1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 #include <linux/pkeys.h> 22 23 #include <asm/elf.h> 24 #include <asm/tlb.h> 25 #include <asm/tlbflush.h> 26 #include "internal.h" 27 28 #define SEQ_PUT_DEC(str, val) \ 29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 30 void task_mem(struct seq_file *m, struct mm_struct *mm) 31 { 32 unsigned long text, lib, swap, anon, file, shmem; 33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 34 35 anon = get_mm_counter(mm, MM_ANONPAGES); 36 file = get_mm_counter(mm, MM_FILEPAGES); 37 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 38 39 /* 40 * Note: to minimize their overhead, mm maintains hiwater_vm and 41 * hiwater_rss only when about to *lower* total_vm or rss. Any 42 * collector of these hiwater stats must therefore get total_vm 43 * and rss too, which will usually be the higher. Barriers? not 44 * worth the effort, such snapshots can always be inconsistent. 45 */ 46 hiwater_vm = total_vm = mm->total_vm; 47 if (hiwater_vm < mm->hiwater_vm) 48 hiwater_vm = mm->hiwater_vm; 49 hiwater_rss = total_rss = anon + file + shmem; 50 if (hiwater_rss < mm->hiwater_rss) 51 hiwater_rss = mm->hiwater_rss; 52 53 /* split executable areas between text and lib */ 54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 55 text = min(text, mm->exec_vm << PAGE_SHIFT); 56 lib = (mm->exec_vm << PAGE_SHIFT) - text; 57 58 swap = get_mm_counter(mm, MM_SWAPENTS); 59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 66 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 70 seq_put_decimal_ull_width(m, 71 " kB\nVmExe:\t", text >> 10, 8); 72 seq_put_decimal_ull_width(m, 73 " kB\nVmLib:\t", lib >> 10, 8); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 77 seq_puts(m, " kB\n"); 78 hugetlb_report_usage(m, mm); 79 } 80 #undef SEQ_PUT_DEC 81 82 unsigned long task_vsize(struct mm_struct *mm) 83 { 84 return PAGE_SIZE * mm->total_vm; 85 } 86 87 unsigned long task_statm(struct mm_struct *mm, 88 unsigned long *shared, unsigned long *text, 89 unsigned long *data, unsigned long *resident) 90 { 91 *shared = get_mm_counter(mm, MM_FILEPAGES) + 92 get_mm_counter(mm, MM_SHMEMPAGES); 93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 94 >> PAGE_SHIFT; 95 *data = mm->data_vm + mm->stack_vm; 96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 97 return mm->total_vm; 98 } 99 100 #ifdef CONFIG_NUMA 101 /* 102 * Save get_task_policy() for show_numa_map(). 103 */ 104 static void hold_task_mempolicy(struct proc_maps_private *priv) 105 { 106 struct task_struct *task = priv->task; 107 108 task_lock(task); 109 priv->task_mempolicy = get_task_policy(task); 110 mpol_get(priv->task_mempolicy); 111 task_unlock(task); 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 mpol_put(priv->task_mempolicy); 116 } 117 #else 118 static void hold_task_mempolicy(struct proc_maps_private *priv) 119 { 120 } 121 static void release_task_mempolicy(struct proc_maps_private *priv) 122 { 123 } 124 #endif 125 126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 127 loff_t *ppos) 128 { 129 struct vm_area_struct *vma = vma_next(&priv->iter); 130 131 if (vma) { 132 *ppos = vma->vm_start; 133 } else { 134 *ppos = -2UL; 135 vma = get_gate_vma(priv->mm); 136 } 137 138 return vma; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = *ppos; 145 struct mm_struct *mm; 146 147 /* See m_next(). Zero at the start or after lseek. */ 148 if (last_addr == -1UL) 149 return NULL; 150 151 priv->task = get_proc_task(priv->inode); 152 if (!priv->task) 153 return ERR_PTR(-ESRCH); 154 155 mm = priv->mm; 156 if (!mm || !mmget_not_zero(mm)) { 157 put_task_struct(priv->task); 158 priv->task = NULL; 159 return NULL; 160 } 161 162 if (mmap_read_lock_killable(mm)) { 163 mmput(mm); 164 put_task_struct(priv->task); 165 priv->task = NULL; 166 return ERR_PTR(-EINTR); 167 } 168 169 vma_iter_init(&priv->iter, mm, last_addr); 170 hold_task_mempolicy(priv); 171 if (last_addr == -2UL) 172 return get_gate_vma(mm); 173 174 return proc_get_vma(priv, ppos); 175 } 176 177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 178 { 179 if (*ppos == -2UL) { 180 *ppos = -1UL; 181 return NULL; 182 } 183 return proc_get_vma(m->private, ppos); 184 } 185 186 static void m_stop(struct seq_file *m, void *v) 187 { 188 struct proc_maps_private *priv = m->private; 189 struct mm_struct *mm = priv->mm; 190 191 if (!priv->task) 192 return; 193 194 release_task_mempolicy(priv); 195 mmap_read_unlock(mm); 196 mmput(mm); 197 put_task_struct(priv->task); 198 priv->task = NULL; 199 } 200 201 static int proc_maps_open(struct inode *inode, struct file *file, 202 const struct seq_operations *ops, int psize) 203 { 204 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 205 206 if (!priv) 207 return -ENOMEM; 208 209 priv->inode = inode; 210 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 211 if (IS_ERR(priv->mm)) { 212 int err = PTR_ERR(priv->mm); 213 214 seq_release_private(inode, file); 215 return err; 216 } 217 218 return 0; 219 } 220 221 static int proc_map_release(struct inode *inode, struct file *file) 222 { 223 struct seq_file *seq = file->private_data; 224 struct proc_maps_private *priv = seq->private; 225 226 if (priv->mm) 227 mmdrop(priv->mm); 228 229 return seq_release_private(inode, file); 230 } 231 232 static int do_maps_open(struct inode *inode, struct file *file, 233 const struct seq_operations *ops) 234 { 235 return proc_maps_open(inode, file, ops, 236 sizeof(struct proc_maps_private)); 237 } 238 239 static void show_vma_header_prefix(struct seq_file *m, 240 unsigned long start, unsigned long end, 241 vm_flags_t flags, unsigned long long pgoff, 242 dev_t dev, unsigned long ino) 243 { 244 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 245 seq_put_hex_ll(m, NULL, start, 8); 246 seq_put_hex_ll(m, "-", end, 8); 247 seq_putc(m, ' '); 248 seq_putc(m, flags & VM_READ ? 'r' : '-'); 249 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 250 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 251 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 252 seq_put_hex_ll(m, " ", pgoff, 8); 253 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 254 seq_put_hex_ll(m, ":", MINOR(dev), 2); 255 seq_put_decimal_ull(m, " ", ino); 256 seq_putc(m, ' '); 257 } 258 259 static void 260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 261 { 262 struct anon_vma_name *anon_name = NULL; 263 struct mm_struct *mm = vma->vm_mm; 264 struct file *file = vma->vm_file; 265 vm_flags_t flags = vma->vm_flags; 266 unsigned long ino = 0; 267 unsigned long long pgoff = 0; 268 unsigned long start, end; 269 dev_t dev = 0; 270 const char *name = NULL; 271 272 if (file) { 273 struct inode *inode = file_inode(vma->vm_file); 274 dev = inode->i_sb->s_dev; 275 ino = inode->i_ino; 276 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 277 } 278 279 start = vma->vm_start; 280 end = vma->vm_end; 281 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 282 if (mm) 283 anon_name = anon_vma_name(vma); 284 285 /* 286 * Print the dentry name for named mappings, and a 287 * special [heap] marker for the heap: 288 */ 289 if (file) { 290 seq_pad(m, ' '); 291 /* 292 * If user named this anon shared memory via 293 * prctl(PR_SET_VMA ..., use the provided name. 294 */ 295 if (anon_name) 296 seq_printf(m, "[anon_shmem:%s]", anon_name->name); 297 else 298 seq_file_path(m, file, "\n"); 299 goto done; 300 } 301 302 if (vma->vm_ops && vma->vm_ops->name) { 303 name = vma->vm_ops->name(vma); 304 if (name) 305 goto done; 306 } 307 308 name = arch_vma_name(vma); 309 if (!name) { 310 if (!mm) { 311 name = "[vdso]"; 312 goto done; 313 } 314 315 if (vma_is_initial_heap(vma)) { 316 name = "[heap]"; 317 goto done; 318 } 319 320 if (vma_is_initial_stack(vma)) { 321 name = "[stack]"; 322 goto done; 323 } 324 325 if (anon_name) { 326 seq_pad(m, ' '); 327 seq_printf(m, "[anon:%s]", anon_name->name); 328 } 329 } 330 331 done: 332 if (name) { 333 seq_pad(m, ' '); 334 seq_puts(m, name); 335 } 336 seq_putc(m, '\n'); 337 } 338 339 static int show_map(struct seq_file *m, void *v) 340 { 341 show_map_vma(m, v); 342 return 0; 343 } 344 345 static const struct seq_operations proc_pid_maps_op = { 346 .start = m_start, 347 .next = m_next, 348 .stop = m_stop, 349 .show = show_map 350 }; 351 352 static int pid_maps_open(struct inode *inode, struct file *file) 353 { 354 return do_maps_open(inode, file, &proc_pid_maps_op); 355 } 356 357 const struct file_operations proc_pid_maps_operations = { 358 .open = pid_maps_open, 359 .read = seq_read, 360 .llseek = seq_lseek, 361 .release = proc_map_release, 362 }; 363 364 /* 365 * Proportional Set Size(PSS): my share of RSS. 366 * 367 * PSS of a process is the count of pages it has in memory, where each 368 * page is divided by the number of processes sharing it. So if a 369 * process has 1000 pages all to itself, and 1000 shared with one other 370 * process, its PSS will be 1500. 371 * 372 * To keep (accumulated) division errors low, we adopt a 64bit 373 * fixed-point pss counter to minimize division errors. So (pss >> 374 * PSS_SHIFT) would be the real byte count. 375 * 376 * A shift of 12 before division means (assuming 4K page size): 377 * - 1M 3-user-pages add up to 8KB errors; 378 * - supports mapcount up to 2^24, or 16M; 379 * - supports PSS up to 2^52 bytes, or 4PB. 380 */ 381 #define PSS_SHIFT 12 382 383 #ifdef CONFIG_PROC_PAGE_MONITOR 384 struct mem_size_stats { 385 unsigned long resident; 386 unsigned long shared_clean; 387 unsigned long shared_dirty; 388 unsigned long private_clean; 389 unsigned long private_dirty; 390 unsigned long referenced; 391 unsigned long anonymous; 392 unsigned long lazyfree; 393 unsigned long anonymous_thp; 394 unsigned long shmem_thp; 395 unsigned long file_thp; 396 unsigned long swap; 397 unsigned long shared_hugetlb; 398 unsigned long private_hugetlb; 399 u64 pss; 400 u64 pss_anon; 401 u64 pss_file; 402 u64 pss_shmem; 403 u64 pss_dirty; 404 u64 pss_locked; 405 u64 swap_pss; 406 }; 407 408 static void smaps_page_accumulate(struct mem_size_stats *mss, 409 struct page *page, unsigned long size, unsigned long pss, 410 bool dirty, bool locked, bool private) 411 { 412 mss->pss += pss; 413 414 if (PageAnon(page)) 415 mss->pss_anon += pss; 416 else if (PageSwapBacked(page)) 417 mss->pss_shmem += pss; 418 else 419 mss->pss_file += pss; 420 421 if (locked) 422 mss->pss_locked += pss; 423 424 if (dirty || PageDirty(page)) { 425 mss->pss_dirty += pss; 426 if (private) 427 mss->private_dirty += size; 428 else 429 mss->shared_dirty += size; 430 } else { 431 if (private) 432 mss->private_clean += size; 433 else 434 mss->shared_clean += size; 435 } 436 } 437 438 static void smaps_account(struct mem_size_stats *mss, struct page *page, 439 bool compound, bool young, bool dirty, bool locked, 440 bool migration) 441 { 442 int i, nr = compound ? compound_nr(page) : 1; 443 unsigned long size = nr * PAGE_SIZE; 444 445 /* 446 * First accumulate quantities that depend only on |size| and the type 447 * of the compound page. 448 */ 449 if (PageAnon(page)) { 450 mss->anonymous += size; 451 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 452 mss->lazyfree += size; 453 } 454 455 mss->resident += size; 456 /* Accumulate the size in pages that have been accessed. */ 457 if (young || page_is_young(page) || PageReferenced(page)) 458 mss->referenced += size; 459 460 /* 461 * Then accumulate quantities that may depend on sharing, or that may 462 * differ page-by-page. 463 * 464 * page_count(page) == 1 guarantees the page is mapped exactly once. 465 * If any subpage of the compound page mapped with PTE it would elevate 466 * page_count(). 467 * 468 * The page_mapcount() is called to get a snapshot of the mapcount. 469 * Without holding the page lock this snapshot can be slightly wrong as 470 * we cannot always read the mapcount atomically. It is not safe to 471 * call page_mapcount() even with PTL held if the page is not mapped, 472 * especially for migration entries. Treat regular migration entries 473 * as mapcount == 1. 474 */ 475 if ((page_count(page) == 1) || migration) { 476 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 477 locked, true); 478 return; 479 } 480 for (i = 0; i < nr; i++, page++) { 481 int mapcount = page_mapcount(page); 482 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 483 if (mapcount >= 2) 484 pss /= mapcount; 485 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 486 mapcount < 2); 487 } 488 } 489 490 #ifdef CONFIG_SHMEM 491 static int smaps_pte_hole(unsigned long addr, unsigned long end, 492 __always_unused int depth, struct mm_walk *walk) 493 { 494 struct mem_size_stats *mss = walk->private; 495 struct vm_area_struct *vma = walk->vma; 496 497 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 498 linear_page_index(vma, addr), 499 linear_page_index(vma, end)); 500 501 return 0; 502 } 503 #else 504 #define smaps_pte_hole NULL 505 #endif /* CONFIG_SHMEM */ 506 507 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 508 { 509 #ifdef CONFIG_SHMEM 510 if (walk->ops->pte_hole) { 511 /* depth is not used */ 512 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 513 } 514 #endif 515 } 516 517 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 518 struct mm_walk *walk) 519 { 520 struct mem_size_stats *mss = walk->private; 521 struct vm_area_struct *vma = walk->vma; 522 bool locked = !!(vma->vm_flags & VM_LOCKED); 523 struct page *page = NULL; 524 bool migration = false, young = false, dirty = false; 525 pte_t ptent = ptep_get(pte); 526 527 if (pte_present(ptent)) { 528 page = vm_normal_page(vma, addr, ptent); 529 young = pte_young(ptent); 530 dirty = pte_dirty(ptent); 531 } else if (is_swap_pte(ptent)) { 532 swp_entry_t swpent = pte_to_swp_entry(ptent); 533 534 if (!non_swap_entry(swpent)) { 535 int mapcount; 536 537 mss->swap += PAGE_SIZE; 538 mapcount = swp_swapcount(swpent); 539 if (mapcount >= 2) { 540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 541 542 do_div(pss_delta, mapcount); 543 mss->swap_pss += pss_delta; 544 } else { 545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 546 } 547 } else if (is_pfn_swap_entry(swpent)) { 548 if (is_migration_entry(swpent)) 549 migration = true; 550 page = pfn_swap_entry_to_page(swpent); 551 } 552 } else { 553 smaps_pte_hole_lookup(addr, walk); 554 return; 555 } 556 557 if (!page) 558 return; 559 560 smaps_account(mss, page, false, young, dirty, locked, migration); 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 565 struct mm_walk *walk) 566 { 567 struct mem_size_stats *mss = walk->private; 568 struct vm_area_struct *vma = walk->vma; 569 bool locked = !!(vma->vm_flags & VM_LOCKED); 570 struct page *page = NULL; 571 bool migration = false; 572 573 if (pmd_present(*pmd)) { 574 /* FOLL_DUMP will return -EFAULT on huge zero page */ 575 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 576 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 577 swp_entry_t entry = pmd_to_swp_entry(*pmd); 578 579 if (is_migration_entry(entry)) { 580 migration = true; 581 page = pfn_swap_entry_to_page(entry); 582 } 583 } 584 if (IS_ERR_OR_NULL(page)) 585 return; 586 if (PageAnon(page)) 587 mss->anonymous_thp += HPAGE_PMD_SIZE; 588 else if (PageSwapBacked(page)) 589 mss->shmem_thp += HPAGE_PMD_SIZE; 590 else if (is_zone_device_page(page)) 591 /* pass */; 592 else 593 mss->file_thp += HPAGE_PMD_SIZE; 594 595 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 596 locked, migration); 597 } 598 #else 599 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 600 struct mm_walk *walk) 601 { 602 } 603 #endif 604 605 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 606 struct mm_walk *walk) 607 { 608 struct vm_area_struct *vma = walk->vma; 609 pte_t *pte; 610 spinlock_t *ptl; 611 612 ptl = pmd_trans_huge_lock(pmd, vma); 613 if (ptl) { 614 smaps_pmd_entry(pmd, addr, walk); 615 spin_unlock(ptl); 616 goto out; 617 } 618 619 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 620 if (!pte) { 621 walk->action = ACTION_AGAIN; 622 return 0; 623 } 624 for (; addr != end; pte++, addr += PAGE_SIZE) 625 smaps_pte_entry(pte, addr, walk); 626 pte_unmap_unlock(pte - 1, ptl); 627 out: 628 cond_resched(); 629 return 0; 630 } 631 632 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 633 { 634 /* 635 * Don't forget to update Documentation/ on changes. 636 */ 637 static const char mnemonics[BITS_PER_LONG][2] = { 638 /* 639 * In case if we meet a flag we don't know about. 640 */ 641 [0 ... (BITS_PER_LONG-1)] = "??", 642 643 [ilog2(VM_READ)] = "rd", 644 [ilog2(VM_WRITE)] = "wr", 645 [ilog2(VM_EXEC)] = "ex", 646 [ilog2(VM_SHARED)] = "sh", 647 [ilog2(VM_MAYREAD)] = "mr", 648 [ilog2(VM_MAYWRITE)] = "mw", 649 [ilog2(VM_MAYEXEC)] = "me", 650 [ilog2(VM_MAYSHARE)] = "ms", 651 [ilog2(VM_GROWSDOWN)] = "gd", 652 [ilog2(VM_PFNMAP)] = "pf", 653 [ilog2(VM_LOCKED)] = "lo", 654 [ilog2(VM_IO)] = "io", 655 [ilog2(VM_SEQ_READ)] = "sr", 656 [ilog2(VM_RAND_READ)] = "rr", 657 [ilog2(VM_DONTCOPY)] = "dc", 658 [ilog2(VM_DONTEXPAND)] = "de", 659 [ilog2(VM_LOCKONFAULT)] = "lf", 660 [ilog2(VM_ACCOUNT)] = "ac", 661 [ilog2(VM_NORESERVE)] = "nr", 662 [ilog2(VM_HUGETLB)] = "ht", 663 [ilog2(VM_SYNC)] = "sf", 664 [ilog2(VM_ARCH_1)] = "ar", 665 [ilog2(VM_WIPEONFORK)] = "wf", 666 [ilog2(VM_DONTDUMP)] = "dd", 667 #ifdef CONFIG_ARM64_BTI 668 [ilog2(VM_ARM64_BTI)] = "bt", 669 #endif 670 #ifdef CONFIG_MEM_SOFT_DIRTY 671 [ilog2(VM_SOFTDIRTY)] = "sd", 672 #endif 673 [ilog2(VM_MIXEDMAP)] = "mm", 674 [ilog2(VM_HUGEPAGE)] = "hg", 675 [ilog2(VM_NOHUGEPAGE)] = "nh", 676 [ilog2(VM_MERGEABLE)] = "mg", 677 [ilog2(VM_UFFD_MISSING)]= "um", 678 [ilog2(VM_UFFD_WP)] = "uw", 679 #ifdef CONFIG_ARM64_MTE 680 [ilog2(VM_MTE)] = "mt", 681 [ilog2(VM_MTE_ALLOWED)] = "", 682 #endif 683 #ifdef CONFIG_ARCH_HAS_PKEYS 684 /* These come out via ProtectionKey: */ 685 [ilog2(VM_PKEY_BIT0)] = "", 686 [ilog2(VM_PKEY_BIT1)] = "", 687 [ilog2(VM_PKEY_BIT2)] = "", 688 [ilog2(VM_PKEY_BIT3)] = "", 689 #if VM_PKEY_BIT4 690 [ilog2(VM_PKEY_BIT4)] = "", 691 #endif 692 #endif /* CONFIG_ARCH_HAS_PKEYS */ 693 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 694 [ilog2(VM_UFFD_MINOR)] = "ui", 695 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 696 }; 697 size_t i; 698 699 seq_puts(m, "VmFlags: "); 700 for (i = 0; i < BITS_PER_LONG; i++) { 701 if (!mnemonics[i][0]) 702 continue; 703 if (vma->vm_flags & (1UL << i)) { 704 seq_putc(m, mnemonics[i][0]); 705 seq_putc(m, mnemonics[i][1]); 706 seq_putc(m, ' '); 707 } 708 } 709 seq_putc(m, '\n'); 710 } 711 712 #ifdef CONFIG_HUGETLB_PAGE 713 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 714 unsigned long addr, unsigned long end, 715 struct mm_walk *walk) 716 { 717 struct mem_size_stats *mss = walk->private; 718 struct vm_area_struct *vma = walk->vma; 719 struct page *page = NULL; 720 pte_t ptent = ptep_get(pte); 721 722 if (pte_present(ptent)) { 723 page = vm_normal_page(vma, addr, ptent); 724 } else if (is_swap_pte(ptent)) { 725 swp_entry_t swpent = pte_to_swp_entry(ptent); 726 727 if (is_pfn_swap_entry(swpent)) 728 page = pfn_swap_entry_to_page(swpent); 729 } 730 if (page) { 731 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) 732 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 733 else 734 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 735 } 736 return 0; 737 } 738 #else 739 #define smaps_hugetlb_range NULL 740 #endif /* HUGETLB_PAGE */ 741 742 static const struct mm_walk_ops smaps_walk_ops = { 743 .pmd_entry = smaps_pte_range, 744 .hugetlb_entry = smaps_hugetlb_range, 745 }; 746 747 static const struct mm_walk_ops smaps_shmem_walk_ops = { 748 .pmd_entry = smaps_pte_range, 749 .hugetlb_entry = smaps_hugetlb_range, 750 .pte_hole = smaps_pte_hole, 751 }; 752 753 /* 754 * Gather mem stats from @vma with the indicated beginning 755 * address @start, and keep them in @mss. 756 * 757 * Use vm_start of @vma as the beginning address if @start is 0. 758 */ 759 static void smap_gather_stats(struct vm_area_struct *vma, 760 struct mem_size_stats *mss, unsigned long start) 761 { 762 const struct mm_walk_ops *ops = &smaps_walk_ops; 763 764 /* Invalid start */ 765 if (start >= vma->vm_end) 766 return; 767 768 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 769 /* 770 * For shared or readonly shmem mappings we know that all 771 * swapped out pages belong to the shmem object, and we can 772 * obtain the swap value much more efficiently. For private 773 * writable mappings, we might have COW pages that are 774 * not affected by the parent swapped out pages of the shmem 775 * object, so we have to distinguish them during the page walk. 776 * Unless we know that the shmem object (or the part mapped by 777 * our VMA) has no swapped out pages at all. 778 */ 779 unsigned long shmem_swapped = shmem_swap_usage(vma); 780 781 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 782 !(vma->vm_flags & VM_WRITE))) { 783 mss->swap += shmem_swapped; 784 } else { 785 ops = &smaps_shmem_walk_ops; 786 } 787 } 788 789 /* mmap_lock is held in m_start */ 790 if (!start) 791 walk_page_vma(vma, ops, mss); 792 else 793 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 794 } 795 796 #define SEQ_PUT_DEC(str, val) \ 797 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 798 799 /* Show the contents common for smaps and smaps_rollup */ 800 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 801 bool rollup_mode) 802 { 803 SEQ_PUT_DEC("Rss: ", mss->resident); 804 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 805 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 806 if (rollup_mode) { 807 /* 808 * These are meaningful only for smaps_rollup, otherwise two of 809 * them are zero, and the other one is the same as Pss. 810 */ 811 SEQ_PUT_DEC(" kB\nPss_Anon: ", 812 mss->pss_anon >> PSS_SHIFT); 813 SEQ_PUT_DEC(" kB\nPss_File: ", 814 mss->pss_file >> PSS_SHIFT); 815 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 816 mss->pss_shmem >> PSS_SHIFT); 817 } 818 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 819 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 820 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 821 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 822 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 823 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 824 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 825 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 826 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 827 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 828 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 829 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 830 mss->private_hugetlb >> 10, 7); 831 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 832 SEQ_PUT_DEC(" kB\nSwapPss: ", 833 mss->swap_pss >> PSS_SHIFT); 834 SEQ_PUT_DEC(" kB\nLocked: ", 835 mss->pss_locked >> PSS_SHIFT); 836 seq_puts(m, " kB\n"); 837 } 838 839 static int show_smap(struct seq_file *m, void *v) 840 { 841 struct vm_area_struct *vma = v; 842 struct mem_size_stats mss; 843 844 memset(&mss, 0, sizeof(mss)); 845 846 smap_gather_stats(vma, &mss, 0); 847 848 show_map_vma(m, vma); 849 850 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 851 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 852 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 853 seq_puts(m, " kB\n"); 854 855 __show_smap(m, &mss, false); 856 857 seq_printf(m, "THPeligible: %8u\n", 858 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 859 860 if (arch_pkeys_enabled()) 861 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 862 show_smap_vma_flags(m, vma); 863 864 return 0; 865 } 866 867 static int show_smaps_rollup(struct seq_file *m, void *v) 868 { 869 struct proc_maps_private *priv = m->private; 870 struct mem_size_stats mss; 871 struct mm_struct *mm = priv->mm; 872 struct vm_area_struct *vma; 873 unsigned long vma_start = 0, last_vma_end = 0; 874 int ret = 0; 875 VMA_ITERATOR(vmi, mm, 0); 876 877 priv->task = get_proc_task(priv->inode); 878 if (!priv->task) 879 return -ESRCH; 880 881 if (!mm || !mmget_not_zero(mm)) { 882 ret = -ESRCH; 883 goto out_put_task; 884 } 885 886 memset(&mss, 0, sizeof(mss)); 887 888 ret = mmap_read_lock_killable(mm); 889 if (ret) 890 goto out_put_mm; 891 892 hold_task_mempolicy(priv); 893 vma = vma_next(&vmi); 894 895 if (unlikely(!vma)) 896 goto empty_set; 897 898 vma_start = vma->vm_start; 899 do { 900 smap_gather_stats(vma, &mss, 0); 901 last_vma_end = vma->vm_end; 902 903 /* 904 * Release mmap_lock temporarily if someone wants to 905 * access it for write request. 906 */ 907 if (mmap_lock_is_contended(mm)) { 908 vma_iter_invalidate(&vmi); 909 mmap_read_unlock(mm); 910 ret = mmap_read_lock_killable(mm); 911 if (ret) { 912 release_task_mempolicy(priv); 913 goto out_put_mm; 914 } 915 916 /* 917 * After dropping the lock, there are four cases to 918 * consider. See the following example for explanation. 919 * 920 * +------+------+-----------+ 921 * | VMA1 | VMA2 | VMA3 | 922 * +------+------+-----------+ 923 * | | | | 924 * 4k 8k 16k 400k 925 * 926 * Suppose we drop the lock after reading VMA2 due to 927 * contention, then we get: 928 * 929 * last_vma_end = 16k 930 * 931 * 1) VMA2 is freed, but VMA3 exists: 932 * 933 * vma_next(vmi) will return VMA3. 934 * In this case, just continue from VMA3. 935 * 936 * 2) VMA2 still exists: 937 * 938 * vma_next(vmi) will return VMA3. 939 * In this case, just continue from VMA3. 940 * 941 * 3) No more VMAs can be found: 942 * 943 * vma_next(vmi) will return NULL. 944 * No more things to do, just break. 945 * 946 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 947 * 948 * vma_next(vmi) will return VMA' whose range 949 * contains last_vma_end. 950 * Iterate VMA' from last_vma_end. 951 */ 952 vma = vma_next(&vmi); 953 /* Case 3 above */ 954 if (!vma) 955 break; 956 957 /* Case 1 and 2 above */ 958 if (vma->vm_start >= last_vma_end) 959 continue; 960 961 /* Case 4 above */ 962 if (vma->vm_end > last_vma_end) 963 smap_gather_stats(vma, &mss, last_vma_end); 964 } 965 } for_each_vma(vmi, vma); 966 967 empty_set: 968 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 969 seq_pad(m, ' '); 970 seq_puts(m, "[rollup]\n"); 971 972 __show_smap(m, &mss, true); 973 974 release_task_mempolicy(priv); 975 mmap_read_unlock(mm); 976 977 out_put_mm: 978 mmput(mm); 979 out_put_task: 980 put_task_struct(priv->task); 981 priv->task = NULL; 982 983 return ret; 984 } 985 #undef SEQ_PUT_DEC 986 987 static const struct seq_operations proc_pid_smaps_op = { 988 .start = m_start, 989 .next = m_next, 990 .stop = m_stop, 991 .show = show_smap 992 }; 993 994 static int pid_smaps_open(struct inode *inode, struct file *file) 995 { 996 return do_maps_open(inode, file, &proc_pid_smaps_op); 997 } 998 999 static int smaps_rollup_open(struct inode *inode, struct file *file) 1000 { 1001 int ret; 1002 struct proc_maps_private *priv; 1003 1004 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1005 if (!priv) 1006 return -ENOMEM; 1007 1008 ret = single_open(file, show_smaps_rollup, priv); 1009 if (ret) 1010 goto out_free; 1011 1012 priv->inode = inode; 1013 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1014 if (IS_ERR(priv->mm)) { 1015 ret = PTR_ERR(priv->mm); 1016 1017 single_release(inode, file); 1018 goto out_free; 1019 } 1020 1021 return 0; 1022 1023 out_free: 1024 kfree(priv); 1025 return ret; 1026 } 1027 1028 static int smaps_rollup_release(struct inode *inode, struct file *file) 1029 { 1030 struct seq_file *seq = file->private_data; 1031 struct proc_maps_private *priv = seq->private; 1032 1033 if (priv->mm) 1034 mmdrop(priv->mm); 1035 1036 kfree(priv); 1037 return single_release(inode, file); 1038 } 1039 1040 const struct file_operations proc_pid_smaps_operations = { 1041 .open = pid_smaps_open, 1042 .read = seq_read, 1043 .llseek = seq_lseek, 1044 .release = proc_map_release, 1045 }; 1046 1047 const struct file_operations proc_pid_smaps_rollup_operations = { 1048 .open = smaps_rollup_open, 1049 .read = seq_read, 1050 .llseek = seq_lseek, 1051 .release = smaps_rollup_release, 1052 }; 1053 1054 enum clear_refs_types { 1055 CLEAR_REFS_ALL = 1, 1056 CLEAR_REFS_ANON, 1057 CLEAR_REFS_MAPPED, 1058 CLEAR_REFS_SOFT_DIRTY, 1059 CLEAR_REFS_MM_HIWATER_RSS, 1060 CLEAR_REFS_LAST, 1061 }; 1062 1063 struct clear_refs_private { 1064 enum clear_refs_types type; 1065 }; 1066 1067 #ifdef CONFIG_MEM_SOFT_DIRTY 1068 1069 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1070 { 1071 struct page *page; 1072 1073 if (!pte_write(pte)) 1074 return false; 1075 if (!is_cow_mapping(vma->vm_flags)) 1076 return false; 1077 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1078 return false; 1079 page = vm_normal_page(vma, addr, pte); 1080 if (!page) 1081 return false; 1082 return page_maybe_dma_pinned(page); 1083 } 1084 1085 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1086 unsigned long addr, pte_t *pte) 1087 { 1088 /* 1089 * The soft-dirty tracker uses #PF-s to catch writes 1090 * to pages, so write-protect the pte as well. See the 1091 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1092 * of how soft-dirty works. 1093 */ 1094 pte_t ptent = ptep_get(pte); 1095 1096 if (pte_present(ptent)) { 1097 pte_t old_pte; 1098 1099 if (pte_is_pinned(vma, addr, ptent)) 1100 return; 1101 old_pte = ptep_modify_prot_start(vma, addr, pte); 1102 ptent = pte_wrprotect(old_pte); 1103 ptent = pte_clear_soft_dirty(ptent); 1104 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1105 } else if (is_swap_pte(ptent)) { 1106 ptent = pte_swp_clear_soft_dirty(ptent); 1107 set_pte_at(vma->vm_mm, addr, pte, ptent); 1108 } 1109 } 1110 #else 1111 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1112 unsigned long addr, pte_t *pte) 1113 { 1114 } 1115 #endif 1116 1117 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1118 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1119 unsigned long addr, pmd_t *pmdp) 1120 { 1121 pmd_t old, pmd = *pmdp; 1122 1123 if (pmd_present(pmd)) { 1124 /* See comment in change_huge_pmd() */ 1125 old = pmdp_invalidate(vma, addr, pmdp); 1126 if (pmd_dirty(old)) 1127 pmd = pmd_mkdirty(pmd); 1128 if (pmd_young(old)) 1129 pmd = pmd_mkyoung(pmd); 1130 1131 pmd = pmd_wrprotect(pmd); 1132 pmd = pmd_clear_soft_dirty(pmd); 1133 1134 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1135 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1136 pmd = pmd_swp_clear_soft_dirty(pmd); 1137 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1138 } 1139 } 1140 #else 1141 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1142 unsigned long addr, pmd_t *pmdp) 1143 { 1144 } 1145 #endif 1146 1147 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1148 unsigned long end, struct mm_walk *walk) 1149 { 1150 struct clear_refs_private *cp = walk->private; 1151 struct vm_area_struct *vma = walk->vma; 1152 pte_t *pte, ptent; 1153 spinlock_t *ptl; 1154 struct page *page; 1155 1156 ptl = pmd_trans_huge_lock(pmd, vma); 1157 if (ptl) { 1158 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1159 clear_soft_dirty_pmd(vma, addr, pmd); 1160 goto out; 1161 } 1162 1163 if (!pmd_present(*pmd)) 1164 goto out; 1165 1166 page = pmd_page(*pmd); 1167 1168 /* Clear accessed and referenced bits. */ 1169 pmdp_test_and_clear_young(vma, addr, pmd); 1170 test_and_clear_page_young(page); 1171 ClearPageReferenced(page); 1172 out: 1173 spin_unlock(ptl); 1174 return 0; 1175 } 1176 1177 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1178 if (!pte) { 1179 walk->action = ACTION_AGAIN; 1180 return 0; 1181 } 1182 for (; addr != end; pte++, addr += PAGE_SIZE) { 1183 ptent = ptep_get(pte); 1184 1185 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1186 clear_soft_dirty(vma, addr, pte); 1187 continue; 1188 } 1189 1190 if (!pte_present(ptent)) 1191 continue; 1192 1193 page = vm_normal_page(vma, addr, ptent); 1194 if (!page) 1195 continue; 1196 1197 /* Clear accessed and referenced bits. */ 1198 ptep_test_and_clear_young(vma, addr, pte); 1199 test_and_clear_page_young(page); 1200 ClearPageReferenced(page); 1201 } 1202 pte_unmap_unlock(pte - 1, ptl); 1203 cond_resched(); 1204 return 0; 1205 } 1206 1207 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1208 struct mm_walk *walk) 1209 { 1210 struct clear_refs_private *cp = walk->private; 1211 struct vm_area_struct *vma = walk->vma; 1212 1213 if (vma->vm_flags & VM_PFNMAP) 1214 return 1; 1215 1216 /* 1217 * Writing 1 to /proc/pid/clear_refs affects all pages. 1218 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1219 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1220 * Writing 4 to /proc/pid/clear_refs affects all pages. 1221 */ 1222 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1223 return 1; 1224 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1225 return 1; 1226 return 0; 1227 } 1228 1229 static const struct mm_walk_ops clear_refs_walk_ops = { 1230 .pmd_entry = clear_refs_pte_range, 1231 .test_walk = clear_refs_test_walk, 1232 }; 1233 1234 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1235 size_t count, loff_t *ppos) 1236 { 1237 struct task_struct *task; 1238 char buffer[PROC_NUMBUF]; 1239 struct mm_struct *mm; 1240 struct vm_area_struct *vma; 1241 enum clear_refs_types type; 1242 int itype; 1243 int rv; 1244 1245 memset(buffer, 0, sizeof(buffer)); 1246 if (count > sizeof(buffer) - 1) 1247 count = sizeof(buffer) - 1; 1248 if (copy_from_user(buffer, buf, count)) 1249 return -EFAULT; 1250 rv = kstrtoint(strstrip(buffer), 10, &itype); 1251 if (rv < 0) 1252 return rv; 1253 type = (enum clear_refs_types)itype; 1254 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1255 return -EINVAL; 1256 1257 task = get_proc_task(file_inode(file)); 1258 if (!task) 1259 return -ESRCH; 1260 mm = get_task_mm(task); 1261 if (mm) { 1262 VMA_ITERATOR(vmi, mm, 0); 1263 struct mmu_notifier_range range; 1264 struct clear_refs_private cp = { 1265 .type = type, 1266 }; 1267 1268 if (mmap_write_lock_killable(mm)) { 1269 count = -EINTR; 1270 goto out_mm; 1271 } 1272 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1273 /* 1274 * Writing 5 to /proc/pid/clear_refs resets the peak 1275 * resident set size to this mm's current rss value. 1276 */ 1277 reset_mm_hiwater_rss(mm); 1278 goto out_unlock; 1279 } 1280 1281 if (type == CLEAR_REFS_SOFT_DIRTY) { 1282 for_each_vma(vmi, vma) { 1283 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1284 continue; 1285 vm_flags_clear(vma, VM_SOFTDIRTY); 1286 vma_set_page_prot(vma); 1287 } 1288 1289 inc_tlb_flush_pending(mm); 1290 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1291 0, mm, 0, -1UL); 1292 mmu_notifier_invalidate_range_start(&range); 1293 } 1294 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1295 if (type == CLEAR_REFS_SOFT_DIRTY) { 1296 mmu_notifier_invalidate_range_end(&range); 1297 flush_tlb_mm(mm); 1298 dec_tlb_flush_pending(mm); 1299 } 1300 out_unlock: 1301 mmap_write_unlock(mm); 1302 out_mm: 1303 mmput(mm); 1304 } 1305 put_task_struct(task); 1306 1307 return count; 1308 } 1309 1310 const struct file_operations proc_clear_refs_operations = { 1311 .write = clear_refs_write, 1312 .llseek = noop_llseek, 1313 }; 1314 1315 typedef struct { 1316 u64 pme; 1317 } pagemap_entry_t; 1318 1319 struct pagemapread { 1320 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1321 pagemap_entry_t *buffer; 1322 bool show_pfn; 1323 }; 1324 1325 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1326 #define PAGEMAP_WALK_MASK (PMD_MASK) 1327 1328 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1329 #define PM_PFRAME_BITS 55 1330 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1331 #define PM_SOFT_DIRTY BIT_ULL(55) 1332 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1333 #define PM_UFFD_WP BIT_ULL(57) 1334 #define PM_FILE BIT_ULL(61) 1335 #define PM_SWAP BIT_ULL(62) 1336 #define PM_PRESENT BIT_ULL(63) 1337 1338 #define PM_END_OF_BUFFER 1 1339 1340 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1341 { 1342 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1343 } 1344 1345 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1346 struct pagemapread *pm) 1347 { 1348 pm->buffer[pm->pos++] = *pme; 1349 if (pm->pos >= pm->len) 1350 return PM_END_OF_BUFFER; 1351 return 0; 1352 } 1353 1354 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1355 __always_unused int depth, struct mm_walk *walk) 1356 { 1357 struct pagemapread *pm = walk->private; 1358 unsigned long addr = start; 1359 int err = 0; 1360 1361 while (addr < end) { 1362 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1363 pagemap_entry_t pme = make_pme(0, 0); 1364 /* End of address space hole, which we mark as non-present. */ 1365 unsigned long hole_end; 1366 1367 if (vma) 1368 hole_end = min(end, vma->vm_start); 1369 else 1370 hole_end = end; 1371 1372 for (; addr < hole_end; addr += PAGE_SIZE) { 1373 err = add_to_pagemap(addr, &pme, pm); 1374 if (err) 1375 goto out; 1376 } 1377 1378 if (!vma) 1379 break; 1380 1381 /* Addresses in the VMA. */ 1382 if (vma->vm_flags & VM_SOFTDIRTY) 1383 pme = make_pme(0, PM_SOFT_DIRTY); 1384 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1385 err = add_to_pagemap(addr, &pme, pm); 1386 if (err) 1387 goto out; 1388 } 1389 } 1390 out: 1391 return err; 1392 } 1393 1394 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1395 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1396 { 1397 u64 frame = 0, flags = 0; 1398 struct page *page = NULL; 1399 bool migration = false; 1400 1401 if (pte_present(pte)) { 1402 if (pm->show_pfn) 1403 frame = pte_pfn(pte); 1404 flags |= PM_PRESENT; 1405 page = vm_normal_page(vma, addr, pte); 1406 if (pte_soft_dirty(pte)) 1407 flags |= PM_SOFT_DIRTY; 1408 if (pte_uffd_wp(pte)) 1409 flags |= PM_UFFD_WP; 1410 } else if (is_swap_pte(pte)) { 1411 swp_entry_t entry; 1412 if (pte_swp_soft_dirty(pte)) 1413 flags |= PM_SOFT_DIRTY; 1414 if (pte_swp_uffd_wp(pte)) 1415 flags |= PM_UFFD_WP; 1416 entry = pte_to_swp_entry(pte); 1417 if (pm->show_pfn) { 1418 pgoff_t offset; 1419 /* 1420 * For PFN swap offsets, keeping the offset field 1421 * to be PFN only to be compatible with old smaps. 1422 */ 1423 if (is_pfn_swap_entry(entry)) 1424 offset = swp_offset_pfn(entry); 1425 else 1426 offset = swp_offset(entry); 1427 frame = swp_type(entry) | 1428 (offset << MAX_SWAPFILES_SHIFT); 1429 } 1430 flags |= PM_SWAP; 1431 migration = is_migration_entry(entry); 1432 if (is_pfn_swap_entry(entry)) 1433 page = pfn_swap_entry_to_page(entry); 1434 if (pte_marker_entry_uffd_wp(entry)) 1435 flags |= PM_UFFD_WP; 1436 } 1437 1438 if (page && !PageAnon(page)) 1439 flags |= PM_FILE; 1440 if (page && !migration && page_mapcount(page) == 1) 1441 flags |= PM_MMAP_EXCLUSIVE; 1442 if (vma->vm_flags & VM_SOFTDIRTY) 1443 flags |= PM_SOFT_DIRTY; 1444 1445 return make_pme(frame, flags); 1446 } 1447 1448 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1449 struct mm_walk *walk) 1450 { 1451 struct vm_area_struct *vma = walk->vma; 1452 struct pagemapread *pm = walk->private; 1453 spinlock_t *ptl; 1454 pte_t *pte, *orig_pte; 1455 int err = 0; 1456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1457 bool migration = false; 1458 1459 ptl = pmd_trans_huge_lock(pmdp, vma); 1460 if (ptl) { 1461 u64 flags = 0, frame = 0; 1462 pmd_t pmd = *pmdp; 1463 struct page *page = NULL; 1464 1465 if (vma->vm_flags & VM_SOFTDIRTY) 1466 flags |= PM_SOFT_DIRTY; 1467 1468 if (pmd_present(pmd)) { 1469 page = pmd_page(pmd); 1470 1471 flags |= PM_PRESENT; 1472 if (pmd_soft_dirty(pmd)) 1473 flags |= PM_SOFT_DIRTY; 1474 if (pmd_uffd_wp(pmd)) 1475 flags |= PM_UFFD_WP; 1476 if (pm->show_pfn) 1477 frame = pmd_pfn(pmd) + 1478 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1479 } 1480 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1481 else if (is_swap_pmd(pmd)) { 1482 swp_entry_t entry = pmd_to_swp_entry(pmd); 1483 unsigned long offset; 1484 1485 if (pm->show_pfn) { 1486 if (is_pfn_swap_entry(entry)) 1487 offset = swp_offset_pfn(entry); 1488 else 1489 offset = swp_offset(entry); 1490 offset = offset + 1491 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1492 frame = swp_type(entry) | 1493 (offset << MAX_SWAPFILES_SHIFT); 1494 } 1495 flags |= PM_SWAP; 1496 if (pmd_swp_soft_dirty(pmd)) 1497 flags |= PM_SOFT_DIRTY; 1498 if (pmd_swp_uffd_wp(pmd)) 1499 flags |= PM_UFFD_WP; 1500 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1501 migration = is_migration_entry(entry); 1502 page = pfn_swap_entry_to_page(entry); 1503 } 1504 #endif 1505 1506 if (page && !migration && page_mapcount(page) == 1) 1507 flags |= PM_MMAP_EXCLUSIVE; 1508 1509 for (; addr != end; addr += PAGE_SIZE) { 1510 pagemap_entry_t pme = make_pme(frame, flags); 1511 1512 err = add_to_pagemap(addr, &pme, pm); 1513 if (err) 1514 break; 1515 if (pm->show_pfn) { 1516 if (flags & PM_PRESENT) 1517 frame++; 1518 else if (flags & PM_SWAP) 1519 frame += (1 << MAX_SWAPFILES_SHIFT); 1520 } 1521 } 1522 spin_unlock(ptl); 1523 return err; 1524 } 1525 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1526 1527 /* 1528 * We can assume that @vma always points to a valid one and @end never 1529 * goes beyond vma->vm_end. 1530 */ 1531 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1532 if (!pte) { 1533 walk->action = ACTION_AGAIN; 1534 return err; 1535 } 1536 for (; addr < end; pte++, addr += PAGE_SIZE) { 1537 pagemap_entry_t pme; 1538 1539 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 1540 err = add_to_pagemap(addr, &pme, pm); 1541 if (err) 1542 break; 1543 } 1544 pte_unmap_unlock(orig_pte, ptl); 1545 1546 cond_resched(); 1547 1548 return err; 1549 } 1550 1551 #ifdef CONFIG_HUGETLB_PAGE 1552 /* This function walks within one hugetlb entry in the single call */ 1553 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1554 unsigned long addr, unsigned long end, 1555 struct mm_walk *walk) 1556 { 1557 struct pagemapread *pm = walk->private; 1558 struct vm_area_struct *vma = walk->vma; 1559 u64 flags = 0, frame = 0; 1560 int err = 0; 1561 pte_t pte; 1562 1563 if (vma->vm_flags & VM_SOFTDIRTY) 1564 flags |= PM_SOFT_DIRTY; 1565 1566 pte = huge_ptep_get(ptep); 1567 if (pte_present(pte)) { 1568 struct page *page = pte_page(pte); 1569 1570 if (!PageAnon(page)) 1571 flags |= PM_FILE; 1572 1573 if (page_mapcount(page) == 1) 1574 flags |= PM_MMAP_EXCLUSIVE; 1575 1576 if (huge_pte_uffd_wp(pte)) 1577 flags |= PM_UFFD_WP; 1578 1579 flags |= PM_PRESENT; 1580 if (pm->show_pfn) 1581 frame = pte_pfn(pte) + 1582 ((addr & ~hmask) >> PAGE_SHIFT); 1583 } else if (pte_swp_uffd_wp_any(pte)) { 1584 flags |= PM_UFFD_WP; 1585 } 1586 1587 for (; addr != end; addr += PAGE_SIZE) { 1588 pagemap_entry_t pme = make_pme(frame, flags); 1589 1590 err = add_to_pagemap(addr, &pme, pm); 1591 if (err) 1592 return err; 1593 if (pm->show_pfn && (flags & PM_PRESENT)) 1594 frame++; 1595 } 1596 1597 cond_resched(); 1598 1599 return err; 1600 } 1601 #else 1602 #define pagemap_hugetlb_range NULL 1603 #endif /* HUGETLB_PAGE */ 1604 1605 static const struct mm_walk_ops pagemap_ops = { 1606 .pmd_entry = pagemap_pmd_range, 1607 .pte_hole = pagemap_pte_hole, 1608 .hugetlb_entry = pagemap_hugetlb_range, 1609 }; 1610 1611 /* 1612 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1613 * 1614 * For each page in the address space, this file contains one 64-bit entry 1615 * consisting of the following: 1616 * 1617 * Bits 0-54 page frame number (PFN) if present 1618 * Bits 0-4 swap type if swapped 1619 * Bits 5-54 swap offset if swapped 1620 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1621 * Bit 56 page exclusively mapped 1622 * Bit 57 pte is uffd-wp write-protected 1623 * Bits 58-60 zero 1624 * Bit 61 page is file-page or shared-anon 1625 * Bit 62 page swapped 1626 * Bit 63 page present 1627 * 1628 * If the page is not present but in swap, then the PFN contains an 1629 * encoding of the swap file number and the page's offset into the 1630 * swap. Unmapped pages return a null PFN. This allows determining 1631 * precisely which pages are mapped (or in swap) and comparing mapped 1632 * pages between processes. 1633 * 1634 * Efficient users of this interface will use /proc/pid/maps to 1635 * determine which areas of memory are actually mapped and llseek to 1636 * skip over unmapped regions. 1637 */ 1638 static ssize_t pagemap_read(struct file *file, char __user *buf, 1639 size_t count, loff_t *ppos) 1640 { 1641 struct mm_struct *mm = file->private_data; 1642 struct pagemapread pm; 1643 unsigned long src; 1644 unsigned long svpfn; 1645 unsigned long start_vaddr; 1646 unsigned long end_vaddr; 1647 int ret = 0, copied = 0; 1648 1649 if (!mm || !mmget_not_zero(mm)) 1650 goto out; 1651 1652 ret = -EINVAL; 1653 /* file position must be aligned */ 1654 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1655 goto out_mm; 1656 1657 ret = 0; 1658 if (!count) 1659 goto out_mm; 1660 1661 /* do not disclose physical addresses: attack vector */ 1662 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1663 1664 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1665 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1666 ret = -ENOMEM; 1667 if (!pm.buffer) 1668 goto out_mm; 1669 1670 src = *ppos; 1671 svpfn = src / PM_ENTRY_BYTES; 1672 end_vaddr = mm->task_size; 1673 1674 /* watch out for wraparound */ 1675 start_vaddr = end_vaddr; 1676 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 1677 unsigned long end; 1678 1679 ret = mmap_read_lock_killable(mm); 1680 if (ret) 1681 goto out_free; 1682 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 1683 mmap_read_unlock(mm); 1684 1685 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 1686 if (end >= start_vaddr && end < mm->task_size) 1687 end_vaddr = end; 1688 } 1689 1690 /* Ensure the address is inside the task */ 1691 if (start_vaddr > mm->task_size) 1692 start_vaddr = end_vaddr; 1693 1694 ret = 0; 1695 while (count && (start_vaddr < end_vaddr)) { 1696 int len; 1697 unsigned long end; 1698 1699 pm.pos = 0; 1700 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1701 /* overflow ? */ 1702 if (end < start_vaddr || end > end_vaddr) 1703 end = end_vaddr; 1704 ret = mmap_read_lock_killable(mm); 1705 if (ret) 1706 goto out_free; 1707 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1708 mmap_read_unlock(mm); 1709 start_vaddr = end; 1710 1711 len = min(count, PM_ENTRY_BYTES * pm.pos); 1712 if (copy_to_user(buf, pm.buffer, len)) { 1713 ret = -EFAULT; 1714 goto out_free; 1715 } 1716 copied += len; 1717 buf += len; 1718 count -= len; 1719 } 1720 *ppos += copied; 1721 if (!ret || ret == PM_END_OF_BUFFER) 1722 ret = copied; 1723 1724 out_free: 1725 kfree(pm.buffer); 1726 out_mm: 1727 mmput(mm); 1728 out: 1729 return ret; 1730 } 1731 1732 static int pagemap_open(struct inode *inode, struct file *file) 1733 { 1734 struct mm_struct *mm; 1735 1736 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1737 if (IS_ERR(mm)) 1738 return PTR_ERR(mm); 1739 file->private_data = mm; 1740 return 0; 1741 } 1742 1743 static int pagemap_release(struct inode *inode, struct file *file) 1744 { 1745 struct mm_struct *mm = file->private_data; 1746 1747 if (mm) 1748 mmdrop(mm); 1749 return 0; 1750 } 1751 1752 const struct file_operations proc_pagemap_operations = { 1753 .llseek = mem_lseek, /* borrow this */ 1754 .read = pagemap_read, 1755 .open = pagemap_open, 1756 .release = pagemap_release, 1757 }; 1758 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1759 1760 #ifdef CONFIG_NUMA 1761 1762 struct numa_maps { 1763 unsigned long pages; 1764 unsigned long anon; 1765 unsigned long active; 1766 unsigned long writeback; 1767 unsigned long mapcount_max; 1768 unsigned long dirty; 1769 unsigned long swapcache; 1770 unsigned long node[MAX_NUMNODES]; 1771 }; 1772 1773 struct numa_maps_private { 1774 struct proc_maps_private proc_maps; 1775 struct numa_maps md; 1776 }; 1777 1778 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1779 unsigned long nr_pages) 1780 { 1781 int count = page_mapcount(page); 1782 1783 md->pages += nr_pages; 1784 if (pte_dirty || PageDirty(page)) 1785 md->dirty += nr_pages; 1786 1787 if (PageSwapCache(page)) 1788 md->swapcache += nr_pages; 1789 1790 if (PageActive(page) || PageUnevictable(page)) 1791 md->active += nr_pages; 1792 1793 if (PageWriteback(page)) 1794 md->writeback += nr_pages; 1795 1796 if (PageAnon(page)) 1797 md->anon += nr_pages; 1798 1799 if (count > md->mapcount_max) 1800 md->mapcount_max = count; 1801 1802 md->node[page_to_nid(page)] += nr_pages; 1803 } 1804 1805 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1806 unsigned long addr) 1807 { 1808 struct page *page; 1809 int nid; 1810 1811 if (!pte_present(pte)) 1812 return NULL; 1813 1814 page = vm_normal_page(vma, addr, pte); 1815 if (!page || is_zone_device_page(page)) 1816 return NULL; 1817 1818 if (PageReserved(page)) 1819 return NULL; 1820 1821 nid = page_to_nid(page); 1822 if (!node_isset(nid, node_states[N_MEMORY])) 1823 return NULL; 1824 1825 return page; 1826 } 1827 1828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1829 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1830 struct vm_area_struct *vma, 1831 unsigned long addr) 1832 { 1833 struct page *page; 1834 int nid; 1835 1836 if (!pmd_present(pmd)) 1837 return NULL; 1838 1839 page = vm_normal_page_pmd(vma, addr, pmd); 1840 if (!page) 1841 return NULL; 1842 1843 if (PageReserved(page)) 1844 return NULL; 1845 1846 nid = page_to_nid(page); 1847 if (!node_isset(nid, node_states[N_MEMORY])) 1848 return NULL; 1849 1850 return page; 1851 } 1852 #endif 1853 1854 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1855 unsigned long end, struct mm_walk *walk) 1856 { 1857 struct numa_maps *md = walk->private; 1858 struct vm_area_struct *vma = walk->vma; 1859 spinlock_t *ptl; 1860 pte_t *orig_pte; 1861 pte_t *pte; 1862 1863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1864 ptl = pmd_trans_huge_lock(pmd, vma); 1865 if (ptl) { 1866 struct page *page; 1867 1868 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1869 if (page) 1870 gather_stats(page, md, pmd_dirty(*pmd), 1871 HPAGE_PMD_SIZE/PAGE_SIZE); 1872 spin_unlock(ptl); 1873 return 0; 1874 } 1875 #endif 1876 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1877 if (!pte) { 1878 walk->action = ACTION_AGAIN; 1879 return 0; 1880 } 1881 do { 1882 pte_t ptent = ptep_get(pte); 1883 struct page *page = can_gather_numa_stats(ptent, vma, addr); 1884 if (!page) 1885 continue; 1886 gather_stats(page, md, pte_dirty(ptent), 1); 1887 1888 } while (pte++, addr += PAGE_SIZE, addr != end); 1889 pte_unmap_unlock(orig_pte, ptl); 1890 cond_resched(); 1891 return 0; 1892 } 1893 #ifdef CONFIG_HUGETLB_PAGE 1894 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1895 unsigned long addr, unsigned long end, struct mm_walk *walk) 1896 { 1897 pte_t huge_pte = huge_ptep_get(pte); 1898 struct numa_maps *md; 1899 struct page *page; 1900 1901 if (!pte_present(huge_pte)) 1902 return 0; 1903 1904 page = pte_page(huge_pte); 1905 1906 md = walk->private; 1907 gather_stats(page, md, pte_dirty(huge_pte), 1); 1908 return 0; 1909 } 1910 1911 #else 1912 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1913 unsigned long addr, unsigned long end, struct mm_walk *walk) 1914 { 1915 return 0; 1916 } 1917 #endif 1918 1919 static const struct mm_walk_ops show_numa_ops = { 1920 .hugetlb_entry = gather_hugetlb_stats, 1921 .pmd_entry = gather_pte_stats, 1922 }; 1923 1924 /* 1925 * Display pages allocated per node and memory policy via /proc. 1926 */ 1927 static int show_numa_map(struct seq_file *m, void *v) 1928 { 1929 struct numa_maps_private *numa_priv = m->private; 1930 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1931 struct vm_area_struct *vma = v; 1932 struct numa_maps *md = &numa_priv->md; 1933 struct file *file = vma->vm_file; 1934 struct mm_struct *mm = vma->vm_mm; 1935 struct mempolicy *pol; 1936 char buffer[64]; 1937 int nid; 1938 1939 if (!mm) 1940 return 0; 1941 1942 /* Ensure we start with an empty set of numa_maps statistics. */ 1943 memset(md, 0, sizeof(*md)); 1944 1945 pol = __get_vma_policy(vma, vma->vm_start); 1946 if (pol) { 1947 mpol_to_str(buffer, sizeof(buffer), pol); 1948 mpol_cond_put(pol); 1949 } else { 1950 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1951 } 1952 1953 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1954 1955 if (file) { 1956 seq_puts(m, " file="); 1957 seq_file_path(m, file, "\n\t= "); 1958 } else if (vma_is_initial_heap(vma)) { 1959 seq_puts(m, " heap"); 1960 } else if (vma_is_initial_stack(vma)) { 1961 seq_puts(m, " stack"); 1962 } 1963 1964 if (is_vm_hugetlb_page(vma)) 1965 seq_puts(m, " huge"); 1966 1967 /* mmap_lock is held by m_start */ 1968 walk_page_vma(vma, &show_numa_ops, md); 1969 1970 if (!md->pages) 1971 goto out; 1972 1973 if (md->anon) 1974 seq_printf(m, " anon=%lu", md->anon); 1975 1976 if (md->dirty) 1977 seq_printf(m, " dirty=%lu", md->dirty); 1978 1979 if (md->pages != md->anon && md->pages != md->dirty) 1980 seq_printf(m, " mapped=%lu", md->pages); 1981 1982 if (md->mapcount_max > 1) 1983 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1984 1985 if (md->swapcache) 1986 seq_printf(m, " swapcache=%lu", md->swapcache); 1987 1988 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1989 seq_printf(m, " active=%lu", md->active); 1990 1991 if (md->writeback) 1992 seq_printf(m, " writeback=%lu", md->writeback); 1993 1994 for_each_node_state(nid, N_MEMORY) 1995 if (md->node[nid]) 1996 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1997 1998 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1999 out: 2000 seq_putc(m, '\n'); 2001 return 0; 2002 } 2003 2004 static const struct seq_operations proc_pid_numa_maps_op = { 2005 .start = m_start, 2006 .next = m_next, 2007 .stop = m_stop, 2008 .show = show_numa_map, 2009 }; 2010 2011 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2012 { 2013 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2014 sizeof(struct numa_maps_private)); 2015 } 2016 2017 const struct file_operations proc_pid_numa_maps_operations = { 2018 .open = pid_numa_maps_open, 2019 .read = seq_read, 2020 .llseek = seq_lseek, 2021 .release = proc_map_release, 2022 }; 2023 2024 #endif /* CONFIG_NUMA */ 2025