1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/ksm.h> 8 #include <linux/seq_file.h> 9 #include <linux/highmem.h> 10 #include <linux/ptrace.h> 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/mempolicy.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 #include <linux/swapops.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/page_idle.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/uaccess.h> 22 #include <linux/pkeys.h> 23 24 #include <asm/elf.h> 25 #include <asm/tlb.h> 26 #include <asm/tlbflush.h> 27 #include "internal.h" 28 29 #define SEQ_PUT_DEC(str, val) \ 30 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 31 void task_mem(struct seq_file *m, struct mm_struct *mm) 32 { 33 unsigned long text, lib, swap, anon, file, shmem; 34 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 35 36 anon = get_mm_counter(mm, MM_ANONPAGES); 37 file = get_mm_counter(mm, MM_FILEPAGES); 38 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 39 40 /* 41 * Note: to minimize their overhead, mm maintains hiwater_vm and 42 * hiwater_rss only when about to *lower* total_vm or rss. Any 43 * collector of these hiwater stats must therefore get total_vm 44 * and rss too, which will usually be the higher. Barriers? not 45 * worth the effort, such snapshots can always be inconsistent. 46 */ 47 hiwater_vm = total_vm = mm->total_vm; 48 if (hiwater_vm < mm->hiwater_vm) 49 hiwater_vm = mm->hiwater_vm; 50 hiwater_rss = total_rss = anon + file + shmem; 51 if (hiwater_rss < mm->hiwater_rss) 52 hiwater_rss = mm->hiwater_rss; 53 54 /* split executable areas between text and lib */ 55 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 56 text = min(text, mm->exec_vm << PAGE_SHIFT); 57 lib = (mm->exec_vm << PAGE_SHIFT) - text; 58 59 swap = get_mm_counter(mm, MM_SWAPENTS); 60 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 61 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 62 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 63 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 64 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 65 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 66 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 67 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 68 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 69 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 70 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 71 seq_put_decimal_ull_width(m, 72 " kB\nVmExe:\t", text >> 10, 8); 73 seq_put_decimal_ull_width(m, 74 " kB\nVmLib:\t", lib >> 10, 8); 75 seq_put_decimal_ull_width(m, 76 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 77 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 78 seq_puts(m, " kB\n"); 79 hugetlb_report_usage(m, mm); 80 } 81 #undef SEQ_PUT_DEC 82 83 unsigned long task_vsize(struct mm_struct *mm) 84 { 85 return PAGE_SIZE * mm->total_vm; 86 } 87 88 unsigned long task_statm(struct mm_struct *mm, 89 unsigned long *shared, unsigned long *text, 90 unsigned long *data, unsigned long *resident) 91 { 92 *shared = get_mm_counter(mm, MM_FILEPAGES) + 93 get_mm_counter(mm, MM_SHMEMPAGES); 94 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 95 >> PAGE_SHIFT; 96 *data = mm->data_vm + mm->stack_vm; 97 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 98 return mm->total_vm; 99 } 100 101 #ifdef CONFIG_NUMA 102 /* 103 * Save get_task_policy() for show_numa_map(). 104 */ 105 static void hold_task_mempolicy(struct proc_maps_private *priv) 106 { 107 struct task_struct *task = priv->task; 108 109 task_lock(task); 110 priv->task_mempolicy = get_task_policy(task); 111 mpol_get(priv->task_mempolicy); 112 task_unlock(task); 113 } 114 static void release_task_mempolicy(struct proc_maps_private *priv) 115 { 116 mpol_put(priv->task_mempolicy); 117 } 118 #else 119 static void hold_task_mempolicy(struct proc_maps_private *priv) 120 { 121 } 122 static void release_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 #endif 126 127 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 128 loff_t *ppos) 129 { 130 struct vm_area_struct *vma = vma_next(&priv->iter); 131 132 if (vma) { 133 *ppos = vma->vm_start; 134 } else { 135 *ppos = -2UL; 136 vma = get_gate_vma(priv->mm); 137 } 138 139 return vma; 140 } 141 142 static void *m_start(struct seq_file *m, loff_t *ppos) 143 { 144 struct proc_maps_private *priv = m->private; 145 unsigned long last_addr = *ppos; 146 struct mm_struct *mm; 147 148 /* See m_next(). Zero at the start or after lseek. */ 149 if (last_addr == -1UL) 150 return NULL; 151 152 priv->task = get_proc_task(priv->inode); 153 if (!priv->task) 154 return ERR_PTR(-ESRCH); 155 156 mm = priv->mm; 157 if (!mm || !mmget_not_zero(mm)) { 158 put_task_struct(priv->task); 159 priv->task = NULL; 160 return NULL; 161 } 162 163 if (mmap_read_lock_killable(mm)) { 164 mmput(mm); 165 put_task_struct(priv->task); 166 priv->task = NULL; 167 return ERR_PTR(-EINTR); 168 } 169 170 vma_iter_init(&priv->iter, mm, last_addr); 171 hold_task_mempolicy(priv); 172 if (last_addr == -2UL) 173 return get_gate_vma(mm); 174 175 return proc_get_vma(priv, ppos); 176 } 177 178 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 179 { 180 if (*ppos == -2UL) { 181 *ppos = -1UL; 182 return NULL; 183 } 184 return proc_get_vma(m->private, ppos); 185 } 186 187 static void m_stop(struct seq_file *m, void *v) 188 { 189 struct proc_maps_private *priv = m->private; 190 struct mm_struct *mm = priv->mm; 191 192 if (!priv->task) 193 return; 194 195 release_task_mempolicy(priv); 196 mmap_read_unlock(mm); 197 mmput(mm); 198 put_task_struct(priv->task); 199 priv->task = NULL; 200 } 201 202 static int proc_maps_open(struct inode *inode, struct file *file, 203 const struct seq_operations *ops, int psize) 204 { 205 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 206 207 if (!priv) 208 return -ENOMEM; 209 210 priv->inode = inode; 211 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 212 if (IS_ERR(priv->mm)) { 213 int err = PTR_ERR(priv->mm); 214 215 seq_release_private(inode, file); 216 return err; 217 } 218 219 return 0; 220 } 221 222 static int proc_map_release(struct inode *inode, struct file *file) 223 { 224 struct seq_file *seq = file->private_data; 225 struct proc_maps_private *priv = seq->private; 226 227 if (priv->mm) 228 mmdrop(priv->mm); 229 230 return seq_release_private(inode, file); 231 } 232 233 static int do_maps_open(struct inode *inode, struct file *file, 234 const struct seq_operations *ops) 235 { 236 return proc_maps_open(inode, file, ops, 237 sizeof(struct proc_maps_private)); 238 } 239 240 static void show_vma_header_prefix(struct seq_file *m, 241 unsigned long start, unsigned long end, 242 vm_flags_t flags, unsigned long long pgoff, 243 dev_t dev, unsigned long ino) 244 { 245 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 246 seq_put_hex_ll(m, NULL, start, 8); 247 seq_put_hex_ll(m, "-", end, 8); 248 seq_putc(m, ' '); 249 seq_putc(m, flags & VM_READ ? 'r' : '-'); 250 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 251 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 252 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 253 seq_put_hex_ll(m, " ", pgoff, 8); 254 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 255 seq_put_hex_ll(m, ":", MINOR(dev), 2); 256 seq_put_decimal_ull(m, " ", ino); 257 seq_putc(m, ' '); 258 } 259 260 static void 261 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 262 { 263 struct anon_vma_name *anon_name = NULL; 264 struct mm_struct *mm = vma->vm_mm; 265 struct file *file = vma->vm_file; 266 vm_flags_t flags = vma->vm_flags; 267 unsigned long ino = 0; 268 unsigned long long pgoff = 0; 269 unsigned long start, end; 270 dev_t dev = 0; 271 const char *name = NULL; 272 273 if (file) { 274 struct inode *inode = file_inode(vma->vm_file); 275 dev = inode->i_sb->s_dev; 276 ino = inode->i_ino; 277 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 278 } 279 280 start = vma->vm_start; 281 end = vma->vm_end; 282 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 283 if (mm) 284 anon_name = anon_vma_name(vma); 285 286 /* 287 * Print the dentry name for named mappings, and a 288 * special [heap] marker for the heap: 289 */ 290 if (file) { 291 seq_pad(m, ' '); 292 /* 293 * If user named this anon shared memory via 294 * prctl(PR_SET_VMA ..., use the provided name. 295 */ 296 if (anon_name) 297 seq_printf(m, "[anon_shmem:%s]", anon_name->name); 298 else 299 seq_file_path(m, file, "\n"); 300 goto done; 301 } 302 303 if (vma->vm_ops && vma->vm_ops->name) { 304 name = vma->vm_ops->name(vma); 305 if (name) 306 goto done; 307 } 308 309 name = arch_vma_name(vma); 310 if (!name) { 311 if (!mm) { 312 name = "[vdso]"; 313 goto done; 314 } 315 316 if (vma_is_initial_heap(vma)) { 317 name = "[heap]"; 318 goto done; 319 } 320 321 if (vma_is_initial_stack(vma)) { 322 name = "[stack]"; 323 goto done; 324 } 325 326 if (anon_name) { 327 seq_pad(m, ' '); 328 seq_printf(m, "[anon:%s]", anon_name->name); 329 } 330 } 331 332 done: 333 if (name) { 334 seq_pad(m, ' '); 335 seq_puts(m, name); 336 } 337 seq_putc(m, '\n'); 338 } 339 340 static int show_map(struct seq_file *m, void *v) 341 { 342 show_map_vma(m, v); 343 return 0; 344 } 345 346 static const struct seq_operations proc_pid_maps_op = { 347 .start = m_start, 348 .next = m_next, 349 .stop = m_stop, 350 .show = show_map 351 }; 352 353 static int pid_maps_open(struct inode *inode, struct file *file) 354 { 355 return do_maps_open(inode, file, &proc_pid_maps_op); 356 } 357 358 const struct file_operations proc_pid_maps_operations = { 359 .open = pid_maps_open, 360 .read = seq_read, 361 .llseek = seq_lseek, 362 .release = proc_map_release, 363 }; 364 365 /* 366 * Proportional Set Size(PSS): my share of RSS. 367 * 368 * PSS of a process is the count of pages it has in memory, where each 369 * page is divided by the number of processes sharing it. So if a 370 * process has 1000 pages all to itself, and 1000 shared with one other 371 * process, its PSS will be 1500. 372 * 373 * To keep (accumulated) division errors low, we adopt a 64bit 374 * fixed-point pss counter to minimize division errors. So (pss >> 375 * PSS_SHIFT) would be the real byte count. 376 * 377 * A shift of 12 before division means (assuming 4K page size): 378 * - 1M 3-user-pages add up to 8KB errors; 379 * - supports mapcount up to 2^24, or 16M; 380 * - supports PSS up to 2^52 bytes, or 4PB. 381 */ 382 #define PSS_SHIFT 12 383 384 #ifdef CONFIG_PROC_PAGE_MONITOR 385 struct mem_size_stats { 386 unsigned long resident; 387 unsigned long shared_clean; 388 unsigned long shared_dirty; 389 unsigned long private_clean; 390 unsigned long private_dirty; 391 unsigned long referenced; 392 unsigned long anonymous; 393 unsigned long lazyfree; 394 unsigned long anonymous_thp; 395 unsigned long shmem_thp; 396 unsigned long file_thp; 397 unsigned long swap; 398 unsigned long shared_hugetlb; 399 unsigned long private_hugetlb; 400 unsigned long ksm; 401 u64 pss; 402 u64 pss_anon; 403 u64 pss_file; 404 u64 pss_shmem; 405 u64 pss_dirty; 406 u64 pss_locked; 407 u64 swap_pss; 408 }; 409 410 static void smaps_page_accumulate(struct mem_size_stats *mss, 411 struct page *page, unsigned long size, unsigned long pss, 412 bool dirty, bool locked, bool private) 413 { 414 mss->pss += pss; 415 416 if (PageAnon(page)) 417 mss->pss_anon += pss; 418 else if (PageSwapBacked(page)) 419 mss->pss_shmem += pss; 420 else 421 mss->pss_file += pss; 422 423 if (locked) 424 mss->pss_locked += pss; 425 426 if (dirty || PageDirty(page)) { 427 mss->pss_dirty += pss; 428 if (private) 429 mss->private_dirty += size; 430 else 431 mss->shared_dirty += size; 432 } else { 433 if (private) 434 mss->private_clean += size; 435 else 436 mss->shared_clean += size; 437 } 438 } 439 440 static void smaps_account(struct mem_size_stats *mss, struct page *page, 441 bool compound, bool young, bool dirty, bool locked, 442 bool migration) 443 { 444 int i, nr = compound ? compound_nr(page) : 1; 445 unsigned long size = nr * PAGE_SIZE; 446 447 /* 448 * First accumulate quantities that depend only on |size| and the type 449 * of the compound page. 450 */ 451 if (PageAnon(page)) { 452 mss->anonymous += size; 453 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 454 mss->lazyfree += size; 455 } 456 457 if (PageKsm(page)) 458 mss->ksm += size; 459 460 mss->resident += size; 461 /* Accumulate the size in pages that have been accessed. */ 462 if (young || page_is_young(page) || PageReferenced(page)) 463 mss->referenced += size; 464 465 /* 466 * Then accumulate quantities that may depend on sharing, or that may 467 * differ page-by-page. 468 * 469 * page_count(page) == 1 guarantees the page is mapped exactly once. 470 * If any subpage of the compound page mapped with PTE it would elevate 471 * page_count(). 472 * 473 * The page_mapcount() is called to get a snapshot of the mapcount. 474 * Without holding the page lock this snapshot can be slightly wrong as 475 * we cannot always read the mapcount atomically. It is not safe to 476 * call page_mapcount() even with PTL held if the page is not mapped, 477 * especially for migration entries. Treat regular migration entries 478 * as mapcount == 1. 479 */ 480 if ((page_count(page) == 1) || migration) { 481 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 482 locked, true); 483 return; 484 } 485 for (i = 0; i < nr; i++, page++) { 486 int mapcount = page_mapcount(page); 487 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 488 if (mapcount >= 2) 489 pss /= mapcount; 490 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 491 mapcount < 2); 492 } 493 } 494 495 #ifdef CONFIG_SHMEM 496 static int smaps_pte_hole(unsigned long addr, unsigned long end, 497 __always_unused int depth, struct mm_walk *walk) 498 { 499 struct mem_size_stats *mss = walk->private; 500 struct vm_area_struct *vma = walk->vma; 501 502 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 503 linear_page_index(vma, addr), 504 linear_page_index(vma, end)); 505 506 return 0; 507 } 508 #else 509 #define smaps_pte_hole NULL 510 #endif /* CONFIG_SHMEM */ 511 512 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 513 { 514 #ifdef CONFIG_SHMEM 515 if (walk->ops->pte_hole) { 516 /* depth is not used */ 517 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 518 } 519 #endif 520 } 521 522 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 523 struct mm_walk *walk) 524 { 525 struct mem_size_stats *mss = walk->private; 526 struct vm_area_struct *vma = walk->vma; 527 bool locked = !!(vma->vm_flags & VM_LOCKED); 528 struct page *page = NULL; 529 bool migration = false, young = false, dirty = false; 530 pte_t ptent = ptep_get(pte); 531 532 if (pte_present(ptent)) { 533 page = vm_normal_page(vma, addr, ptent); 534 young = pte_young(ptent); 535 dirty = pte_dirty(ptent); 536 } else if (is_swap_pte(ptent)) { 537 swp_entry_t swpent = pte_to_swp_entry(ptent); 538 539 if (!non_swap_entry(swpent)) { 540 int mapcount; 541 542 mss->swap += PAGE_SIZE; 543 mapcount = swp_swapcount(swpent); 544 if (mapcount >= 2) { 545 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 546 547 do_div(pss_delta, mapcount); 548 mss->swap_pss += pss_delta; 549 } else { 550 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 551 } 552 } else if (is_pfn_swap_entry(swpent)) { 553 if (is_migration_entry(swpent)) 554 migration = true; 555 page = pfn_swap_entry_to_page(swpent); 556 } 557 } else { 558 smaps_pte_hole_lookup(addr, walk); 559 return; 560 } 561 562 if (!page) 563 return; 564 565 smaps_account(mss, page, false, young, dirty, locked, migration); 566 } 567 568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 570 struct mm_walk *walk) 571 { 572 struct mem_size_stats *mss = walk->private; 573 struct vm_area_struct *vma = walk->vma; 574 bool locked = !!(vma->vm_flags & VM_LOCKED); 575 struct page *page = NULL; 576 bool migration = false; 577 578 if (pmd_present(*pmd)) { 579 page = vm_normal_page_pmd(vma, addr, *pmd); 580 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 581 swp_entry_t entry = pmd_to_swp_entry(*pmd); 582 583 if (is_migration_entry(entry)) { 584 migration = true; 585 page = pfn_swap_entry_to_page(entry); 586 } 587 } 588 if (IS_ERR_OR_NULL(page)) 589 return; 590 if (PageAnon(page)) 591 mss->anonymous_thp += HPAGE_PMD_SIZE; 592 else if (PageSwapBacked(page)) 593 mss->shmem_thp += HPAGE_PMD_SIZE; 594 else if (is_zone_device_page(page)) 595 /* pass */; 596 else 597 mss->file_thp += HPAGE_PMD_SIZE; 598 599 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 600 locked, migration); 601 } 602 #else 603 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 604 struct mm_walk *walk) 605 { 606 } 607 #endif 608 609 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 610 struct mm_walk *walk) 611 { 612 struct vm_area_struct *vma = walk->vma; 613 pte_t *pte; 614 spinlock_t *ptl; 615 616 ptl = pmd_trans_huge_lock(pmd, vma); 617 if (ptl) { 618 smaps_pmd_entry(pmd, addr, walk); 619 spin_unlock(ptl); 620 goto out; 621 } 622 623 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 624 if (!pte) { 625 walk->action = ACTION_AGAIN; 626 return 0; 627 } 628 for (; addr != end; pte++, addr += PAGE_SIZE) 629 smaps_pte_entry(pte, addr, walk); 630 pte_unmap_unlock(pte - 1, ptl); 631 out: 632 cond_resched(); 633 return 0; 634 } 635 636 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 637 { 638 /* 639 * Don't forget to update Documentation/ on changes. 640 */ 641 static const char mnemonics[BITS_PER_LONG][2] = { 642 /* 643 * In case if we meet a flag we don't know about. 644 */ 645 [0 ... (BITS_PER_LONG-1)] = "??", 646 647 [ilog2(VM_READ)] = "rd", 648 [ilog2(VM_WRITE)] = "wr", 649 [ilog2(VM_EXEC)] = "ex", 650 [ilog2(VM_SHARED)] = "sh", 651 [ilog2(VM_MAYREAD)] = "mr", 652 [ilog2(VM_MAYWRITE)] = "mw", 653 [ilog2(VM_MAYEXEC)] = "me", 654 [ilog2(VM_MAYSHARE)] = "ms", 655 [ilog2(VM_GROWSDOWN)] = "gd", 656 [ilog2(VM_PFNMAP)] = "pf", 657 [ilog2(VM_LOCKED)] = "lo", 658 [ilog2(VM_IO)] = "io", 659 [ilog2(VM_SEQ_READ)] = "sr", 660 [ilog2(VM_RAND_READ)] = "rr", 661 [ilog2(VM_DONTCOPY)] = "dc", 662 [ilog2(VM_DONTEXPAND)] = "de", 663 [ilog2(VM_LOCKONFAULT)] = "lf", 664 [ilog2(VM_ACCOUNT)] = "ac", 665 [ilog2(VM_NORESERVE)] = "nr", 666 [ilog2(VM_HUGETLB)] = "ht", 667 [ilog2(VM_SYNC)] = "sf", 668 [ilog2(VM_ARCH_1)] = "ar", 669 [ilog2(VM_WIPEONFORK)] = "wf", 670 [ilog2(VM_DONTDUMP)] = "dd", 671 #ifdef CONFIG_ARM64_BTI 672 [ilog2(VM_ARM64_BTI)] = "bt", 673 #endif 674 #ifdef CONFIG_MEM_SOFT_DIRTY 675 [ilog2(VM_SOFTDIRTY)] = "sd", 676 #endif 677 [ilog2(VM_MIXEDMAP)] = "mm", 678 [ilog2(VM_HUGEPAGE)] = "hg", 679 [ilog2(VM_NOHUGEPAGE)] = "nh", 680 [ilog2(VM_MERGEABLE)] = "mg", 681 [ilog2(VM_UFFD_MISSING)]= "um", 682 [ilog2(VM_UFFD_WP)] = "uw", 683 #ifdef CONFIG_ARM64_MTE 684 [ilog2(VM_MTE)] = "mt", 685 [ilog2(VM_MTE_ALLOWED)] = "", 686 #endif 687 #ifdef CONFIG_ARCH_HAS_PKEYS 688 /* These come out via ProtectionKey: */ 689 [ilog2(VM_PKEY_BIT0)] = "", 690 [ilog2(VM_PKEY_BIT1)] = "", 691 [ilog2(VM_PKEY_BIT2)] = "", 692 [ilog2(VM_PKEY_BIT3)] = "", 693 #if VM_PKEY_BIT4 694 [ilog2(VM_PKEY_BIT4)] = "", 695 #endif 696 #endif /* CONFIG_ARCH_HAS_PKEYS */ 697 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 698 [ilog2(VM_UFFD_MINOR)] = "ui", 699 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 700 #ifdef CONFIG_X86_USER_SHADOW_STACK 701 [ilog2(VM_SHADOW_STACK)] = "ss", 702 #endif 703 }; 704 size_t i; 705 706 seq_puts(m, "VmFlags: "); 707 for (i = 0; i < BITS_PER_LONG; i++) { 708 if (!mnemonics[i][0]) 709 continue; 710 if (vma->vm_flags & (1UL << i)) { 711 seq_putc(m, mnemonics[i][0]); 712 seq_putc(m, mnemonics[i][1]); 713 seq_putc(m, ' '); 714 } 715 } 716 seq_putc(m, '\n'); 717 } 718 719 #ifdef CONFIG_HUGETLB_PAGE 720 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 721 unsigned long addr, unsigned long end, 722 struct mm_walk *walk) 723 { 724 struct mem_size_stats *mss = walk->private; 725 struct vm_area_struct *vma = walk->vma; 726 struct page *page = NULL; 727 pte_t ptent = ptep_get(pte); 728 729 if (pte_present(ptent)) { 730 page = vm_normal_page(vma, addr, ptent); 731 } else if (is_swap_pte(ptent)) { 732 swp_entry_t swpent = pte_to_swp_entry(ptent); 733 734 if (is_pfn_swap_entry(swpent)) 735 page = pfn_swap_entry_to_page(swpent); 736 } 737 if (page) { 738 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) 739 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 740 else 741 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 742 } 743 return 0; 744 } 745 #else 746 #define smaps_hugetlb_range NULL 747 #endif /* HUGETLB_PAGE */ 748 749 static const struct mm_walk_ops smaps_walk_ops = { 750 .pmd_entry = smaps_pte_range, 751 .hugetlb_entry = smaps_hugetlb_range, 752 .walk_lock = PGWALK_RDLOCK, 753 }; 754 755 static const struct mm_walk_ops smaps_shmem_walk_ops = { 756 .pmd_entry = smaps_pte_range, 757 .hugetlb_entry = smaps_hugetlb_range, 758 .pte_hole = smaps_pte_hole, 759 .walk_lock = PGWALK_RDLOCK, 760 }; 761 762 /* 763 * Gather mem stats from @vma with the indicated beginning 764 * address @start, and keep them in @mss. 765 * 766 * Use vm_start of @vma as the beginning address if @start is 0. 767 */ 768 static void smap_gather_stats(struct vm_area_struct *vma, 769 struct mem_size_stats *mss, unsigned long start) 770 { 771 const struct mm_walk_ops *ops = &smaps_walk_ops; 772 773 /* Invalid start */ 774 if (start >= vma->vm_end) 775 return; 776 777 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 778 /* 779 * For shared or readonly shmem mappings we know that all 780 * swapped out pages belong to the shmem object, and we can 781 * obtain the swap value much more efficiently. For private 782 * writable mappings, we might have COW pages that are 783 * not affected by the parent swapped out pages of the shmem 784 * object, so we have to distinguish them during the page walk. 785 * Unless we know that the shmem object (or the part mapped by 786 * our VMA) has no swapped out pages at all. 787 */ 788 unsigned long shmem_swapped = shmem_swap_usage(vma); 789 790 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 791 !(vma->vm_flags & VM_WRITE))) { 792 mss->swap += shmem_swapped; 793 } else { 794 ops = &smaps_shmem_walk_ops; 795 } 796 } 797 798 /* mmap_lock is held in m_start */ 799 if (!start) 800 walk_page_vma(vma, ops, mss); 801 else 802 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 803 } 804 805 #define SEQ_PUT_DEC(str, val) \ 806 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 807 808 /* Show the contents common for smaps and smaps_rollup */ 809 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 810 bool rollup_mode) 811 { 812 SEQ_PUT_DEC("Rss: ", mss->resident); 813 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 814 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 815 if (rollup_mode) { 816 /* 817 * These are meaningful only for smaps_rollup, otherwise two of 818 * them are zero, and the other one is the same as Pss. 819 */ 820 SEQ_PUT_DEC(" kB\nPss_Anon: ", 821 mss->pss_anon >> PSS_SHIFT); 822 SEQ_PUT_DEC(" kB\nPss_File: ", 823 mss->pss_file >> PSS_SHIFT); 824 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 825 mss->pss_shmem >> PSS_SHIFT); 826 } 827 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 828 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 829 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 830 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 831 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 832 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 833 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm); 834 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 835 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 836 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 837 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 838 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 839 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 840 mss->private_hugetlb >> 10, 7); 841 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 842 SEQ_PUT_DEC(" kB\nSwapPss: ", 843 mss->swap_pss >> PSS_SHIFT); 844 SEQ_PUT_DEC(" kB\nLocked: ", 845 mss->pss_locked >> PSS_SHIFT); 846 seq_puts(m, " kB\n"); 847 } 848 849 static int show_smap(struct seq_file *m, void *v) 850 { 851 struct vm_area_struct *vma = v; 852 struct mem_size_stats mss; 853 854 memset(&mss, 0, sizeof(mss)); 855 856 smap_gather_stats(vma, &mss, 0); 857 858 show_map_vma(m, vma); 859 860 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 861 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 862 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 863 seq_puts(m, " kB\n"); 864 865 __show_smap(m, &mss, false); 866 867 seq_printf(m, "THPeligible: %8u\n", 868 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 869 870 if (arch_pkeys_enabled()) 871 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 872 show_smap_vma_flags(m, vma); 873 874 return 0; 875 } 876 877 static int show_smaps_rollup(struct seq_file *m, void *v) 878 { 879 struct proc_maps_private *priv = m->private; 880 struct mem_size_stats mss; 881 struct mm_struct *mm = priv->mm; 882 struct vm_area_struct *vma; 883 unsigned long vma_start = 0, last_vma_end = 0; 884 int ret = 0; 885 VMA_ITERATOR(vmi, mm, 0); 886 887 priv->task = get_proc_task(priv->inode); 888 if (!priv->task) 889 return -ESRCH; 890 891 if (!mm || !mmget_not_zero(mm)) { 892 ret = -ESRCH; 893 goto out_put_task; 894 } 895 896 memset(&mss, 0, sizeof(mss)); 897 898 ret = mmap_read_lock_killable(mm); 899 if (ret) 900 goto out_put_mm; 901 902 hold_task_mempolicy(priv); 903 vma = vma_next(&vmi); 904 905 if (unlikely(!vma)) 906 goto empty_set; 907 908 vma_start = vma->vm_start; 909 do { 910 smap_gather_stats(vma, &mss, 0); 911 last_vma_end = vma->vm_end; 912 913 /* 914 * Release mmap_lock temporarily if someone wants to 915 * access it for write request. 916 */ 917 if (mmap_lock_is_contended(mm)) { 918 vma_iter_invalidate(&vmi); 919 mmap_read_unlock(mm); 920 ret = mmap_read_lock_killable(mm); 921 if (ret) { 922 release_task_mempolicy(priv); 923 goto out_put_mm; 924 } 925 926 /* 927 * After dropping the lock, there are four cases to 928 * consider. See the following example for explanation. 929 * 930 * +------+------+-----------+ 931 * | VMA1 | VMA2 | VMA3 | 932 * +------+------+-----------+ 933 * | | | | 934 * 4k 8k 16k 400k 935 * 936 * Suppose we drop the lock after reading VMA2 due to 937 * contention, then we get: 938 * 939 * last_vma_end = 16k 940 * 941 * 1) VMA2 is freed, but VMA3 exists: 942 * 943 * vma_next(vmi) will return VMA3. 944 * In this case, just continue from VMA3. 945 * 946 * 2) VMA2 still exists: 947 * 948 * vma_next(vmi) will return VMA3. 949 * In this case, just continue from VMA3. 950 * 951 * 3) No more VMAs can be found: 952 * 953 * vma_next(vmi) will return NULL. 954 * No more things to do, just break. 955 * 956 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 957 * 958 * vma_next(vmi) will return VMA' whose range 959 * contains last_vma_end. 960 * Iterate VMA' from last_vma_end. 961 */ 962 vma = vma_next(&vmi); 963 /* Case 3 above */ 964 if (!vma) 965 break; 966 967 /* Case 1 and 2 above */ 968 if (vma->vm_start >= last_vma_end) 969 continue; 970 971 /* Case 4 above */ 972 if (vma->vm_end > last_vma_end) 973 smap_gather_stats(vma, &mss, last_vma_end); 974 } 975 } for_each_vma(vmi, vma); 976 977 empty_set: 978 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 979 seq_pad(m, ' '); 980 seq_puts(m, "[rollup]\n"); 981 982 __show_smap(m, &mss, true); 983 984 release_task_mempolicy(priv); 985 mmap_read_unlock(mm); 986 987 out_put_mm: 988 mmput(mm); 989 out_put_task: 990 put_task_struct(priv->task); 991 priv->task = NULL; 992 993 return ret; 994 } 995 #undef SEQ_PUT_DEC 996 997 static const struct seq_operations proc_pid_smaps_op = { 998 .start = m_start, 999 .next = m_next, 1000 .stop = m_stop, 1001 .show = show_smap 1002 }; 1003 1004 static int pid_smaps_open(struct inode *inode, struct file *file) 1005 { 1006 return do_maps_open(inode, file, &proc_pid_smaps_op); 1007 } 1008 1009 static int smaps_rollup_open(struct inode *inode, struct file *file) 1010 { 1011 int ret; 1012 struct proc_maps_private *priv; 1013 1014 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1015 if (!priv) 1016 return -ENOMEM; 1017 1018 ret = single_open(file, show_smaps_rollup, priv); 1019 if (ret) 1020 goto out_free; 1021 1022 priv->inode = inode; 1023 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1024 if (IS_ERR(priv->mm)) { 1025 ret = PTR_ERR(priv->mm); 1026 1027 single_release(inode, file); 1028 goto out_free; 1029 } 1030 1031 return 0; 1032 1033 out_free: 1034 kfree(priv); 1035 return ret; 1036 } 1037 1038 static int smaps_rollup_release(struct inode *inode, struct file *file) 1039 { 1040 struct seq_file *seq = file->private_data; 1041 struct proc_maps_private *priv = seq->private; 1042 1043 if (priv->mm) 1044 mmdrop(priv->mm); 1045 1046 kfree(priv); 1047 return single_release(inode, file); 1048 } 1049 1050 const struct file_operations proc_pid_smaps_operations = { 1051 .open = pid_smaps_open, 1052 .read = seq_read, 1053 .llseek = seq_lseek, 1054 .release = proc_map_release, 1055 }; 1056 1057 const struct file_operations proc_pid_smaps_rollup_operations = { 1058 .open = smaps_rollup_open, 1059 .read = seq_read, 1060 .llseek = seq_lseek, 1061 .release = smaps_rollup_release, 1062 }; 1063 1064 enum clear_refs_types { 1065 CLEAR_REFS_ALL = 1, 1066 CLEAR_REFS_ANON, 1067 CLEAR_REFS_MAPPED, 1068 CLEAR_REFS_SOFT_DIRTY, 1069 CLEAR_REFS_MM_HIWATER_RSS, 1070 CLEAR_REFS_LAST, 1071 }; 1072 1073 struct clear_refs_private { 1074 enum clear_refs_types type; 1075 }; 1076 1077 #ifdef CONFIG_MEM_SOFT_DIRTY 1078 1079 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1080 { 1081 struct page *page; 1082 1083 if (!pte_write(pte)) 1084 return false; 1085 if (!is_cow_mapping(vma->vm_flags)) 1086 return false; 1087 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1088 return false; 1089 page = vm_normal_page(vma, addr, pte); 1090 if (!page) 1091 return false; 1092 return page_maybe_dma_pinned(page); 1093 } 1094 1095 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1096 unsigned long addr, pte_t *pte) 1097 { 1098 /* 1099 * The soft-dirty tracker uses #PF-s to catch writes 1100 * to pages, so write-protect the pte as well. See the 1101 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1102 * of how soft-dirty works. 1103 */ 1104 pte_t ptent = ptep_get(pte); 1105 1106 if (pte_present(ptent)) { 1107 pte_t old_pte; 1108 1109 if (pte_is_pinned(vma, addr, ptent)) 1110 return; 1111 old_pte = ptep_modify_prot_start(vma, addr, pte); 1112 ptent = pte_wrprotect(old_pte); 1113 ptent = pte_clear_soft_dirty(ptent); 1114 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1115 } else if (is_swap_pte(ptent)) { 1116 ptent = pte_swp_clear_soft_dirty(ptent); 1117 set_pte_at(vma->vm_mm, addr, pte, ptent); 1118 } 1119 } 1120 #else 1121 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1122 unsigned long addr, pte_t *pte) 1123 { 1124 } 1125 #endif 1126 1127 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1128 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1129 unsigned long addr, pmd_t *pmdp) 1130 { 1131 pmd_t old, pmd = *pmdp; 1132 1133 if (pmd_present(pmd)) { 1134 /* See comment in change_huge_pmd() */ 1135 old = pmdp_invalidate(vma, addr, pmdp); 1136 if (pmd_dirty(old)) 1137 pmd = pmd_mkdirty(pmd); 1138 if (pmd_young(old)) 1139 pmd = pmd_mkyoung(pmd); 1140 1141 pmd = pmd_wrprotect(pmd); 1142 pmd = pmd_clear_soft_dirty(pmd); 1143 1144 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1145 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1146 pmd = pmd_swp_clear_soft_dirty(pmd); 1147 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1148 } 1149 } 1150 #else 1151 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1152 unsigned long addr, pmd_t *pmdp) 1153 { 1154 } 1155 #endif 1156 1157 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1158 unsigned long end, struct mm_walk *walk) 1159 { 1160 struct clear_refs_private *cp = walk->private; 1161 struct vm_area_struct *vma = walk->vma; 1162 pte_t *pte, ptent; 1163 spinlock_t *ptl; 1164 struct page *page; 1165 1166 ptl = pmd_trans_huge_lock(pmd, vma); 1167 if (ptl) { 1168 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1169 clear_soft_dirty_pmd(vma, addr, pmd); 1170 goto out; 1171 } 1172 1173 if (!pmd_present(*pmd)) 1174 goto out; 1175 1176 page = pmd_page(*pmd); 1177 1178 /* Clear accessed and referenced bits. */ 1179 pmdp_test_and_clear_young(vma, addr, pmd); 1180 test_and_clear_page_young(page); 1181 ClearPageReferenced(page); 1182 out: 1183 spin_unlock(ptl); 1184 return 0; 1185 } 1186 1187 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1188 if (!pte) { 1189 walk->action = ACTION_AGAIN; 1190 return 0; 1191 } 1192 for (; addr != end; pte++, addr += PAGE_SIZE) { 1193 ptent = ptep_get(pte); 1194 1195 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1196 clear_soft_dirty(vma, addr, pte); 1197 continue; 1198 } 1199 1200 if (!pte_present(ptent)) 1201 continue; 1202 1203 page = vm_normal_page(vma, addr, ptent); 1204 if (!page) 1205 continue; 1206 1207 /* Clear accessed and referenced bits. */ 1208 ptep_test_and_clear_young(vma, addr, pte); 1209 test_and_clear_page_young(page); 1210 ClearPageReferenced(page); 1211 } 1212 pte_unmap_unlock(pte - 1, ptl); 1213 cond_resched(); 1214 return 0; 1215 } 1216 1217 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1218 struct mm_walk *walk) 1219 { 1220 struct clear_refs_private *cp = walk->private; 1221 struct vm_area_struct *vma = walk->vma; 1222 1223 if (vma->vm_flags & VM_PFNMAP) 1224 return 1; 1225 1226 /* 1227 * Writing 1 to /proc/pid/clear_refs affects all pages. 1228 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1229 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1230 * Writing 4 to /proc/pid/clear_refs affects all pages. 1231 */ 1232 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1233 return 1; 1234 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1235 return 1; 1236 return 0; 1237 } 1238 1239 static const struct mm_walk_ops clear_refs_walk_ops = { 1240 .pmd_entry = clear_refs_pte_range, 1241 .test_walk = clear_refs_test_walk, 1242 .walk_lock = PGWALK_WRLOCK, 1243 }; 1244 1245 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1246 size_t count, loff_t *ppos) 1247 { 1248 struct task_struct *task; 1249 char buffer[PROC_NUMBUF]; 1250 struct mm_struct *mm; 1251 struct vm_area_struct *vma; 1252 enum clear_refs_types type; 1253 int itype; 1254 int rv; 1255 1256 memset(buffer, 0, sizeof(buffer)); 1257 if (count > sizeof(buffer) - 1) 1258 count = sizeof(buffer) - 1; 1259 if (copy_from_user(buffer, buf, count)) 1260 return -EFAULT; 1261 rv = kstrtoint(strstrip(buffer), 10, &itype); 1262 if (rv < 0) 1263 return rv; 1264 type = (enum clear_refs_types)itype; 1265 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1266 return -EINVAL; 1267 1268 task = get_proc_task(file_inode(file)); 1269 if (!task) 1270 return -ESRCH; 1271 mm = get_task_mm(task); 1272 if (mm) { 1273 VMA_ITERATOR(vmi, mm, 0); 1274 struct mmu_notifier_range range; 1275 struct clear_refs_private cp = { 1276 .type = type, 1277 }; 1278 1279 if (mmap_write_lock_killable(mm)) { 1280 count = -EINTR; 1281 goto out_mm; 1282 } 1283 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1284 /* 1285 * Writing 5 to /proc/pid/clear_refs resets the peak 1286 * resident set size to this mm's current rss value. 1287 */ 1288 reset_mm_hiwater_rss(mm); 1289 goto out_unlock; 1290 } 1291 1292 if (type == CLEAR_REFS_SOFT_DIRTY) { 1293 for_each_vma(vmi, vma) { 1294 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1295 continue; 1296 vm_flags_clear(vma, VM_SOFTDIRTY); 1297 vma_set_page_prot(vma); 1298 } 1299 1300 inc_tlb_flush_pending(mm); 1301 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1302 0, mm, 0, -1UL); 1303 mmu_notifier_invalidate_range_start(&range); 1304 } 1305 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1306 if (type == CLEAR_REFS_SOFT_DIRTY) { 1307 mmu_notifier_invalidate_range_end(&range); 1308 flush_tlb_mm(mm); 1309 dec_tlb_flush_pending(mm); 1310 } 1311 out_unlock: 1312 mmap_write_unlock(mm); 1313 out_mm: 1314 mmput(mm); 1315 } 1316 put_task_struct(task); 1317 1318 return count; 1319 } 1320 1321 const struct file_operations proc_clear_refs_operations = { 1322 .write = clear_refs_write, 1323 .llseek = noop_llseek, 1324 }; 1325 1326 typedef struct { 1327 u64 pme; 1328 } pagemap_entry_t; 1329 1330 struct pagemapread { 1331 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1332 pagemap_entry_t *buffer; 1333 bool show_pfn; 1334 }; 1335 1336 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1337 #define PAGEMAP_WALK_MASK (PMD_MASK) 1338 1339 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1340 #define PM_PFRAME_BITS 55 1341 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1342 #define PM_SOFT_DIRTY BIT_ULL(55) 1343 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1344 #define PM_UFFD_WP BIT_ULL(57) 1345 #define PM_FILE BIT_ULL(61) 1346 #define PM_SWAP BIT_ULL(62) 1347 #define PM_PRESENT BIT_ULL(63) 1348 1349 #define PM_END_OF_BUFFER 1 1350 1351 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1352 { 1353 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1354 } 1355 1356 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1357 struct pagemapread *pm) 1358 { 1359 pm->buffer[pm->pos++] = *pme; 1360 if (pm->pos >= pm->len) 1361 return PM_END_OF_BUFFER; 1362 return 0; 1363 } 1364 1365 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1366 __always_unused int depth, struct mm_walk *walk) 1367 { 1368 struct pagemapread *pm = walk->private; 1369 unsigned long addr = start; 1370 int err = 0; 1371 1372 while (addr < end) { 1373 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1374 pagemap_entry_t pme = make_pme(0, 0); 1375 /* End of address space hole, which we mark as non-present. */ 1376 unsigned long hole_end; 1377 1378 if (vma) 1379 hole_end = min(end, vma->vm_start); 1380 else 1381 hole_end = end; 1382 1383 for (; addr < hole_end; addr += PAGE_SIZE) { 1384 err = add_to_pagemap(addr, &pme, pm); 1385 if (err) 1386 goto out; 1387 } 1388 1389 if (!vma) 1390 break; 1391 1392 /* Addresses in the VMA. */ 1393 if (vma->vm_flags & VM_SOFTDIRTY) 1394 pme = make_pme(0, PM_SOFT_DIRTY); 1395 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1396 err = add_to_pagemap(addr, &pme, pm); 1397 if (err) 1398 goto out; 1399 } 1400 } 1401 out: 1402 return err; 1403 } 1404 1405 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1406 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1407 { 1408 u64 frame = 0, flags = 0; 1409 struct page *page = NULL; 1410 bool migration = false; 1411 1412 if (pte_present(pte)) { 1413 if (pm->show_pfn) 1414 frame = pte_pfn(pte); 1415 flags |= PM_PRESENT; 1416 page = vm_normal_page(vma, addr, pte); 1417 if (pte_soft_dirty(pte)) 1418 flags |= PM_SOFT_DIRTY; 1419 if (pte_uffd_wp(pte)) 1420 flags |= PM_UFFD_WP; 1421 } else if (is_swap_pte(pte)) { 1422 swp_entry_t entry; 1423 if (pte_swp_soft_dirty(pte)) 1424 flags |= PM_SOFT_DIRTY; 1425 if (pte_swp_uffd_wp(pte)) 1426 flags |= PM_UFFD_WP; 1427 entry = pte_to_swp_entry(pte); 1428 if (pm->show_pfn) { 1429 pgoff_t offset; 1430 /* 1431 * For PFN swap offsets, keeping the offset field 1432 * to be PFN only to be compatible with old smaps. 1433 */ 1434 if (is_pfn_swap_entry(entry)) 1435 offset = swp_offset_pfn(entry); 1436 else 1437 offset = swp_offset(entry); 1438 frame = swp_type(entry) | 1439 (offset << MAX_SWAPFILES_SHIFT); 1440 } 1441 flags |= PM_SWAP; 1442 migration = is_migration_entry(entry); 1443 if (is_pfn_swap_entry(entry)) 1444 page = pfn_swap_entry_to_page(entry); 1445 if (pte_marker_entry_uffd_wp(entry)) 1446 flags |= PM_UFFD_WP; 1447 } 1448 1449 if (page && !PageAnon(page)) 1450 flags |= PM_FILE; 1451 if (page && !migration && page_mapcount(page) == 1) 1452 flags |= PM_MMAP_EXCLUSIVE; 1453 if (vma->vm_flags & VM_SOFTDIRTY) 1454 flags |= PM_SOFT_DIRTY; 1455 1456 return make_pme(frame, flags); 1457 } 1458 1459 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1460 struct mm_walk *walk) 1461 { 1462 struct vm_area_struct *vma = walk->vma; 1463 struct pagemapread *pm = walk->private; 1464 spinlock_t *ptl; 1465 pte_t *pte, *orig_pte; 1466 int err = 0; 1467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1468 bool migration = false; 1469 1470 ptl = pmd_trans_huge_lock(pmdp, vma); 1471 if (ptl) { 1472 u64 flags = 0, frame = 0; 1473 pmd_t pmd = *pmdp; 1474 struct page *page = NULL; 1475 1476 if (vma->vm_flags & VM_SOFTDIRTY) 1477 flags |= PM_SOFT_DIRTY; 1478 1479 if (pmd_present(pmd)) { 1480 page = pmd_page(pmd); 1481 1482 flags |= PM_PRESENT; 1483 if (pmd_soft_dirty(pmd)) 1484 flags |= PM_SOFT_DIRTY; 1485 if (pmd_uffd_wp(pmd)) 1486 flags |= PM_UFFD_WP; 1487 if (pm->show_pfn) 1488 frame = pmd_pfn(pmd) + 1489 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1490 } 1491 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1492 else if (is_swap_pmd(pmd)) { 1493 swp_entry_t entry = pmd_to_swp_entry(pmd); 1494 unsigned long offset; 1495 1496 if (pm->show_pfn) { 1497 if (is_pfn_swap_entry(entry)) 1498 offset = swp_offset_pfn(entry); 1499 else 1500 offset = swp_offset(entry); 1501 offset = offset + 1502 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1503 frame = swp_type(entry) | 1504 (offset << MAX_SWAPFILES_SHIFT); 1505 } 1506 flags |= PM_SWAP; 1507 if (pmd_swp_soft_dirty(pmd)) 1508 flags |= PM_SOFT_DIRTY; 1509 if (pmd_swp_uffd_wp(pmd)) 1510 flags |= PM_UFFD_WP; 1511 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1512 migration = is_migration_entry(entry); 1513 page = pfn_swap_entry_to_page(entry); 1514 } 1515 #endif 1516 1517 if (page && !migration && page_mapcount(page) == 1) 1518 flags |= PM_MMAP_EXCLUSIVE; 1519 1520 for (; addr != end; addr += PAGE_SIZE) { 1521 pagemap_entry_t pme = make_pme(frame, flags); 1522 1523 err = add_to_pagemap(addr, &pme, pm); 1524 if (err) 1525 break; 1526 if (pm->show_pfn) { 1527 if (flags & PM_PRESENT) 1528 frame++; 1529 else if (flags & PM_SWAP) 1530 frame += (1 << MAX_SWAPFILES_SHIFT); 1531 } 1532 } 1533 spin_unlock(ptl); 1534 return err; 1535 } 1536 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1537 1538 /* 1539 * We can assume that @vma always points to a valid one and @end never 1540 * goes beyond vma->vm_end. 1541 */ 1542 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1543 if (!pte) { 1544 walk->action = ACTION_AGAIN; 1545 return err; 1546 } 1547 for (; addr < end; pte++, addr += PAGE_SIZE) { 1548 pagemap_entry_t pme; 1549 1550 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 1551 err = add_to_pagemap(addr, &pme, pm); 1552 if (err) 1553 break; 1554 } 1555 pte_unmap_unlock(orig_pte, ptl); 1556 1557 cond_resched(); 1558 1559 return err; 1560 } 1561 1562 #ifdef CONFIG_HUGETLB_PAGE 1563 /* This function walks within one hugetlb entry in the single call */ 1564 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1565 unsigned long addr, unsigned long end, 1566 struct mm_walk *walk) 1567 { 1568 struct pagemapread *pm = walk->private; 1569 struct vm_area_struct *vma = walk->vma; 1570 u64 flags = 0, frame = 0; 1571 int err = 0; 1572 pte_t pte; 1573 1574 if (vma->vm_flags & VM_SOFTDIRTY) 1575 flags |= PM_SOFT_DIRTY; 1576 1577 pte = huge_ptep_get(ptep); 1578 if (pte_present(pte)) { 1579 struct page *page = pte_page(pte); 1580 1581 if (!PageAnon(page)) 1582 flags |= PM_FILE; 1583 1584 if (page_mapcount(page) == 1) 1585 flags |= PM_MMAP_EXCLUSIVE; 1586 1587 if (huge_pte_uffd_wp(pte)) 1588 flags |= PM_UFFD_WP; 1589 1590 flags |= PM_PRESENT; 1591 if (pm->show_pfn) 1592 frame = pte_pfn(pte) + 1593 ((addr & ~hmask) >> PAGE_SHIFT); 1594 } else if (pte_swp_uffd_wp_any(pte)) { 1595 flags |= PM_UFFD_WP; 1596 } 1597 1598 for (; addr != end; addr += PAGE_SIZE) { 1599 pagemap_entry_t pme = make_pme(frame, flags); 1600 1601 err = add_to_pagemap(addr, &pme, pm); 1602 if (err) 1603 return err; 1604 if (pm->show_pfn && (flags & PM_PRESENT)) 1605 frame++; 1606 } 1607 1608 cond_resched(); 1609 1610 return err; 1611 } 1612 #else 1613 #define pagemap_hugetlb_range NULL 1614 #endif /* HUGETLB_PAGE */ 1615 1616 static const struct mm_walk_ops pagemap_ops = { 1617 .pmd_entry = pagemap_pmd_range, 1618 .pte_hole = pagemap_pte_hole, 1619 .hugetlb_entry = pagemap_hugetlb_range, 1620 .walk_lock = PGWALK_RDLOCK, 1621 }; 1622 1623 /* 1624 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1625 * 1626 * For each page in the address space, this file contains one 64-bit entry 1627 * consisting of the following: 1628 * 1629 * Bits 0-54 page frame number (PFN) if present 1630 * Bits 0-4 swap type if swapped 1631 * Bits 5-54 swap offset if swapped 1632 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1633 * Bit 56 page exclusively mapped 1634 * Bit 57 pte is uffd-wp write-protected 1635 * Bits 58-60 zero 1636 * Bit 61 page is file-page or shared-anon 1637 * Bit 62 page swapped 1638 * Bit 63 page present 1639 * 1640 * If the page is not present but in swap, then the PFN contains an 1641 * encoding of the swap file number and the page's offset into the 1642 * swap. Unmapped pages return a null PFN. This allows determining 1643 * precisely which pages are mapped (or in swap) and comparing mapped 1644 * pages between processes. 1645 * 1646 * Efficient users of this interface will use /proc/pid/maps to 1647 * determine which areas of memory are actually mapped and llseek to 1648 * skip over unmapped regions. 1649 */ 1650 static ssize_t pagemap_read(struct file *file, char __user *buf, 1651 size_t count, loff_t *ppos) 1652 { 1653 struct mm_struct *mm = file->private_data; 1654 struct pagemapread pm; 1655 unsigned long src; 1656 unsigned long svpfn; 1657 unsigned long start_vaddr; 1658 unsigned long end_vaddr; 1659 int ret = 0, copied = 0; 1660 1661 if (!mm || !mmget_not_zero(mm)) 1662 goto out; 1663 1664 ret = -EINVAL; 1665 /* file position must be aligned */ 1666 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1667 goto out_mm; 1668 1669 ret = 0; 1670 if (!count) 1671 goto out_mm; 1672 1673 /* do not disclose physical addresses: attack vector */ 1674 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1675 1676 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1677 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1678 ret = -ENOMEM; 1679 if (!pm.buffer) 1680 goto out_mm; 1681 1682 src = *ppos; 1683 svpfn = src / PM_ENTRY_BYTES; 1684 end_vaddr = mm->task_size; 1685 1686 /* watch out for wraparound */ 1687 start_vaddr = end_vaddr; 1688 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 1689 unsigned long end; 1690 1691 ret = mmap_read_lock_killable(mm); 1692 if (ret) 1693 goto out_free; 1694 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 1695 mmap_read_unlock(mm); 1696 1697 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 1698 if (end >= start_vaddr && end < mm->task_size) 1699 end_vaddr = end; 1700 } 1701 1702 /* Ensure the address is inside the task */ 1703 if (start_vaddr > mm->task_size) 1704 start_vaddr = end_vaddr; 1705 1706 ret = 0; 1707 while (count && (start_vaddr < end_vaddr)) { 1708 int len; 1709 unsigned long end; 1710 1711 pm.pos = 0; 1712 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1713 /* overflow ? */ 1714 if (end < start_vaddr || end > end_vaddr) 1715 end = end_vaddr; 1716 ret = mmap_read_lock_killable(mm); 1717 if (ret) 1718 goto out_free; 1719 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1720 mmap_read_unlock(mm); 1721 start_vaddr = end; 1722 1723 len = min(count, PM_ENTRY_BYTES * pm.pos); 1724 if (copy_to_user(buf, pm.buffer, len)) { 1725 ret = -EFAULT; 1726 goto out_free; 1727 } 1728 copied += len; 1729 buf += len; 1730 count -= len; 1731 } 1732 *ppos += copied; 1733 if (!ret || ret == PM_END_OF_BUFFER) 1734 ret = copied; 1735 1736 out_free: 1737 kfree(pm.buffer); 1738 out_mm: 1739 mmput(mm); 1740 out: 1741 return ret; 1742 } 1743 1744 static int pagemap_open(struct inode *inode, struct file *file) 1745 { 1746 struct mm_struct *mm; 1747 1748 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1749 if (IS_ERR(mm)) 1750 return PTR_ERR(mm); 1751 file->private_data = mm; 1752 return 0; 1753 } 1754 1755 static int pagemap_release(struct inode *inode, struct file *file) 1756 { 1757 struct mm_struct *mm = file->private_data; 1758 1759 if (mm) 1760 mmdrop(mm); 1761 return 0; 1762 } 1763 1764 const struct file_operations proc_pagemap_operations = { 1765 .llseek = mem_lseek, /* borrow this */ 1766 .read = pagemap_read, 1767 .open = pagemap_open, 1768 .release = pagemap_release, 1769 }; 1770 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1771 1772 #ifdef CONFIG_NUMA 1773 1774 struct numa_maps { 1775 unsigned long pages; 1776 unsigned long anon; 1777 unsigned long active; 1778 unsigned long writeback; 1779 unsigned long mapcount_max; 1780 unsigned long dirty; 1781 unsigned long swapcache; 1782 unsigned long node[MAX_NUMNODES]; 1783 }; 1784 1785 struct numa_maps_private { 1786 struct proc_maps_private proc_maps; 1787 struct numa_maps md; 1788 }; 1789 1790 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1791 unsigned long nr_pages) 1792 { 1793 int count = page_mapcount(page); 1794 1795 md->pages += nr_pages; 1796 if (pte_dirty || PageDirty(page)) 1797 md->dirty += nr_pages; 1798 1799 if (PageSwapCache(page)) 1800 md->swapcache += nr_pages; 1801 1802 if (PageActive(page) || PageUnevictable(page)) 1803 md->active += nr_pages; 1804 1805 if (PageWriteback(page)) 1806 md->writeback += nr_pages; 1807 1808 if (PageAnon(page)) 1809 md->anon += nr_pages; 1810 1811 if (count > md->mapcount_max) 1812 md->mapcount_max = count; 1813 1814 md->node[page_to_nid(page)] += nr_pages; 1815 } 1816 1817 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1818 unsigned long addr) 1819 { 1820 struct page *page; 1821 int nid; 1822 1823 if (!pte_present(pte)) 1824 return NULL; 1825 1826 page = vm_normal_page(vma, addr, pte); 1827 if (!page || is_zone_device_page(page)) 1828 return NULL; 1829 1830 if (PageReserved(page)) 1831 return NULL; 1832 1833 nid = page_to_nid(page); 1834 if (!node_isset(nid, node_states[N_MEMORY])) 1835 return NULL; 1836 1837 return page; 1838 } 1839 1840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1841 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1842 struct vm_area_struct *vma, 1843 unsigned long addr) 1844 { 1845 struct page *page; 1846 int nid; 1847 1848 if (!pmd_present(pmd)) 1849 return NULL; 1850 1851 page = vm_normal_page_pmd(vma, addr, pmd); 1852 if (!page) 1853 return NULL; 1854 1855 if (PageReserved(page)) 1856 return NULL; 1857 1858 nid = page_to_nid(page); 1859 if (!node_isset(nid, node_states[N_MEMORY])) 1860 return NULL; 1861 1862 return page; 1863 } 1864 #endif 1865 1866 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1867 unsigned long end, struct mm_walk *walk) 1868 { 1869 struct numa_maps *md = walk->private; 1870 struct vm_area_struct *vma = walk->vma; 1871 spinlock_t *ptl; 1872 pte_t *orig_pte; 1873 pte_t *pte; 1874 1875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1876 ptl = pmd_trans_huge_lock(pmd, vma); 1877 if (ptl) { 1878 struct page *page; 1879 1880 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1881 if (page) 1882 gather_stats(page, md, pmd_dirty(*pmd), 1883 HPAGE_PMD_SIZE/PAGE_SIZE); 1884 spin_unlock(ptl); 1885 return 0; 1886 } 1887 #endif 1888 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1889 if (!pte) { 1890 walk->action = ACTION_AGAIN; 1891 return 0; 1892 } 1893 do { 1894 pte_t ptent = ptep_get(pte); 1895 struct page *page = can_gather_numa_stats(ptent, vma, addr); 1896 if (!page) 1897 continue; 1898 gather_stats(page, md, pte_dirty(ptent), 1); 1899 1900 } while (pte++, addr += PAGE_SIZE, addr != end); 1901 pte_unmap_unlock(orig_pte, ptl); 1902 cond_resched(); 1903 return 0; 1904 } 1905 #ifdef CONFIG_HUGETLB_PAGE 1906 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1907 unsigned long addr, unsigned long end, struct mm_walk *walk) 1908 { 1909 pte_t huge_pte = huge_ptep_get(pte); 1910 struct numa_maps *md; 1911 struct page *page; 1912 1913 if (!pte_present(huge_pte)) 1914 return 0; 1915 1916 page = pte_page(huge_pte); 1917 1918 md = walk->private; 1919 gather_stats(page, md, pte_dirty(huge_pte), 1); 1920 return 0; 1921 } 1922 1923 #else 1924 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1925 unsigned long addr, unsigned long end, struct mm_walk *walk) 1926 { 1927 return 0; 1928 } 1929 #endif 1930 1931 static const struct mm_walk_ops show_numa_ops = { 1932 .hugetlb_entry = gather_hugetlb_stats, 1933 .pmd_entry = gather_pte_stats, 1934 .walk_lock = PGWALK_RDLOCK, 1935 }; 1936 1937 /* 1938 * Display pages allocated per node and memory policy via /proc. 1939 */ 1940 static int show_numa_map(struct seq_file *m, void *v) 1941 { 1942 struct numa_maps_private *numa_priv = m->private; 1943 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1944 struct vm_area_struct *vma = v; 1945 struct numa_maps *md = &numa_priv->md; 1946 struct file *file = vma->vm_file; 1947 struct mm_struct *mm = vma->vm_mm; 1948 struct mempolicy *pol; 1949 char buffer[64]; 1950 int nid; 1951 1952 if (!mm) 1953 return 0; 1954 1955 /* Ensure we start with an empty set of numa_maps statistics. */ 1956 memset(md, 0, sizeof(*md)); 1957 1958 pol = __get_vma_policy(vma, vma->vm_start); 1959 if (pol) { 1960 mpol_to_str(buffer, sizeof(buffer), pol); 1961 mpol_cond_put(pol); 1962 } else { 1963 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1964 } 1965 1966 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1967 1968 if (file) { 1969 seq_puts(m, " file="); 1970 seq_file_path(m, file, "\n\t= "); 1971 } else if (vma_is_initial_heap(vma)) { 1972 seq_puts(m, " heap"); 1973 } else if (vma_is_initial_stack(vma)) { 1974 seq_puts(m, " stack"); 1975 } 1976 1977 if (is_vm_hugetlb_page(vma)) 1978 seq_puts(m, " huge"); 1979 1980 /* mmap_lock is held by m_start */ 1981 walk_page_vma(vma, &show_numa_ops, md); 1982 1983 if (!md->pages) 1984 goto out; 1985 1986 if (md->anon) 1987 seq_printf(m, " anon=%lu", md->anon); 1988 1989 if (md->dirty) 1990 seq_printf(m, " dirty=%lu", md->dirty); 1991 1992 if (md->pages != md->anon && md->pages != md->dirty) 1993 seq_printf(m, " mapped=%lu", md->pages); 1994 1995 if (md->mapcount_max > 1) 1996 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1997 1998 if (md->swapcache) 1999 seq_printf(m, " swapcache=%lu", md->swapcache); 2000 2001 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2002 seq_printf(m, " active=%lu", md->active); 2003 2004 if (md->writeback) 2005 seq_printf(m, " writeback=%lu", md->writeback); 2006 2007 for_each_node_state(nid, N_MEMORY) 2008 if (md->node[nid]) 2009 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 2010 2011 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 2012 out: 2013 seq_putc(m, '\n'); 2014 return 0; 2015 } 2016 2017 static const struct seq_operations proc_pid_numa_maps_op = { 2018 .start = m_start, 2019 .next = m_next, 2020 .stop = m_stop, 2021 .show = show_numa_map, 2022 }; 2023 2024 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2025 { 2026 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2027 sizeof(struct numa_maps_private)); 2028 } 2029 2030 const struct file_operations proc_pid_numa_maps_operations = { 2031 .open = pid_numa_maps_open, 2032 .read = seq_read, 2033 .llseek = seq_lseek, 2034 .release = proc_map_release, 2035 }; 2036 2037 #endif /* CONFIG_NUMA */ 2038