1 #include <linux/mm.h> 2 #include <linux/hugetlb.h> 3 #include <linux/mount.h> 4 #include <linux/seq_file.h> 5 #include <linux/highmem.h> 6 #include <linux/ptrace.h> 7 #include <linux/pagemap.h> 8 #include <linux/mempolicy.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 12 #include <asm/elf.h> 13 #include <asm/uaccess.h> 14 #include <asm/tlbflush.h> 15 #include "internal.h" 16 17 void task_mem(struct seq_file *m, struct mm_struct *mm) 18 { 19 unsigned long data, text, lib; 20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 21 22 /* 23 * Note: to minimize their overhead, mm maintains hiwater_vm and 24 * hiwater_rss only when about to *lower* total_vm or rss. Any 25 * collector of these hiwater stats must therefore get total_vm 26 * and rss too, which will usually be the higher. Barriers? not 27 * worth the effort, such snapshots can always be inconsistent. 28 */ 29 hiwater_vm = total_vm = mm->total_vm; 30 if (hiwater_vm < mm->hiwater_vm) 31 hiwater_vm = mm->hiwater_vm; 32 hiwater_rss = total_rss = get_mm_rss(mm); 33 if (hiwater_rss < mm->hiwater_rss) 34 hiwater_rss = mm->hiwater_rss; 35 36 data = mm->total_vm - mm->shared_vm - mm->stack_vm; 37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 39 seq_printf(m, 40 "VmPeak:\t%8lu kB\n" 41 "VmSize:\t%8lu kB\n" 42 "VmLck:\t%8lu kB\n" 43 "VmHWM:\t%8lu kB\n" 44 "VmRSS:\t%8lu kB\n" 45 "VmData:\t%8lu kB\n" 46 "VmStk:\t%8lu kB\n" 47 "VmExe:\t%8lu kB\n" 48 "VmLib:\t%8lu kB\n" 49 "VmPTE:\t%8lu kB\n", 50 hiwater_vm << (PAGE_SHIFT-10), 51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), 52 mm->locked_vm << (PAGE_SHIFT-10), 53 hiwater_rss << (PAGE_SHIFT-10), 54 total_rss << (PAGE_SHIFT-10), 55 data << (PAGE_SHIFT-10), 56 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10); 58 } 59 60 unsigned long task_vsize(struct mm_struct *mm) 61 { 62 return PAGE_SIZE * mm->total_vm; 63 } 64 65 int task_statm(struct mm_struct *mm, int *shared, int *text, 66 int *data, int *resident) 67 { 68 *shared = get_mm_counter(mm, file_rss); 69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 70 >> PAGE_SHIFT; 71 *data = mm->total_vm - mm->shared_vm; 72 *resident = *shared + get_mm_counter(mm, anon_rss); 73 return mm->total_vm; 74 } 75 76 static void pad_len_spaces(struct seq_file *m, int len) 77 { 78 len = 25 + sizeof(void*) * 6 - len; 79 if (len < 1) 80 len = 1; 81 seq_printf(m, "%*c", len, ' '); 82 } 83 84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) 85 { 86 if (vma && vma != priv->tail_vma) { 87 struct mm_struct *mm = vma->vm_mm; 88 up_read(&mm->mmap_sem); 89 mmput(mm); 90 } 91 } 92 93 static void *m_start(struct seq_file *m, loff_t *pos) 94 { 95 struct proc_maps_private *priv = m->private; 96 unsigned long last_addr = m->version; 97 struct mm_struct *mm; 98 struct vm_area_struct *vma, *tail_vma = NULL; 99 loff_t l = *pos; 100 101 /* Clear the per syscall fields in priv */ 102 priv->task = NULL; 103 priv->tail_vma = NULL; 104 105 /* 106 * We remember last_addr rather than next_addr to hit with 107 * mmap_cache most of the time. We have zero last_addr at 108 * the beginning and also after lseek. We will have -1 last_addr 109 * after the end of the vmas. 110 */ 111 112 if (last_addr == -1UL) 113 return NULL; 114 115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID); 116 if (!priv->task) 117 return NULL; 118 119 mm = mm_for_maps(priv->task); 120 if (!mm) 121 return NULL; 122 123 tail_vma = get_gate_vma(priv->task); 124 priv->tail_vma = tail_vma; 125 126 /* Start with last addr hint */ 127 vma = find_vma(mm, last_addr); 128 if (last_addr && vma) { 129 vma = vma->vm_next; 130 goto out; 131 } 132 133 /* 134 * Check the vma index is within the range and do 135 * sequential scan until m_index. 136 */ 137 vma = NULL; 138 if ((unsigned long)l < mm->map_count) { 139 vma = mm->mmap; 140 while (l-- && vma) 141 vma = vma->vm_next; 142 goto out; 143 } 144 145 if (l != mm->map_count) 146 tail_vma = NULL; /* After gate vma */ 147 148 out: 149 if (vma) 150 return vma; 151 152 /* End of vmas has been reached */ 153 m->version = (tail_vma != NULL)? 0: -1UL; 154 up_read(&mm->mmap_sem); 155 mmput(mm); 156 return tail_vma; 157 } 158 159 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 160 { 161 struct proc_maps_private *priv = m->private; 162 struct vm_area_struct *vma = v; 163 struct vm_area_struct *tail_vma = priv->tail_vma; 164 165 (*pos)++; 166 if (vma && (vma != tail_vma) && vma->vm_next) 167 return vma->vm_next; 168 vma_stop(priv, vma); 169 return (vma != tail_vma)? tail_vma: NULL; 170 } 171 172 static void m_stop(struct seq_file *m, void *v) 173 { 174 struct proc_maps_private *priv = m->private; 175 struct vm_area_struct *vma = v; 176 177 vma_stop(priv, vma); 178 if (priv->task) 179 put_task_struct(priv->task); 180 } 181 182 static int do_maps_open(struct inode *inode, struct file *file, 183 const struct seq_operations *ops) 184 { 185 struct proc_maps_private *priv; 186 int ret = -ENOMEM; 187 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 188 if (priv) { 189 priv->pid = proc_pid(inode); 190 ret = seq_open(file, ops); 191 if (!ret) { 192 struct seq_file *m = file->private_data; 193 m->private = priv; 194 } else { 195 kfree(priv); 196 } 197 } 198 return ret; 199 } 200 201 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 202 { 203 struct mm_struct *mm = vma->vm_mm; 204 struct file *file = vma->vm_file; 205 int flags = vma->vm_flags; 206 unsigned long ino = 0; 207 unsigned long long pgoff = 0; 208 dev_t dev = 0; 209 int len; 210 211 if (file) { 212 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 213 dev = inode->i_sb->s_dev; 214 ino = inode->i_ino; 215 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 216 } 217 218 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", 219 vma->vm_start, 220 vma->vm_end, 221 flags & VM_READ ? 'r' : '-', 222 flags & VM_WRITE ? 'w' : '-', 223 flags & VM_EXEC ? 'x' : '-', 224 flags & VM_MAYSHARE ? 's' : 'p', 225 pgoff, 226 MAJOR(dev), MINOR(dev), ino, &len); 227 228 /* 229 * Print the dentry name for named mappings, and a 230 * special [heap] marker for the heap: 231 */ 232 if (file) { 233 pad_len_spaces(m, len); 234 seq_path(m, &file->f_path, "\n"); 235 } else { 236 const char *name = arch_vma_name(vma); 237 if (!name) { 238 if (mm) { 239 if (vma->vm_start <= mm->start_brk && 240 vma->vm_end >= mm->brk) { 241 name = "[heap]"; 242 } else if (vma->vm_start <= mm->start_stack && 243 vma->vm_end >= mm->start_stack) { 244 name = "[stack]"; 245 } 246 } else { 247 name = "[vdso]"; 248 } 249 } 250 if (name) { 251 pad_len_spaces(m, len); 252 seq_puts(m, name); 253 } 254 } 255 seq_putc(m, '\n'); 256 } 257 258 static int show_map(struct seq_file *m, void *v) 259 { 260 struct vm_area_struct *vma = v; 261 struct proc_maps_private *priv = m->private; 262 struct task_struct *task = priv->task; 263 264 show_map_vma(m, vma); 265 266 if (m->count < m->size) /* vma is copied successfully */ 267 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; 268 return 0; 269 } 270 271 static const struct seq_operations proc_pid_maps_op = { 272 .start = m_start, 273 .next = m_next, 274 .stop = m_stop, 275 .show = show_map 276 }; 277 278 static int maps_open(struct inode *inode, struct file *file) 279 { 280 return do_maps_open(inode, file, &proc_pid_maps_op); 281 } 282 283 const struct file_operations proc_maps_operations = { 284 .open = maps_open, 285 .read = seq_read, 286 .llseek = seq_lseek, 287 .release = seq_release_private, 288 }; 289 290 /* 291 * Proportional Set Size(PSS): my share of RSS. 292 * 293 * PSS of a process is the count of pages it has in memory, where each 294 * page is divided by the number of processes sharing it. So if a 295 * process has 1000 pages all to itself, and 1000 shared with one other 296 * process, its PSS will be 1500. 297 * 298 * To keep (accumulated) division errors low, we adopt a 64bit 299 * fixed-point pss counter to minimize division errors. So (pss >> 300 * PSS_SHIFT) would be the real byte count. 301 * 302 * A shift of 12 before division means (assuming 4K page size): 303 * - 1M 3-user-pages add up to 8KB errors; 304 * - supports mapcount up to 2^24, or 16M; 305 * - supports PSS up to 2^52 bytes, or 4PB. 306 */ 307 #define PSS_SHIFT 12 308 309 #ifdef CONFIG_PROC_PAGE_MONITOR 310 struct mem_size_stats { 311 struct vm_area_struct *vma; 312 unsigned long resident; 313 unsigned long shared_clean; 314 unsigned long shared_dirty; 315 unsigned long private_clean; 316 unsigned long private_dirty; 317 unsigned long referenced; 318 unsigned long swap; 319 u64 pss; 320 }; 321 322 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 323 struct mm_walk *walk) 324 { 325 struct mem_size_stats *mss = walk->private; 326 struct vm_area_struct *vma = mss->vma; 327 pte_t *pte, ptent; 328 spinlock_t *ptl; 329 struct page *page; 330 int mapcount; 331 332 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 333 for (; addr != end; pte++, addr += PAGE_SIZE) { 334 ptent = *pte; 335 336 if (is_swap_pte(ptent)) { 337 mss->swap += PAGE_SIZE; 338 continue; 339 } 340 341 if (!pte_present(ptent)) 342 continue; 343 344 mss->resident += PAGE_SIZE; 345 346 page = vm_normal_page(vma, addr, ptent); 347 if (!page) 348 continue; 349 350 /* Accumulate the size in pages that have been accessed. */ 351 if (pte_young(ptent) || PageReferenced(page)) 352 mss->referenced += PAGE_SIZE; 353 mapcount = page_mapcount(page); 354 if (mapcount >= 2) { 355 if (pte_dirty(ptent)) 356 mss->shared_dirty += PAGE_SIZE; 357 else 358 mss->shared_clean += PAGE_SIZE; 359 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 360 } else { 361 if (pte_dirty(ptent)) 362 mss->private_dirty += PAGE_SIZE; 363 else 364 mss->private_clean += PAGE_SIZE; 365 mss->pss += (PAGE_SIZE << PSS_SHIFT); 366 } 367 } 368 pte_unmap_unlock(pte - 1, ptl); 369 cond_resched(); 370 return 0; 371 } 372 373 static int show_smap(struct seq_file *m, void *v) 374 { 375 struct proc_maps_private *priv = m->private; 376 struct task_struct *task = priv->task; 377 struct vm_area_struct *vma = v; 378 struct mem_size_stats mss; 379 struct mm_walk smaps_walk = { 380 .pmd_entry = smaps_pte_range, 381 .mm = vma->vm_mm, 382 .private = &mss, 383 }; 384 385 memset(&mss, 0, sizeof mss); 386 mss.vma = vma; 387 if (vma->vm_mm && !is_vm_hugetlb_page(vma)) 388 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); 389 390 show_map_vma(m, vma); 391 392 seq_printf(m, 393 "Size: %8lu kB\n" 394 "Rss: %8lu kB\n" 395 "Pss: %8lu kB\n" 396 "Shared_Clean: %8lu kB\n" 397 "Shared_Dirty: %8lu kB\n" 398 "Private_Clean: %8lu kB\n" 399 "Private_Dirty: %8lu kB\n" 400 "Referenced: %8lu kB\n" 401 "Swap: %8lu kB\n" 402 "KernelPageSize: %8lu kB\n" 403 "MMUPageSize: %8lu kB\n", 404 (vma->vm_end - vma->vm_start) >> 10, 405 mss.resident >> 10, 406 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 407 mss.shared_clean >> 10, 408 mss.shared_dirty >> 10, 409 mss.private_clean >> 10, 410 mss.private_dirty >> 10, 411 mss.referenced >> 10, 412 mss.swap >> 10, 413 vma_kernel_pagesize(vma) >> 10, 414 vma_mmu_pagesize(vma) >> 10); 415 416 if (m->count < m->size) /* vma is copied successfully */ 417 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0; 418 return 0; 419 } 420 421 static const struct seq_operations proc_pid_smaps_op = { 422 .start = m_start, 423 .next = m_next, 424 .stop = m_stop, 425 .show = show_smap 426 }; 427 428 static int smaps_open(struct inode *inode, struct file *file) 429 { 430 return do_maps_open(inode, file, &proc_pid_smaps_op); 431 } 432 433 const struct file_operations proc_smaps_operations = { 434 .open = smaps_open, 435 .read = seq_read, 436 .llseek = seq_lseek, 437 .release = seq_release_private, 438 }; 439 440 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 441 unsigned long end, struct mm_walk *walk) 442 { 443 struct vm_area_struct *vma = walk->private; 444 pte_t *pte, ptent; 445 spinlock_t *ptl; 446 struct page *page; 447 448 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 449 for (; addr != end; pte++, addr += PAGE_SIZE) { 450 ptent = *pte; 451 if (!pte_present(ptent)) 452 continue; 453 454 page = vm_normal_page(vma, addr, ptent); 455 if (!page) 456 continue; 457 458 /* Clear accessed and referenced bits. */ 459 ptep_test_and_clear_young(vma, addr, pte); 460 ClearPageReferenced(page); 461 } 462 pte_unmap_unlock(pte - 1, ptl); 463 cond_resched(); 464 return 0; 465 } 466 467 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 468 size_t count, loff_t *ppos) 469 { 470 struct task_struct *task; 471 char buffer[PROC_NUMBUF], *end; 472 struct mm_struct *mm; 473 struct vm_area_struct *vma; 474 475 memset(buffer, 0, sizeof(buffer)); 476 if (count > sizeof(buffer) - 1) 477 count = sizeof(buffer) - 1; 478 if (copy_from_user(buffer, buf, count)) 479 return -EFAULT; 480 if (!simple_strtol(buffer, &end, 0)) 481 return -EINVAL; 482 if (*end == '\n') 483 end++; 484 task = get_proc_task(file->f_path.dentry->d_inode); 485 if (!task) 486 return -ESRCH; 487 mm = get_task_mm(task); 488 if (mm) { 489 struct mm_walk clear_refs_walk = { 490 .pmd_entry = clear_refs_pte_range, 491 .mm = mm, 492 }; 493 down_read(&mm->mmap_sem); 494 for (vma = mm->mmap; vma; vma = vma->vm_next) { 495 clear_refs_walk.private = vma; 496 if (!is_vm_hugetlb_page(vma)) 497 walk_page_range(vma->vm_start, vma->vm_end, 498 &clear_refs_walk); 499 } 500 flush_tlb_mm(mm); 501 up_read(&mm->mmap_sem); 502 mmput(mm); 503 } 504 put_task_struct(task); 505 if (end - buffer == 0) 506 return -EIO; 507 return end - buffer; 508 } 509 510 const struct file_operations proc_clear_refs_operations = { 511 .write = clear_refs_write, 512 }; 513 514 struct pagemapread { 515 u64 __user *out, *end; 516 }; 517 518 #define PM_ENTRY_BYTES sizeof(u64) 519 #define PM_STATUS_BITS 3 520 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) 521 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) 522 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) 523 #define PM_PSHIFT_BITS 6 524 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) 525 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) 526 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) 527 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) 528 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) 529 530 #define PM_PRESENT PM_STATUS(4LL) 531 #define PM_SWAP PM_STATUS(2LL) 532 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) 533 #define PM_END_OF_BUFFER 1 534 535 static int add_to_pagemap(unsigned long addr, u64 pfn, 536 struct pagemapread *pm) 537 { 538 if (put_user(pfn, pm->out)) 539 return -EFAULT; 540 pm->out++; 541 if (pm->out >= pm->end) 542 return PM_END_OF_BUFFER; 543 return 0; 544 } 545 546 static int pagemap_pte_hole(unsigned long start, unsigned long end, 547 struct mm_walk *walk) 548 { 549 struct pagemapread *pm = walk->private; 550 unsigned long addr; 551 int err = 0; 552 for (addr = start; addr < end; addr += PAGE_SIZE) { 553 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); 554 if (err) 555 break; 556 } 557 return err; 558 } 559 560 static u64 swap_pte_to_pagemap_entry(pte_t pte) 561 { 562 swp_entry_t e = pte_to_swp_entry(pte); 563 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); 564 } 565 566 static u64 pte_to_pagemap_entry(pte_t pte) 567 { 568 u64 pme = 0; 569 if (is_swap_pte(pte)) 570 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte)) 571 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; 572 else if (pte_present(pte)) 573 pme = PM_PFRAME(pte_pfn(pte)) 574 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; 575 return pme; 576 } 577 578 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 579 struct mm_walk *walk) 580 { 581 struct vm_area_struct *vma; 582 struct pagemapread *pm = walk->private; 583 pte_t *pte; 584 int err = 0; 585 586 /* find the first VMA at or above 'addr' */ 587 vma = find_vma(walk->mm, addr); 588 for (; addr != end; addr += PAGE_SIZE) { 589 u64 pfn = PM_NOT_PRESENT; 590 591 /* check to see if we've left 'vma' behind 592 * and need a new, higher one */ 593 if (vma && (addr >= vma->vm_end)) 594 vma = find_vma(walk->mm, addr); 595 596 /* check that 'vma' actually covers this address, 597 * and that it isn't a huge page vma */ 598 if (vma && (vma->vm_start <= addr) && 599 !is_vm_hugetlb_page(vma)) { 600 pte = pte_offset_map(pmd, addr); 601 pfn = pte_to_pagemap_entry(*pte); 602 /* unmap before userspace copy */ 603 pte_unmap(pte); 604 } 605 err = add_to_pagemap(addr, pfn, pm); 606 if (err) 607 return err; 608 } 609 610 cond_resched(); 611 612 return err; 613 } 614 615 /* 616 * /proc/pid/pagemap - an array mapping virtual pages to pfns 617 * 618 * For each page in the address space, this file contains one 64-bit entry 619 * consisting of the following: 620 * 621 * Bits 0-55 page frame number (PFN) if present 622 * Bits 0-4 swap type if swapped 623 * Bits 5-55 swap offset if swapped 624 * Bits 55-60 page shift (page size = 1<<page shift) 625 * Bit 61 reserved for future use 626 * Bit 62 page swapped 627 * Bit 63 page present 628 * 629 * If the page is not present but in swap, then the PFN contains an 630 * encoding of the swap file number and the page's offset into the 631 * swap. Unmapped pages return a null PFN. This allows determining 632 * precisely which pages are mapped (or in swap) and comparing mapped 633 * pages between processes. 634 * 635 * Efficient users of this interface will use /proc/pid/maps to 636 * determine which areas of memory are actually mapped and llseek to 637 * skip over unmapped regions. 638 */ 639 static ssize_t pagemap_read(struct file *file, char __user *buf, 640 size_t count, loff_t *ppos) 641 { 642 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 643 struct page **pages, *page; 644 unsigned long uaddr, uend; 645 struct mm_struct *mm; 646 struct pagemapread pm; 647 int pagecount; 648 int ret = -ESRCH; 649 struct mm_walk pagemap_walk = {}; 650 unsigned long src; 651 unsigned long svpfn; 652 unsigned long start_vaddr; 653 unsigned long end_vaddr; 654 655 if (!task) 656 goto out; 657 658 ret = -EACCES; 659 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 660 goto out_task; 661 662 ret = -EINVAL; 663 /* file position must be aligned */ 664 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 665 goto out_task; 666 667 ret = 0; 668 669 if (!count) 670 goto out_task; 671 672 mm = get_task_mm(task); 673 if (!mm) 674 goto out_task; 675 676 677 uaddr = (unsigned long)buf & PAGE_MASK; 678 uend = (unsigned long)(buf + count); 679 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE; 680 ret = 0; 681 if (pagecount == 0) 682 goto out_mm; 683 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL); 684 ret = -ENOMEM; 685 if (!pages) 686 goto out_mm; 687 688 down_read(¤t->mm->mmap_sem); 689 ret = get_user_pages(current, current->mm, uaddr, pagecount, 690 1, 0, pages, NULL); 691 up_read(¤t->mm->mmap_sem); 692 693 if (ret < 0) 694 goto out_free; 695 696 if (ret != pagecount) { 697 pagecount = ret; 698 ret = -EFAULT; 699 goto out_pages; 700 } 701 702 pm.out = (u64 __user *)buf; 703 pm.end = (u64 __user *)(buf + count); 704 705 pagemap_walk.pmd_entry = pagemap_pte_range; 706 pagemap_walk.pte_hole = pagemap_pte_hole; 707 pagemap_walk.mm = mm; 708 pagemap_walk.private = ± 709 710 src = *ppos; 711 svpfn = src / PM_ENTRY_BYTES; 712 start_vaddr = svpfn << PAGE_SHIFT; 713 end_vaddr = TASK_SIZE_OF(task); 714 715 /* watch out for wraparound */ 716 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) 717 start_vaddr = end_vaddr; 718 719 /* 720 * The odds are that this will stop walking way 721 * before end_vaddr, because the length of the 722 * user buffer is tracked in "pm", and the walk 723 * will stop when we hit the end of the buffer. 724 */ 725 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk); 726 if (ret == PM_END_OF_BUFFER) 727 ret = 0; 728 /* don't need mmap_sem for these, but this looks cleaner */ 729 *ppos += (char __user *)pm.out - buf; 730 if (!ret) 731 ret = (char __user *)pm.out - buf; 732 733 out_pages: 734 for (; pagecount; pagecount--) { 735 page = pages[pagecount-1]; 736 if (!PageReserved(page)) 737 SetPageDirty(page); 738 page_cache_release(page); 739 } 740 out_free: 741 kfree(pages); 742 out_mm: 743 mmput(mm); 744 out_task: 745 put_task_struct(task); 746 out: 747 return ret; 748 } 749 750 const struct file_operations proc_pagemap_operations = { 751 .llseek = mem_lseek, /* borrow this */ 752 .read = pagemap_read, 753 }; 754 #endif /* CONFIG_PROC_PAGE_MONITOR */ 755 756 #ifdef CONFIG_NUMA 757 extern int show_numa_map(struct seq_file *m, void *v); 758 759 static const struct seq_operations proc_pid_numa_maps_op = { 760 .start = m_start, 761 .next = m_next, 762 .stop = m_stop, 763 .show = show_numa_map, 764 }; 765 766 static int numa_maps_open(struct inode *inode, struct file *file) 767 { 768 return do_maps_open(inode, file, &proc_pid_numa_maps_op); 769 } 770 771 const struct file_operations proc_numa_maps_operations = { 772 .open = numa_maps_open, 773 .read = seq_read, 774 .llseek = seq_lseek, 775 .release = seq_release_private, 776 }; 777 #endif 778