xref: /openbmc/linux/fs/proc/task_mmu.c (revision bdeeed09)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 
22 #include <asm/elf.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include "internal.h"
26 
27 #define SEQ_PUT_DEC(str, val) \
28 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
29 void task_mem(struct seq_file *m, struct mm_struct *mm)
30 {
31 	unsigned long text, lib, swap, anon, file, shmem;
32 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
33 
34 	anon = get_mm_counter(mm, MM_ANONPAGES);
35 	file = get_mm_counter(mm, MM_FILEPAGES);
36 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
37 
38 	/*
39 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
40 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
41 	 * collector of these hiwater stats must therefore get total_vm
42 	 * and rss too, which will usually be the higher.  Barriers? not
43 	 * worth the effort, such snapshots can always be inconsistent.
44 	 */
45 	hiwater_vm = total_vm = mm->total_vm;
46 	if (hiwater_vm < mm->hiwater_vm)
47 		hiwater_vm = mm->hiwater_vm;
48 	hiwater_rss = total_rss = anon + file + shmem;
49 	if (hiwater_rss < mm->hiwater_rss)
50 		hiwater_rss = mm->hiwater_rss;
51 
52 	/* split executable areas between text and lib */
53 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
54 	text = min(text, mm->exec_vm << PAGE_SHIFT);
55 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
56 
57 	swap = get_mm_counter(mm, MM_SWAPENTS);
58 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
59 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
60 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
61 	SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
62 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
63 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
64 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
65 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
66 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
67 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
68 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
69 	seq_put_decimal_ull_width(m,
70 		    " kB\nVmExe:\t", text >> 10, 8);
71 	seq_put_decimal_ull_width(m,
72 		    " kB\nVmLib:\t", lib >> 10, 8);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
75 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
76 	seq_puts(m, " kB\n");
77 	hugetlb_report_usage(m, mm);
78 }
79 #undef SEQ_PUT_DEC
80 
81 unsigned long task_vsize(struct mm_struct *mm)
82 {
83 	return PAGE_SIZE * mm->total_vm;
84 }
85 
86 unsigned long task_statm(struct mm_struct *mm,
87 			 unsigned long *shared, unsigned long *text,
88 			 unsigned long *data, unsigned long *resident)
89 {
90 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
91 			get_mm_counter(mm, MM_SHMEMPAGES);
92 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
93 								>> PAGE_SHIFT;
94 	*data = mm->data_vm + mm->stack_vm;
95 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
96 	return mm->total_vm;
97 }
98 
99 #ifdef CONFIG_NUMA
100 /*
101  * Save get_task_policy() for show_numa_map().
102  */
103 static void hold_task_mempolicy(struct proc_maps_private *priv)
104 {
105 	struct task_struct *task = priv->task;
106 
107 	task_lock(task);
108 	priv->task_mempolicy = get_task_policy(task);
109 	mpol_get(priv->task_mempolicy);
110 	task_unlock(task);
111 }
112 static void release_task_mempolicy(struct proc_maps_private *priv)
113 {
114 	mpol_put(priv->task_mempolicy);
115 }
116 #else
117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 }
120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 }
123 #endif
124 
125 static void vma_stop(struct proc_maps_private *priv)
126 {
127 	struct mm_struct *mm = priv->mm;
128 
129 	release_task_mempolicy(priv);
130 	up_read(&mm->mmap_sem);
131 	mmput(mm);
132 }
133 
134 static struct vm_area_struct *
135 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
136 {
137 	if (vma == priv->tail_vma)
138 		return NULL;
139 	return vma->vm_next ?: priv->tail_vma;
140 }
141 
142 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
143 {
144 	if (m->count < m->size)	/* vma is copied successfully */
145 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
146 }
147 
148 static void *m_start(struct seq_file *m, loff_t *ppos)
149 {
150 	struct proc_maps_private *priv = m->private;
151 	unsigned long last_addr = m->version;
152 	struct mm_struct *mm;
153 	struct vm_area_struct *vma;
154 	unsigned int pos = *ppos;
155 
156 	/* See m_cache_vma(). Zero at the start or after lseek. */
157 	if (last_addr == -1UL)
158 		return NULL;
159 
160 	priv->task = get_proc_task(priv->inode);
161 	if (!priv->task)
162 		return ERR_PTR(-ESRCH);
163 
164 	mm = priv->mm;
165 	if (!mm || !mmget_not_zero(mm))
166 		return NULL;
167 
168 	down_read(&mm->mmap_sem);
169 	hold_task_mempolicy(priv);
170 	priv->tail_vma = get_gate_vma(mm);
171 
172 	if (last_addr) {
173 		vma = find_vma(mm, last_addr - 1);
174 		if (vma && vma->vm_start <= last_addr)
175 			vma = m_next_vma(priv, vma);
176 		if (vma)
177 			return vma;
178 	}
179 
180 	m->version = 0;
181 	if (pos < mm->map_count) {
182 		for (vma = mm->mmap; pos; pos--) {
183 			m->version = vma->vm_start;
184 			vma = vma->vm_next;
185 		}
186 		return vma;
187 	}
188 
189 	/* we do not bother to update m->version in this case */
190 	if (pos == mm->map_count && priv->tail_vma)
191 		return priv->tail_vma;
192 
193 	vma_stop(priv);
194 	return NULL;
195 }
196 
197 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
198 {
199 	struct proc_maps_private *priv = m->private;
200 	struct vm_area_struct *next;
201 
202 	(*pos)++;
203 	next = m_next_vma(priv, v);
204 	if (!next)
205 		vma_stop(priv);
206 	return next;
207 }
208 
209 static void m_stop(struct seq_file *m, void *v)
210 {
211 	struct proc_maps_private *priv = m->private;
212 
213 	if (!IS_ERR_OR_NULL(v))
214 		vma_stop(priv);
215 	if (priv->task) {
216 		put_task_struct(priv->task);
217 		priv->task = NULL;
218 	}
219 }
220 
221 static int proc_maps_open(struct inode *inode, struct file *file,
222 			const struct seq_operations *ops, int psize)
223 {
224 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
225 
226 	if (!priv)
227 		return -ENOMEM;
228 
229 	priv->inode = inode;
230 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
231 	if (IS_ERR(priv->mm)) {
232 		int err = PTR_ERR(priv->mm);
233 
234 		seq_release_private(inode, file);
235 		return err;
236 	}
237 
238 	return 0;
239 }
240 
241 static int proc_map_release(struct inode *inode, struct file *file)
242 {
243 	struct seq_file *seq = file->private_data;
244 	struct proc_maps_private *priv = seq->private;
245 
246 	if (priv->mm)
247 		mmdrop(priv->mm);
248 
249 	kfree(priv->rollup);
250 	return seq_release_private(inode, file);
251 }
252 
253 static int do_maps_open(struct inode *inode, struct file *file,
254 			const struct seq_operations *ops)
255 {
256 	return proc_maps_open(inode, file, ops,
257 				sizeof(struct proc_maps_private));
258 }
259 
260 /*
261  * Indicate if the VMA is a stack for the given task; for
262  * /proc/PID/maps that is the stack of the main task.
263  */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266 	/*
267 	 * We make no effort to guess what a given thread considers to be
268 	 * its "stack".  It's not even well-defined for programs written
269 	 * languages like Go.
270 	 */
271 	return vma->vm_start <= vma->vm_mm->start_stack &&
272 		vma->vm_end >= vma->vm_mm->start_stack;
273 }
274 
275 static void show_vma_header_prefix(struct seq_file *m,
276 				   unsigned long start, unsigned long end,
277 				   vm_flags_t flags, unsigned long long pgoff,
278 				   dev_t dev, unsigned long ino)
279 {
280 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 	seq_put_hex_ll(m, NULL, start, 8);
282 	seq_put_hex_ll(m, "-", end, 8);
283 	seq_putc(m, ' ');
284 	seq_putc(m, flags & VM_READ ? 'r' : '-');
285 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 	seq_put_hex_ll(m, " ", pgoff, 8);
289 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 	seq_put_decimal_ull(m, " ", ino);
292 	seq_putc(m, ' ');
293 }
294 
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
297 {
298 	struct mm_struct *mm = vma->vm_mm;
299 	struct file *file = vma->vm_file;
300 	vm_flags_t flags = vma->vm_flags;
301 	unsigned long ino = 0;
302 	unsigned long long pgoff = 0;
303 	unsigned long start, end;
304 	dev_t dev = 0;
305 	const char *name = NULL;
306 
307 	if (file) {
308 		struct inode *inode = file_inode(vma->vm_file);
309 		dev = inode->i_sb->s_dev;
310 		ino = inode->i_ino;
311 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312 	}
313 
314 	start = vma->vm_start;
315 	end = vma->vm_end;
316 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317 
318 	/*
319 	 * Print the dentry name for named mappings, and a
320 	 * special [heap] marker for the heap:
321 	 */
322 	if (file) {
323 		seq_pad(m, ' ');
324 		seq_file_path(m, file, "\n");
325 		goto done;
326 	}
327 
328 	if (vma->vm_ops && vma->vm_ops->name) {
329 		name = vma->vm_ops->name(vma);
330 		if (name)
331 			goto done;
332 	}
333 
334 	name = arch_vma_name(vma);
335 	if (!name) {
336 		if (!mm) {
337 			name = "[vdso]";
338 			goto done;
339 		}
340 
341 		if (vma->vm_start <= mm->brk &&
342 		    vma->vm_end >= mm->start_brk) {
343 			name = "[heap]";
344 			goto done;
345 		}
346 
347 		if (is_stack(vma))
348 			name = "[stack]";
349 	}
350 
351 done:
352 	if (name) {
353 		seq_pad(m, ' ');
354 		seq_puts(m, name);
355 	}
356 	seq_putc(m, '\n');
357 }
358 
359 static int show_map(struct seq_file *m, void *v, int is_pid)
360 {
361 	show_map_vma(m, v, is_pid);
362 	m_cache_vma(m, v);
363 	return 0;
364 }
365 
366 static int show_pid_map(struct seq_file *m, void *v)
367 {
368 	return show_map(m, v, 1);
369 }
370 
371 static int show_tid_map(struct seq_file *m, void *v)
372 {
373 	return show_map(m, v, 0);
374 }
375 
376 static const struct seq_operations proc_pid_maps_op = {
377 	.start	= m_start,
378 	.next	= m_next,
379 	.stop	= m_stop,
380 	.show	= show_pid_map
381 };
382 
383 static const struct seq_operations proc_tid_maps_op = {
384 	.start	= m_start,
385 	.next	= m_next,
386 	.stop	= m_stop,
387 	.show	= show_tid_map
388 };
389 
390 static int pid_maps_open(struct inode *inode, struct file *file)
391 {
392 	return do_maps_open(inode, file, &proc_pid_maps_op);
393 }
394 
395 static int tid_maps_open(struct inode *inode, struct file *file)
396 {
397 	return do_maps_open(inode, file, &proc_tid_maps_op);
398 }
399 
400 const struct file_operations proc_pid_maps_operations = {
401 	.open		= pid_maps_open,
402 	.read		= seq_read,
403 	.llseek		= seq_lseek,
404 	.release	= proc_map_release,
405 };
406 
407 const struct file_operations proc_tid_maps_operations = {
408 	.open		= tid_maps_open,
409 	.read		= seq_read,
410 	.llseek		= seq_lseek,
411 	.release	= proc_map_release,
412 };
413 
414 /*
415  * Proportional Set Size(PSS): my share of RSS.
416  *
417  * PSS of a process is the count of pages it has in memory, where each
418  * page is divided by the number of processes sharing it.  So if a
419  * process has 1000 pages all to itself, and 1000 shared with one other
420  * process, its PSS will be 1500.
421  *
422  * To keep (accumulated) division errors low, we adopt a 64bit
423  * fixed-point pss counter to minimize division errors. So (pss >>
424  * PSS_SHIFT) would be the real byte count.
425  *
426  * A shift of 12 before division means (assuming 4K page size):
427  * 	- 1M 3-user-pages add up to 8KB errors;
428  * 	- supports mapcount up to 2^24, or 16M;
429  * 	- supports PSS up to 2^52 bytes, or 4PB.
430  */
431 #define PSS_SHIFT 12
432 
433 #ifdef CONFIG_PROC_PAGE_MONITOR
434 struct mem_size_stats {
435 	bool first;
436 	unsigned long resident;
437 	unsigned long shared_clean;
438 	unsigned long shared_dirty;
439 	unsigned long private_clean;
440 	unsigned long private_dirty;
441 	unsigned long referenced;
442 	unsigned long anonymous;
443 	unsigned long lazyfree;
444 	unsigned long anonymous_thp;
445 	unsigned long shmem_thp;
446 	unsigned long swap;
447 	unsigned long shared_hugetlb;
448 	unsigned long private_hugetlb;
449 	unsigned long first_vma_start;
450 	u64 pss;
451 	u64 pss_locked;
452 	u64 swap_pss;
453 	bool check_shmem_swap;
454 };
455 
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457 		bool compound, bool young, bool dirty)
458 {
459 	int i, nr = compound ? 1 << compound_order(page) : 1;
460 	unsigned long size = nr * PAGE_SIZE;
461 
462 	if (PageAnon(page)) {
463 		mss->anonymous += size;
464 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
465 			mss->lazyfree += size;
466 	}
467 
468 	mss->resident += size;
469 	/* Accumulate the size in pages that have been accessed. */
470 	if (young || page_is_young(page) || PageReferenced(page))
471 		mss->referenced += size;
472 
473 	/*
474 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
475 	 * If any subpage of the compound page mapped with PTE it would elevate
476 	 * page_count().
477 	 */
478 	if (page_count(page) == 1) {
479 		if (dirty || PageDirty(page))
480 			mss->private_dirty += size;
481 		else
482 			mss->private_clean += size;
483 		mss->pss += (u64)size << PSS_SHIFT;
484 		return;
485 	}
486 
487 	for (i = 0; i < nr; i++, page++) {
488 		int mapcount = page_mapcount(page);
489 
490 		if (mapcount >= 2) {
491 			if (dirty || PageDirty(page))
492 				mss->shared_dirty += PAGE_SIZE;
493 			else
494 				mss->shared_clean += PAGE_SIZE;
495 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
496 		} else {
497 			if (dirty || PageDirty(page))
498 				mss->private_dirty += PAGE_SIZE;
499 			else
500 				mss->private_clean += PAGE_SIZE;
501 			mss->pss += PAGE_SIZE << PSS_SHIFT;
502 		}
503 	}
504 }
505 
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508 		struct mm_walk *walk)
509 {
510 	struct mem_size_stats *mss = walk->private;
511 
512 	mss->swap += shmem_partial_swap_usage(
513 			walk->vma->vm_file->f_mapping, addr, end);
514 
515 	return 0;
516 }
517 #endif
518 
519 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
520 		struct mm_walk *walk)
521 {
522 	struct mem_size_stats *mss = walk->private;
523 	struct vm_area_struct *vma = walk->vma;
524 	struct page *page = NULL;
525 
526 	if (pte_present(*pte)) {
527 		page = vm_normal_page(vma, addr, *pte);
528 	} else if (is_swap_pte(*pte)) {
529 		swp_entry_t swpent = pte_to_swp_entry(*pte);
530 
531 		if (!non_swap_entry(swpent)) {
532 			int mapcount;
533 
534 			mss->swap += PAGE_SIZE;
535 			mapcount = swp_swapcount(swpent);
536 			if (mapcount >= 2) {
537 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
538 
539 				do_div(pss_delta, mapcount);
540 				mss->swap_pss += pss_delta;
541 			} else {
542 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
543 			}
544 		} else if (is_migration_entry(swpent))
545 			page = migration_entry_to_page(swpent);
546 		else if (is_device_private_entry(swpent))
547 			page = device_private_entry_to_page(swpent);
548 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
549 							&& pte_none(*pte))) {
550 		page = find_get_entry(vma->vm_file->f_mapping,
551 						linear_page_index(vma, addr));
552 		if (!page)
553 			return;
554 
555 		if (radix_tree_exceptional_entry(page))
556 			mss->swap += PAGE_SIZE;
557 		else
558 			put_page(page);
559 
560 		return;
561 	}
562 
563 	if (!page)
564 		return;
565 
566 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
567 }
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571 		struct mm_walk *walk)
572 {
573 	struct mem_size_stats *mss = walk->private;
574 	struct vm_area_struct *vma = walk->vma;
575 	struct page *page;
576 
577 	/* FOLL_DUMP will return -EFAULT on huge zero page */
578 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
579 	if (IS_ERR_OR_NULL(page))
580 		return;
581 	if (PageAnon(page))
582 		mss->anonymous_thp += HPAGE_PMD_SIZE;
583 	else if (PageSwapBacked(page))
584 		mss->shmem_thp += HPAGE_PMD_SIZE;
585 	else if (is_zone_device_page(page))
586 		/* pass */;
587 	else
588 		VM_BUG_ON_PAGE(1, page);
589 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
590 }
591 #else
592 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
593 		struct mm_walk *walk)
594 {
595 }
596 #endif
597 
598 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
599 			   struct mm_walk *walk)
600 {
601 	struct vm_area_struct *vma = walk->vma;
602 	pte_t *pte;
603 	spinlock_t *ptl;
604 
605 	ptl = pmd_trans_huge_lock(pmd, vma);
606 	if (ptl) {
607 		if (pmd_present(*pmd))
608 			smaps_pmd_entry(pmd, addr, walk);
609 		spin_unlock(ptl);
610 		goto out;
611 	}
612 
613 	if (pmd_trans_unstable(pmd))
614 		goto out;
615 	/*
616 	 * The mmap_sem held all the way back in m_start() is what
617 	 * keeps khugepaged out of here and from collapsing things
618 	 * in here.
619 	 */
620 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
621 	for (; addr != end; pte++, addr += PAGE_SIZE)
622 		smaps_pte_entry(pte, addr, walk);
623 	pte_unmap_unlock(pte - 1, ptl);
624 out:
625 	cond_resched();
626 	return 0;
627 }
628 
629 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
630 {
631 	/*
632 	 * Don't forget to update Documentation/ on changes.
633 	 */
634 	static const char mnemonics[BITS_PER_LONG][2] = {
635 		/*
636 		 * In case if we meet a flag we don't know about.
637 		 */
638 		[0 ... (BITS_PER_LONG-1)] = "??",
639 
640 		[ilog2(VM_READ)]	= "rd",
641 		[ilog2(VM_WRITE)]	= "wr",
642 		[ilog2(VM_EXEC)]	= "ex",
643 		[ilog2(VM_SHARED)]	= "sh",
644 		[ilog2(VM_MAYREAD)]	= "mr",
645 		[ilog2(VM_MAYWRITE)]	= "mw",
646 		[ilog2(VM_MAYEXEC)]	= "me",
647 		[ilog2(VM_MAYSHARE)]	= "ms",
648 		[ilog2(VM_GROWSDOWN)]	= "gd",
649 		[ilog2(VM_PFNMAP)]	= "pf",
650 		[ilog2(VM_DENYWRITE)]	= "dw",
651 #ifdef CONFIG_X86_INTEL_MPX
652 		[ilog2(VM_MPX)]		= "mp",
653 #endif
654 		[ilog2(VM_LOCKED)]	= "lo",
655 		[ilog2(VM_IO)]		= "io",
656 		[ilog2(VM_SEQ_READ)]	= "sr",
657 		[ilog2(VM_RAND_READ)]	= "rr",
658 		[ilog2(VM_DONTCOPY)]	= "dc",
659 		[ilog2(VM_DONTEXPAND)]	= "de",
660 		[ilog2(VM_ACCOUNT)]	= "ac",
661 		[ilog2(VM_NORESERVE)]	= "nr",
662 		[ilog2(VM_HUGETLB)]	= "ht",
663 		[ilog2(VM_SYNC)]	= "sf",
664 		[ilog2(VM_ARCH_1)]	= "ar",
665 		[ilog2(VM_WIPEONFORK)]	= "wf",
666 		[ilog2(VM_DONTDUMP)]	= "dd",
667 #ifdef CONFIG_MEM_SOFT_DIRTY
668 		[ilog2(VM_SOFTDIRTY)]	= "sd",
669 #endif
670 		[ilog2(VM_MIXEDMAP)]	= "mm",
671 		[ilog2(VM_HUGEPAGE)]	= "hg",
672 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
673 		[ilog2(VM_MERGEABLE)]	= "mg",
674 		[ilog2(VM_UFFD_MISSING)]= "um",
675 		[ilog2(VM_UFFD_WP)]	= "uw",
676 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
677 		/* These come out via ProtectionKey: */
678 		[ilog2(VM_PKEY_BIT0)]	= "",
679 		[ilog2(VM_PKEY_BIT1)]	= "",
680 		[ilog2(VM_PKEY_BIT2)]	= "",
681 		[ilog2(VM_PKEY_BIT3)]	= "",
682 #endif
683 	};
684 	size_t i;
685 
686 	seq_puts(m, "VmFlags: ");
687 	for (i = 0; i < BITS_PER_LONG; i++) {
688 		if (!mnemonics[i][0])
689 			continue;
690 		if (vma->vm_flags & (1UL << i)) {
691 			seq_putc(m, mnemonics[i][0]);
692 			seq_putc(m, mnemonics[i][1]);
693 			seq_putc(m, ' ');
694 		}
695 	}
696 	seq_putc(m, '\n');
697 }
698 
699 #ifdef CONFIG_HUGETLB_PAGE
700 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
701 				 unsigned long addr, unsigned long end,
702 				 struct mm_walk *walk)
703 {
704 	struct mem_size_stats *mss = walk->private;
705 	struct vm_area_struct *vma = walk->vma;
706 	struct page *page = NULL;
707 
708 	if (pte_present(*pte)) {
709 		page = vm_normal_page(vma, addr, *pte);
710 	} else if (is_swap_pte(*pte)) {
711 		swp_entry_t swpent = pte_to_swp_entry(*pte);
712 
713 		if (is_migration_entry(swpent))
714 			page = migration_entry_to_page(swpent);
715 		else if (is_device_private_entry(swpent))
716 			page = device_private_entry_to_page(swpent);
717 	}
718 	if (page) {
719 		int mapcount = page_mapcount(page);
720 
721 		if (mapcount >= 2)
722 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
723 		else
724 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
725 	}
726 	return 0;
727 }
728 #endif /* HUGETLB_PAGE */
729 
730 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
731 {
732 }
733 
734 #define SEQ_PUT_DEC(str, val) \
735 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
736 static int show_smap(struct seq_file *m, void *v, int is_pid)
737 {
738 	struct proc_maps_private *priv = m->private;
739 	struct vm_area_struct *vma = v;
740 	struct mem_size_stats mss_stack;
741 	struct mem_size_stats *mss;
742 	struct mm_walk smaps_walk = {
743 		.pmd_entry = smaps_pte_range,
744 #ifdef CONFIG_HUGETLB_PAGE
745 		.hugetlb_entry = smaps_hugetlb_range,
746 #endif
747 		.mm = vma->vm_mm,
748 	};
749 	int ret = 0;
750 	bool rollup_mode;
751 	bool last_vma;
752 
753 	if (priv->rollup) {
754 		rollup_mode = true;
755 		mss = priv->rollup;
756 		if (mss->first) {
757 			mss->first_vma_start = vma->vm_start;
758 			mss->first = false;
759 		}
760 		last_vma = !m_next_vma(priv, vma);
761 	} else {
762 		rollup_mode = false;
763 		memset(&mss_stack, 0, sizeof(mss_stack));
764 		mss = &mss_stack;
765 	}
766 
767 	smaps_walk.private = mss;
768 
769 #ifdef CONFIG_SHMEM
770 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
771 		/*
772 		 * For shared or readonly shmem mappings we know that all
773 		 * swapped out pages belong to the shmem object, and we can
774 		 * obtain the swap value much more efficiently. For private
775 		 * writable mappings, we might have COW pages that are
776 		 * not affected by the parent swapped out pages of the shmem
777 		 * object, so we have to distinguish them during the page walk.
778 		 * Unless we know that the shmem object (or the part mapped by
779 		 * our VMA) has no swapped out pages at all.
780 		 */
781 		unsigned long shmem_swapped = shmem_swap_usage(vma);
782 
783 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
784 					!(vma->vm_flags & VM_WRITE)) {
785 			mss->swap = shmem_swapped;
786 		} else {
787 			mss->check_shmem_swap = true;
788 			smaps_walk.pte_hole = smaps_pte_hole;
789 		}
790 	}
791 #endif
792 
793 	/* mmap_sem is held in m_start */
794 	walk_page_vma(vma, &smaps_walk);
795 	if (vma->vm_flags & VM_LOCKED)
796 		mss->pss_locked += mss->pss;
797 
798 	if (!rollup_mode) {
799 		show_map_vma(m, vma, is_pid);
800 	} else if (last_vma) {
801 		show_vma_header_prefix(
802 			m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
803 		seq_pad(m, ' ');
804 		seq_puts(m, "[rollup]\n");
805 	} else {
806 		ret = SEQ_SKIP;
807 	}
808 
809 	if (!rollup_mode) {
810 		SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
811 		SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
812 		SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
813 		seq_puts(m, " kB\n");
814 	}
815 
816 	if (!rollup_mode || last_vma) {
817 		SEQ_PUT_DEC("Rss:            ", mss->resident);
818 		SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
819 		SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
820 		SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
821 		SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
822 		SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
823 		SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
824 		SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
825 		SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
826 		SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
827 		SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
828 		SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
829 		seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
830 					  mss->private_hugetlb >> 10, 7);
831 		SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
832 		SEQ_PUT_DEC(" kB\nSwapPss:        ",
833 						mss->swap_pss >> PSS_SHIFT);
834 		SEQ_PUT_DEC(" kB\nLocked:         ", mss->pss >> PSS_SHIFT);
835 		seq_puts(m, " kB\n");
836 	}
837 	if (!rollup_mode) {
838 		arch_show_smap(m, vma);
839 		show_smap_vma_flags(m, vma);
840 	}
841 	m_cache_vma(m, vma);
842 	return ret;
843 }
844 #undef SEQ_PUT_DEC
845 
846 static int show_pid_smap(struct seq_file *m, void *v)
847 {
848 	return show_smap(m, v, 1);
849 }
850 
851 static int show_tid_smap(struct seq_file *m, void *v)
852 {
853 	return show_smap(m, v, 0);
854 }
855 
856 static const struct seq_operations proc_pid_smaps_op = {
857 	.start	= m_start,
858 	.next	= m_next,
859 	.stop	= m_stop,
860 	.show	= show_pid_smap
861 };
862 
863 static const struct seq_operations proc_tid_smaps_op = {
864 	.start	= m_start,
865 	.next	= m_next,
866 	.stop	= m_stop,
867 	.show	= show_tid_smap
868 };
869 
870 static int pid_smaps_open(struct inode *inode, struct file *file)
871 {
872 	return do_maps_open(inode, file, &proc_pid_smaps_op);
873 }
874 
875 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
876 {
877 	struct seq_file *seq;
878 	struct proc_maps_private *priv;
879 	int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
880 
881 	if (ret < 0)
882 		return ret;
883 	seq = file->private_data;
884 	priv = seq->private;
885 	priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
886 	if (!priv->rollup) {
887 		proc_map_release(inode, file);
888 		return -ENOMEM;
889 	}
890 	priv->rollup->first = true;
891 	return 0;
892 }
893 
894 static int tid_smaps_open(struct inode *inode, struct file *file)
895 {
896 	return do_maps_open(inode, file, &proc_tid_smaps_op);
897 }
898 
899 const struct file_operations proc_pid_smaps_operations = {
900 	.open		= pid_smaps_open,
901 	.read		= seq_read,
902 	.llseek		= seq_lseek,
903 	.release	= proc_map_release,
904 };
905 
906 const struct file_operations proc_pid_smaps_rollup_operations = {
907 	.open		= pid_smaps_rollup_open,
908 	.read		= seq_read,
909 	.llseek		= seq_lseek,
910 	.release	= proc_map_release,
911 };
912 
913 const struct file_operations proc_tid_smaps_operations = {
914 	.open		= tid_smaps_open,
915 	.read		= seq_read,
916 	.llseek		= seq_lseek,
917 	.release	= proc_map_release,
918 };
919 
920 enum clear_refs_types {
921 	CLEAR_REFS_ALL = 1,
922 	CLEAR_REFS_ANON,
923 	CLEAR_REFS_MAPPED,
924 	CLEAR_REFS_SOFT_DIRTY,
925 	CLEAR_REFS_MM_HIWATER_RSS,
926 	CLEAR_REFS_LAST,
927 };
928 
929 struct clear_refs_private {
930 	enum clear_refs_types type;
931 };
932 
933 #ifdef CONFIG_MEM_SOFT_DIRTY
934 static inline void clear_soft_dirty(struct vm_area_struct *vma,
935 		unsigned long addr, pte_t *pte)
936 {
937 	/*
938 	 * The soft-dirty tracker uses #PF-s to catch writes
939 	 * to pages, so write-protect the pte as well. See the
940 	 * Documentation/vm/soft-dirty.txt for full description
941 	 * of how soft-dirty works.
942 	 */
943 	pte_t ptent = *pte;
944 
945 	if (pte_present(ptent)) {
946 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
947 		ptent = pte_wrprotect(ptent);
948 		ptent = pte_clear_soft_dirty(ptent);
949 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
950 	} else if (is_swap_pte(ptent)) {
951 		ptent = pte_swp_clear_soft_dirty(ptent);
952 		set_pte_at(vma->vm_mm, addr, pte, ptent);
953 	}
954 }
955 #else
956 static inline void clear_soft_dirty(struct vm_area_struct *vma,
957 		unsigned long addr, pte_t *pte)
958 {
959 }
960 #endif
961 
962 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
963 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
964 		unsigned long addr, pmd_t *pmdp)
965 {
966 	pmd_t old, pmd = *pmdp;
967 
968 	if (pmd_present(pmd)) {
969 		/* See comment in change_huge_pmd() */
970 		old = pmdp_invalidate(vma, addr, pmdp);
971 		if (pmd_dirty(old))
972 			pmd = pmd_mkdirty(pmd);
973 		if (pmd_young(old))
974 			pmd = pmd_mkyoung(pmd);
975 
976 		pmd = pmd_wrprotect(pmd);
977 		pmd = pmd_clear_soft_dirty(pmd);
978 
979 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
980 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
981 		pmd = pmd_swp_clear_soft_dirty(pmd);
982 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
983 	}
984 }
985 #else
986 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
987 		unsigned long addr, pmd_t *pmdp)
988 {
989 }
990 #endif
991 
992 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
993 				unsigned long end, struct mm_walk *walk)
994 {
995 	struct clear_refs_private *cp = walk->private;
996 	struct vm_area_struct *vma = walk->vma;
997 	pte_t *pte, ptent;
998 	spinlock_t *ptl;
999 	struct page *page;
1000 
1001 	ptl = pmd_trans_huge_lock(pmd, vma);
1002 	if (ptl) {
1003 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1004 			clear_soft_dirty_pmd(vma, addr, pmd);
1005 			goto out;
1006 		}
1007 
1008 		if (!pmd_present(*pmd))
1009 			goto out;
1010 
1011 		page = pmd_page(*pmd);
1012 
1013 		/* Clear accessed and referenced bits. */
1014 		pmdp_test_and_clear_young(vma, addr, pmd);
1015 		test_and_clear_page_young(page);
1016 		ClearPageReferenced(page);
1017 out:
1018 		spin_unlock(ptl);
1019 		return 0;
1020 	}
1021 
1022 	if (pmd_trans_unstable(pmd))
1023 		return 0;
1024 
1025 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1026 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1027 		ptent = *pte;
1028 
1029 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1030 			clear_soft_dirty(vma, addr, pte);
1031 			continue;
1032 		}
1033 
1034 		if (!pte_present(ptent))
1035 			continue;
1036 
1037 		page = vm_normal_page(vma, addr, ptent);
1038 		if (!page)
1039 			continue;
1040 
1041 		/* Clear accessed and referenced bits. */
1042 		ptep_test_and_clear_young(vma, addr, pte);
1043 		test_and_clear_page_young(page);
1044 		ClearPageReferenced(page);
1045 	}
1046 	pte_unmap_unlock(pte - 1, ptl);
1047 	cond_resched();
1048 	return 0;
1049 }
1050 
1051 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1052 				struct mm_walk *walk)
1053 {
1054 	struct clear_refs_private *cp = walk->private;
1055 	struct vm_area_struct *vma = walk->vma;
1056 
1057 	if (vma->vm_flags & VM_PFNMAP)
1058 		return 1;
1059 
1060 	/*
1061 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1062 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1063 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1064 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1065 	 */
1066 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1067 		return 1;
1068 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1069 		return 1;
1070 	return 0;
1071 }
1072 
1073 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1074 				size_t count, loff_t *ppos)
1075 {
1076 	struct task_struct *task;
1077 	char buffer[PROC_NUMBUF];
1078 	struct mm_struct *mm;
1079 	struct vm_area_struct *vma;
1080 	enum clear_refs_types type;
1081 	struct mmu_gather tlb;
1082 	int itype;
1083 	int rv;
1084 
1085 	memset(buffer, 0, sizeof(buffer));
1086 	if (count > sizeof(buffer) - 1)
1087 		count = sizeof(buffer) - 1;
1088 	if (copy_from_user(buffer, buf, count))
1089 		return -EFAULT;
1090 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1091 	if (rv < 0)
1092 		return rv;
1093 	type = (enum clear_refs_types)itype;
1094 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1095 		return -EINVAL;
1096 
1097 	task = get_proc_task(file_inode(file));
1098 	if (!task)
1099 		return -ESRCH;
1100 	mm = get_task_mm(task);
1101 	if (mm) {
1102 		struct clear_refs_private cp = {
1103 			.type = type,
1104 		};
1105 		struct mm_walk clear_refs_walk = {
1106 			.pmd_entry = clear_refs_pte_range,
1107 			.test_walk = clear_refs_test_walk,
1108 			.mm = mm,
1109 			.private = &cp,
1110 		};
1111 
1112 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1113 			if (down_write_killable(&mm->mmap_sem)) {
1114 				count = -EINTR;
1115 				goto out_mm;
1116 			}
1117 
1118 			/*
1119 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1120 			 * resident set size to this mm's current rss value.
1121 			 */
1122 			reset_mm_hiwater_rss(mm);
1123 			up_write(&mm->mmap_sem);
1124 			goto out_mm;
1125 		}
1126 
1127 		down_read(&mm->mmap_sem);
1128 		tlb_gather_mmu(&tlb, mm, 0, -1);
1129 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1130 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1131 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1132 					continue;
1133 				up_read(&mm->mmap_sem);
1134 				if (down_write_killable(&mm->mmap_sem)) {
1135 					count = -EINTR;
1136 					goto out_mm;
1137 				}
1138 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 					vma->vm_flags &= ~VM_SOFTDIRTY;
1140 					vma_set_page_prot(vma);
1141 				}
1142 				downgrade_write(&mm->mmap_sem);
1143 				break;
1144 			}
1145 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1146 		}
1147 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1148 		if (type == CLEAR_REFS_SOFT_DIRTY)
1149 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1150 		tlb_finish_mmu(&tlb, 0, -1);
1151 		up_read(&mm->mmap_sem);
1152 out_mm:
1153 		mmput(mm);
1154 	}
1155 	put_task_struct(task);
1156 
1157 	return count;
1158 }
1159 
1160 const struct file_operations proc_clear_refs_operations = {
1161 	.write		= clear_refs_write,
1162 	.llseek		= noop_llseek,
1163 };
1164 
1165 typedef struct {
1166 	u64 pme;
1167 } pagemap_entry_t;
1168 
1169 struct pagemapread {
1170 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1171 	pagemap_entry_t *buffer;
1172 	bool show_pfn;
1173 };
1174 
1175 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1176 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1177 
1178 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1179 #define PM_PFRAME_BITS		55
1180 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1181 #define PM_SOFT_DIRTY		BIT_ULL(55)
1182 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1183 #define PM_FILE			BIT_ULL(61)
1184 #define PM_SWAP			BIT_ULL(62)
1185 #define PM_PRESENT		BIT_ULL(63)
1186 
1187 #define PM_END_OF_BUFFER    1
1188 
1189 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1190 {
1191 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1192 }
1193 
1194 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1195 			  struct pagemapread *pm)
1196 {
1197 	pm->buffer[pm->pos++] = *pme;
1198 	if (pm->pos >= pm->len)
1199 		return PM_END_OF_BUFFER;
1200 	return 0;
1201 }
1202 
1203 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1204 				struct mm_walk *walk)
1205 {
1206 	struct pagemapread *pm = walk->private;
1207 	unsigned long addr = start;
1208 	int err = 0;
1209 
1210 	while (addr < end) {
1211 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1212 		pagemap_entry_t pme = make_pme(0, 0);
1213 		/* End of address space hole, which we mark as non-present. */
1214 		unsigned long hole_end;
1215 
1216 		if (vma)
1217 			hole_end = min(end, vma->vm_start);
1218 		else
1219 			hole_end = end;
1220 
1221 		for (; addr < hole_end; addr += PAGE_SIZE) {
1222 			err = add_to_pagemap(addr, &pme, pm);
1223 			if (err)
1224 				goto out;
1225 		}
1226 
1227 		if (!vma)
1228 			break;
1229 
1230 		/* Addresses in the VMA. */
1231 		if (vma->vm_flags & VM_SOFTDIRTY)
1232 			pme = make_pme(0, PM_SOFT_DIRTY);
1233 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1234 			err = add_to_pagemap(addr, &pme, pm);
1235 			if (err)
1236 				goto out;
1237 		}
1238 	}
1239 out:
1240 	return err;
1241 }
1242 
1243 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1244 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1245 {
1246 	u64 frame = 0, flags = 0;
1247 	struct page *page = NULL;
1248 
1249 	if (pte_present(pte)) {
1250 		if (pm->show_pfn)
1251 			frame = pte_pfn(pte);
1252 		flags |= PM_PRESENT;
1253 		page = _vm_normal_page(vma, addr, pte, true);
1254 		if (pte_soft_dirty(pte))
1255 			flags |= PM_SOFT_DIRTY;
1256 	} else if (is_swap_pte(pte)) {
1257 		swp_entry_t entry;
1258 		if (pte_swp_soft_dirty(pte))
1259 			flags |= PM_SOFT_DIRTY;
1260 		entry = pte_to_swp_entry(pte);
1261 		frame = swp_type(entry) |
1262 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1263 		flags |= PM_SWAP;
1264 		if (is_migration_entry(entry))
1265 			page = migration_entry_to_page(entry);
1266 
1267 		if (is_device_private_entry(entry))
1268 			page = device_private_entry_to_page(entry);
1269 	}
1270 
1271 	if (page && !PageAnon(page))
1272 		flags |= PM_FILE;
1273 	if (page && page_mapcount(page) == 1)
1274 		flags |= PM_MMAP_EXCLUSIVE;
1275 	if (vma->vm_flags & VM_SOFTDIRTY)
1276 		flags |= PM_SOFT_DIRTY;
1277 
1278 	return make_pme(frame, flags);
1279 }
1280 
1281 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1282 			     struct mm_walk *walk)
1283 {
1284 	struct vm_area_struct *vma = walk->vma;
1285 	struct pagemapread *pm = walk->private;
1286 	spinlock_t *ptl;
1287 	pte_t *pte, *orig_pte;
1288 	int err = 0;
1289 
1290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1291 	ptl = pmd_trans_huge_lock(pmdp, vma);
1292 	if (ptl) {
1293 		u64 flags = 0, frame = 0;
1294 		pmd_t pmd = *pmdp;
1295 		struct page *page = NULL;
1296 
1297 		if (vma->vm_flags & VM_SOFTDIRTY)
1298 			flags |= PM_SOFT_DIRTY;
1299 
1300 		if (pmd_present(pmd)) {
1301 			page = pmd_page(pmd);
1302 
1303 			flags |= PM_PRESENT;
1304 			if (pmd_soft_dirty(pmd))
1305 				flags |= PM_SOFT_DIRTY;
1306 			if (pm->show_pfn)
1307 				frame = pmd_pfn(pmd) +
1308 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1309 		}
1310 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1311 		else if (is_swap_pmd(pmd)) {
1312 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1313 			unsigned long offset = swp_offset(entry);
1314 
1315 			offset += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1316 			frame = swp_type(entry) |
1317 				(offset << MAX_SWAPFILES_SHIFT);
1318 			flags |= PM_SWAP;
1319 			if (pmd_swp_soft_dirty(pmd))
1320 				flags |= PM_SOFT_DIRTY;
1321 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1322 			page = migration_entry_to_page(entry);
1323 		}
1324 #endif
1325 
1326 		if (page && page_mapcount(page) == 1)
1327 			flags |= PM_MMAP_EXCLUSIVE;
1328 
1329 		for (; addr != end; addr += PAGE_SIZE) {
1330 			pagemap_entry_t pme = make_pme(frame, flags);
1331 
1332 			err = add_to_pagemap(addr, &pme, pm);
1333 			if (err)
1334 				break;
1335 			if (pm->show_pfn && (flags & PM_PRESENT))
1336 				frame++;
1337 			else if (flags & PM_SWAP)
1338 				frame += (1 << MAX_SWAPFILES_SHIFT);
1339 		}
1340 		spin_unlock(ptl);
1341 		return err;
1342 	}
1343 
1344 	if (pmd_trans_unstable(pmdp))
1345 		return 0;
1346 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1347 
1348 	/*
1349 	 * We can assume that @vma always points to a valid one and @end never
1350 	 * goes beyond vma->vm_end.
1351 	 */
1352 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1353 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1354 		pagemap_entry_t pme;
1355 
1356 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1357 		err = add_to_pagemap(addr, &pme, pm);
1358 		if (err)
1359 			break;
1360 	}
1361 	pte_unmap_unlock(orig_pte, ptl);
1362 
1363 	cond_resched();
1364 
1365 	return err;
1366 }
1367 
1368 #ifdef CONFIG_HUGETLB_PAGE
1369 /* This function walks within one hugetlb entry in the single call */
1370 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1371 				 unsigned long addr, unsigned long end,
1372 				 struct mm_walk *walk)
1373 {
1374 	struct pagemapread *pm = walk->private;
1375 	struct vm_area_struct *vma = walk->vma;
1376 	u64 flags = 0, frame = 0;
1377 	int err = 0;
1378 	pte_t pte;
1379 
1380 	if (vma->vm_flags & VM_SOFTDIRTY)
1381 		flags |= PM_SOFT_DIRTY;
1382 
1383 	pte = huge_ptep_get(ptep);
1384 	if (pte_present(pte)) {
1385 		struct page *page = pte_page(pte);
1386 
1387 		if (!PageAnon(page))
1388 			flags |= PM_FILE;
1389 
1390 		if (page_mapcount(page) == 1)
1391 			flags |= PM_MMAP_EXCLUSIVE;
1392 
1393 		flags |= PM_PRESENT;
1394 		if (pm->show_pfn)
1395 			frame = pte_pfn(pte) +
1396 				((addr & ~hmask) >> PAGE_SHIFT);
1397 	}
1398 
1399 	for (; addr != end; addr += PAGE_SIZE) {
1400 		pagemap_entry_t pme = make_pme(frame, flags);
1401 
1402 		err = add_to_pagemap(addr, &pme, pm);
1403 		if (err)
1404 			return err;
1405 		if (pm->show_pfn && (flags & PM_PRESENT))
1406 			frame++;
1407 	}
1408 
1409 	cond_resched();
1410 
1411 	return err;
1412 }
1413 #endif /* HUGETLB_PAGE */
1414 
1415 /*
1416  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1417  *
1418  * For each page in the address space, this file contains one 64-bit entry
1419  * consisting of the following:
1420  *
1421  * Bits 0-54  page frame number (PFN) if present
1422  * Bits 0-4   swap type if swapped
1423  * Bits 5-54  swap offset if swapped
1424  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1425  * Bit  56    page exclusively mapped
1426  * Bits 57-60 zero
1427  * Bit  61    page is file-page or shared-anon
1428  * Bit  62    page swapped
1429  * Bit  63    page present
1430  *
1431  * If the page is not present but in swap, then the PFN contains an
1432  * encoding of the swap file number and the page's offset into the
1433  * swap. Unmapped pages return a null PFN. This allows determining
1434  * precisely which pages are mapped (or in swap) and comparing mapped
1435  * pages between processes.
1436  *
1437  * Efficient users of this interface will use /proc/pid/maps to
1438  * determine which areas of memory are actually mapped and llseek to
1439  * skip over unmapped regions.
1440  */
1441 static ssize_t pagemap_read(struct file *file, char __user *buf,
1442 			    size_t count, loff_t *ppos)
1443 {
1444 	struct mm_struct *mm = file->private_data;
1445 	struct pagemapread pm;
1446 	struct mm_walk pagemap_walk = {};
1447 	unsigned long src;
1448 	unsigned long svpfn;
1449 	unsigned long start_vaddr;
1450 	unsigned long end_vaddr;
1451 	int ret = 0, copied = 0;
1452 
1453 	if (!mm || !mmget_not_zero(mm))
1454 		goto out;
1455 
1456 	ret = -EINVAL;
1457 	/* file position must be aligned */
1458 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1459 		goto out_mm;
1460 
1461 	ret = 0;
1462 	if (!count)
1463 		goto out_mm;
1464 
1465 	/* do not disclose physical addresses: attack vector */
1466 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1467 
1468 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1469 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1470 	ret = -ENOMEM;
1471 	if (!pm.buffer)
1472 		goto out_mm;
1473 
1474 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1475 	pagemap_walk.pte_hole = pagemap_pte_hole;
1476 #ifdef CONFIG_HUGETLB_PAGE
1477 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1478 #endif
1479 	pagemap_walk.mm = mm;
1480 	pagemap_walk.private = &pm;
1481 
1482 	src = *ppos;
1483 	svpfn = src / PM_ENTRY_BYTES;
1484 	start_vaddr = svpfn << PAGE_SHIFT;
1485 	end_vaddr = mm->task_size;
1486 
1487 	/* watch out for wraparound */
1488 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1489 		start_vaddr = end_vaddr;
1490 
1491 	/*
1492 	 * The odds are that this will stop walking way
1493 	 * before end_vaddr, because the length of the
1494 	 * user buffer is tracked in "pm", and the walk
1495 	 * will stop when we hit the end of the buffer.
1496 	 */
1497 	ret = 0;
1498 	while (count && (start_vaddr < end_vaddr)) {
1499 		int len;
1500 		unsigned long end;
1501 
1502 		pm.pos = 0;
1503 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1504 		/* overflow ? */
1505 		if (end < start_vaddr || end > end_vaddr)
1506 			end = end_vaddr;
1507 		down_read(&mm->mmap_sem);
1508 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1509 		up_read(&mm->mmap_sem);
1510 		start_vaddr = end;
1511 
1512 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1513 		if (copy_to_user(buf, pm.buffer, len)) {
1514 			ret = -EFAULT;
1515 			goto out_free;
1516 		}
1517 		copied += len;
1518 		buf += len;
1519 		count -= len;
1520 	}
1521 	*ppos += copied;
1522 	if (!ret || ret == PM_END_OF_BUFFER)
1523 		ret = copied;
1524 
1525 out_free:
1526 	kfree(pm.buffer);
1527 out_mm:
1528 	mmput(mm);
1529 out:
1530 	return ret;
1531 }
1532 
1533 static int pagemap_open(struct inode *inode, struct file *file)
1534 {
1535 	struct mm_struct *mm;
1536 
1537 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1538 	if (IS_ERR(mm))
1539 		return PTR_ERR(mm);
1540 	file->private_data = mm;
1541 	return 0;
1542 }
1543 
1544 static int pagemap_release(struct inode *inode, struct file *file)
1545 {
1546 	struct mm_struct *mm = file->private_data;
1547 
1548 	if (mm)
1549 		mmdrop(mm);
1550 	return 0;
1551 }
1552 
1553 const struct file_operations proc_pagemap_operations = {
1554 	.llseek		= mem_lseek, /* borrow this */
1555 	.read		= pagemap_read,
1556 	.open		= pagemap_open,
1557 	.release	= pagemap_release,
1558 };
1559 #endif /* CONFIG_PROC_PAGE_MONITOR */
1560 
1561 #ifdef CONFIG_NUMA
1562 
1563 struct numa_maps {
1564 	unsigned long pages;
1565 	unsigned long anon;
1566 	unsigned long active;
1567 	unsigned long writeback;
1568 	unsigned long mapcount_max;
1569 	unsigned long dirty;
1570 	unsigned long swapcache;
1571 	unsigned long node[MAX_NUMNODES];
1572 };
1573 
1574 struct numa_maps_private {
1575 	struct proc_maps_private proc_maps;
1576 	struct numa_maps md;
1577 };
1578 
1579 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1580 			unsigned long nr_pages)
1581 {
1582 	int count = page_mapcount(page);
1583 
1584 	md->pages += nr_pages;
1585 	if (pte_dirty || PageDirty(page))
1586 		md->dirty += nr_pages;
1587 
1588 	if (PageSwapCache(page))
1589 		md->swapcache += nr_pages;
1590 
1591 	if (PageActive(page) || PageUnevictable(page))
1592 		md->active += nr_pages;
1593 
1594 	if (PageWriteback(page))
1595 		md->writeback += nr_pages;
1596 
1597 	if (PageAnon(page))
1598 		md->anon += nr_pages;
1599 
1600 	if (count > md->mapcount_max)
1601 		md->mapcount_max = count;
1602 
1603 	md->node[page_to_nid(page)] += nr_pages;
1604 }
1605 
1606 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1607 		unsigned long addr)
1608 {
1609 	struct page *page;
1610 	int nid;
1611 
1612 	if (!pte_present(pte))
1613 		return NULL;
1614 
1615 	page = vm_normal_page(vma, addr, pte);
1616 	if (!page)
1617 		return NULL;
1618 
1619 	if (PageReserved(page))
1620 		return NULL;
1621 
1622 	nid = page_to_nid(page);
1623 	if (!node_isset(nid, node_states[N_MEMORY]))
1624 		return NULL;
1625 
1626 	return page;
1627 }
1628 
1629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1630 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1631 					      struct vm_area_struct *vma,
1632 					      unsigned long addr)
1633 {
1634 	struct page *page;
1635 	int nid;
1636 
1637 	if (!pmd_present(pmd))
1638 		return NULL;
1639 
1640 	page = vm_normal_page_pmd(vma, addr, pmd);
1641 	if (!page)
1642 		return NULL;
1643 
1644 	if (PageReserved(page))
1645 		return NULL;
1646 
1647 	nid = page_to_nid(page);
1648 	if (!node_isset(nid, node_states[N_MEMORY]))
1649 		return NULL;
1650 
1651 	return page;
1652 }
1653 #endif
1654 
1655 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1656 		unsigned long end, struct mm_walk *walk)
1657 {
1658 	struct numa_maps *md = walk->private;
1659 	struct vm_area_struct *vma = walk->vma;
1660 	spinlock_t *ptl;
1661 	pte_t *orig_pte;
1662 	pte_t *pte;
1663 
1664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1665 	ptl = pmd_trans_huge_lock(pmd, vma);
1666 	if (ptl) {
1667 		struct page *page;
1668 
1669 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1670 		if (page)
1671 			gather_stats(page, md, pmd_dirty(*pmd),
1672 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1673 		spin_unlock(ptl);
1674 		return 0;
1675 	}
1676 
1677 	if (pmd_trans_unstable(pmd))
1678 		return 0;
1679 #endif
1680 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1681 	do {
1682 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1683 		if (!page)
1684 			continue;
1685 		gather_stats(page, md, pte_dirty(*pte), 1);
1686 
1687 	} while (pte++, addr += PAGE_SIZE, addr != end);
1688 	pte_unmap_unlock(orig_pte, ptl);
1689 	cond_resched();
1690 	return 0;
1691 }
1692 #ifdef CONFIG_HUGETLB_PAGE
1693 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1694 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1695 {
1696 	pte_t huge_pte = huge_ptep_get(pte);
1697 	struct numa_maps *md;
1698 	struct page *page;
1699 
1700 	if (!pte_present(huge_pte))
1701 		return 0;
1702 
1703 	page = pte_page(huge_pte);
1704 	if (!page)
1705 		return 0;
1706 
1707 	md = walk->private;
1708 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1709 	return 0;
1710 }
1711 
1712 #else
1713 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1714 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1715 {
1716 	return 0;
1717 }
1718 #endif
1719 
1720 /*
1721  * Display pages allocated per node and memory policy via /proc.
1722  */
1723 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1724 {
1725 	struct numa_maps_private *numa_priv = m->private;
1726 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1727 	struct vm_area_struct *vma = v;
1728 	struct numa_maps *md = &numa_priv->md;
1729 	struct file *file = vma->vm_file;
1730 	struct mm_struct *mm = vma->vm_mm;
1731 	struct mm_walk walk = {
1732 		.hugetlb_entry = gather_hugetlb_stats,
1733 		.pmd_entry = gather_pte_stats,
1734 		.private = md,
1735 		.mm = mm,
1736 	};
1737 	struct mempolicy *pol;
1738 	char buffer[64];
1739 	int nid;
1740 
1741 	if (!mm)
1742 		return 0;
1743 
1744 	/* Ensure we start with an empty set of numa_maps statistics. */
1745 	memset(md, 0, sizeof(*md));
1746 
1747 	pol = __get_vma_policy(vma, vma->vm_start);
1748 	if (pol) {
1749 		mpol_to_str(buffer, sizeof(buffer), pol);
1750 		mpol_cond_put(pol);
1751 	} else {
1752 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1753 	}
1754 
1755 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1756 
1757 	if (file) {
1758 		seq_puts(m, " file=");
1759 		seq_file_path(m, file, "\n\t= ");
1760 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1761 		seq_puts(m, " heap");
1762 	} else if (is_stack(vma)) {
1763 		seq_puts(m, " stack");
1764 	}
1765 
1766 	if (is_vm_hugetlb_page(vma))
1767 		seq_puts(m, " huge");
1768 
1769 	/* mmap_sem is held by m_start */
1770 	walk_page_vma(vma, &walk);
1771 
1772 	if (!md->pages)
1773 		goto out;
1774 
1775 	if (md->anon)
1776 		seq_printf(m, " anon=%lu", md->anon);
1777 
1778 	if (md->dirty)
1779 		seq_printf(m, " dirty=%lu", md->dirty);
1780 
1781 	if (md->pages != md->anon && md->pages != md->dirty)
1782 		seq_printf(m, " mapped=%lu", md->pages);
1783 
1784 	if (md->mapcount_max > 1)
1785 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1786 
1787 	if (md->swapcache)
1788 		seq_printf(m, " swapcache=%lu", md->swapcache);
1789 
1790 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1791 		seq_printf(m, " active=%lu", md->active);
1792 
1793 	if (md->writeback)
1794 		seq_printf(m, " writeback=%lu", md->writeback);
1795 
1796 	for_each_node_state(nid, N_MEMORY)
1797 		if (md->node[nid])
1798 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1799 
1800 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1801 out:
1802 	seq_putc(m, '\n');
1803 	m_cache_vma(m, vma);
1804 	return 0;
1805 }
1806 
1807 static int show_pid_numa_map(struct seq_file *m, void *v)
1808 {
1809 	return show_numa_map(m, v, 1);
1810 }
1811 
1812 static int show_tid_numa_map(struct seq_file *m, void *v)
1813 {
1814 	return show_numa_map(m, v, 0);
1815 }
1816 
1817 static const struct seq_operations proc_pid_numa_maps_op = {
1818 	.start  = m_start,
1819 	.next   = m_next,
1820 	.stop   = m_stop,
1821 	.show   = show_pid_numa_map,
1822 };
1823 
1824 static const struct seq_operations proc_tid_numa_maps_op = {
1825 	.start  = m_start,
1826 	.next   = m_next,
1827 	.stop   = m_stop,
1828 	.show   = show_tid_numa_map,
1829 };
1830 
1831 static int numa_maps_open(struct inode *inode, struct file *file,
1832 			  const struct seq_operations *ops)
1833 {
1834 	return proc_maps_open(inode, file, ops,
1835 				sizeof(struct numa_maps_private));
1836 }
1837 
1838 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1839 {
1840 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1841 }
1842 
1843 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1844 {
1845 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1846 }
1847 
1848 const struct file_operations proc_pid_numa_maps_operations = {
1849 	.open		= pid_numa_maps_open,
1850 	.read		= seq_read,
1851 	.llseek		= seq_lseek,
1852 	.release	= proc_map_release,
1853 };
1854 
1855 const struct file_operations proc_tid_numa_maps_operations = {
1856 	.open		= tid_numa_maps_open,
1857 	.read		= seq_read,
1858 	.llseek		= seq_lseek,
1859 	.release	= proc_map_release,
1860 };
1861 #endif /* CONFIG_NUMA */
1862