xref: /openbmc/linux/fs/proc/task_mmu.c (revision cd4d09ec)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23 
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 
29 	anon = get_mm_counter(mm, MM_ANONPAGES);
30 	file = get_mm_counter(mm, MM_FILEPAGES);
31 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32 
33 	/*
34 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
36 	 * collector of these hiwater stats must therefore get total_vm
37 	 * and rss too, which will usually be the higher.  Barriers? not
38 	 * worth the effort, such snapshots can always be inconsistent.
39 	 */
40 	hiwater_vm = total_vm = mm->total_vm;
41 	if (hiwater_vm < mm->hiwater_vm)
42 		hiwater_vm = mm->hiwater_vm;
43 	hiwater_rss = total_rss = anon + file + shmem;
44 	if (hiwater_rss < mm->hiwater_rss)
45 		hiwater_rss = mm->hiwater_rss;
46 
47 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 	swap = get_mm_counter(mm, MM_SWAPENTS);
50 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 	seq_printf(m,
53 		"VmPeak:\t%8lu kB\n"
54 		"VmSize:\t%8lu kB\n"
55 		"VmLck:\t%8lu kB\n"
56 		"VmPin:\t%8lu kB\n"
57 		"VmHWM:\t%8lu kB\n"
58 		"VmRSS:\t%8lu kB\n"
59 		"RssAnon:\t%8lu kB\n"
60 		"RssFile:\t%8lu kB\n"
61 		"RssShmem:\t%8lu kB\n"
62 		"VmData:\t%8lu kB\n"
63 		"VmStk:\t%8lu kB\n"
64 		"VmExe:\t%8lu kB\n"
65 		"VmLib:\t%8lu kB\n"
66 		"VmPTE:\t%8lu kB\n"
67 		"VmPMD:\t%8lu kB\n"
68 		"VmSwap:\t%8lu kB\n",
69 		hiwater_vm << (PAGE_SHIFT-10),
70 		total_vm << (PAGE_SHIFT-10),
71 		mm->locked_vm << (PAGE_SHIFT-10),
72 		mm->pinned_vm << (PAGE_SHIFT-10),
73 		hiwater_rss << (PAGE_SHIFT-10),
74 		total_rss << (PAGE_SHIFT-10),
75 		anon << (PAGE_SHIFT-10),
76 		file << (PAGE_SHIFT-10),
77 		shmem << (PAGE_SHIFT-10),
78 		mm->data_vm << (PAGE_SHIFT-10),
79 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 		ptes >> 10,
81 		pmds >> 10,
82 		swap << (PAGE_SHIFT-10));
83 	hugetlb_report_usage(m, mm);
84 }
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 	struct mm_struct *mm = priv->mm;
133 
134 	release_task_mempolicy(priv);
135 	up_read(&mm->mmap_sem);
136 	mmput(mm);
137 }
138 
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 	if (vma == priv->tail_vma)
143 		return NULL;
144 	return vma->vm_next ?: priv->tail_vma;
145 }
146 
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 	if (m->count < m->size)	/* vma is copied successfully */
150 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152 
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 	struct proc_maps_private *priv = m->private;
156 	unsigned long last_addr = m->version;
157 	struct mm_struct *mm;
158 	struct vm_area_struct *vma;
159 	unsigned int pos = *ppos;
160 
161 	/* See m_cache_vma(). Zero at the start or after lseek. */
162 	if (last_addr == -1UL)
163 		return NULL;
164 
165 	priv->task = get_proc_task(priv->inode);
166 	if (!priv->task)
167 		return ERR_PTR(-ESRCH);
168 
169 	mm = priv->mm;
170 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 		return NULL;
172 
173 	down_read(&mm->mmap_sem);
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr);
179 		if (vma && (vma = m_next_vma(priv, vma)))
180 			return vma;
181 	}
182 
183 	m->version = 0;
184 	if (pos < mm->map_count) {
185 		for (vma = mm->mmap; pos; pos--) {
186 			m->version = vma->vm_start;
187 			vma = vma->vm_next;
188 		}
189 		return vma;
190 	}
191 
192 	/* we do not bother to update m->version in this case */
193 	if (pos == mm->map_count && priv->tail_vma)
194 		return priv->tail_vma;
195 
196 	vma_stop(priv);
197 	return NULL;
198 }
199 
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202 	struct proc_maps_private *priv = m->private;
203 	struct vm_area_struct *next;
204 
205 	(*pos)++;
206 	next = m_next_vma(priv, v);
207 	if (!next)
208 		vma_stop(priv);
209 	return next;
210 }
211 
212 static void m_stop(struct seq_file *m, void *v)
213 {
214 	struct proc_maps_private *priv = m->private;
215 
216 	if (!IS_ERR_OR_NULL(v))
217 		vma_stop(priv);
218 	if (priv->task) {
219 		put_task_struct(priv->task);
220 		priv->task = NULL;
221 	}
222 }
223 
224 static int proc_maps_open(struct inode *inode, struct file *file,
225 			const struct seq_operations *ops, int psize)
226 {
227 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228 
229 	if (!priv)
230 		return -ENOMEM;
231 
232 	priv->inode = inode;
233 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 	if (IS_ERR(priv->mm)) {
235 		int err = PTR_ERR(priv->mm);
236 
237 		seq_release_private(inode, file);
238 		return err;
239 	}
240 
241 	return 0;
242 }
243 
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246 	struct seq_file *seq = file->private_data;
247 	struct proc_maps_private *priv = seq->private;
248 
249 	if (priv->mm)
250 		mmdrop(priv->mm);
251 
252 	return seq_release_private(inode, file);
253 }
254 
255 static int do_maps_open(struct inode *inode, struct file *file,
256 			const struct seq_operations *ops)
257 {
258 	return proc_maps_open(inode, file, ops,
259 				sizeof(struct proc_maps_private));
260 }
261 
262 static pid_t pid_of_stack(struct proc_maps_private *priv,
263 				struct vm_area_struct *vma, bool is_pid)
264 {
265 	struct inode *inode = priv->inode;
266 	struct task_struct *task;
267 	pid_t ret = 0;
268 
269 	rcu_read_lock();
270 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
271 	if (task) {
272 		task = task_of_stack(task, vma, is_pid);
273 		if (task)
274 			ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
275 	}
276 	rcu_read_unlock();
277 
278 	return ret;
279 }
280 
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284 	struct mm_struct *mm = vma->vm_mm;
285 	struct file *file = vma->vm_file;
286 	struct proc_maps_private *priv = m->private;
287 	vm_flags_t flags = vma->vm_flags;
288 	unsigned long ino = 0;
289 	unsigned long long pgoff = 0;
290 	unsigned long start, end;
291 	dev_t dev = 0;
292 	const char *name = NULL;
293 
294 	if (file) {
295 		struct inode *inode = file_inode(vma->vm_file);
296 		dev = inode->i_sb->s_dev;
297 		ino = inode->i_ino;
298 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299 	}
300 
301 	/* We don't show the stack guard page in /proc/maps */
302 	start = vma->vm_start;
303 	if (stack_guard_page_start(vma, start))
304 		start += PAGE_SIZE;
305 	end = vma->vm_end;
306 	if (stack_guard_page_end(vma, end))
307 		end -= PAGE_SIZE;
308 
309 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311 			start,
312 			end,
313 			flags & VM_READ ? 'r' : '-',
314 			flags & VM_WRITE ? 'w' : '-',
315 			flags & VM_EXEC ? 'x' : '-',
316 			flags & VM_MAYSHARE ? 's' : 'p',
317 			pgoff,
318 			MAJOR(dev), MINOR(dev), ino);
319 
320 	/*
321 	 * Print the dentry name for named mappings, and a
322 	 * special [heap] marker for the heap:
323 	 */
324 	if (file) {
325 		seq_pad(m, ' ');
326 		seq_file_path(m, file, "\n");
327 		goto done;
328 	}
329 
330 	if (vma->vm_ops && vma->vm_ops->name) {
331 		name = vma->vm_ops->name(vma);
332 		if (name)
333 			goto done;
334 	}
335 
336 	name = arch_vma_name(vma);
337 	if (!name) {
338 		pid_t tid;
339 
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		tid = pid_of_stack(priv, vma, is_pid);
352 		if (tid != 0) {
353 			/*
354 			 * Thread stack in /proc/PID/task/TID/maps or
355 			 * the main process stack.
356 			 */
357 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
358 			    vma->vm_end >= mm->start_stack)) {
359 				name = "[stack]";
360 			} else {
361 				/* Thread stack in /proc/PID/maps */
362 				seq_pad(m, ' ');
363 				seq_printf(m, "[stack:%d]", tid);
364 			}
365 		}
366 	}
367 
368 done:
369 	if (name) {
370 		seq_pad(m, ' ');
371 		seq_puts(m, name);
372 	}
373 	seq_putc(m, '\n');
374 }
375 
376 static int show_map(struct seq_file *m, void *v, int is_pid)
377 {
378 	show_map_vma(m, v, is_pid);
379 	m_cache_vma(m, v);
380 	return 0;
381 }
382 
383 static int show_pid_map(struct seq_file *m, void *v)
384 {
385 	return show_map(m, v, 1);
386 }
387 
388 static int show_tid_map(struct seq_file *m, void *v)
389 {
390 	return show_map(m, v, 0);
391 }
392 
393 static const struct seq_operations proc_pid_maps_op = {
394 	.start	= m_start,
395 	.next	= m_next,
396 	.stop	= m_stop,
397 	.show	= show_pid_map
398 };
399 
400 static const struct seq_operations proc_tid_maps_op = {
401 	.start	= m_start,
402 	.next	= m_next,
403 	.stop	= m_stop,
404 	.show	= show_tid_map
405 };
406 
407 static int pid_maps_open(struct inode *inode, struct file *file)
408 {
409 	return do_maps_open(inode, file, &proc_pid_maps_op);
410 }
411 
412 static int tid_maps_open(struct inode *inode, struct file *file)
413 {
414 	return do_maps_open(inode, file, &proc_tid_maps_op);
415 }
416 
417 const struct file_operations proc_pid_maps_operations = {
418 	.open		= pid_maps_open,
419 	.read		= seq_read,
420 	.llseek		= seq_lseek,
421 	.release	= proc_map_release,
422 };
423 
424 const struct file_operations proc_tid_maps_operations = {
425 	.open		= tid_maps_open,
426 	.read		= seq_read,
427 	.llseek		= seq_lseek,
428 	.release	= proc_map_release,
429 };
430 
431 /*
432  * Proportional Set Size(PSS): my share of RSS.
433  *
434  * PSS of a process is the count of pages it has in memory, where each
435  * page is divided by the number of processes sharing it.  So if a
436  * process has 1000 pages all to itself, and 1000 shared with one other
437  * process, its PSS will be 1500.
438  *
439  * To keep (accumulated) division errors low, we adopt a 64bit
440  * fixed-point pss counter to minimize division errors. So (pss >>
441  * PSS_SHIFT) would be the real byte count.
442  *
443  * A shift of 12 before division means (assuming 4K page size):
444  * 	- 1M 3-user-pages add up to 8KB errors;
445  * 	- supports mapcount up to 2^24, or 16M;
446  * 	- supports PSS up to 2^52 bytes, or 4PB.
447  */
448 #define PSS_SHIFT 12
449 
450 #ifdef CONFIG_PROC_PAGE_MONITOR
451 struct mem_size_stats {
452 	unsigned long resident;
453 	unsigned long shared_clean;
454 	unsigned long shared_dirty;
455 	unsigned long private_clean;
456 	unsigned long private_dirty;
457 	unsigned long referenced;
458 	unsigned long anonymous;
459 	unsigned long anonymous_thp;
460 	unsigned long swap;
461 	unsigned long shared_hugetlb;
462 	unsigned long private_hugetlb;
463 	u64 pss;
464 	u64 swap_pss;
465 	bool check_shmem_swap;
466 };
467 
468 static void smaps_account(struct mem_size_stats *mss, struct page *page,
469 		bool compound, bool young, bool dirty)
470 {
471 	int i, nr = compound ? 1 << compound_order(page) : 1;
472 	unsigned long size = nr * PAGE_SIZE;
473 
474 	if (PageAnon(page))
475 		mss->anonymous += size;
476 
477 	mss->resident += size;
478 	/* Accumulate the size in pages that have been accessed. */
479 	if (young || page_is_young(page) || PageReferenced(page))
480 		mss->referenced += size;
481 
482 	/*
483 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
484 	 * If any subpage of the compound page mapped with PTE it would elevate
485 	 * page_count().
486 	 */
487 	if (page_count(page) == 1) {
488 		if (dirty || PageDirty(page))
489 			mss->private_dirty += size;
490 		else
491 			mss->private_clean += size;
492 		mss->pss += (u64)size << PSS_SHIFT;
493 		return;
494 	}
495 
496 	for (i = 0; i < nr; i++, page++) {
497 		int mapcount = page_mapcount(page);
498 
499 		if (mapcount >= 2) {
500 			if (dirty || PageDirty(page))
501 				mss->shared_dirty += PAGE_SIZE;
502 			else
503 				mss->shared_clean += PAGE_SIZE;
504 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
505 		} else {
506 			if (dirty || PageDirty(page))
507 				mss->private_dirty += PAGE_SIZE;
508 			else
509 				mss->private_clean += PAGE_SIZE;
510 			mss->pss += PAGE_SIZE << PSS_SHIFT;
511 		}
512 	}
513 }
514 
515 #ifdef CONFIG_SHMEM
516 static int smaps_pte_hole(unsigned long addr, unsigned long end,
517 		struct mm_walk *walk)
518 {
519 	struct mem_size_stats *mss = walk->private;
520 
521 	mss->swap += shmem_partial_swap_usage(
522 			walk->vma->vm_file->f_mapping, addr, end);
523 
524 	return 0;
525 }
526 #endif
527 
528 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
529 		struct mm_walk *walk)
530 {
531 	struct mem_size_stats *mss = walk->private;
532 	struct vm_area_struct *vma = walk->vma;
533 	struct page *page = NULL;
534 
535 	if (pte_present(*pte)) {
536 		page = vm_normal_page(vma, addr, *pte);
537 	} else if (is_swap_pte(*pte)) {
538 		swp_entry_t swpent = pte_to_swp_entry(*pte);
539 
540 		if (!non_swap_entry(swpent)) {
541 			int mapcount;
542 
543 			mss->swap += PAGE_SIZE;
544 			mapcount = swp_swapcount(swpent);
545 			if (mapcount >= 2) {
546 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
547 
548 				do_div(pss_delta, mapcount);
549 				mss->swap_pss += pss_delta;
550 			} else {
551 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
552 			}
553 		} else if (is_migration_entry(swpent))
554 			page = migration_entry_to_page(swpent);
555 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
556 							&& pte_none(*pte))) {
557 		page = find_get_entry(vma->vm_file->f_mapping,
558 						linear_page_index(vma, addr));
559 		if (!page)
560 			return;
561 
562 		if (radix_tree_exceptional_entry(page))
563 			mss->swap += PAGE_SIZE;
564 		else
565 			page_cache_release(page);
566 
567 		return;
568 	}
569 
570 	if (!page)
571 		return;
572 
573 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
574 }
575 
576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
577 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
578 		struct mm_walk *walk)
579 {
580 	struct mem_size_stats *mss = walk->private;
581 	struct vm_area_struct *vma = walk->vma;
582 	struct page *page;
583 
584 	/* FOLL_DUMP will return -EFAULT on huge zero page */
585 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
586 	if (IS_ERR_OR_NULL(page))
587 		return;
588 	mss->anonymous_thp += HPAGE_PMD_SIZE;
589 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
590 }
591 #else
592 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
593 		struct mm_walk *walk)
594 {
595 }
596 #endif
597 
598 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
599 			   struct mm_walk *walk)
600 {
601 	struct vm_area_struct *vma = walk->vma;
602 	pte_t *pte;
603 	spinlock_t *ptl;
604 
605 	ptl = pmd_trans_huge_lock(pmd, vma);
606 	if (ptl) {
607 		smaps_pmd_entry(pmd, addr, walk);
608 		spin_unlock(ptl);
609 		return 0;
610 	}
611 
612 	if (pmd_trans_unstable(pmd))
613 		return 0;
614 	/*
615 	 * The mmap_sem held all the way back in m_start() is what
616 	 * keeps khugepaged out of here and from collapsing things
617 	 * in here.
618 	 */
619 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
620 	for (; addr != end; pte++, addr += PAGE_SIZE)
621 		smaps_pte_entry(pte, addr, walk);
622 	pte_unmap_unlock(pte - 1, ptl);
623 	cond_resched();
624 	return 0;
625 }
626 
627 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
628 {
629 	/*
630 	 * Don't forget to update Documentation/ on changes.
631 	 */
632 	static const char mnemonics[BITS_PER_LONG][2] = {
633 		/*
634 		 * In case if we meet a flag we don't know about.
635 		 */
636 		[0 ... (BITS_PER_LONG-1)] = "??",
637 
638 		[ilog2(VM_READ)]	= "rd",
639 		[ilog2(VM_WRITE)]	= "wr",
640 		[ilog2(VM_EXEC)]	= "ex",
641 		[ilog2(VM_SHARED)]	= "sh",
642 		[ilog2(VM_MAYREAD)]	= "mr",
643 		[ilog2(VM_MAYWRITE)]	= "mw",
644 		[ilog2(VM_MAYEXEC)]	= "me",
645 		[ilog2(VM_MAYSHARE)]	= "ms",
646 		[ilog2(VM_GROWSDOWN)]	= "gd",
647 		[ilog2(VM_PFNMAP)]	= "pf",
648 		[ilog2(VM_DENYWRITE)]	= "dw",
649 #ifdef CONFIG_X86_INTEL_MPX
650 		[ilog2(VM_MPX)]		= "mp",
651 #endif
652 		[ilog2(VM_LOCKED)]	= "lo",
653 		[ilog2(VM_IO)]		= "io",
654 		[ilog2(VM_SEQ_READ)]	= "sr",
655 		[ilog2(VM_RAND_READ)]	= "rr",
656 		[ilog2(VM_DONTCOPY)]	= "dc",
657 		[ilog2(VM_DONTEXPAND)]	= "de",
658 		[ilog2(VM_ACCOUNT)]	= "ac",
659 		[ilog2(VM_NORESERVE)]	= "nr",
660 		[ilog2(VM_HUGETLB)]	= "ht",
661 		[ilog2(VM_ARCH_1)]	= "ar",
662 		[ilog2(VM_DONTDUMP)]	= "dd",
663 #ifdef CONFIG_MEM_SOFT_DIRTY
664 		[ilog2(VM_SOFTDIRTY)]	= "sd",
665 #endif
666 		[ilog2(VM_MIXEDMAP)]	= "mm",
667 		[ilog2(VM_HUGEPAGE)]	= "hg",
668 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
669 		[ilog2(VM_MERGEABLE)]	= "mg",
670 		[ilog2(VM_UFFD_MISSING)]= "um",
671 		[ilog2(VM_UFFD_WP)]	= "uw",
672 	};
673 	size_t i;
674 
675 	seq_puts(m, "VmFlags: ");
676 	for (i = 0; i < BITS_PER_LONG; i++) {
677 		if (vma->vm_flags & (1UL << i)) {
678 			seq_printf(m, "%c%c ",
679 				   mnemonics[i][0], mnemonics[i][1]);
680 		}
681 	}
682 	seq_putc(m, '\n');
683 }
684 
685 #ifdef CONFIG_HUGETLB_PAGE
686 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
687 				 unsigned long addr, unsigned long end,
688 				 struct mm_walk *walk)
689 {
690 	struct mem_size_stats *mss = walk->private;
691 	struct vm_area_struct *vma = walk->vma;
692 	struct page *page = NULL;
693 
694 	if (pte_present(*pte)) {
695 		page = vm_normal_page(vma, addr, *pte);
696 	} else if (is_swap_pte(*pte)) {
697 		swp_entry_t swpent = pte_to_swp_entry(*pte);
698 
699 		if (is_migration_entry(swpent))
700 			page = migration_entry_to_page(swpent);
701 	}
702 	if (page) {
703 		int mapcount = page_mapcount(page);
704 
705 		if (mapcount >= 2)
706 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
707 		else
708 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
709 	}
710 	return 0;
711 }
712 #endif /* HUGETLB_PAGE */
713 
714 static int show_smap(struct seq_file *m, void *v, int is_pid)
715 {
716 	struct vm_area_struct *vma = v;
717 	struct mem_size_stats mss;
718 	struct mm_walk smaps_walk = {
719 		.pmd_entry = smaps_pte_range,
720 #ifdef CONFIG_HUGETLB_PAGE
721 		.hugetlb_entry = smaps_hugetlb_range,
722 #endif
723 		.mm = vma->vm_mm,
724 		.private = &mss,
725 	};
726 
727 	memset(&mss, 0, sizeof mss);
728 
729 #ifdef CONFIG_SHMEM
730 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
731 		/*
732 		 * For shared or readonly shmem mappings we know that all
733 		 * swapped out pages belong to the shmem object, and we can
734 		 * obtain the swap value much more efficiently. For private
735 		 * writable mappings, we might have COW pages that are
736 		 * not affected by the parent swapped out pages of the shmem
737 		 * object, so we have to distinguish them during the page walk.
738 		 * Unless we know that the shmem object (or the part mapped by
739 		 * our VMA) has no swapped out pages at all.
740 		 */
741 		unsigned long shmem_swapped = shmem_swap_usage(vma);
742 
743 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
744 					!(vma->vm_flags & VM_WRITE)) {
745 			mss.swap = shmem_swapped;
746 		} else {
747 			mss.check_shmem_swap = true;
748 			smaps_walk.pte_hole = smaps_pte_hole;
749 		}
750 	}
751 #endif
752 
753 	/* mmap_sem is held in m_start */
754 	walk_page_vma(vma, &smaps_walk);
755 
756 	show_map_vma(m, vma, is_pid);
757 
758 	seq_printf(m,
759 		   "Size:           %8lu kB\n"
760 		   "Rss:            %8lu kB\n"
761 		   "Pss:            %8lu kB\n"
762 		   "Shared_Clean:   %8lu kB\n"
763 		   "Shared_Dirty:   %8lu kB\n"
764 		   "Private_Clean:  %8lu kB\n"
765 		   "Private_Dirty:  %8lu kB\n"
766 		   "Referenced:     %8lu kB\n"
767 		   "Anonymous:      %8lu kB\n"
768 		   "AnonHugePages:  %8lu kB\n"
769 		   "Shared_Hugetlb: %8lu kB\n"
770 		   "Private_Hugetlb: %7lu kB\n"
771 		   "Swap:           %8lu kB\n"
772 		   "SwapPss:        %8lu kB\n"
773 		   "KernelPageSize: %8lu kB\n"
774 		   "MMUPageSize:    %8lu kB\n"
775 		   "Locked:         %8lu kB\n",
776 		   (vma->vm_end - vma->vm_start) >> 10,
777 		   mss.resident >> 10,
778 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
779 		   mss.shared_clean  >> 10,
780 		   mss.shared_dirty  >> 10,
781 		   mss.private_clean >> 10,
782 		   mss.private_dirty >> 10,
783 		   mss.referenced >> 10,
784 		   mss.anonymous >> 10,
785 		   mss.anonymous_thp >> 10,
786 		   mss.shared_hugetlb >> 10,
787 		   mss.private_hugetlb >> 10,
788 		   mss.swap >> 10,
789 		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
790 		   vma_kernel_pagesize(vma) >> 10,
791 		   vma_mmu_pagesize(vma) >> 10,
792 		   (vma->vm_flags & VM_LOCKED) ?
793 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
794 
795 	show_smap_vma_flags(m, vma);
796 	m_cache_vma(m, vma);
797 	return 0;
798 }
799 
800 static int show_pid_smap(struct seq_file *m, void *v)
801 {
802 	return show_smap(m, v, 1);
803 }
804 
805 static int show_tid_smap(struct seq_file *m, void *v)
806 {
807 	return show_smap(m, v, 0);
808 }
809 
810 static const struct seq_operations proc_pid_smaps_op = {
811 	.start	= m_start,
812 	.next	= m_next,
813 	.stop	= m_stop,
814 	.show	= show_pid_smap
815 };
816 
817 static const struct seq_operations proc_tid_smaps_op = {
818 	.start	= m_start,
819 	.next	= m_next,
820 	.stop	= m_stop,
821 	.show	= show_tid_smap
822 };
823 
824 static int pid_smaps_open(struct inode *inode, struct file *file)
825 {
826 	return do_maps_open(inode, file, &proc_pid_smaps_op);
827 }
828 
829 static int tid_smaps_open(struct inode *inode, struct file *file)
830 {
831 	return do_maps_open(inode, file, &proc_tid_smaps_op);
832 }
833 
834 const struct file_operations proc_pid_smaps_operations = {
835 	.open		= pid_smaps_open,
836 	.read		= seq_read,
837 	.llseek		= seq_lseek,
838 	.release	= proc_map_release,
839 };
840 
841 const struct file_operations proc_tid_smaps_operations = {
842 	.open		= tid_smaps_open,
843 	.read		= seq_read,
844 	.llseek		= seq_lseek,
845 	.release	= proc_map_release,
846 };
847 
848 enum clear_refs_types {
849 	CLEAR_REFS_ALL = 1,
850 	CLEAR_REFS_ANON,
851 	CLEAR_REFS_MAPPED,
852 	CLEAR_REFS_SOFT_DIRTY,
853 	CLEAR_REFS_MM_HIWATER_RSS,
854 	CLEAR_REFS_LAST,
855 };
856 
857 struct clear_refs_private {
858 	enum clear_refs_types type;
859 };
860 
861 #ifdef CONFIG_MEM_SOFT_DIRTY
862 static inline void clear_soft_dirty(struct vm_area_struct *vma,
863 		unsigned long addr, pte_t *pte)
864 {
865 	/*
866 	 * The soft-dirty tracker uses #PF-s to catch writes
867 	 * to pages, so write-protect the pte as well. See the
868 	 * Documentation/vm/soft-dirty.txt for full description
869 	 * of how soft-dirty works.
870 	 */
871 	pte_t ptent = *pte;
872 
873 	if (pte_present(ptent)) {
874 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
875 		ptent = pte_wrprotect(ptent);
876 		ptent = pte_clear_soft_dirty(ptent);
877 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
878 	} else if (is_swap_pte(ptent)) {
879 		ptent = pte_swp_clear_soft_dirty(ptent);
880 		set_pte_at(vma->vm_mm, addr, pte, ptent);
881 	}
882 }
883 #else
884 static inline void clear_soft_dirty(struct vm_area_struct *vma,
885 		unsigned long addr, pte_t *pte)
886 {
887 }
888 #endif
889 
890 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
891 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
892 		unsigned long addr, pmd_t *pmdp)
893 {
894 	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
895 
896 	pmd = pmd_wrprotect(pmd);
897 	pmd = pmd_clear_soft_dirty(pmd);
898 
899 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
900 }
901 #else
902 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
903 		unsigned long addr, pmd_t *pmdp)
904 {
905 }
906 #endif
907 
908 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
909 				unsigned long end, struct mm_walk *walk)
910 {
911 	struct clear_refs_private *cp = walk->private;
912 	struct vm_area_struct *vma = walk->vma;
913 	pte_t *pte, ptent;
914 	spinlock_t *ptl;
915 	struct page *page;
916 
917 	ptl = pmd_trans_huge_lock(pmd, vma);
918 	if (ptl) {
919 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
920 			clear_soft_dirty_pmd(vma, addr, pmd);
921 			goto out;
922 		}
923 
924 		page = pmd_page(*pmd);
925 
926 		/* Clear accessed and referenced bits. */
927 		pmdp_test_and_clear_young(vma, addr, pmd);
928 		test_and_clear_page_young(page);
929 		ClearPageReferenced(page);
930 out:
931 		spin_unlock(ptl);
932 		return 0;
933 	}
934 
935 	if (pmd_trans_unstable(pmd))
936 		return 0;
937 
938 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
939 	for (; addr != end; pte++, addr += PAGE_SIZE) {
940 		ptent = *pte;
941 
942 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
943 			clear_soft_dirty(vma, addr, pte);
944 			continue;
945 		}
946 
947 		if (!pte_present(ptent))
948 			continue;
949 
950 		page = vm_normal_page(vma, addr, ptent);
951 		if (!page)
952 			continue;
953 
954 		/* Clear accessed and referenced bits. */
955 		ptep_test_and_clear_young(vma, addr, pte);
956 		test_and_clear_page_young(page);
957 		ClearPageReferenced(page);
958 	}
959 	pte_unmap_unlock(pte - 1, ptl);
960 	cond_resched();
961 	return 0;
962 }
963 
964 static int clear_refs_test_walk(unsigned long start, unsigned long end,
965 				struct mm_walk *walk)
966 {
967 	struct clear_refs_private *cp = walk->private;
968 	struct vm_area_struct *vma = walk->vma;
969 
970 	if (vma->vm_flags & VM_PFNMAP)
971 		return 1;
972 
973 	/*
974 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
975 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
976 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
977 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
978 	 */
979 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
980 		return 1;
981 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
982 		return 1;
983 	return 0;
984 }
985 
986 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
987 				size_t count, loff_t *ppos)
988 {
989 	struct task_struct *task;
990 	char buffer[PROC_NUMBUF];
991 	struct mm_struct *mm;
992 	struct vm_area_struct *vma;
993 	enum clear_refs_types type;
994 	int itype;
995 	int rv;
996 
997 	memset(buffer, 0, sizeof(buffer));
998 	if (count > sizeof(buffer) - 1)
999 		count = sizeof(buffer) - 1;
1000 	if (copy_from_user(buffer, buf, count))
1001 		return -EFAULT;
1002 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1003 	if (rv < 0)
1004 		return rv;
1005 	type = (enum clear_refs_types)itype;
1006 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1007 		return -EINVAL;
1008 
1009 	task = get_proc_task(file_inode(file));
1010 	if (!task)
1011 		return -ESRCH;
1012 	mm = get_task_mm(task);
1013 	if (mm) {
1014 		struct clear_refs_private cp = {
1015 			.type = type,
1016 		};
1017 		struct mm_walk clear_refs_walk = {
1018 			.pmd_entry = clear_refs_pte_range,
1019 			.test_walk = clear_refs_test_walk,
1020 			.mm = mm,
1021 			.private = &cp,
1022 		};
1023 
1024 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1025 			/*
1026 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1027 			 * resident set size to this mm's current rss value.
1028 			 */
1029 			down_write(&mm->mmap_sem);
1030 			reset_mm_hiwater_rss(mm);
1031 			up_write(&mm->mmap_sem);
1032 			goto out_mm;
1033 		}
1034 
1035 		down_read(&mm->mmap_sem);
1036 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1037 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1038 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1039 					continue;
1040 				up_read(&mm->mmap_sem);
1041 				down_write(&mm->mmap_sem);
1042 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043 					vma->vm_flags &= ~VM_SOFTDIRTY;
1044 					vma_set_page_prot(vma);
1045 				}
1046 				downgrade_write(&mm->mmap_sem);
1047 				break;
1048 			}
1049 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1050 		}
1051 		walk_page_range(0, ~0UL, &clear_refs_walk);
1052 		if (type == CLEAR_REFS_SOFT_DIRTY)
1053 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1054 		flush_tlb_mm(mm);
1055 		up_read(&mm->mmap_sem);
1056 out_mm:
1057 		mmput(mm);
1058 	}
1059 	put_task_struct(task);
1060 
1061 	return count;
1062 }
1063 
1064 const struct file_operations proc_clear_refs_operations = {
1065 	.write		= clear_refs_write,
1066 	.llseek		= noop_llseek,
1067 };
1068 
1069 typedef struct {
1070 	u64 pme;
1071 } pagemap_entry_t;
1072 
1073 struct pagemapread {
1074 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1075 	pagemap_entry_t *buffer;
1076 	bool show_pfn;
1077 };
1078 
1079 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1080 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1081 
1082 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1083 #define PM_PFRAME_BITS		55
1084 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1085 #define PM_SOFT_DIRTY		BIT_ULL(55)
1086 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1087 #define PM_FILE			BIT_ULL(61)
1088 #define PM_SWAP			BIT_ULL(62)
1089 #define PM_PRESENT		BIT_ULL(63)
1090 
1091 #define PM_END_OF_BUFFER    1
1092 
1093 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1094 {
1095 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1096 }
1097 
1098 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1099 			  struct pagemapread *pm)
1100 {
1101 	pm->buffer[pm->pos++] = *pme;
1102 	if (pm->pos >= pm->len)
1103 		return PM_END_OF_BUFFER;
1104 	return 0;
1105 }
1106 
1107 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1108 				struct mm_walk *walk)
1109 {
1110 	struct pagemapread *pm = walk->private;
1111 	unsigned long addr = start;
1112 	int err = 0;
1113 
1114 	while (addr < end) {
1115 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1116 		pagemap_entry_t pme = make_pme(0, 0);
1117 		/* End of address space hole, which we mark as non-present. */
1118 		unsigned long hole_end;
1119 
1120 		if (vma)
1121 			hole_end = min(end, vma->vm_start);
1122 		else
1123 			hole_end = end;
1124 
1125 		for (; addr < hole_end; addr += PAGE_SIZE) {
1126 			err = add_to_pagemap(addr, &pme, pm);
1127 			if (err)
1128 				goto out;
1129 		}
1130 
1131 		if (!vma)
1132 			break;
1133 
1134 		/* Addresses in the VMA. */
1135 		if (vma->vm_flags & VM_SOFTDIRTY)
1136 			pme = make_pme(0, PM_SOFT_DIRTY);
1137 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1138 			err = add_to_pagemap(addr, &pme, pm);
1139 			if (err)
1140 				goto out;
1141 		}
1142 	}
1143 out:
1144 	return err;
1145 }
1146 
1147 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1148 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1149 {
1150 	u64 frame = 0, flags = 0;
1151 	struct page *page = NULL;
1152 
1153 	if (pte_present(pte)) {
1154 		if (pm->show_pfn)
1155 			frame = pte_pfn(pte);
1156 		flags |= PM_PRESENT;
1157 		page = vm_normal_page(vma, addr, pte);
1158 		if (pte_soft_dirty(pte))
1159 			flags |= PM_SOFT_DIRTY;
1160 	} else if (is_swap_pte(pte)) {
1161 		swp_entry_t entry;
1162 		if (pte_swp_soft_dirty(pte))
1163 			flags |= PM_SOFT_DIRTY;
1164 		entry = pte_to_swp_entry(pte);
1165 		frame = swp_type(entry) |
1166 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1167 		flags |= PM_SWAP;
1168 		if (is_migration_entry(entry))
1169 			page = migration_entry_to_page(entry);
1170 	}
1171 
1172 	if (page && !PageAnon(page))
1173 		flags |= PM_FILE;
1174 	if (page && page_mapcount(page) == 1)
1175 		flags |= PM_MMAP_EXCLUSIVE;
1176 	if (vma->vm_flags & VM_SOFTDIRTY)
1177 		flags |= PM_SOFT_DIRTY;
1178 
1179 	return make_pme(frame, flags);
1180 }
1181 
1182 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1183 			     struct mm_walk *walk)
1184 {
1185 	struct vm_area_struct *vma = walk->vma;
1186 	struct pagemapread *pm = walk->private;
1187 	spinlock_t *ptl;
1188 	pte_t *pte, *orig_pte;
1189 	int err = 0;
1190 
1191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1192 	ptl = pmd_trans_huge_lock(pmdp, vma);
1193 	if (ptl) {
1194 		u64 flags = 0, frame = 0;
1195 		pmd_t pmd = *pmdp;
1196 
1197 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1198 			flags |= PM_SOFT_DIRTY;
1199 
1200 		/*
1201 		 * Currently pmd for thp is always present because thp
1202 		 * can not be swapped-out, migrated, or HWPOISONed
1203 		 * (split in such cases instead.)
1204 		 * This if-check is just to prepare for future implementation.
1205 		 */
1206 		if (pmd_present(pmd)) {
1207 			struct page *page = pmd_page(pmd);
1208 
1209 			if (page_mapcount(page) == 1)
1210 				flags |= PM_MMAP_EXCLUSIVE;
1211 
1212 			flags |= PM_PRESENT;
1213 			if (pm->show_pfn)
1214 				frame = pmd_pfn(pmd) +
1215 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1216 		}
1217 
1218 		for (; addr != end; addr += PAGE_SIZE) {
1219 			pagemap_entry_t pme = make_pme(frame, flags);
1220 
1221 			err = add_to_pagemap(addr, &pme, pm);
1222 			if (err)
1223 				break;
1224 			if (pm->show_pfn && (flags & PM_PRESENT))
1225 				frame++;
1226 		}
1227 		spin_unlock(ptl);
1228 		return err;
1229 	}
1230 
1231 	if (pmd_trans_unstable(pmdp))
1232 		return 0;
1233 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1234 
1235 	/*
1236 	 * We can assume that @vma always points to a valid one and @end never
1237 	 * goes beyond vma->vm_end.
1238 	 */
1239 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1240 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1241 		pagemap_entry_t pme;
1242 
1243 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1244 		err = add_to_pagemap(addr, &pme, pm);
1245 		if (err)
1246 			break;
1247 	}
1248 	pte_unmap_unlock(orig_pte, ptl);
1249 
1250 	cond_resched();
1251 
1252 	return err;
1253 }
1254 
1255 #ifdef CONFIG_HUGETLB_PAGE
1256 /* This function walks within one hugetlb entry in the single call */
1257 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1258 				 unsigned long addr, unsigned long end,
1259 				 struct mm_walk *walk)
1260 {
1261 	struct pagemapread *pm = walk->private;
1262 	struct vm_area_struct *vma = walk->vma;
1263 	u64 flags = 0, frame = 0;
1264 	int err = 0;
1265 	pte_t pte;
1266 
1267 	if (vma->vm_flags & VM_SOFTDIRTY)
1268 		flags |= PM_SOFT_DIRTY;
1269 
1270 	pte = huge_ptep_get(ptep);
1271 	if (pte_present(pte)) {
1272 		struct page *page = pte_page(pte);
1273 
1274 		if (!PageAnon(page))
1275 			flags |= PM_FILE;
1276 
1277 		if (page_mapcount(page) == 1)
1278 			flags |= PM_MMAP_EXCLUSIVE;
1279 
1280 		flags |= PM_PRESENT;
1281 		if (pm->show_pfn)
1282 			frame = pte_pfn(pte) +
1283 				((addr & ~hmask) >> PAGE_SHIFT);
1284 	}
1285 
1286 	for (; addr != end; addr += PAGE_SIZE) {
1287 		pagemap_entry_t pme = make_pme(frame, flags);
1288 
1289 		err = add_to_pagemap(addr, &pme, pm);
1290 		if (err)
1291 			return err;
1292 		if (pm->show_pfn && (flags & PM_PRESENT))
1293 			frame++;
1294 	}
1295 
1296 	cond_resched();
1297 
1298 	return err;
1299 }
1300 #endif /* HUGETLB_PAGE */
1301 
1302 /*
1303  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1304  *
1305  * For each page in the address space, this file contains one 64-bit entry
1306  * consisting of the following:
1307  *
1308  * Bits 0-54  page frame number (PFN) if present
1309  * Bits 0-4   swap type if swapped
1310  * Bits 5-54  swap offset if swapped
1311  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1312  * Bit  56    page exclusively mapped
1313  * Bits 57-60 zero
1314  * Bit  61    page is file-page or shared-anon
1315  * Bit  62    page swapped
1316  * Bit  63    page present
1317  *
1318  * If the page is not present but in swap, then the PFN contains an
1319  * encoding of the swap file number and the page's offset into the
1320  * swap. Unmapped pages return a null PFN. This allows determining
1321  * precisely which pages are mapped (or in swap) and comparing mapped
1322  * pages between processes.
1323  *
1324  * Efficient users of this interface will use /proc/pid/maps to
1325  * determine which areas of memory are actually mapped and llseek to
1326  * skip over unmapped regions.
1327  */
1328 static ssize_t pagemap_read(struct file *file, char __user *buf,
1329 			    size_t count, loff_t *ppos)
1330 {
1331 	struct mm_struct *mm = file->private_data;
1332 	struct pagemapread pm;
1333 	struct mm_walk pagemap_walk = {};
1334 	unsigned long src;
1335 	unsigned long svpfn;
1336 	unsigned long start_vaddr;
1337 	unsigned long end_vaddr;
1338 	int ret = 0, copied = 0;
1339 
1340 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1341 		goto out;
1342 
1343 	ret = -EINVAL;
1344 	/* file position must be aligned */
1345 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1346 		goto out_mm;
1347 
1348 	ret = 0;
1349 	if (!count)
1350 		goto out_mm;
1351 
1352 	/* do not disclose physical addresses: attack vector */
1353 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1354 
1355 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1356 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1357 	ret = -ENOMEM;
1358 	if (!pm.buffer)
1359 		goto out_mm;
1360 
1361 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1362 	pagemap_walk.pte_hole = pagemap_pte_hole;
1363 #ifdef CONFIG_HUGETLB_PAGE
1364 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1365 #endif
1366 	pagemap_walk.mm = mm;
1367 	pagemap_walk.private = &pm;
1368 
1369 	src = *ppos;
1370 	svpfn = src / PM_ENTRY_BYTES;
1371 	start_vaddr = svpfn << PAGE_SHIFT;
1372 	end_vaddr = mm->task_size;
1373 
1374 	/* watch out for wraparound */
1375 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1376 		start_vaddr = end_vaddr;
1377 
1378 	/*
1379 	 * The odds are that this will stop walking way
1380 	 * before end_vaddr, because the length of the
1381 	 * user buffer is tracked in "pm", and the walk
1382 	 * will stop when we hit the end of the buffer.
1383 	 */
1384 	ret = 0;
1385 	while (count && (start_vaddr < end_vaddr)) {
1386 		int len;
1387 		unsigned long end;
1388 
1389 		pm.pos = 0;
1390 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1391 		/* overflow ? */
1392 		if (end < start_vaddr || end > end_vaddr)
1393 			end = end_vaddr;
1394 		down_read(&mm->mmap_sem);
1395 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1396 		up_read(&mm->mmap_sem);
1397 		start_vaddr = end;
1398 
1399 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1400 		if (copy_to_user(buf, pm.buffer, len)) {
1401 			ret = -EFAULT;
1402 			goto out_free;
1403 		}
1404 		copied += len;
1405 		buf += len;
1406 		count -= len;
1407 	}
1408 	*ppos += copied;
1409 	if (!ret || ret == PM_END_OF_BUFFER)
1410 		ret = copied;
1411 
1412 out_free:
1413 	kfree(pm.buffer);
1414 out_mm:
1415 	mmput(mm);
1416 out:
1417 	return ret;
1418 }
1419 
1420 static int pagemap_open(struct inode *inode, struct file *file)
1421 {
1422 	struct mm_struct *mm;
1423 
1424 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1425 	if (IS_ERR(mm))
1426 		return PTR_ERR(mm);
1427 	file->private_data = mm;
1428 	return 0;
1429 }
1430 
1431 static int pagemap_release(struct inode *inode, struct file *file)
1432 {
1433 	struct mm_struct *mm = file->private_data;
1434 
1435 	if (mm)
1436 		mmdrop(mm);
1437 	return 0;
1438 }
1439 
1440 const struct file_operations proc_pagemap_operations = {
1441 	.llseek		= mem_lseek, /* borrow this */
1442 	.read		= pagemap_read,
1443 	.open		= pagemap_open,
1444 	.release	= pagemap_release,
1445 };
1446 #endif /* CONFIG_PROC_PAGE_MONITOR */
1447 
1448 #ifdef CONFIG_NUMA
1449 
1450 struct numa_maps {
1451 	unsigned long pages;
1452 	unsigned long anon;
1453 	unsigned long active;
1454 	unsigned long writeback;
1455 	unsigned long mapcount_max;
1456 	unsigned long dirty;
1457 	unsigned long swapcache;
1458 	unsigned long node[MAX_NUMNODES];
1459 };
1460 
1461 struct numa_maps_private {
1462 	struct proc_maps_private proc_maps;
1463 	struct numa_maps md;
1464 };
1465 
1466 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1467 			unsigned long nr_pages)
1468 {
1469 	int count = page_mapcount(page);
1470 
1471 	md->pages += nr_pages;
1472 	if (pte_dirty || PageDirty(page))
1473 		md->dirty += nr_pages;
1474 
1475 	if (PageSwapCache(page))
1476 		md->swapcache += nr_pages;
1477 
1478 	if (PageActive(page) || PageUnevictable(page))
1479 		md->active += nr_pages;
1480 
1481 	if (PageWriteback(page))
1482 		md->writeback += nr_pages;
1483 
1484 	if (PageAnon(page))
1485 		md->anon += nr_pages;
1486 
1487 	if (count > md->mapcount_max)
1488 		md->mapcount_max = count;
1489 
1490 	md->node[page_to_nid(page)] += nr_pages;
1491 }
1492 
1493 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1494 		unsigned long addr)
1495 {
1496 	struct page *page;
1497 	int nid;
1498 
1499 	if (!pte_present(pte))
1500 		return NULL;
1501 
1502 	page = vm_normal_page(vma, addr, pte);
1503 	if (!page)
1504 		return NULL;
1505 
1506 	if (PageReserved(page))
1507 		return NULL;
1508 
1509 	nid = page_to_nid(page);
1510 	if (!node_isset(nid, node_states[N_MEMORY]))
1511 		return NULL;
1512 
1513 	return page;
1514 }
1515 
1516 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1517 		unsigned long end, struct mm_walk *walk)
1518 {
1519 	struct numa_maps *md = walk->private;
1520 	struct vm_area_struct *vma = walk->vma;
1521 	spinlock_t *ptl;
1522 	pte_t *orig_pte;
1523 	pte_t *pte;
1524 
1525 	ptl = pmd_trans_huge_lock(pmd, vma);
1526 	if (ptl) {
1527 		pte_t huge_pte = *(pte_t *)pmd;
1528 		struct page *page;
1529 
1530 		page = can_gather_numa_stats(huge_pte, vma, addr);
1531 		if (page)
1532 			gather_stats(page, md, pte_dirty(huge_pte),
1533 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1534 		spin_unlock(ptl);
1535 		return 0;
1536 	}
1537 
1538 	if (pmd_trans_unstable(pmd))
1539 		return 0;
1540 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1541 	do {
1542 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1543 		if (!page)
1544 			continue;
1545 		gather_stats(page, md, pte_dirty(*pte), 1);
1546 
1547 	} while (pte++, addr += PAGE_SIZE, addr != end);
1548 	pte_unmap_unlock(orig_pte, ptl);
1549 	return 0;
1550 }
1551 #ifdef CONFIG_HUGETLB_PAGE
1552 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1553 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1554 {
1555 	struct numa_maps *md;
1556 	struct page *page;
1557 
1558 	if (!pte_present(*pte))
1559 		return 0;
1560 
1561 	page = pte_page(*pte);
1562 	if (!page)
1563 		return 0;
1564 
1565 	md = walk->private;
1566 	gather_stats(page, md, pte_dirty(*pte), 1);
1567 	return 0;
1568 }
1569 
1570 #else
1571 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1572 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1573 {
1574 	return 0;
1575 }
1576 #endif
1577 
1578 /*
1579  * Display pages allocated per node and memory policy via /proc.
1580  */
1581 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1582 {
1583 	struct numa_maps_private *numa_priv = m->private;
1584 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1585 	struct vm_area_struct *vma = v;
1586 	struct numa_maps *md = &numa_priv->md;
1587 	struct file *file = vma->vm_file;
1588 	struct mm_struct *mm = vma->vm_mm;
1589 	struct mm_walk walk = {
1590 		.hugetlb_entry = gather_hugetlb_stats,
1591 		.pmd_entry = gather_pte_stats,
1592 		.private = md,
1593 		.mm = mm,
1594 	};
1595 	struct mempolicy *pol;
1596 	char buffer[64];
1597 	int nid;
1598 
1599 	if (!mm)
1600 		return 0;
1601 
1602 	/* Ensure we start with an empty set of numa_maps statistics. */
1603 	memset(md, 0, sizeof(*md));
1604 
1605 	pol = __get_vma_policy(vma, vma->vm_start);
1606 	if (pol) {
1607 		mpol_to_str(buffer, sizeof(buffer), pol);
1608 		mpol_cond_put(pol);
1609 	} else {
1610 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1611 	}
1612 
1613 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1614 
1615 	if (file) {
1616 		seq_puts(m, " file=");
1617 		seq_file_path(m, file, "\n\t= ");
1618 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1619 		seq_puts(m, " heap");
1620 	} else {
1621 		pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1622 		if (tid != 0) {
1623 			/*
1624 			 * Thread stack in /proc/PID/task/TID/maps or
1625 			 * the main process stack.
1626 			 */
1627 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1628 			    vma->vm_end >= mm->start_stack))
1629 				seq_puts(m, " stack");
1630 			else
1631 				seq_printf(m, " stack:%d", tid);
1632 		}
1633 	}
1634 
1635 	if (is_vm_hugetlb_page(vma))
1636 		seq_puts(m, " huge");
1637 
1638 	/* mmap_sem is held by m_start */
1639 	walk_page_vma(vma, &walk);
1640 
1641 	if (!md->pages)
1642 		goto out;
1643 
1644 	if (md->anon)
1645 		seq_printf(m, " anon=%lu", md->anon);
1646 
1647 	if (md->dirty)
1648 		seq_printf(m, " dirty=%lu", md->dirty);
1649 
1650 	if (md->pages != md->anon && md->pages != md->dirty)
1651 		seq_printf(m, " mapped=%lu", md->pages);
1652 
1653 	if (md->mapcount_max > 1)
1654 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1655 
1656 	if (md->swapcache)
1657 		seq_printf(m, " swapcache=%lu", md->swapcache);
1658 
1659 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1660 		seq_printf(m, " active=%lu", md->active);
1661 
1662 	if (md->writeback)
1663 		seq_printf(m, " writeback=%lu", md->writeback);
1664 
1665 	for_each_node_state(nid, N_MEMORY)
1666 		if (md->node[nid])
1667 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1668 
1669 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1670 out:
1671 	seq_putc(m, '\n');
1672 	m_cache_vma(m, vma);
1673 	return 0;
1674 }
1675 
1676 static int show_pid_numa_map(struct seq_file *m, void *v)
1677 {
1678 	return show_numa_map(m, v, 1);
1679 }
1680 
1681 static int show_tid_numa_map(struct seq_file *m, void *v)
1682 {
1683 	return show_numa_map(m, v, 0);
1684 }
1685 
1686 static const struct seq_operations proc_pid_numa_maps_op = {
1687 	.start  = m_start,
1688 	.next   = m_next,
1689 	.stop   = m_stop,
1690 	.show   = show_pid_numa_map,
1691 };
1692 
1693 static const struct seq_operations proc_tid_numa_maps_op = {
1694 	.start  = m_start,
1695 	.next   = m_next,
1696 	.stop   = m_stop,
1697 	.show   = show_tid_numa_map,
1698 };
1699 
1700 static int numa_maps_open(struct inode *inode, struct file *file,
1701 			  const struct seq_operations *ops)
1702 {
1703 	return proc_maps_open(inode, file, ops,
1704 				sizeof(struct numa_maps_private));
1705 }
1706 
1707 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1708 {
1709 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1710 }
1711 
1712 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1713 {
1714 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1715 }
1716 
1717 const struct file_operations proc_pid_numa_maps_operations = {
1718 	.open		= pid_numa_maps_open,
1719 	.read		= seq_read,
1720 	.llseek		= seq_lseek,
1721 	.release	= proc_map_release,
1722 };
1723 
1724 const struct file_operations proc_tid_numa_maps_operations = {
1725 	.open		= tid_numa_maps_open,
1726 	.read		= seq_read,
1727 	.llseek		= seq_lseek,
1728 	.release	= proc_map_release,
1729 };
1730 #endif /* CONFIG_NUMA */
1731