemapread *pm)
1115 {
1116 	pm->buffer[pm->pos++] = *pme;
1117 	if (pm->pos >= pm->len)
1118 		return PM_END_OF_BUFFER;
1119 	return 0;
1120 }
1121 
1122 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1123 				struct mm_walk *walk)
1124 {
1125 	struct pagemapread *pm = walk->private;
1126 	unsigned long addr = start;
1127 	int err = 0;
1128 
1129 	while (addr < end) {
1130 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1131 		pagemap_entry_t pme = make_pme(0, 0);
1132 		/* End of address space hole, which we mark as non-present. */
1133 		unsigned long hole_end;
1134 
1135 		if (vma)
1136 			hole_end = min(end, vma->vm_start);
1137 		else
1138 			hole_end = end;
1139 
1140 		for (; addr < hole_end; addr += PAGE_SIZE) {
1141 			err = add_to_pagemap(addr, &pme, pm);
1142 			if (err)
1143 				goto out;
1144 		}
1145 
1146 		if (!vma)
1147 			break;
1148 
1149 		/* Addresses in the VMA. */
1150 		if (vma->vm_flags & VM_SOFTDIRTY)
1151 			pme = make_pme(0, PM_SOFT_DIRTY);
1152 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1153 			err = add_to_pagemap(addr, &pme, pm);
1154 			if (err)
1155 				goto out;
1156 		}
1157 	}
1158 out:
1159 	return err;
1160 }
1161 
1162 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1163 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1164 {
1165 	u64 frame = 0, flags = 0;
1166 	struct page *page = NULL;
1167 
1168 	if (pte_present(pte)) {
1169 		if (pm->show_pfn)
1170 			frame = pte_pfn(pte);
1171 		flags |= PM_PRESENT;
1172 		page = vm_normal_page(vma, addr, pte);
1173 		if (pte_soft_dirty(pte))
1174 			flags |= PM_SOFT_DIRTY;
1175 	} else if (is_swap_pte(pte)) {
1176 		swp_entry_t entry;
1177 		if (pte_swp_soft_dirty(pte))
1178 			flags |= PM_SOFT_DIRTY;
1179 		entry = pte_to_swp_entry(pte);
1180 		frame = swp_type(entry) |
1181 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1182 		flags |= PM_SWAP;
1183 		if (is_migration_entry(entry))
1184 			page = migration_entry_to_page(entry);
1185 	}
1186 
1187 	if (page && !PageAnon(page))
1188 		flags |= PM_FILE;
1189 	if (page && page_mapcount(page) == 1)
1190 		flags |= PM_MMAP_EXCLUSIVE;
1191 	if (vma->vm_flags & VM_SOFTDIRTY)
1192 		flags |= PM_SOFT_DIRTY;
1193 
1194 	return make_pme(frame, flags);
1195 }
1196 
1197 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1198 			     struct mm_walk *walk)
1199 {
1200 	struct vm_area_struct *vma = walk->vma;
1201 	struct pagemapread *pm = walk->private;
1202 	spinlock_t *ptl;
1203 	pte_t *pte, *orig_pte;
1204 	int err = 0;
1205 
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 	ptl = pmd_trans_huge_lock(pmdp, vma);
1208 	if (ptl) {
1209 		u64 flags = 0, frame = 0;
1210 		pmd_t pmd = *pmdp;
1211 
1212 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1213 			flags |= PM_SOFT_DIRTY;
1214 
1215 		/*
1216 		 * Currently pmd for thp is always present because thp
1217 		 * can not be swapped-out, migrated, or HWPOISONed
1218 		 * (split in such cases instead.)
1219 		 * This if-check is just to prepare for future implementation.
1220 		 */
1221 		if (pmd_present(pmd)) {
1222 			struct page *page = pmd_page(pmd);
1223 
1224 			if (page_mapcount(page) == 1)
1225 				flags |= PM_MMAP_EXCLUSIVE;
1226 
1227 			flags |= PM_PRESENT;
1228 			if (pm->show_pfn)
1229 				frame = pmd_pfn(pmd) +
1230 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1231 		}
1232 
1233 		for (; addr != end; addr += PAGE_SIZE) {
1234 			pagemap_entry_t pme = make_pme(frame, flags);
1235 
1236 			err = add_to_pagemap(addr, &pme, pm);
1237 			if (err)
1238 				break;
1239 			if (pm->show_pfn && (flags & PM_PRESENT))
1240 				frame++;
1241 		}
1242 		spin_unlock(ptl);
1243 		return err;
1244 	}
1245 
1246 	if (pmd_trans_unstable(pmdp))
1247 		return 0;
1248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1249 
1250 	/*
1251 	 * We can assume that @vma always points to a valid one and @end never
1252 	 * goes beyond vma->vm_end.
1253 	 */
1254 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1255 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1256 		pagemap_entry_t pme;
1257 
1258 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1259 		err = add_to_pagemap(addr, &pme, pm);
1260 		if (err)
1261 			break;
1262 	}
1263 	pte_unmap_unlock(orig_pte, ptl);
1264 
1265 	cond_resched();
1266 
1267 	return err;
1268 }
1269 
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 /* This function walks within one hugetlb entry in the single call */
1272 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1273 				 unsigned long addr, unsigned long end,
1274 				 struct mm_walk *walk)
1275 {
1276 	struct pagemapread *pm = walk->private;
1277 	struct vm_area_struct *vma = walk->vma;
1278 	u64 flags = 0, frame = 0;
1279 	int err = 0;
1280 	pte_t pte;
1281 
1282 	if (vma->vm_flags & VM_SOFTDIRTY)
1283 		flags |= PM_SOFT_DIRTY;
1284 
1285 	pte = huge_ptep_get(ptep);
1286 	if (pte_present(pte)) {
1287 		struct page *page = pte_page(pte);
1288 
1289 		if (!PageAnon(page))
1290 			flags |= PM_FILE;
1291 
1292 		if (page_mapcount(page) == 1)
1293 			flags |= PM_MMAP_EXCLUSIVE;
1294 
1295 		flags |= PM_PRESENT;
1296 		if (pm->show_pfn)
1297 			frame = pte_pfn(pte) +
1298 				((addr & ~hmask) >> PAGE_SHIFT);
1299 	}
1300 
1301 	for (; addr != end; addr += PAGE_SIZE) {
1302 		pagemap_entry_t pme = make_pme(frame, flags);
1303 
1304 		err = add_to_pagemap(addr, &pme, pm);
1305 		if (err)
1306 			return err;
1307 		if (pm->show_pfn && (flags & PM_PRESENT))
1308 			frame++;
1309 	}
1310 
1311 	cond_resched();
1312 
1313 	return err;
1314 }
1315 #endif /* HUGETLB_PAGE */
1316 
1317 /*
1318  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1319  *
1320  * For each page in the address space, this file contains one 64-bit entry
1321  * consisting of the following:
1322  *
1323  * Bits 0-54  page frame number (PFN) if present
1324  * Bits 0-4   swap type if swapped
1325  * Bits 5-54  swap offset if swapped
1326  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327  * Bit  56    page exclusively mapped
1328  * Bits 57-60 zero
1329  * Bit  61    page is file-page or shared-anon
1330  * Bit  62    page swapped
1331  * Bit  63    page present
1332  *
1333  * If the page is not present but in swap, then the PFN contains an
1334  * encoding of the swap file number and the page's offset into the
1335  * swap. Unmapped pages return a null PFN. This allows determining
1336  * precisely which pages are mapped (or in swap) and comparing mapped
1337  * pages between processes.
1338  *
1339  * Efficient users of this interface will use /proc/pid/maps to
1340  * determine which areas of memory are actually mapped and llseek to
1341  * skip over unmapped regions.
1342  */
1343 static ssize_t pagemap_read(struct file *file, char __user *buf,
1344 			    size_t count, loff_t *ppos)
1345 {
1346 	struct mm_struct *mm = file->private_data;
1347 	struct pagemapread pm;
1348 	struct mm_walk pagemap_walk = {};
1349 	unsigned long src;
1350 	unsigned long svpfn;
1351 	unsigned long start_vaddr;
1352 	unsigned long end_vaddr;
1353 	int ret = 0, copied = 0;
1354 
1355 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1356 		goto out;
1357 
1358 	ret = -EINVAL;
1359 	/* file position must be aligned */
1360 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1361 		goto out_mm;
1362 
1363 	ret = 0;
1364 	if (!count)
1365 		goto out_mm;
1366 
1367 	/* do not disclose physical addresses: attack vector */
1368 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1369 
1370 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1371 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1372 	ret = -ENOMEM;
1373 	if (!pm.buffer)
1374 		goto out_mm;
1375 
1376 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1377 	pagemap_walk.pte_hole = pagemap_pte_hole;
1378 #ifdef CONFIG_HUGETLB_PAGE
1379 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1380 #endif
1381 	pagemap_walk.mm = mm;
1382 	pagemap_walk.private = &pm;
1383 
1384 	src = *ppos;
1385 	svpfn = src / PM_ENTRY_BYTES;
1386 	start_vaddr = svpfn << PAGE_SHIFT;
1387 	end_vaddr = mm->task_size;
1388 
1389 	/* watch out for wraparound */
1390 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1391 		start_vaddr = end_vaddr;
1392 
1393 	/*
1394 	 * The odds are that this will stop walking way
1395 	 * before end_vaddr, because the length of the
1396 	 * user buffer is tracked in "pm", and the walk
1397 	 * will stop when we hit the end of the buffer.
1398 	 */
1399 	ret = 0;
1400 	while (count && (start_vaddr < end_vaddr)) {
1401 		int len;
1402 		unsigned long end;
1403 
1404 		pm.pos = 0;
1405 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1406 		/* overflow ? */
1407 		if (end < start_vaddr || end > end_vaddr)
1408 			end = end_vaddr;
1409 		down_read(&mm->mmap_sem);
1410 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1411 		up_read(&mm->mmap_sem);
1412 		start_vaddr = end;
1413 
1414 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1415 		if (copy_to_user(buf, pm.buffer, len)) {
1416 			ret = -EFAULT;
1417 			goto out_free;
1418 		}
1419 		copied += len;
1420 		buf += len;
1421 		count -= len;
1422 	}
1423 	*ppos += copied;
1424 	if (!ret || ret == PM_END_OF_BUFFER)
1425 		ret = copied;
1426 
1427 out_free:
1428 	kfree(pm.buffer);
1429 out_mm:
1430 	mmput(mm);
1431 out:
1432 	return ret;
1433 }
1434 
1435 static int pagemap_open(struct inode *inode, struct file *file)
1436 {
1437 	struct mm_struct *mm;
1438 
1439 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1440 	if (IS_ERR(mm))
1441 		return PTR_ERR(mm);
1442 	file->private_data = mm;
1443 	return 0;
1444 }
1445 
1446 static int pagemap_release(struct inode *inode, struct file *file)
1447 {
1448 	struct mm_struct *mm = file->private_data;
1449 
1450 	if (mm)
1451 		mmdrop(mm);
1452 	return 0;
1453 }
1454 
1455 const struct file_operations proc_pagemap_operations = {
1456 	.llseek		= mem_lseek, /* borrow this */
1457 	.read		= pagemap_read,
1458 	.open		= pagemap_open,
1459 	.release	= pagemap_release,
1460 };
1461 #endif /* CONFIG_PROC_PAGE_MONITOR */
1462 
1463 #ifdef CONFIG_NUMA
1464 
1465 struct numa_maps {
1466 	unsigned long pages;
1467 	unsigned long anon;
1468 	unsigned long active;
1469 	unsigned long writeback;
1470 	unsigned long mapcount_max;
1471 	unsigned long dirty;
1472 	unsigned long swapcache;
1473 	unsigned long node[MAX_NUMNODES];
1474 };
1475 
1476 struct numa_maps_private {
1477 	struct proc_maps_private proc_maps;
1478 	struct numa_maps md;
1479 };
1480 
1481 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1482 			unsigned long nr_pages)
1483 {
1484 	int count = page_mapcount(page);
1485 
1486 	md->pages += nr_pages;
1487 	if (pte_dirty || PageDirty(page))
1488 		md->dirty += nr_pages;
1489 
1490 	if (PageSwapCache(page))
1491 		md->swapcache += nr_pages;
1492 
1493 	if (PageActive(page) || PageUnevictable(page))
1494 		md->active += nr_pages;
1495 
1496 	if (PageWriteback(page))
1497 		md->writeback += nr_pages;
1498 
1499 	if (PageAnon(page))
1500 		md->anon += nr_pages;
1501 
1502 	if (count > md->mapcount_max)
1503 		md->mapcount_max = count;
1504 
1505 	md->node[page_to_nid(page)] += nr_pages;
1506 }
1507 
1508 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1509 		unsigned long addr)
1510 {
1511 	struct page *page;
1512 	int nid;
1513 
1514 	if (!pte_present(pte))
1515 		return NULL;
1516 
1517 	page = vm_normal_page(vma, addr, pte);
1518 	if (!page)
1519 		return NULL;
1520 
1521 	if (PageReserved(page))
1522 		return NULL;
1523 
1524 	nid = page_to_nid(page);
1525 	if (!node_isset(nid, node_states[N_MEMORY]))
1526 		return NULL;
1527 
1528 	return page;
1529 }
1530 
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1533 					      struct vm_area_struct *vma,
1534 					      unsigned long addr)
1535 {
1536 	struct page *page;
1537 	int nid;
1538 
1539 	if (!pmd_present(pmd))
1540 		return NULL;
1541 
1542 	page = vm_normal_page_pmd(vma, addr, pmd);
1543 	if (!page)
1544 		return NULL;
1545 
1546 	if (PageReserved(page))
1547 		return NULL;
1548 
1549 	nid = page_to_nid(page);
1550 	if (!node_isset(nid, node_states[N_MEMORY]))
1551 		return NULL;
1552 
1553 	return page;
1554 }
1555 #endif
1556 
1557 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1558 		unsigned long end, struct mm_walk *walk)
1559 {
1560 	struct numa_maps *md = walk->private;
1561 	struct vm_area_struct *vma = walk->vma;
1562 	spinlock_t *ptl;
1563 	pte_t *orig_pte;
1564 	pte_t *pte;
1565 
1566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 	ptl = pmd_trans_huge_lock(pmd, vma);
1568 	if (ptl) {
1569 		struct page *page;
1570 
1571 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1572 		if (page)
1573 			gather_stats(page, md, pmd_dirty(*pmd),
1574 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1575 		spin_unlock(ptl);
1576 		return 0;
1577 	}
1578 
1579 	if (pmd_trans_unstable(pmd))
1580 		return 0;
1581 #endif
1582 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1583 	do {
1584 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1585 		if (!page)
1586 			continue;
1587 		gather_stats(page, md, pte_dirty(*pte), 1);
1588 
1589 	} while (pte++, addr += PAGE_SIZE, addr != end);
1590 	pte_unmap_unlock(orig_pte, ptl);
1591 	cond_resched();
1592 	return 0;
1593 }
1594 #ifdef CONFIG_HUGETLB_PAGE
1595 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1596 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1597 {
1598 	pte_t huge_pte = huge_ptep_get(pte);
1599 	struct numa_maps *md;
1600 	struct page *page;
1601 
1602 	if (!pte_present(huge_pte))
1603 		return 0;
1604 
1605 	page = pte_page(huge_pte);
1606 	if (!page)
1607 		return 0;
1608 
1609 	md = walk->private;
1610 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1611 	return 0;
1612 }
1613 
1614 #else
1615 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1616 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1617 {
1618 	return 0;
1619 }
1620 #endif
1621 
1622 /*
1623  * Display pages allocated per node and memory policy via /proc.
1624  */
1625 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1626 {
1627 	struct numa_maps_private *numa_priv = m->private;
1628 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1629 	struct vm_area_struct *vma = v;
1630 	struct numa_maps *md = &numa_priv->md;
1631 	struct file *file = vma->vm_file;
1632 	struct mm_struct *mm = vma->vm_mm;
1633 	struct mm_walk walk = {
1634 		.hugetlb_entry = gather_hugetlb_stats,
1635 		.pmd_entry = gather_pte_stats,
1636 		.private = md,
1637 		.mm = mm,
1638 	};
1639 	struct mempolicy *pol;
1640 	char buffer[64];
1641 	int nid;
1642 
1643 	if (!mm)
1644 		return 0;
1645 
1646 	/* Ensure we start with an empty set of numa_maps statistics. */
1647 	memset(md, 0, sizeof(*md));
1648 
1649 	pol = __get_vma_policy(vma, vma->vm_start);
1650 	if (pol) {
1651 		mpol_to_str(buffer, sizeof(buffer), pol);
1652 		mpol_cond_put(pol);
1653 	} else {
1654 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1655 	}
1656 
1657 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1658 
1659 	if (file) {
1660 		seq_puts(m, " file=");
1661 		seq_file_path(m, file, "\n\t= ");
1662 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1663 		seq_puts(m, " heap");
1664 	} else if (is_stack(proc_priv, vma)) {
1665 		seq_puts(m, " stack");
1666 	}
1667 
1668 	if (is_vm_hugetlb_page(vma))
1669 		seq_puts(m, " huge");
1670 
1671 	/* mmap_sem is held by m_start */
1672 	walk_page_vma(vma, &walk);
1673 
1674 	if (!md->pages)
1675 		goto out;
1676 
1677 	if (md->anon)
1678 		seq_printf(m, " anon=%lu", md->anon);
1679 
1680 	if (md->dirty)
1681 		seq_printf(m, " dirty=%lu", md->dirty);
1682 
1683 	if (md->pages != md->anon && md->pages != md->dirty)
1684 		seq_printf(m, " mapped=%lu", md->pages);
1685 
1686 	if (md->mapcount_max > 1)
1687 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1688 
1689 	if (md->swapcache)
1690 		seq_printf(m, " swapcache=%lu", md->swapcache);
1691 
1692 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1693 		seq_printf(m, " active=%lu", md->active);
1694 
1695 	if (md->writeback)
1696 		seq_printf(m, " writeback=%lu", md->writeback);
1697 
1698 	for_each_node_state(nid, N_MEMORY)
1699 		if (md->node[nid])
1700 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1701 
1702 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1703 out:
1704 	seq_putc(m, '\n');
1705 	m_cache_vma(m, vma);
1706 	return 0;
1707 }
1708 
1709 static int show_pid_numa_map(struct seq_file *m, void *v)
1710 {
1711 	return show_numa_map(m, v, 1);
1712 }
1713 
1714 static int show_tid_numa_map(struct seq_file *m, void *v)
1715 {
1716 	return show_numa_map(m, v, 0);
1717 }
1718 
1719 static const struct seq_operations proc_pid_numa_maps_op = {
1720 	.start  = m_start,
1721 	.next   = m_next,
1722 	.stop   = m_stop,
1723 	.show   = show_pid_numa_map,
1724 };
1725 
1726 static const struct seq_operations proc_tid_numa_maps_op = {
1727 	.start  = m_start,
1728 	.next   = m_next,
1729 	.stop   = m_stop,
1730 	.show   = show_tid_numa_map,
1731 };
1732 
1733 static int numa_maps_open(struct inode *inode, struct file *file,
1734 			  const struct seq_operations *ops)
1735 {
1736 	return proc_maps_open(inode, file, ops,
1737 				sizeof(struct numa_maps_private));
1738 }
1739 
1740 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1741 {
1742 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1743 }
1744 
1745 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1746 {
1747 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1748 }
1749 
1750 const struct file_operations proc_pid_numa_maps_operations = {
1751 	.open		= pid_numa_maps_open,
1752 	.read		= seq_read,
1753 	.llseek		= seq_lseek,
1754 	.release	= proc_map_release,
1755 };
1756 
1757 const struct file_operations proc_tid_numa_maps_operations = {
1758 	.open		= tid_numa_maps_open,
1759 	.read		= seq_read,
1760 	.llseek		= seq_lseek,
1761 	.release	= proc_map_release,
1762 };
1763 #endif /* CONFIG_NUMA */
1764