xref: /openbmc/linux/fs/proc/task_mmu.c (revision cf028200)
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 	unsigned long data, text, lib, swap;
23 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 
25 	/*
26 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
28 	 * collector of these hiwater stats must therefore get total_vm
29 	 * and rss too, which will usually be the higher.  Barriers? not
30 	 * worth the effort, such snapshots can always be inconsistent.
31 	 */
32 	hiwater_vm = total_vm = mm->total_vm;
33 	if (hiwater_vm < mm->hiwater_vm)
34 		hiwater_vm = mm->hiwater_vm;
35 	hiwater_rss = total_rss = get_mm_rss(mm);
36 	if (hiwater_rss < mm->hiwater_rss)
37 		hiwater_rss = mm->hiwater_rss;
38 
39 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 	swap = get_mm_counter(mm, MM_SWAPENTS);
43 	seq_printf(m,
44 		"VmPeak:\t%8lu kB\n"
45 		"VmSize:\t%8lu kB\n"
46 		"VmLck:\t%8lu kB\n"
47 		"VmPin:\t%8lu kB\n"
48 		"VmHWM:\t%8lu kB\n"
49 		"VmRSS:\t%8lu kB\n"
50 		"VmData:\t%8lu kB\n"
51 		"VmStk:\t%8lu kB\n"
52 		"VmExe:\t%8lu kB\n"
53 		"VmLib:\t%8lu kB\n"
54 		"VmPTE:\t%8lu kB\n"
55 		"VmSwap:\t%8lu kB\n",
56 		hiwater_vm << (PAGE_SHIFT-10),
57 		total_vm << (PAGE_SHIFT-10),
58 		mm->locked_vm << (PAGE_SHIFT-10),
59 		mm->pinned_vm << (PAGE_SHIFT-10),
60 		hiwater_rss << (PAGE_SHIFT-10),
61 		total_rss << (PAGE_SHIFT-10),
62 		data << (PAGE_SHIFT-10),
63 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
64 		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
65 		swap << (PAGE_SHIFT-10));
66 }
67 
68 unsigned long task_vsize(struct mm_struct *mm)
69 {
70 	return PAGE_SIZE * mm->total_vm;
71 }
72 
73 unsigned long task_statm(struct mm_struct *mm,
74 			 unsigned long *shared, unsigned long *text,
75 			 unsigned long *data, unsigned long *resident)
76 {
77 	*shared = get_mm_counter(mm, MM_FILEPAGES);
78 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
79 								>> PAGE_SHIFT;
80 	*data = mm->total_vm - mm->shared_vm;
81 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
82 	return mm->total_vm;
83 }
84 
85 static void pad_len_spaces(struct seq_file *m, int len)
86 {
87 	len = 25 + sizeof(void*) * 6 - len;
88 	if (len < 1)
89 		len = 1;
90 	seq_printf(m, "%*c", len, ' ');
91 }
92 
93 #ifdef CONFIG_NUMA
94 /*
95  * These functions are for numa_maps but called in generic **maps seq_file
96  * ->start(), ->stop() ops.
97  *
98  * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
99  * Each mempolicy object is controlled by reference counting. The problem here
100  * is how to avoid accessing dead mempolicy object.
101  *
102  * Because we're holding mmap_sem while reading seq_file, it's safe to access
103  * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
104  *
105  * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
106  * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
107  * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
108  * gurantee the task never exits under us. But taking task_lock() around
109  * get_vma_plicy() causes lock order problem.
110  *
111  * To access task->mempolicy without lock, we hold a reference count of an
112  * object pointed by task->mempolicy and remember it. This will guarantee
113  * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
114  */
115 static void hold_task_mempolicy(struct proc_maps_private *priv)
116 {
117 	struct task_struct *task = priv->task;
118 
119 	task_lock(task);
120 	priv->task_mempolicy = task->mempolicy;
121 	mpol_get(priv->task_mempolicy);
122 	task_unlock(task);
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 	mpol_put(priv->task_mempolicy);
127 }
128 #else
129 static void hold_task_mempolicy(struct proc_maps_private *priv)
130 {
131 }
132 static void release_task_mempolicy(struct proc_maps_private *priv)
133 {
134 }
135 #endif
136 
137 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
138 {
139 	if (vma && vma != priv->tail_vma) {
140 		struct mm_struct *mm = vma->vm_mm;
141 		release_task_mempolicy(priv);
142 		up_read(&mm->mmap_sem);
143 		mmput(mm);
144 	}
145 }
146 
147 static void *m_start(struct seq_file *m, loff_t *pos)
148 {
149 	struct proc_maps_private *priv = m->private;
150 	unsigned long last_addr = m->version;
151 	struct mm_struct *mm;
152 	struct vm_area_struct *vma, *tail_vma = NULL;
153 	loff_t l = *pos;
154 
155 	/* Clear the per syscall fields in priv */
156 	priv->task = NULL;
157 	priv->tail_vma = NULL;
158 
159 	/*
160 	 * We remember last_addr rather than next_addr to hit with
161 	 * mmap_cache most of the time. We have zero last_addr at
162 	 * the beginning and also after lseek. We will have -1 last_addr
163 	 * after the end of the vmas.
164 	 */
165 
166 	if (last_addr == -1UL)
167 		return NULL;
168 
169 	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
170 	if (!priv->task)
171 		return ERR_PTR(-ESRCH);
172 
173 	mm = mm_access(priv->task, PTRACE_MODE_READ);
174 	if (!mm || IS_ERR(mm))
175 		return mm;
176 	down_read(&mm->mmap_sem);
177 
178 	tail_vma = get_gate_vma(priv->task->mm);
179 	priv->tail_vma = tail_vma;
180 	hold_task_mempolicy(priv);
181 	/* Start with last addr hint */
182 	vma = find_vma(mm, last_addr);
183 	if (last_addr && vma) {
184 		vma = vma->vm_next;
185 		goto out;
186 	}
187 
188 	/*
189 	 * Check the vma index is within the range and do
190 	 * sequential scan until m_index.
191 	 */
192 	vma = NULL;
193 	if ((unsigned long)l < mm->map_count) {
194 		vma = mm->mmap;
195 		while (l-- && vma)
196 			vma = vma->vm_next;
197 		goto out;
198 	}
199 
200 	if (l != mm->map_count)
201 		tail_vma = NULL; /* After gate vma */
202 
203 out:
204 	if (vma)
205 		return vma;
206 
207 	release_task_mempolicy(priv);
208 	/* End of vmas has been reached */
209 	m->version = (tail_vma != NULL)? 0: -1UL;
210 	up_read(&mm->mmap_sem);
211 	mmput(mm);
212 	return tail_vma;
213 }
214 
215 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
216 {
217 	struct proc_maps_private *priv = m->private;
218 	struct vm_area_struct *vma = v;
219 	struct vm_area_struct *tail_vma = priv->tail_vma;
220 
221 	(*pos)++;
222 	if (vma && (vma != tail_vma) && vma->vm_next)
223 		return vma->vm_next;
224 	vma_stop(priv, vma);
225 	return (vma != tail_vma)? tail_vma: NULL;
226 }
227 
228 static void m_stop(struct seq_file *m, void *v)
229 {
230 	struct proc_maps_private *priv = m->private;
231 	struct vm_area_struct *vma = v;
232 
233 	if (!IS_ERR(vma))
234 		vma_stop(priv, vma);
235 	if (priv->task)
236 		put_task_struct(priv->task);
237 }
238 
239 static int do_maps_open(struct inode *inode, struct file *file,
240 			const struct seq_operations *ops)
241 {
242 	struct proc_maps_private *priv;
243 	int ret = -ENOMEM;
244 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
245 	if (priv) {
246 		priv->pid = proc_pid(inode);
247 		ret = seq_open(file, ops);
248 		if (!ret) {
249 			struct seq_file *m = file->private_data;
250 			m->private = priv;
251 		} else {
252 			kfree(priv);
253 		}
254 	}
255 	return ret;
256 }
257 
258 static void
259 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
260 {
261 	struct mm_struct *mm = vma->vm_mm;
262 	struct file *file = vma->vm_file;
263 	struct proc_maps_private *priv = m->private;
264 	struct task_struct *task = priv->task;
265 	vm_flags_t flags = vma->vm_flags;
266 	unsigned long ino = 0;
267 	unsigned long long pgoff = 0;
268 	unsigned long start, end;
269 	dev_t dev = 0;
270 	int len;
271 	const char *name = NULL;
272 
273 	if (file) {
274 		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
275 		dev = inode->i_sb->s_dev;
276 		ino = inode->i_ino;
277 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
278 	}
279 
280 	/* We don't show the stack guard page in /proc/maps */
281 	start = vma->vm_start;
282 	if (stack_guard_page_start(vma, start))
283 		start += PAGE_SIZE;
284 	end = vma->vm_end;
285 	if (stack_guard_page_end(vma, end))
286 		end -= PAGE_SIZE;
287 
288 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
289 			start,
290 			end,
291 			flags & VM_READ ? 'r' : '-',
292 			flags & VM_WRITE ? 'w' : '-',
293 			flags & VM_EXEC ? 'x' : '-',
294 			flags & VM_MAYSHARE ? 's' : 'p',
295 			pgoff,
296 			MAJOR(dev), MINOR(dev), ino, &len);
297 
298 	/*
299 	 * Print the dentry name for named mappings, and a
300 	 * special [heap] marker for the heap:
301 	 */
302 	if (file) {
303 		pad_len_spaces(m, len);
304 		seq_path(m, &file->f_path, "\n");
305 		goto done;
306 	}
307 
308 	name = arch_vma_name(vma);
309 	if (!name) {
310 		pid_t tid;
311 
312 		if (!mm) {
313 			name = "[vdso]";
314 			goto done;
315 		}
316 
317 		if (vma->vm_start <= mm->brk &&
318 		    vma->vm_end >= mm->start_brk) {
319 			name = "[heap]";
320 			goto done;
321 		}
322 
323 		tid = vm_is_stack(task, vma, is_pid);
324 
325 		if (tid != 0) {
326 			/*
327 			 * Thread stack in /proc/PID/task/TID/maps or
328 			 * the main process stack.
329 			 */
330 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
331 			    vma->vm_end >= mm->start_stack)) {
332 				name = "[stack]";
333 			} else {
334 				/* Thread stack in /proc/PID/maps */
335 				pad_len_spaces(m, len);
336 				seq_printf(m, "[stack:%d]", tid);
337 			}
338 		}
339 	}
340 
341 done:
342 	if (name) {
343 		pad_len_spaces(m, len);
344 		seq_puts(m, name);
345 	}
346 	seq_putc(m, '\n');
347 }
348 
349 static int show_map(struct seq_file *m, void *v, int is_pid)
350 {
351 	struct vm_area_struct *vma = v;
352 	struct proc_maps_private *priv = m->private;
353 	struct task_struct *task = priv->task;
354 
355 	show_map_vma(m, vma, is_pid);
356 
357 	if (m->count < m->size)  /* vma is copied successfully */
358 		m->version = (vma != get_gate_vma(task->mm))
359 			? vma->vm_start : 0;
360 	return 0;
361 }
362 
363 static int show_pid_map(struct seq_file *m, void *v)
364 {
365 	return show_map(m, v, 1);
366 }
367 
368 static int show_tid_map(struct seq_file *m, void *v)
369 {
370 	return show_map(m, v, 0);
371 }
372 
373 static const struct seq_operations proc_pid_maps_op = {
374 	.start	= m_start,
375 	.next	= m_next,
376 	.stop	= m_stop,
377 	.show	= show_pid_map
378 };
379 
380 static const struct seq_operations proc_tid_maps_op = {
381 	.start	= m_start,
382 	.next	= m_next,
383 	.stop	= m_stop,
384 	.show	= show_tid_map
385 };
386 
387 static int pid_maps_open(struct inode *inode, struct file *file)
388 {
389 	return do_maps_open(inode, file, &proc_pid_maps_op);
390 }
391 
392 static int tid_maps_open(struct inode *inode, struct file *file)
393 {
394 	return do_maps_open(inode, file, &proc_tid_maps_op);
395 }
396 
397 const struct file_operations proc_pid_maps_operations = {
398 	.open		= pid_maps_open,
399 	.read		= seq_read,
400 	.llseek		= seq_lseek,
401 	.release	= seq_release_private,
402 };
403 
404 const struct file_operations proc_tid_maps_operations = {
405 	.open		= tid_maps_open,
406 	.read		= seq_read,
407 	.llseek		= seq_lseek,
408 	.release	= seq_release_private,
409 };
410 
411 /*
412  * Proportional Set Size(PSS): my share of RSS.
413  *
414  * PSS of a process is the count of pages it has in memory, where each
415  * page is divided by the number of processes sharing it.  So if a
416  * process has 1000 pages all to itself, and 1000 shared with one other
417  * process, its PSS will be 1500.
418  *
419  * To keep (accumulated) division errors low, we adopt a 64bit
420  * fixed-point pss counter to minimize division errors. So (pss >>
421  * PSS_SHIFT) would be the real byte count.
422  *
423  * A shift of 12 before division means (assuming 4K page size):
424  * 	- 1M 3-user-pages add up to 8KB errors;
425  * 	- supports mapcount up to 2^24, or 16M;
426  * 	- supports PSS up to 2^52 bytes, or 4PB.
427  */
428 #define PSS_SHIFT 12
429 
430 #ifdef CONFIG_PROC_PAGE_MONITOR
431 struct mem_size_stats {
432 	struct vm_area_struct *vma;
433 	unsigned long resident;
434 	unsigned long shared_clean;
435 	unsigned long shared_dirty;
436 	unsigned long private_clean;
437 	unsigned long private_dirty;
438 	unsigned long referenced;
439 	unsigned long anonymous;
440 	unsigned long anonymous_thp;
441 	unsigned long swap;
442 	unsigned long nonlinear;
443 	u64 pss;
444 };
445 
446 
447 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
448 		unsigned long ptent_size, struct mm_walk *walk)
449 {
450 	struct mem_size_stats *mss = walk->private;
451 	struct vm_area_struct *vma = mss->vma;
452 	pgoff_t pgoff = linear_page_index(vma, addr);
453 	struct page *page = NULL;
454 	int mapcount;
455 
456 	if (pte_present(ptent)) {
457 		page = vm_normal_page(vma, addr, ptent);
458 	} else if (is_swap_pte(ptent)) {
459 		swp_entry_t swpent = pte_to_swp_entry(ptent);
460 
461 		if (!non_swap_entry(swpent))
462 			mss->swap += ptent_size;
463 		else if (is_migration_entry(swpent))
464 			page = migration_entry_to_page(swpent);
465 	} else if (pte_file(ptent)) {
466 		if (pte_to_pgoff(ptent) != pgoff)
467 			mss->nonlinear += ptent_size;
468 	}
469 
470 	if (!page)
471 		return;
472 
473 	if (PageAnon(page))
474 		mss->anonymous += ptent_size;
475 
476 	if (page->index != pgoff)
477 		mss->nonlinear += ptent_size;
478 
479 	mss->resident += ptent_size;
480 	/* Accumulate the size in pages that have been accessed. */
481 	if (pte_young(ptent) || PageReferenced(page))
482 		mss->referenced += ptent_size;
483 	mapcount = page_mapcount(page);
484 	if (mapcount >= 2) {
485 		if (pte_dirty(ptent) || PageDirty(page))
486 			mss->shared_dirty += ptent_size;
487 		else
488 			mss->shared_clean += ptent_size;
489 		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
490 	} else {
491 		if (pte_dirty(ptent) || PageDirty(page))
492 			mss->private_dirty += ptent_size;
493 		else
494 			mss->private_clean += ptent_size;
495 		mss->pss += (ptent_size << PSS_SHIFT);
496 	}
497 }
498 
499 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
500 			   struct mm_walk *walk)
501 {
502 	struct mem_size_stats *mss = walk->private;
503 	struct vm_area_struct *vma = mss->vma;
504 	pte_t *pte;
505 	spinlock_t *ptl;
506 
507 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
508 		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
509 		spin_unlock(&walk->mm->page_table_lock);
510 		mss->anonymous_thp += HPAGE_PMD_SIZE;
511 		return 0;
512 	}
513 
514 	if (pmd_trans_unstable(pmd))
515 		return 0;
516 	/*
517 	 * The mmap_sem held all the way back in m_start() is what
518 	 * keeps khugepaged out of here and from collapsing things
519 	 * in here.
520 	 */
521 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
522 	for (; addr != end; pte++, addr += PAGE_SIZE)
523 		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
524 	pte_unmap_unlock(pte - 1, ptl);
525 	cond_resched();
526 	return 0;
527 }
528 
529 static int show_smap(struct seq_file *m, void *v, int is_pid)
530 {
531 	struct proc_maps_private *priv = m->private;
532 	struct task_struct *task = priv->task;
533 	struct vm_area_struct *vma = v;
534 	struct mem_size_stats mss;
535 	struct mm_walk smaps_walk = {
536 		.pmd_entry = smaps_pte_range,
537 		.mm = vma->vm_mm,
538 		.private = &mss,
539 	};
540 
541 	memset(&mss, 0, sizeof mss);
542 	mss.vma = vma;
543 	/* mmap_sem is held in m_start */
544 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
545 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
546 
547 	show_map_vma(m, vma, is_pid);
548 
549 	seq_printf(m,
550 		   "Size:           %8lu kB\n"
551 		   "Rss:            %8lu kB\n"
552 		   "Pss:            %8lu kB\n"
553 		   "Shared_Clean:   %8lu kB\n"
554 		   "Shared_Dirty:   %8lu kB\n"
555 		   "Private_Clean:  %8lu kB\n"
556 		   "Private_Dirty:  %8lu kB\n"
557 		   "Referenced:     %8lu kB\n"
558 		   "Anonymous:      %8lu kB\n"
559 		   "AnonHugePages:  %8lu kB\n"
560 		   "Swap:           %8lu kB\n"
561 		   "KernelPageSize: %8lu kB\n"
562 		   "MMUPageSize:    %8lu kB\n"
563 		   "Locked:         %8lu kB\n",
564 		   (vma->vm_end - vma->vm_start) >> 10,
565 		   mss.resident >> 10,
566 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
567 		   mss.shared_clean  >> 10,
568 		   mss.shared_dirty  >> 10,
569 		   mss.private_clean >> 10,
570 		   mss.private_dirty >> 10,
571 		   mss.referenced >> 10,
572 		   mss.anonymous >> 10,
573 		   mss.anonymous_thp >> 10,
574 		   mss.swap >> 10,
575 		   vma_kernel_pagesize(vma) >> 10,
576 		   vma_mmu_pagesize(vma) >> 10,
577 		   (vma->vm_flags & VM_LOCKED) ?
578 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
579 
580 	if (vma->vm_flags & VM_NONLINEAR)
581 		seq_printf(m, "Nonlinear:      %8lu kB\n",
582 				mss.nonlinear >> 10);
583 
584 	if (m->count < m->size)  /* vma is copied successfully */
585 		m->version = (vma != get_gate_vma(task->mm))
586 			? vma->vm_start : 0;
587 	return 0;
588 }
589 
590 static int show_pid_smap(struct seq_file *m, void *v)
591 {
592 	return show_smap(m, v, 1);
593 }
594 
595 static int show_tid_smap(struct seq_file *m, void *v)
596 {
597 	return show_smap(m, v, 0);
598 }
599 
600 static const struct seq_operations proc_pid_smaps_op = {
601 	.start	= m_start,
602 	.next	= m_next,
603 	.stop	= m_stop,
604 	.show	= show_pid_smap
605 };
606 
607 static const struct seq_operations proc_tid_smaps_op = {
608 	.start	= m_start,
609 	.next	= m_next,
610 	.stop	= m_stop,
611 	.show	= show_tid_smap
612 };
613 
614 static int pid_smaps_open(struct inode *inode, struct file *file)
615 {
616 	return do_maps_open(inode, file, &proc_pid_smaps_op);
617 }
618 
619 static int tid_smaps_open(struct inode *inode, struct file *file)
620 {
621 	return do_maps_open(inode, file, &proc_tid_smaps_op);
622 }
623 
624 const struct file_operations proc_pid_smaps_operations = {
625 	.open		= pid_smaps_open,
626 	.read		= seq_read,
627 	.llseek		= seq_lseek,
628 	.release	= seq_release_private,
629 };
630 
631 const struct file_operations proc_tid_smaps_operations = {
632 	.open		= tid_smaps_open,
633 	.read		= seq_read,
634 	.llseek		= seq_lseek,
635 	.release	= seq_release_private,
636 };
637 
638 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
639 				unsigned long end, struct mm_walk *walk)
640 {
641 	struct vm_area_struct *vma = walk->private;
642 	pte_t *pte, ptent;
643 	spinlock_t *ptl;
644 	struct page *page;
645 
646 	split_huge_page_pmd(walk->mm, pmd);
647 	if (pmd_trans_unstable(pmd))
648 		return 0;
649 
650 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
651 	for (; addr != end; pte++, addr += PAGE_SIZE) {
652 		ptent = *pte;
653 		if (!pte_present(ptent))
654 			continue;
655 
656 		page = vm_normal_page(vma, addr, ptent);
657 		if (!page)
658 			continue;
659 
660 		/* Clear accessed and referenced bits. */
661 		ptep_test_and_clear_young(vma, addr, pte);
662 		ClearPageReferenced(page);
663 	}
664 	pte_unmap_unlock(pte - 1, ptl);
665 	cond_resched();
666 	return 0;
667 }
668 
669 #define CLEAR_REFS_ALL 1
670 #define CLEAR_REFS_ANON 2
671 #define CLEAR_REFS_MAPPED 3
672 
673 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
674 				size_t count, loff_t *ppos)
675 {
676 	struct task_struct *task;
677 	char buffer[PROC_NUMBUF];
678 	struct mm_struct *mm;
679 	struct vm_area_struct *vma;
680 	int type;
681 	int rv;
682 
683 	memset(buffer, 0, sizeof(buffer));
684 	if (count > sizeof(buffer) - 1)
685 		count = sizeof(buffer) - 1;
686 	if (copy_from_user(buffer, buf, count))
687 		return -EFAULT;
688 	rv = kstrtoint(strstrip(buffer), 10, &type);
689 	if (rv < 0)
690 		return rv;
691 	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
692 		return -EINVAL;
693 	task = get_proc_task(file->f_path.dentry->d_inode);
694 	if (!task)
695 		return -ESRCH;
696 	mm = get_task_mm(task);
697 	if (mm) {
698 		struct mm_walk clear_refs_walk = {
699 			.pmd_entry = clear_refs_pte_range,
700 			.mm = mm,
701 		};
702 		down_read(&mm->mmap_sem);
703 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
704 			clear_refs_walk.private = vma;
705 			if (is_vm_hugetlb_page(vma))
706 				continue;
707 			/*
708 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
709 			 *
710 			 * Writing 2 to /proc/pid/clear_refs only affects
711 			 * Anonymous pages.
712 			 *
713 			 * Writing 3 to /proc/pid/clear_refs only affects file
714 			 * mapped pages.
715 			 */
716 			if (type == CLEAR_REFS_ANON && vma->vm_file)
717 				continue;
718 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
719 				continue;
720 			walk_page_range(vma->vm_start, vma->vm_end,
721 					&clear_refs_walk);
722 		}
723 		flush_tlb_mm(mm);
724 		up_read(&mm->mmap_sem);
725 		mmput(mm);
726 	}
727 	put_task_struct(task);
728 
729 	return count;
730 }
731 
732 const struct file_operations proc_clear_refs_operations = {
733 	.write		= clear_refs_write,
734 	.llseek		= noop_llseek,
735 };
736 
737 typedef struct {
738 	u64 pme;
739 } pagemap_entry_t;
740 
741 struct pagemapread {
742 	int pos, len;
743 	pagemap_entry_t *buffer;
744 };
745 
746 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
747 #define PAGEMAP_WALK_MASK	(PMD_MASK)
748 
749 #define PM_ENTRY_BYTES      sizeof(u64)
750 #define PM_STATUS_BITS      3
751 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
752 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
753 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
754 #define PM_PSHIFT_BITS      6
755 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
756 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
757 #define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
758 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
759 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
760 
761 #define PM_PRESENT          PM_STATUS(4LL)
762 #define PM_SWAP             PM_STATUS(2LL)
763 #define PM_FILE             PM_STATUS(1LL)
764 #define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
765 #define PM_END_OF_BUFFER    1
766 
767 static inline pagemap_entry_t make_pme(u64 val)
768 {
769 	return (pagemap_entry_t) { .pme = val };
770 }
771 
772 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
773 			  struct pagemapread *pm)
774 {
775 	pm->buffer[pm->pos++] = *pme;
776 	if (pm->pos >= pm->len)
777 		return PM_END_OF_BUFFER;
778 	return 0;
779 }
780 
781 static int pagemap_pte_hole(unsigned long start, unsigned long end,
782 				struct mm_walk *walk)
783 {
784 	struct pagemapread *pm = walk->private;
785 	unsigned long addr;
786 	int err = 0;
787 	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
788 
789 	for (addr = start; addr < end; addr += PAGE_SIZE) {
790 		err = add_to_pagemap(addr, &pme, pm);
791 		if (err)
792 			break;
793 	}
794 	return err;
795 }
796 
797 static void pte_to_pagemap_entry(pagemap_entry_t *pme,
798 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
799 {
800 	u64 frame, flags;
801 	struct page *page = NULL;
802 
803 	if (pte_present(pte)) {
804 		frame = pte_pfn(pte);
805 		flags = PM_PRESENT;
806 		page = vm_normal_page(vma, addr, pte);
807 	} else if (is_swap_pte(pte)) {
808 		swp_entry_t entry = pte_to_swp_entry(pte);
809 
810 		frame = swp_type(entry) |
811 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
812 		flags = PM_SWAP;
813 		if (is_migration_entry(entry))
814 			page = migration_entry_to_page(entry);
815 	} else {
816 		*pme = make_pme(PM_NOT_PRESENT);
817 		return;
818 	}
819 
820 	if (page && !PageAnon(page))
821 		flags |= PM_FILE;
822 
823 	*pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
824 }
825 
826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
827 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
828 					pmd_t pmd, int offset)
829 {
830 	/*
831 	 * Currently pmd for thp is always present because thp can not be
832 	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
833 	 * This if-check is just to prepare for future implementation.
834 	 */
835 	if (pmd_present(pmd))
836 		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
837 				| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
838 	else
839 		*pme = make_pme(PM_NOT_PRESENT);
840 }
841 #else
842 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
843 						pmd_t pmd, int offset)
844 {
845 }
846 #endif
847 
848 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
849 			     struct mm_walk *walk)
850 {
851 	struct vm_area_struct *vma;
852 	struct pagemapread *pm = walk->private;
853 	pte_t *pte;
854 	int err = 0;
855 	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
856 
857 	/* find the first VMA at or above 'addr' */
858 	vma = find_vma(walk->mm, addr);
859 	if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
860 		for (; addr != end; addr += PAGE_SIZE) {
861 			unsigned long offset;
862 
863 			offset = (addr & ~PAGEMAP_WALK_MASK) >>
864 					PAGE_SHIFT;
865 			thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
866 			err = add_to_pagemap(addr, &pme, pm);
867 			if (err)
868 				break;
869 		}
870 		spin_unlock(&walk->mm->page_table_lock);
871 		return err;
872 	}
873 
874 	if (pmd_trans_unstable(pmd))
875 		return 0;
876 	for (; addr != end; addr += PAGE_SIZE) {
877 
878 		/* check to see if we've left 'vma' behind
879 		 * and need a new, higher one */
880 		if (vma && (addr >= vma->vm_end)) {
881 			vma = find_vma(walk->mm, addr);
882 			pme = make_pme(PM_NOT_PRESENT);
883 		}
884 
885 		/* check that 'vma' actually covers this address,
886 		 * and that it isn't a huge page vma */
887 		if (vma && (vma->vm_start <= addr) &&
888 		    !is_vm_hugetlb_page(vma)) {
889 			pte = pte_offset_map(pmd, addr);
890 			pte_to_pagemap_entry(&pme, vma, addr, *pte);
891 			/* unmap before userspace copy */
892 			pte_unmap(pte);
893 		}
894 		err = add_to_pagemap(addr, &pme, pm);
895 		if (err)
896 			return err;
897 	}
898 
899 	cond_resched();
900 
901 	return err;
902 }
903 
904 #ifdef CONFIG_HUGETLB_PAGE
905 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
906 					pte_t pte, int offset)
907 {
908 	if (pte_present(pte))
909 		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
910 				| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
911 	else
912 		*pme = make_pme(PM_NOT_PRESENT);
913 }
914 
915 /* This function walks within one hugetlb entry in the single call */
916 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
917 				 unsigned long addr, unsigned long end,
918 				 struct mm_walk *walk)
919 {
920 	struct pagemapread *pm = walk->private;
921 	int err = 0;
922 	pagemap_entry_t pme;
923 
924 	for (; addr != end; addr += PAGE_SIZE) {
925 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
926 		huge_pte_to_pagemap_entry(&pme, *pte, offset);
927 		err = add_to_pagemap(addr, &pme, pm);
928 		if (err)
929 			return err;
930 	}
931 
932 	cond_resched();
933 
934 	return err;
935 }
936 #endif /* HUGETLB_PAGE */
937 
938 /*
939  * /proc/pid/pagemap - an array mapping virtual pages to pfns
940  *
941  * For each page in the address space, this file contains one 64-bit entry
942  * consisting of the following:
943  *
944  * Bits 0-54  page frame number (PFN) if present
945  * Bits 0-4   swap type if swapped
946  * Bits 5-54  swap offset if swapped
947  * Bits 55-60 page shift (page size = 1<<page shift)
948  * Bit  61    page is file-page or shared-anon
949  * Bit  62    page swapped
950  * Bit  63    page present
951  *
952  * If the page is not present but in swap, then the PFN contains an
953  * encoding of the swap file number and the page's offset into the
954  * swap. Unmapped pages return a null PFN. This allows determining
955  * precisely which pages are mapped (or in swap) and comparing mapped
956  * pages between processes.
957  *
958  * Efficient users of this interface will use /proc/pid/maps to
959  * determine which areas of memory are actually mapped and llseek to
960  * skip over unmapped regions.
961  */
962 static ssize_t pagemap_read(struct file *file, char __user *buf,
963 			    size_t count, loff_t *ppos)
964 {
965 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
966 	struct mm_struct *mm;
967 	struct pagemapread pm;
968 	int ret = -ESRCH;
969 	struct mm_walk pagemap_walk = {};
970 	unsigned long src;
971 	unsigned long svpfn;
972 	unsigned long start_vaddr;
973 	unsigned long end_vaddr;
974 	int copied = 0;
975 
976 	if (!task)
977 		goto out;
978 
979 	ret = -EINVAL;
980 	/* file position must be aligned */
981 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
982 		goto out_task;
983 
984 	ret = 0;
985 	if (!count)
986 		goto out_task;
987 
988 	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
989 	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
990 	ret = -ENOMEM;
991 	if (!pm.buffer)
992 		goto out_task;
993 
994 	mm = mm_access(task, PTRACE_MODE_READ);
995 	ret = PTR_ERR(mm);
996 	if (!mm || IS_ERR(mm))
997 		goto out_free;
998 
999 	pagemap_walk.pmd_entry = pagemap_pte_range;
1000 	pagemap_walk.pte_hole = pagemap_pte_hole;
1001 #ifdef CONFIG_HUGETLB_PAGE
1002 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1003 #endif
1004 	pagemap_walk.mm = mm;
1005 	pagemap_walk.private = &pm;
1006 
1007 	src = *ppos;
1008 	svpfn = src / PM_ENTRY_BYTES;
1009 	start_vaddr = svpfn << PAGE_SHIFT;
1010 	end_vaddr = TASK_SIZE_OF(task);
1011 
1012 	/* watch out for wraparound */
1013 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1014 		start_vaddr = end_vaddr;
1015 
1016 	/*
1017 	 * The odds are that this will stop walking way
1018 	 * before end_vaddr, because the length of the
1019 	 * user buffer is tracked in "pm", and the walk
1020 	 * will stop when we hit the end of the buffer.
1021 	 */
1022 	ret = 0;
1023 	while (count && (start_vaddr < end_vaddr)) {
1024 		int len;
1025 		unsigned long end;
1026 
1027 		pm.pos = 0;
1028 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1029 		/* overflow ? */
1030 		if (end < start_vaddr || end > end_vaddr)
1031 			end = end_vaddr;
1032 		down_read(&mm->mmap_sem);
1033 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1034 		up_read(&mm->mmap_sem);
1035 		start_vaddr = end;
1036 
1037 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1038 		if (copy_to_user(buf, pm.buffer, len)) {
1039 			ret = -EFAULT;
1040 			goto out_mm;
1041 		}
1042 		copied += len;
1043 		buf += len;
1044 		count -= len;
1045 	}
1046 	*ppos += copied;
1047 	if (!ret || ret == PM_END_OF_BUFFER)
1048 		ret = copied;
1049 
1050 out_mm:
1051 	mmput(mm);
1052 out_free:
1053 	kfree(pm.buffer);
1054 out_task:
1055 	put_task_struct(task);
1056 out:
1057 	return ret;
1058 }
1059 
1060 const struct file_operations proc_pagemap_operations = {
1061 	.llseek		= mem_lseek, /* borrow this */
1062 	.read		= pagemap_read,
1063 };
1064 #endif /* CONFIG_PROC_PAGE_MONITOR */
1065 
1066 #ifdef CONFIG_NUMA
1067 
1068 struct numa_maps {
1069 	struct vm_area_struct *vma;
1070 	unsigned long pages;
1071 	unsigned long anon;
1072 	unsigned long active;
1073 	unsigned long writeback;
1074 	unsigned long mapcount_max;
1075 	unsigned long dirty;
1076 	unsigned long swapcache;
1077 	unsigned long node[MAX_NUMNODES];
1078 };
1079 
1080 struct numa_maps_private {
1081 	struct proc_maps_private proc_maps;
1082 	struct numa_maps md;
1083 };
1084 
1085 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1086 			unsigned long nr_pages)
1087 {
1088 	int count = page_mapcount(page);
1089 
1090 	md->pages += nr_pages;
1091 	if (pte_dirty || PageDirty(page))
1092 		md->dirty += nr_pages;
1093 
1094 	if (PageSwapCache(page))
1095 		md->swapcache += nr_pages;
1096 
1097 	if (PageActive(page) || PageUnevictable(page))
1098 		md->active += nr_pages;
1099 
1100 	if (PageWriteback(page))
1101 		md->writeback += nr_pages;
1102 
1103 	if (PageAnon(page))
1104 		md->anon += nr_pages;
1105 
1106 	if (count > md->mapcount_max)
1107 		md->mapcount_max = count;
1108 
1109 	md->node[page_to_nid(page)] += nr_pages;
1110 }
1111 
1112 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1113 		unsigned long addr)
1114 {
1115 	struct page *page;
1116 	int nid;
1117 
1118 	if (!pte_present(pte))
1119 		return NULL;
1120 
1121 	page = vm_normal_page(vma, addr, pte);
1122 	if (!page)
1123 		return NULL;
1124 
1125 	if (PageReserved(page))
1126 		return NULL;
1127 
1128 	nid = page_to_nid(page);
1129 	if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
1130 		return NULL;
1131 
1132 	return page;
1133 }
1134 
1135 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1136 		unsigned long end, struct mm_walk *walk)
1137 {
1138 	struct numa_maps *md;
1139 	spinlock_t *ptl;
1140 	pte_t *orig_pte;
1141 	pte_t *pte;
1142 
1143 	md = walk->private;
1144 
1145 	if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1146 		pte_t huge_pte = *(pte_t *)pmd;
1147 		struct page *page;
1148 
1149 		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1150 		if (page)
1151 			gather_stats(page, md, pte_dirty(huge_pte),
1152 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1153 		spin_unlock(&walk->mm->page_table_lock);
1154 		return 0;
1155 	}
1156 
1157 	if (pmd_trans_unstable(pmd))
1158 		return 0;
1159 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1160 	do {
1161 		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1162 		if (!page)
1163 			continue;
1164 		gather_stats(page, md, pte_dirty(*pte), 1);
1165 
1166 	} while (pte++, addr += PAGE_SIZE, addr != end);
1167 	pte_unmap_unlock(orig_pte, ptl);
1168 	return 0;
1169 }
1170 #ifdef CONFIG_HUGETLB_PAGE
1171 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1172 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1173 {
1174 	struct numa_maps *md;
1175 	struct page *page;
1176 
1177 	if (pte_none(*pte))
1178 		return 0;
1179 
1180 	page = pte_page(*pte);
1181 	if (!page)
1182 		return 0;
1183 
1184 	md = walk->private;
1185 	gather_stats(page, md, pte_dirty(*pte), 1);
1186 	return 0;
1187 }
1188 
1189 #else
1190 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1191 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1192 {
1193 	return 0;
1194 }
1195 #endif
1196 
1197 /*
1198  * Display pages allocated per node and memory policy via /proc.
1199  */
1200 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1201 {
1202 	struct numa_maps_private *numa_priv = m->private;
1203 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1204 	struct vm_area_struct *vma = v;
1205 	struct numa_maps *md = &numa_priv->md;
1206 	struct file *file = vma->vm_file;
1207 	struct task_struct *task = proc_priv->task;
1208 	struct mm_struct *mm = vma->vm_mm;
1209 	struct mm_walk walk = {};
1210 	struct mempolicy *pol;
1211 	int n;
1212 	char buffer[50];
1213 
1214 	if (!mm)
1215 		return 0;
1216 
1217 	/* Ensure we start with an empty set of numa_maps statistics. */
1218 	memset(md, 0, sizeof(*md));
1219 
1220 	md->vma = vma;
1221 
1222 	walk.hugetlb_entry = gather_hugetbl_stats;
1223 	walk.pmd_entry = gather_pte_stats;
1224 	walk.private = md;
1225 	walk.mm = mm;
1226 
1227 	pol = get_vma_policy(task, vma, vma->vm_start);
1228 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
1229 	mpol_cond_put(pol);
1230 
1231 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1232 
1233 	if (file) {
1234 		seq_printf(m, " file=");
1235 		seq_path(m, &file->f_path, "\n\t= ");
1236 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1237 		seq_printf(m, " heap");
1238 	} else {
1239 		pid_t tid = vm_is_stack(task, vma, is_pid);
1240 		if (tid != 0) {
1241 			/*
1242 			 * Thread stack in /proc/PID/task/TID/maps or
1243 			 * the main process stack.
1244 			 */
1245 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1246 			    vma->vm_end >= mm->start_stack))
1247 				seq_printf(m, " stack");
1248 			else
1249 				seq_printf(m, " stack:%d", tid);
1250 		}
1251 	}
1252 
1253 	if (is_vm_hugetlb_page(vma))
1254 		seq_printf(m, " huge");
1255 
1256 	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1257 
1258 	if (!md->pages)
1259 		goto out;
1260 
1261 	if (md->anon)
1262 		seq_printf(m, " anon=%lu", md->anon);
1263 
1264 	if (md->dirty)
1265 		seq_printf(m, " dirty=%lu", md->dirty);
1266 
1267 	if (md->pages != md->anon && md->pages != md->dirty)
1268 		seq_printf(m, " mapped=%lu", md->pages);
1269 
1270 	if (md->mapcount_max > 1)
1271 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1272 
1273 	if (md->swapcache)
1274 		seq_printf(m, " swapcache=%lu", md->swapcache);
1275 
1276 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1277 		seq_printf(m, " active=%lu", md->active);
1278 
1279 	if (md->writeback)
1280 		seq_printf(m, " writeback=%lu", md->writeback);
1281 
1282 	for_each_node_state(n, N_HIGH_MEMORY)
1283 		if (md->node[n])
1284 			seq_printf(m, " N%d=%lu", n, md->node[n]);
1285 out:
1286 	seq_putc(m, '\n');
1287 
1288 	if (m->count < m->size)
1289 		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1290 	return 0;
1291 }
1292 
1293 static int show_pid_numa_map(struct seq_file *m, void *v)
1294 {
1295 	return show_numa_map(m, v, 1);
1296 }
1297 
1298 static int show_tid_numa_map(struct seq_file *m, void *v)
1299 {
1300 	return show_numa_map(m, v, 0);
1301 }
1302 
1303 static const struct seq_operations proc_pid_numa_maps_op = {
1304 	.start  = m_start,
1305 	.next   = m_next,
1306 	.stop   = m_stop,
1307 	.show   = show_pid_numa_map,
1308 };
1309 
1310 static const struct seq_operations proc_tid_numa_maps_op = {
1311 	.start  = m_start,
1312 	.next   = m_next,
1313 	.stop   = m_stop,
1314 	.show   = show_tid_numa_map,
1315 };
1316 
1317 static int numa_maps_open(struct inode *inode, struct file *file,
1318 			  const struct seq_operations *ops)
1319 {
1320 	struct numa_maps_private *priv;
1321 	int ret = -ENOMEM;
1322 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1323 	if (priv) {
1324 		priv->proc_maps.pid = proc_pid(inode);
1325 		ret = seq_open(file, ops);
1326 		if (!ret) {
1327 			struct seq_file *m = file->private_data;
1328 			m->private = priv;
1329 		} else {
1330 			kfree(priv);
1331 		}
1332 	}
1333 	return ret;
1334 }
1335 
1336 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1337 {
1338 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1339 }
1340 
1341 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1342 {
1343 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1344 }
1345 
1346 const struct file_operations proc_pid_numa_maps_operations = {
1347 	.open		= pid_numa_maps_open,
1348 	.read		= seq_read,
1349 	.llseek		= seq_lseek,
1350 	.release	= seq_release_private,
1351 };
1352 
1353 const struct file_operations proc_tid_numa_maps_operations = {
1354 	.open		= tid_numa_maps_open,
1355 	.read		= seq_read,
1356 	.llseek		= seq_lseek,
1357 	.release	= seq_release_private,
1358 };
1359 #endif /* CONFIG_NUMA */
1360