xref: /openbmc/linux/fs/proc/task_mmu.c (revision 7e6f7d24)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	down_read(&mm->mmap_sem);
170 	hold_task_mempolicy(priv);
171 	priv->tail_vma = get_gate_vma(mm);
172 
173 	if (last_addr) {
174 		vma = find_vma(mm, last_addr - 1);
175 		if (vma && vma->vm_start <= last_addr)
176 			vma = m_next_vma(priv, vma);
177 		if (vma)
178 			return vma;
179 	}
180 
181 	m->version = 0;
182 	if (pos < mm->map_count) {
183 		for (vma = mm->mmap; pos; pos--) {
184 			m->version = vma->vm_start;
185 			vma = vma->vm_next;
186 		}
187 		return vma;
188 	}
189 
190 	/* we do not bother to update m->version in this case */
191 	if (pos == mm->map_count && priv->tail_vma)
192 		return priv->tail_vma;
193 
194 	vma_stop(priv);
195 	return NULL;
196 }
197 
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 	struct proc_maps_private *priv = m->private;
201 	struct vm_area_struct *next;
202 
203 	(*pos)++;
204 	next = m_next_vma(priv, v);
205 	if (!next)
206 		vma_stop(priv);
207 	return next;
208 }
209 
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 	struct proc_maps_private *priv = m->private;
213 
214 	if (!IS_ERR_OR_NULL(v))
215 		vma_stop(priv);
216 	if (priv->task) {
217 		put_task_struct(priv->task);
218 		priv->task = NULL;
219 	}
220 }
221 
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 			const struct seq_operations *ops, int psize)
224 {
225 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226 
227 	if (!priv)
228 		return -ENOMEM;
229 
230 	priv->inode = inode;
231 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 	if (IS_ERR(priv->mm)) {
233 		int err = PTR_ERR(priv->mm);
234 
235 		seq_release_private(inode, file);
236 		return err;
237 	}
238 
239 	return 0;
240 }
241 
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 	struct seq_file *seq = file->private_data;
245 	struct proc_maps_private *priv = seq->private;
246 
247 	if (priv->mm)
248 		mmdrop(priv->mm);
249 
250 	kfree(priv->rollup);
251 	return seq_release_private(inode, file);
252 }
253 
254 static int do_maps_open(struct inode *inode, struct file *file,
255 			const struct seq_operations *ops)
256 {
257 	return proc_maps_open(inode, file, ops,
258 				sizeof(struct proc_maps_private));
259 }
260 
261 /*
262  * Indicate if the VMA is a stack for the given task; for
263  * /proc/PID/maps that is the stack of the main task.
264  */
265 static int is_stack(struct vm_area_struct *vma)
266 {
267 	/*
268 	 * We make no effort to guess what a given thread considers to be
269 	 * its "stack".  It's not even well-defined for programs written
270 	 * languages like Go.
271 	 */
272 	return vma->vm_start <= vma->vm_mm->start_stack &&
273 		vma->vm_end >= vma->vm_mm->start_stack;
274 }
275 
276 static void show_vma_header_prefix(struct seq_file *m,
277 				   unsigned long start, unsigned long end,
278 				   vm_flags_t flags, unsigned long long pgoff,
279 				   dev_t dev, unsigned long ino)
280 {
281 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
282 	seq_put_hex_ll(m, NULL, start, 8);
283 	seq_put_hex_ll(m, "-", end, 8);
284 	seq_putc(m, ' ');
285 	seq_putc(m, flags & VM_READ ? 'r' : '-');
286 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
287 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
288 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
289 	seq_put_hex_ll(m, " ", pgoff, 8);
290 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
291 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
292 	seq_put_decimal_ull(m, " ", ino);
293 	seq_putc(m, ' ');
294 }
295 
296 static void
297 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
298 {
299 	struct mm_struct *mm = vma->vm_mm;
300 	struct file *file = vma->vm_file;
301 	vm_flags_t flags = vma->vm_flags;
302 	unsigned long ino = 0;
303 	unsigned long long pgoff = 0;
304 	unsigned long start, end;
305 	dev_t dev = 0;
306 	const char *name = NULL;
307 
308 	if (file) {
309 		struct inode *inode = file_inode(vma->vm_file);
310 		dev = inode->i_sb->s_dev;
311 		ino = inode->i_ino;
312 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
313 	}
314 
315 	start = vma->vm_start;
316 	end = vma->vm_end;
317 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
318 
319 	/*
320 	 * Print the dentry name for named mappings, and a
321 	 * special [heap] marker for the heap:
322 	 */
323 	if (file) {
324 		seq_pad(m, ' ');
325 		seq_file_path(m, file, "\n");
326 		goto done;
327 	}
328 
329 	if (vma->vm_ops && vma->vm_ops->name) {
330 		name = vma->vm_ops->name(vma);
331 		if (name)
332 			goto done;
333 	}
334 
335 	name = arch_vma_name(vma);
336 	if (!name) {
337 		if (!mm) {
338 			name = "[vdso]";
339 			goto done;
340 		}
341 
342 		if (vma->vm_start <= mm->brk &&
343 		    vma->vm_end >= mm->start_brk) {
344 			name = "[heap]";
345 			goto done;
346 		}
347 
348 		if (is_stack(vma))
349 			name = "[stack]";
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	bool first;
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long lazyfree;
445 	unsigned long anonymous_thp;
446 	unsigned long shmem_thp;
447 	unsigned long swap;
448 	unsigned long shared_hugetlb;
449 	unsigned long private_hugetlb;
450 	unsigned long first_vma_start;
451 	u64 pss;
452 	u64 pss_locked;
453 	u64 swap_pss;
454 	bool check_shmem_swap;
455 };
456 
457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458 		bool compound, bool young, bool dirty)
459 {
460 	int i, nr = compound ? 1 << compound_order(page) : 1;
461 	unsigned long size = nr * PAGE_SIZE;
462 
463 	if (PageAnon(page)) {
464 		mss->anonymous += size;
465 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
466 			mss->lazyfree += size;
467 	}
468 
469 	mss->resident += size;
470 	/* Accumulate the size in pages that have been accessed. */
471 	if (young || page_is_young(page) || PageReferenced(page))
472 		mss->referenced += size;
473 
474 	/*
475 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 	 * If any subpage of the compound page mapped with PTE it would elevate
477 	 * page_count().
478 	 */
479 	if (page_count(page) == 1) {
480 		if (dirty || PageDirty(page))
481 			mss->private_dirty += size;
482 		else
483 			mss->private_clean += size;
484 		mss->pss += (u64)size << PSS_SHIFT;
485 		return;
486 	}
487 
488 	for (i = 0; i < nr; i++, page++) {
489 		int mapcount = page_mapcount(page);
490 
491 		if (mapcount >= 2) {
492 			if (dirty || PageDirty(page))
493 				mss->shared_dirty += PAGE_SIZE;
494 			else
495 				mss->shared_clean += PAGE_SIZE;
496 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 		} else {
498 			if (dirty || PageDirty(page))
499 				mss->private_dirty += PAGE_SIZE;
500 			else
501 				mss->private_clean += PAGE_SIZE;
502 			mss->pss += PAGE_SIZE << PSS_SHIFT;
503 		}
504 	}
505 }
506 
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 		struct mm_walk *walk)
510 {
511 	struct mem_size_stats *mss = walk->private;
512 
513 	mss->swap += shmem_partial_swap_usage(
514 			walk->vma->vm_file->f_mapping, addr, end);
515 
516 	return 0;
517 }
518 #endif
519 
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 		struct mm_walk *walk)
522 {
523 	struct mem_size_stats *mss = walk->private;
524 	struct vm_area_struct *vma = walk->vma;
525 	struct page *page = NULL;
526 
527 	if (pte_present(*pte)) {
528 		page = vm_normal_page(vma, addr, *pte);
529 	} else if (is_swap_pte(*pte)) {
530 		swp_entry_t swpent = pte_to_swp_entry(*pte);
531 
532 		if (!non_swap_entry(swpent)) {
533 			int mapcount;
534 
535 			mss->swap += PAGE_SIZE;
536 			mapcount = swp_swapcount(swpent);
537 			if (mapcount >= 2) {
538 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539 
540 				do_div(pss_delta, mapcount);
541 				mss->swap_pss += pss_delta;
542 			} else {
543 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 			}
545 		} else if (is_migration_entry(swpent))
546 			page = migration_entry_to_page(swpent);
547 		else if (is_device_private_entry(swpent))
548 			page = device_private_entry_to_page(swpent);
549 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
550 							&& pte_none(*pte))) {
551 		page = find_get_entry(vma->vm_file->f_mapping,
552 						linear_page_index(vma, addr));
553 		if (!page)
554 			return;
555 
556 		if (radix_tree_exceptional_entry(page))
557 			mss->swap += PAGE_SIZE;
558 		else
559 			put_page(page);
560 
561 		return;
562 	}
563 
564 	if (!page)
565 		return;
566 
567 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
568 }
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 		struct mm_walk *walk)
573 {
574 	struct mem_size_stats *mss = walk->private;
575 	struct vm_area_struct *vma = walk->vma;
576 	struct page *page;
577 
578 	/* FOLL_DUMP will return -EFAULT on huge zero page */
579 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	if (IS_ERR_OR_NULL(page))
581 		return;
582 	if (PageAnon(page))
583 		mss->anonymous_thp += HPAGE_PMD_SIZE;
584 	else if (PageSwapBacked(page))
585 		mss->shmem_thp += HPAGE_PMD_SIZE;
586 	else if (is_zone_device_page(page))
587 		/* pass */;
588 	else
589 		VM_BUG_ON_PAGE(1, page);
590 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 		struct mm_walk *walk)
595 {
596 }
597 #endif
598 
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 			   struct mm_walk *walk)
601 {
602 	struct vm_area_struct *vma = walk->vma;
603 	pte_t *pte;
604 	spinlock_t *ptl;
605 
606 	ptl = pmd_trans_huge_lock(pmd, vma);
607 	if (ptl) {
608 		if (pmd_present(*pmd))
609 			smaps_pmd_entry(pmd, addr, walk);
610 		spin_unlock(ptl);
611 		goto out;
612 	}
613 
614 	if (pmd_trans_unstable(pmd))
615 		goto out;
616 	/*
617 	 * The mmap_sem held all the way back in m_start() is what
618 	 * keeps khugepaged out of here and from collapsing things
619 	 * in here.
620 	 */
621 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622 	for (; addr != end; pte++, addr += PAGE_SIZE)
623 		smaps_pte_entry(pte, addr, walk);
624 	pte_unmap_unlock(pte - 1, ptl);
625 out:
626 	cond_resched();
627 	return 0;
628 }
629 
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632 	/*
633 	 * Don't forget to update Documentation/ on changes.
634 	 */
635 	static const char mnemonics[BITS_PER_LONG][2] = {
636 		/*
637 		 * In case if we meet a flag we don't know about.
638 		 */
639 		[0 ... (BITS_PER_LONG-1)] = "??",
640 
641 		[ilog2(VM_READ)]	= "rd",
642 		[ilog2(VM_WRITE)]	= "wr",
643 		[ilog2(VM_EXEC)]	= "ex",
644 		[ilog2(VM_SHARED)]	= "sh",
645 		[ilog2(VM_MAYREAD)]	= "mr",
646 		[ilog2(VM_MAYWRITE)]	= "mw",
647 		[ilog2(VM_MAYEXEC)]	= "me",
648 		[ilog2(VM_MAYSHARE)]	= "ms",
649 		[ilog2(VM_GROWSDOWN)]	= "gd",
650 		[ilog2(VM_PFNMAP)]	= "pf",
651 		[ilog2(VM_DENYWRITE)]	= "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653 		[ilog2(VM_MPX)]		= "mp",
654 #endif
655 		[ilog2(VM_LOCKED)]	= "lo",
656 		[ilog2(VM_IO)]		= "io",
657 		[ilog2(VM_SEQ_READ)]	= "sr",
658 		[ilog2(VM_RAND_READ)]	= "rr",
659 		[ilog2(VM_DONTCOPY)]	= "dc",
660 		[ilog2(VM_DONTEXPAND)]	= "de",
661 		[ilog2(VM_ACCOUNT)]	= "ac",
662 		[ilog2(VM_NORESERVE)]	= "nr",
663 		[ilog2(VM_HUGETLB)]	= "ht",
664 		[ilog2(VM_SYNC)]	= "sf",
665 		[ilog2(VM_ARCH_1)]	= "ar",
666 		[ilog2(VM_WIPEONFORK)]	= "wf",
667 		[ilog2(VM_DONTDUMP)]	= "dd",
668 #ifdef CONFIG_MEM_SOFT_DIRTY
669 		[ilog2(VM_SOFTDIRTY)]	= "sd",
670 #endif
671 		[ilog2(VM_MIXEDMAP)]	= "mm",
672 		[ilog2(VM_HUGEPAGE)]	= "hg",
673 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
674 		[ilog2(VM_MERGEABLE)]	= "mg",
675 		[ilog2(VM_UFFD_MISSING)]= "um",
676 		[ilog2(VM_UFFD_WP)]	= "uw",
677 #ifdef CONFIG_ARCH_HAS_PKEYS
678 		/* These come out via ProtectionKey: */
679 		[ilog2(VM_PKEY_BIT0)]	= "",
680 		[ilog2(VM_PKEY_BIT1)]	= "",
681 		[ilog2(VM_PKEY_BIT2)]	= "",
682 		[ilog2(VM_PKEY_BIT3)]	= "",
683 #if VM_PKEY_BIT4
684 		[ilog2(VM_PKEY_BIT4)]	= "",
685 #endif
686 #endif /* CONFIG_ARCH_HAS_PKEYS */
687 	};
688 	size_t i;
689 
690 	seq_puts(m, "VmFlags: ");
691 	for (i = 0; i < BITS_PER_LONG; i++) {
692 		if (!mnemonics[i][0])
693 			continue;
694 		if (vma->vm_flags & (1UL << i)) {
695 			seq_putc(m, mnemonics[i][0]);
696 			seq_putc(m, mnemonics[i][1]);
697 			seq_putc(m, ' ');
698 		}
699 	}
700 	seq_putc(m, '\n');
701 }
702 
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
705 				 unsigned long addr, unsigned long end,
706 				 struct mm_walk *walk)
707 {
708 	struct mem_size_stats *mss = walk->private;
709 	struct vm_area_struct *vma = walk->vma;
710 	struct page *page = NULL;
711 
712 	if (pte_present(*pte)) {
713 		page = vm_normal_page(vma, addr, *pte);
714 	} else if (is_swap_pte(*pte)) {
715 		swp_entry_t swpent = pte_to_swp_entry(*pte);
716 
717 		if (is_migration_entry(swpent))
718 			page = migration_entry_to_page(swpent);
719 		else if (is_device_private_entry(swpent))
720 			page = device_private_entry_to_page(swpent);
721 	}
722 	if (page) {
723 		int mapcount = page_mapcount(page);
724 
725 		if (mapcount >= 2)
726 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
727 		else
728 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
729 	}
730 	return 0;
731 }
732 #endif /* HUGETLB_PAGE */
733 
734 #define SEQ_PUT_DEC(str, val) \
735 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
736 static int show_smap(struct seq_file *m, void *v, int is_pid)
737 {
738 	struct proc_maps_private *priv = m->private;
739 	struct vm_area_struct *vma = v;
740 	struct mem_size_stats mss_stack;
741 	struct mem_size_stats *mss;
742 	struct mm_walk smaps_walk = {
743 		.pmd_entry = smaps_pte_range,
744 #ifdef CONFIG_HUGETLB_PAGE
745 		.hugetlb_entry = smaps_hugetlb_range,
746 #endif
747 		.mm = vma->vm_mm,
748 	};
749 	int ret = 0;
750 	bool rollup_mode;
751 	bool last_vma;
752 
753 	if (priv->rollup) {
754 		rollup_mode = true;
755 		mss = priv->rollup;
756 		if (mss->first) {
757 			mss->first_vma_start = vma->vm_start;
758 			mss->first = false;
759 		}
760 		last_vma = !m_next_vma(priv, vma);
761 	} else {
762 		rollup_mode = false;
763 		memset(&mss_stack, 0, sizeof(mss_stack));
764 		mss = &mss_stack;
765 	}
766 
767 	smaps_walk.private = mss;
768 
769 #ifdef CONFIG_SHMEM
770 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
771 		/*
772 		 * For shared or readonly shmem mappings we know that all
773 		 * swapped out pages belong to the shmem object, and we can
774 		 * obtain the swap value much more efficiently. For private
775 		 * writable mappings, we might have COW pages that are
776 		 * not affected by the parent swapped out pages of the shmem
777 		 * object, so we have to distinguish them during the page walk.
778 		 * Unless we know that the shmem object (or the part mapped by
779 		 * our VMA) has no swapped out pages at all.
780 		 */
781 		unsigned long shmem_swapped = shmem_swap_usage(vma);
782 
783 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
784 					!(vma->vm_flags & VM_WRITE)) {
785 			mss->swap = shmem_swapped;
786 		} else {
787 			mss->check_shmem_swap = true;
788 			smaps_walk.pte_hole = smaps_pte_hole;
789 		}
790 	}
791 #endif
792 
793 	/* mmap_sem is held in m_start */
794 	walk_page_vma(vma, &smaps_walk);
795 	if (vma->vm_flags & VM_LOCKED)
796 		mss->pss_locked += mss->pss;
797 
798 	if (!rollup_mode) {
799 		show_map_vma(m, vma, is_pid);
800 	} else if (last_vma) {
801 		show_vma_header_prefix(
802 			m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
803 		seq_pad(m, ' ');
804 		seq_puts(m, "[rollup]\n");
805 	} else {
806 		ret = SEQ_SKIP;
807 	}
808 
809 	if (!rollup_mode) {
810 		SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
811 		SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
812 		SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
813 		seq_puts(m, " kB\n");
814 	}
815 
816 	if (!rollup_mode || last_vma) {
817 		SEQ_PUT_DEC("Rss:            ", mss->resident);
818 		SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
819 		SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
820 		SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
821 		SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
822 		SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
823 		SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
824 		SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
825 		SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
826 		SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
827 		SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
828 		SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
829 		seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
830 					  mss->private_hugetlb >> 10, 7);
831 		SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
832 		SEQ_PUT_DEC(" kB\nSwapPss:        ",
833 						mss->swap_pss >> PSS_SHIFT);
834 		SEQ_PUT_DEC(" kB\nLocked:         ", mss->pss >> PSS_SHIFT);
835 		seq_puts(m, " kB\n");
836 	}
837 	if (!rollup_mode) {
838 		if (arch_pkeys_enabled())
839 			seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
840 		show_smap_vma_flags(m, vma);
841 	}
842 	m_cache_vma(m, vma);
843 	return ret;
844 }
845 #undef SEQ_PUT_DEC
846 
847 static int show_pid_smap(struct seq_file *m, void *v)
848 {
849 	return show_smap(m, v, 1);
850 }
851 
852 static int show_tid_smap(struct seq_file *m, void *v)
853 {
854 	return show_smap(m, v, 0);
855 }
856 
857 static const struct seq_operations proc_pid_smaps_op = {
858 	.start	= m_start,
859 	.next	= m_next,
860 	.stop	= m_stop,
861 	.show	= show_pid_smap
862 };
863 
864 static const struct seq_operations proc_tid_smaps_op = {
865 	.start	= m_start,
866 	.next	= m_next,
867 	.stop	= m_stop,
868 	.show	= show_tid_smap
869 };
870 
871 static int pid_smaps_open(struct inode *inode, struct file *file)
872 {
873 	return do_maps_open(inode, file, &proc_pid_smaps_op);
874 }
875 
876 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
877 {
878 	struct seq_file *seq;
879 	struct proc_maps_private *priv;
880 	int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
881 
882 	if (ret < 0)
883 		return ret;
884 	seq = file->private_data;
885 	priv = seq->private;
886 	priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
887 	if (!priv->rollup) {
888 		proc_map_release(inode, file);
889 		return -ENOMEM;
890 	}
891 	priv->rollup->first = true;
892 	return 0;
893 }
894 
895 static int tid_smaps_open(struct inode *inode, struct file *file)
896 {
897 	return do_maps_open(inode, file, &proc_tid_smaps_op);
898 }
899 
900 const struct file_operations proc_pid_smaps_operations = {
901 	.open		= pid_smaps_open,
902 	.read		= seq_read,
903 	.llseek		= seq_lseek,
904 	.release	= proc_map_release,
905 };
906 
907 const struct file_operations proc_pid_smaps_rollup_operations = {
908 	.open		= pid_smaps_rollup_open,
909 	.read		= seq_read,
910 	.llseek		= seq_lseek,
911 	.release	= proc_map_release,
912 };
913 
914 const struct file_operations proc_tid_smaps_operations = {
915 	.open		= tid_smaps_open,
916 	.read		= seq_read,
917 	.llseek		= seq_lseek,
918 	.release	= proc_map_release,
919 };
920 
921 enum clear_refs_types {
922 	CLEAR_REFS_ALL = 1,
923 	CLEAR_REFS_ANON,
924 	CLEAR_REFS_MAPPED,
925 	CLEAR_REFS_SOFT_DIRTY,
926 	CLEAR_REFS_MM_HIWATER_RSS,
927 	CLEAR_REFS_LAST,
928 };
929 
930 struct clear_refs_private {
931 	enum clear_refs_types type;
932 };
933 
934 #ifdef CONFIG_MEM_SOFT_DIRTY
935 static inline void clear_soft_dirty(struct vm_area_struct *vma,
936 		unsigned long addr, pte_t *pte)
937 {
938 	/*
939 	 * The soft-dirty tracker uses #PF-s to catch writes
940 	 * to pages, so write-protect the pte as well. See the
941 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
942 	 * of how soft-dirty works.
943 	 */
944 	pte_t ptent = *pte;
945 
946 	if (pte_present(ptent)) {
947 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
948 		ptent = pte_wrprotect(ptent);
949 		ptent = pte_clear_soft_dirty(ptent);
950 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
951 	} else if (is_swap_pte(ptent)) {
952 		ptent = pte_swp_clear_soft_dirty(ptent);
953 		set_pte_at(vma->vm_mm, addr, pte, ptent);
954 	}
955 }
956 #else
957 static inline void clear_soft_dirty(struct vm_area_struct *vma,
958 		unsigned long addr, pte_t *pte)
959 {
960 }
961 #endif
962 
963 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
964 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
965 		unsigned long addr, pmd_t *pmdp)
966 {
967 	pmd_t old, pmd = *pmdp;
968 
969 	if (pmd_present(pmd)) {
970 		/* See comment in change_huge_pmd() */
971 		old = pmdp_invalidate(vma, addr, pmdp);
972 		if (pmd_dirty(old))
973 			pmd = pmd_mkdirty(pmd);
974 		if (pmd_young(old))
975 			pmd = pmd_mkyoung(pmd);
976 
977 		pmd = pmd_wrprotect(pmd);
978 		pmd = pmd_clear_soft_dirty(pmd);
979 
980 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
981 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
982 		pmd = pmd_swp_clear_soft_dirty(pmd);
983 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
984 	}
985 }
986 #else
987 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
988 		unsigned long addr, pmd_t *pmdp)
989 {
990 }
991 #endif
992 
993 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
994 				unsigned long end, struct mm_walk *walk)
995 {
996 	struct clear_refs_private *cp = walk->private;
997 	struct vm_area_struct *vma = walk->vma;
998 	pte_t *pte, ptent;
999 	spinlock_t *ptl;
1000 	struct page *page;
1001 
1002 	ptl = pmd_trans_huge_lock(pmd, vma);
1003 	if (ptl) {
1004 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1005 			clear_soft_dirty_pmd(vma, addr, pmd);
1006 			goto out;
1007 		}
1008 
1009 		if (!pmd_present(*pmd))
1010 			goto out;
1011 
1012 		page = pmd_page(*pmd);
1013 
1014 		/* Clear accessed and referenced bits. */
1015 		pmdp_test_and_clear_young(vma, addr, pmd);
1016 		test_and_clear_page_young(page);
1017 		ClearPageReferenced(page);
1018 out:
1019 		spin_unlock(ptl);
1020 		return 0;
1021 	}
1022 
1023 	if (pmd_trans_unstable(pmd))
1024 		return 0;
1025 
1026 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1027 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1028 		ptent = *pte;
1029 
1030 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1031 			clear_soft_dirty(vma, addr, pte);
1032 			continue;
1033 		}
1034 
1035 		if (!pte_present(ptent))
1036 			continue;
1037 
1038 		page = vm_normal_page(vma, addr, ptent);
1039 		if (!page)
1040 			continue;
1041 
1042 		/* Clear accessed and referenced bits. */
1043 		ptep_test_and_clear_young(vma, addr, pte);
1044 		test_and_clear_page_young(page);
1045 		ClearPageReferenced(page);
1046 	}
1047 	pte_unmap_unlock(pte - 1, ptl);
1048 	cond_resched();
1049 	return 0;
1050 }
1051 
1052 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1053 				struct mm_walk *walk)
1054 {
1055 	struct clear_refs_private *cp = walk->private;
1056 	struct vm_area_struct *vma = walk->vma;
1057 
1058 	if (vma->vm_flags & VM_PFNMAP)
1059 		return 1;
1060 
1061 	/*
1062 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1063 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1064 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1065 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1066 	 */
1067 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1068 		return 1;
1069 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1070 		return 1;
1071 	return 0;
1072 }
1073 
1074 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1075 				size_t count, loff_t *ppos)
1076 {
1077 	struct task_struct *task;
1078 	char buffer[PROC_NUMBUF];
1079 	struct mm_struct *mm;
1080 	struct vm_area_struct *vma;
1081 	enum clear_refs_types type;
1082 	struct mmu_gather tlb;
1083 	int itype;
1084 	int rv;
1085 
1086 	memset(buffer, 0, sizeof(buffer));
1087 	if (count > sizeof(buffer) - 1)
1088 		count = sizeof(buffer) - 1;
1089 	if (copy_from_user(buffer, buf, count))
1090 		return -EFAULT;
1091 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1092 	if (rv < 0)
1093 		return rv;
1094 	type = (enum clear_refs_types)itype;
1095 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1096 		return -EINVAL;
1097 
1098 	task = get_proc_task(file_inode(file));
1099 	if (!task)
1100 		return -ESRCH;
1101 	mm = get_task_mm(task);
1102 	if (mm) {
1103 		struct clear_refs_private cp = {
1104 			.type = type,
1105 		};
1106 		struct mm_walk clear_refs_walk = {
1107 			.pmd_entry = clear_refs_pte_range,
1108 			.test_walk = clear_refs_test_walk,
1109 			.mm = mm,
1110 			.private = &cp,
1111 		};
1112 
1113 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1114 			if (down_write_killable(&mm->mmap_sem)) {
1115 				count = -EINTR;
1116 				goto out_mm;
1117 			}
1118 
1119 			/*
1120 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1121 			 * resident set size to this mm's current rss value.
1122 			 */
1123 			reset_mm_hiwater_rss(mm);
1124 			up_write(&mm->mmap_sem);
1125 			goto out_mm;
1126 		}
1127 
1128 		down_read(&mm->mmap_sem);
1129 		tlb_gather_mmu(&tlb, mm, 0, -1);
1130 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1131 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1132 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1133 					continue;
1134 				up_read(&mm->mmap_sem);
1135 				if (down_write_killable(&mm->mmap_sem)) {
1136 					count = -EINTR;
1137 					goto out_mm;
1138 				}
1139 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1140 					vma->vm_flags &= ~VM_SOFTDIRTY;
1141 					vma_set_page_prot(vma);
1142 				}
1143 				downgrade_write(&mm->mmap_sem);
1144 				break;
1145 			}
1146 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1147 		}
1148 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1149 		if (type == CLEAR_REFS_SOFT_DIRTY)
1150 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1151 		tlb_finish_mmu(&tlb, 0, -1);
1152 		up_read(&mm->mmap_sem);
1153 out_mm:
1154 		mmput(mm);
1155 	}
1156 	put_task_struct(task);
1157 
1158 	return count;
1159 }
1160 
1161 const struct file_operations proc_clear_refs_operations = {
1162 	.write		= clear_refs_write,
1163 	.llseek		= noop_llseek,
1164 };
1165 
1166 typedef struct {
1167 	u64 pme;
1168 } pagemap_entry_t;
1169 
1170 struct pagemapread {
1171 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1172 	pagemap_entry_t *buffer;
1173 	bool show_pfn;
1174 };
1175 
1176 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1177 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1178 
1179 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1180 #define PM_PFRAME_BITS		55
1181 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1182 #define PM_SOFT_DIRTY		BIT_ULL(55)
1183 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1184 #define PM_FILE			BIT_ULL(61)
1185 #define PM_SWAP			BIT_ULL(62)
1186 #define PM_PRESENT		BIT_ULL(63)
1187 
1188 #define PM_END_OF_BUFFER    1
1189 
1190 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1191 {
1192 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1193 }
1194 
1195 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1196 			  struct pagemapread *pm)
1197 {
1198 	pm->buffer[pm->pos++] = *pme;
1199 	if (pm->pos >= pm->len)
1200 		return PM_END_OF_BUFFER;
1201 	return 0;
1202 }
1203 
1204 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1205 				struct mm_walk *walk)
1206 {
1207 	struct pagemapread *pm = walk->private;
1208 	unsigned long addr = start;
1209 	int err = 0;
1210 
1211 	while (addr < end) {
1212 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1213 		pagemap_entry_t pme = make_pme(0, 0);
1214 		/* End of address space hole, which we mark as non-present. */
1215 		unsigned long hole_end;
1216 
1217 		if (vma)
1218 			hole_end = min(end, vma->vm_start);
1219 		else
1220 			hole_end = end;
1221 
1222 		for (; addr < hole_end; addr += PAGE_SIZE) {
1223 			err = add_to_pagemap(addr, &pme, pm);
1224 			if (err)
1225 				goto out;
1226 		}
1227 
1228 		if (!vma)
1229 			break;
1230 
1231 		/* Addresses in the VMA. */
1232 		if (vma->vm_flags & VM_SOFTDIRTY)
1233 			pme = make_pme(0, PM_SOFT_DIRTY);
1234 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1235 			err = add_to_pagemap(addr, &pme, pm);
1236 			if (err)
1237 				goto out;
1238 		}
1239 	}
1240 out:
1241 	return err;
1242 }
1243 
1244 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1245 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1246 {
1247 	u64 frame = 0, flags = 0;
1248 	struct page *page = NULL;
1249 
1250 	if (pte_present(pte)) {
1251 		if (pm->show_pfn)
1252 			frame = pte_pfn(pte);
1253 		flags |= PM_PRESENT;
1254 		page = _vm_normal_page(vma, addr, pte, true);
1255 		if (pte_soft_dirty(pte))
1256 			flags |= PM_SOFT_DIRTY;
1257 	} else if (is_swap_pte(pte)) {
1258 		swp_entry_t entry;
1259 		if (pte_swp_soft_dirty(pte))
1260 			flags |= PM_SOFT_DIRTY;
1261 		entry = pte_to_swp_entry(pte);
1262 		if (pm->show_pfn)
1263 			frame = swp_type(entry) |
1264 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1265 		flags |= PM_SWAP;
1266 		if (is_migration_entry(entry))
1267 			page = migration_entry_to_page(entry);
1268 
1269 		if (is_device_private_entry(entry))
1270 			page = device_private_entry_to_page(entry);
1271 	}
1272 
1273 	if (page && !PageAnon(page))
1274 		flags |= PM_FILE;
1275 	if (page && page_mapcount(page) == 1)
1276 		flags |= PM_MMAP_EXCLUSIVE;
1277 	if (vma->vm_flags & VM_SOFTDIRTY)
1278 		flags |= PM_SOFT_DIRTY;
1279 
1280 	return make_pme(frame, flags);
1281 }
1282 
1283 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1284 			     struct mm_walk *walk)
1285 {
1286 	struct vm_area_struct *vma = walk->vma;
1287 	struct pagemapread *pm = walk->private;
1288 	spinlock_t *ptl;
1289 	pte_t *pte, *orig_pte;
1290 	int err = 0;
1291 
1292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1293 	ptl = pmd_trans_huge_lock(pmdp, vma);
1294 	if (ptl) {
1295 		u64 flags = 0, frame = 0;
1296 		pmd_t pmd = *pmdp;
1297 		struct page *page = NULL;
1298 
1299 		if (vma->vm_flags & VM_SOFTDIRTY)
1300 			flags |= PM_SOFT_DIRTY;
1301 
1302 		if (pmd_present(pmd)) {
1303 			page = pmd_page(pmd);
1304 
1305 			flags |= PM_PRESENT;
1306 			if (pmd_soft_dirty(pmd))
1307 				flags |= PM_SOFT_DIRTY;
1308 			if (pm->show_pfn)
1309 				frame = pmd_pfn(pmd) +
1310 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1311 		}
1312 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1313 		else if (is_swap_pmd(pmd)) {
1314 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1315 			unsigned long offset;
1316 
1317 			if (pm->show_pfn) {
1318 				offset = swp_offset(entry) +
1319 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1320 				frame = swp_type(entry) |
1321 					(offset << MAX_SWAPFILES_SHIFT);
1322 			}
1323 			flags |= PM_SWAP;
1324 			if (pmd_swp_soft_dirty(pmd))
1325 				flags |= PM_SOFT_DIRTY;
1326 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1327 			page = migration_entry_to_page(entry);
1328 		}
1329 #endif
1330 
1331 		if (page && page_mapcount(page) == 1)
1332 			flags |= PM_MMAP_EXCLUSIVE;
1333 
1334 		for (; addr != end; addr += PAGE_SIZE) {
1335 			pagemap_entry_t pme = make_pme(frame, flags);
1336 
1337 			err = add_to_pagemap(addr, &pme, pm);
1338 			if (err)
1339 				break;
1340 			if (pm->show_pfn) {
1341 				if (flags & PM_PRESENT)
1342 					frame++;
1343 				else if (flags & PM_SWAP)
1344 					frame += (1 << MAX_SWAPFILES_SHIFT);
1345 			}
1346 		}
1347 		spin_unlock(ptl);
1348 		return err;
1349 	}
1350 
1351 	if (pmd_trans_unstable(pmdp))
1352 		return 0;
1353 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1354 
1355 	/*
1356 	 * We can assume that @vma always points to a valid one and @end never
1357 	 * goes beyond vma->vm_end.
1358 	 */
1359 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1360 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1361 		pagemap_entry_t pme;
1362 
1363 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1364 		err = add_to_pagemap(addr, &pme, pm);
1365 		if (err)
1366 			break;
1367 	}
1368 	pte_unmap_unlock(orig_pte, ptl);
1369 
1370 	cond_resched();
1371 
1372 	return err;
1373 }
1374 
1375 #ifdef CONFIG_HUGETLB_PAGE
1376 /* This function walks within one hugetlb entry in the single call */
1377 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1378 				 unsigned long addr, unsigned long end,
1379 				 struct mm_walk *walk)
1380 {
1381 	struct pagemapread *pm = walk->private;
1382 	struct vm_area_struct *vma = walk->vma;
1383 	u64 flags = 0, frame = 0;
1384 	int err = 0;
1385 	pte_t pte;
1386 
1387 	if (vma->vm_flags & VM_SOFTDIRTY)
1388 		flags |= PM_SOFT_DIRTY;
1389 
1390 	pte = huge_ptep_get(ptep);
1391 	if (pte_present(pte)) {
1392 		struct page *page = pte_page(pte);
1393 
1394 		if (!PageAnon(page))
1395 			flags |= PM_FILE;
1396 
1397 		if (page_mapcount(page) == 1)
1398 			flags |= PM_MMAP_EXCLUSIVE;
1399 
1400 		flags |= PM_PRESENT;
1401 		if (pm->show_pfn)
1402 			frame = pte_pfn(pte) +
1403 				((addr & ~hmask) >> PAGE_SHIFT);
1404 	}
1405 
1406 	for (; addr != end; addr += PAGE_SIZE) {
1407 		pagemap_entry_t pme = make_pme(frame, flags);
1408 
1409 		err = add_to_pagemap(addr, &pme, pm);
1410 		if (err)
1411 			return err;
1412 		if (pm->show_pfn && (flags & PM_PRESENT))
1413 			frame++;
1414 	}
1415 
1416 	cond_resched();
1417 
1418 	return err;
1419 }
1420 #endif /* HUGETLB_PAGE */
1421 
1422 /*
1423  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1424  *
1425  * For each page in the address space, this file contains one 64-bit entry
1426  * consisting of the following:
1427  *
1428  * Bits 0-54  page frame number (PFN) if present
1429  * Bits 0-4   swap type if swapped
1430  * Bits 5-54  swap offset if swapped
1431  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1432  * Bit  56    page exclusively mapped
1433  * Bits 57-60 zero
1434  * Bit  61    page is file-page or shared-anon
1435  * Bit  62    page swapped
1436  * Bit  63    page present
1437  *
1438  * If the page is not present but in swap, then the PFN contains an
1439  * encoding of the swap file number and the page's offset into the
1440  * swap. Unmapped pages return a null PFN. This allows determining
1441  * precisely which pages are mapped (or in swap) and comparing mapped
1442  * pages between processes.
1443  *
1444  * Efficient users of this interface will use /proc/pid/maps to
1445  * determine which areas of memory are actually mapped and llseek to
1446  * skip over unmapped regions.
1447  */
1448 static ssize_t pagemap_read(struct file *file, char __user *buf,
1449 			    size_t count, loff_t *ppos)
1450 {
1451 	struct mm_struct *mm = file->private_data;
1452 	struct pagemapread pm;
1453 	struct mm_walk pagemap_walk = {};
1454 	unsigned long src;
1455 	unsigned long svpfn;
1456 	unsigned long start_vaddr;
1457 	unsigned long end_vaddr;
1458 	int ret = 0, copied = 0;
1459 
1460 	if (!mm || !mmget_not_zero(mm))
1461 		goto out;
1462 
1463 	ret = -EINVAL;
1464 	/* file position must be aligned */
1465 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1466 		goto out_mm;
1467 
1468 	ret = 0;
1469 	if (!count)
1470 		goto out_mm;
1471 
1472 	/* do not disclose physical addresses: attack vector */
1473 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1474 
1475 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1476 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1477 	ret = -ENOMEM;
1478 	if (!pm.buffer)
1479 		goto out_mm;
1480 
1481 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1482 	pagemap_walk.pte_hole = pagemap_pte_hole;
1483 #ifdef CONFIG_HUGETLB_PAGE
1484 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1485 #endif
1486 	pagemap_walk.mm = mm;
1487 	pagemap_walk.private = &pm;
1488 
1489 	src = *ppos;
1490 	svpfn = src / PM_ENTRY_BYTES;
1491 	start_vaddr = svpfn << PAGE_SHIFT;
1492 	end_vaddr = mm->task_size;
1493 
1494 	/* watch out for wraparound */
1495 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1496 		start_vaddr = end_vaddr;
1497 
1498 	/*
1499 	 * The odds are that this will stop walking way
1500 	 * before end_vaddr, because the length of the
1501 	 * user buffer is tracked in "pm", and the walk
1502 	 * will stop when we hit the end of the buffer.
1503 	 */
1504 	ret = 0;
1505 	while (count && (start_vaddr < end_vaddr)) {
1506 		int len;
1507 		unsigned long end;
1508 
1509 		pm.pos = 0;
1510 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1511 		/* overflow ? */
1512 		if (end < start_vaddr || end > end_vaddr)
1513 			end = end_vaddr;
1514 		down_read(&mm->mmap_sem);
1515 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1516 		up_read(&mm->mmap_sem);
1517 		start_vaddr = end;
1518 
1519 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1520 		if (copy_to_user(buf, pm.buffer, len)) {
1521 			ret = -EFAULT;
1522 			goto out_free;
1523 		}
1524 		copied += len;
1525 		buf += len;
1526 		count -= len;
1527 	}
1528 	*ppos += copied;
1529 	if (!ret || ret == PM_END_OF_BUFFER)
1530 		ret = copied;
1531 
1532 out_free:
1533 	kfree(pm.buffer);
1534 out_mm:
1535 	mmput(mm);
1536 out:
1537 	return ret;
1538 }
1539 
1540 static int pagemap_open(struct inode *inode, struct file *file)
1541 {
1542 	struct mm_struct *mm;
1543 
1544 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1545 	if (IS_ERR(mm))
1546 		return PTR_ERR(mm);
1547 	file->private_data = mm;
1548 	return 0;
1549 }
1550 
1551 static int pagemap_release(struct inode *inode, struct file *file)
1552 {
1553 	struct mm_struct *mm = file->private_data;
1554 
1555 	if (mm)
1556 		mmdrop(mm);
1557 	return 0;
1558 }
1559 
1560 const struct file_operations proc_pagemap_operations = {
1561 	.llseek		= mem_lseek, /* borrow this */
1562 	.read		= pagemap_read,
1563 	.open		= pagemap_open,
1564 	.release	= pagemap_release,
1565 };
1566 #endif /* CONFIG_PROC_PAGE_MONITOR */
1567 
1568 #ifdef CONFIG_NUMA
1569 
1570 struct numa_maps {
1571 	unsigned long pages;
1572 	unsigned long anon;
1573 	unsigned long active;
1574 	unsigned long writeback;
1575 	unsigned long mapcount_max;
1576 	unsigned long dirty;
1577 	unsigned long swapcache;
1578 	unsigned long node[MAX_NUMNODES];
1579 };
1580 
1581 struct numa_maps_private {
1582 	struct proc_maps_private proc_maps;
1583 	struct numa_maps md;
1584 };
1585 
1586 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1587 			unsigned long nr_pages)
1588 {
1589 	int count = page_mapcount(page);
1590 
1591 	md->pages += nr_pages;
1592 	if (pte_dirty || PageDirty(page))
1593 		md->dirty += nr_pages;
1594 
1595 	if (PageSwapCache(page))
1596 		md->swapcache += nr_pages;
1597 
1598 	if (PageActive(page) || PageUnevictable(page))
1599 		md->active += nr_pages;
1600 
1601 	if (PageWriteback(page))
1602 		md->writeback += nr_pages;
1603 
1604 	if (PageAnon(page))
1605 		md->anon += nr_pages;
1606 
1607 	if (count > md->mapcount_max)
1608 		md->mapcount_max = count;
1609 
1610 	md->node[page_to_nid(page)] += nr_pages;
1611 }
1612 
1613 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1614 		unsigned long addr)
1615 {
1616 	struct page *page;
1617 	int nid;
1618 
1619 	if (!pte_present(pte))
1620 		return NULL;
1621 
1622 	page = vm_normal_page(vma, addr, pte);
1623 	if (!page)
1624 		return NULL;
1625 
1626 	if (PageReserved(page))
1627 		return NULL;
1628 
1629 	nid = page_to_nid(page);
1630 	if (!node_isset(nid, node_states[N_MEMORY]))
1631 		return NULL;
1632 
1633 	return page;
1634 }
1635 
1636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1637 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1638 					      struct vm_area_struct *vma,
1639 					      unsigned long addr)
1640 {
1641 	struct page *page;
1642 	int nid;
1643 
1644 	if (!pmd_present(pmd))
1645 		return NULL;
1646 
1647 	page = vm_normal_page_pmd(vma, addr, pmd);
1648 	if (!page)
1649 		return NULL;
1650 
1651 	if (PageReserved(page))
1652 		return NULL;
1653 
1654 	nid = page_to_nid(page);
1655 	if (!node_isset(nid, node_states[N_MEMORY]))
1656 		return NULL;
1657 
1658 	return page;
1659 }
1660 #endif
1661 
1662 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1663 		unsigned long end, struct mm_walk *walk)
1664 {
1665 	struct numa_maps *md = walk->private;
1666 	struct vm_area_struct *vma = walk->vma;
1667 	spinlock_t *ptl;
1668 	pte_t *orig_pte;
1669 	pte_t *pte;
1670 
1671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1672 	ptl = pmd_trans_huge_lock(pmd, vma);
1673 	if (ptl) {
1674 		struct page *page;
1675 
1676 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1677 		if (page)
1678 			gather_stats(page, md, pmd_dirty(*pmd),
1679 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1680 		spin_unlock(ptl);
1681 		return 0;
1682 	}
1683 
1684 	if (pmd_trans_unstable(pmd))
1685 		return 0;
1686 #endif
1687 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1688 	do {
1689 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1690 		if (!page)
1691 			continue;
1692 		gather_stats(page, md, pte_dirty(*pte), 1);
1693 
1694 	} while (pte++, addr += PAGE_SIZE, addr != end);
1695 	pte_unmap_unlock(orig_pte, ptl);
1696 	cond_resched();
1697 	return 0;
1698 }
1699 #ifdef CONFIG_HUGETLB_PAGE
1700 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1701 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1702 {
1703 	pte_t huge_pte = huge_ptep_get(pte);
1704 	struct numa_maps *md;
1705 	struct page *page;
1706 
1707 	if (!pte_present(huge_pte))
1708 		return 0;
1709 
1710 	page = pte_page(huge_pte);
1711 	if (!page)
1712 		return 0;
1713 
1714 	md = walk->private;
1715 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1716 	return 0;
1717 }
1718 
1719 #else
1720 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1721 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1722 {
1723 	return 0;
1724 }
1725 #endif
1726 
1727 /*
1728  * Display pages allocated per node and memory policy via /proc.
1729  */
1730 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1731 {
1732 	struct numa_maps_private *numa_priv = m->private;
1733 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1734 	struct vm_area_struct *vma = v;
1735 	struct numa_maps *md = &numa_priv->md;
1736 	struct file *file = vma->vm_file;
1737 	struct mm_struct *mm = vma->vm_mm;
1738 	struct mm_walk walk = {
1739 		.hugetlb_entry = gather_hugetlb_stats,
1740 		.pmd_entry = gather_pte_stats,
1741 		.private = md,
1742 		.mm = mm,
1743 	};
1744 	struct mempolicy *pol;
1745 	char buffer[64];
1746 	int nid;
1747 
1748 	if (!mm)
1749 		return 0;
1750 
1751 	/* Ensure we start with an empty set of numa_maps statistics. */
1752 	memset(md, 0, sizeof(*md));
1753 
1754 	pol = __get_vma_policy(vma, vma->vm_start);
1755 	if (pol) {
1756 		mpol_to_str(buffer, sizeof(buffer), pol);
1757 		mpol_cond_put(pol);
1758 	} else {
1759 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1760 	}
1761 
1762 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1763 
1764 	if (file) {
1765 		seq_puts(m, " file=");
1766 		seq_file_path(m, file, "\n\t= ");
1767 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1768 		seq_puts(m, " heap");
1769 	} else if (is_stack(vma)) {
1770 		seq_puts(m, " stack");
1771 	}
1772 
1773 	if (is_vm_hugetlb_page(vma))
1774 		seq_puts(m, " huge");
1775 
1776 	/* mmap_sem is held by m_start */
1777 	walk_page_vma(vma, &walk);
1778 
1779 	if (!md->pages)
1780 		goto out;
1781 
1782 	if (md->anon)
1783 		seq_printf(m, " anon=%lu", md->anon);
1784 
1785 	if (md->dirty)
1786 		seq_printf(m, " dirty=%lu", md->dirty);
1787 
1788 	if (md->pages != md->anon && md->pages != md->dirty)
1789 		seq_printf(m, " mapped=%lu", md->pages);
1790 
1791 	if (md->mapcount_max > 1)
1792 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1793 
1794 	if (md->swapcache)
1795 		seq_printf(m, " swapcache=%lu", md->swapcache);
1796 
1797 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1798 		seq_printf(m, " active=%lu", md->active);
1799 
1800 	if (md->writeback)
1801 		seq_printf(m, " writeback=%lu", md->writeback);
1802 
1803 	for_each_node_state(nid, N_MEMORY)
1804 		if (md->node[nid])
1805 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1806 
1807 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1808 out:
1809 	seq_putc(m, '\n');
1810 	m_cache_vma(m, vma);
1811 	return 0;
1812 }
1813 
1814 static int show_pid_numa_map(struct seq_file *m, void *v)
1815 {
1816 	return show_numa_map(m, v, 1);
1817 }
1818 
1819 static int show_tid_numa_map(struct seq_file *m, void *v)
1820 {
1821 	return show_numa_map(m, v, 0);
1822 }
1823 
1824 static const struct seq_operations proc_pid_numa_maps_op = {
1825 	.start  = m_start,
1826 	.next   = m_next,
1827 	.stop   = m_stop,
1828 	.show   = show_pid_numa_map,
1829 };
1830 
1831 static const struct seq_operations proc_tid_numa_maps_op = {
1832 	.start  = m_start,
1833 	.next   = m_next,
1834 	.stop   = m_stop,
1835 	.show   = show_tid_numa_map,
1836 };
1837 
1838 static int numa_maps_open(struct inode *inode, struct file *file,
1839 			  const struct seq_operations *ops)
1840 {
1841 	return proc_maps_open(inode, file, ops,
1842 				sizeof(struct numa_maps_private));
1843 }
1844 
1845 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1846 {
1847 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1848 }
1849 
1850 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1851 {
1852 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1853 }
1854 
1855 const struct file_operations proc_pid_numa_maps_operations = {
1856 	.open		= pid_numa_maps_open,
1857 	.read		= seq_read,
1858 	.llseek		= seq_lseek,
1859 	.release	= proc_map_release,
1860 };
1861 
1862 const struct file_operations proc_tid_numa_maps_operations = {
1863 	.open		= tid_numa_maps_open,
1864 	.read		= seq_read,
1865 	.llseek		= seq_lseek,
1866 	.release	= proc_map_release,
1867 };
1868 #endif /* CONFIG_NUMA */
1869