xref: /openbmc/linux/fs/proc/task_mmu.c (revision 732a675a)
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
16 
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
18 {
19 	unsigned long data, text, lib;
20 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
21 
22 	/*
23 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
25 	 * collector of these hiwater stats must therefore get total_vm
26 	 * and rss too, which will usually be the higher.  Barriers? not
27 	 * worth the effort, such snapshots can always be inconsistent.
28 	 */
29 	hiwater_vm = total_vm = mm->total_vm;
30 	if (hiwater_vm < mm->hiwater_vm)
31 		hiwater_vm = mm->hiwater_vm;
32 	hiwater_rss = total_rss = get_mm_rss(mm);
33 	if (hiwater_rss < mm->hiwater_rss)
34 		hiwater_rss = mm->hiwater_rss;
35 
36 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 	seq_printf(m,
40 		"VmPeak:\t%8lu kB\n"
41 		"VmSize:\t%8lu kB\n"
42 		"VmLck:\t%8lu kB\n"
43 		"VmHWM:\t%8lu kB\n"
44 		"VmRSS:\t%8lu kB\n"
45 		"VmData:\t%8lu kB\n"
46 		"VmStk:\t%8lu kB\n"
47 		"VmExe:\t%8lu kB\n"
48 		"VmLib:\t%8lu kB\n"
49 		"VmPTE:\t%8lu kB\n",
50 		hiwater_vm << (PAGE_SHIFT-10),
51 		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
52 		mm->locked_vm << (PAGE_SHIFT-10),
53 		hiwater_rss << (PAGE_SHIFT-10),
54 		total_rss << (PAGE_SHIFT-10),
55 		data << (PAGE_SHIFT-10),
56 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
57 		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
58 }
59 
60 unsigned long task_vsize(struct mm_struct *mm)
61 {
62 	return PAGE_SIZE * mm->total_vm;
63 }
64 
65 int task_statm(struct mm_struct *mm, int *shared, int *text,
66 	       int *data, int *resident)
67 {
68 	*shared = get_mm_counter(mm, file_rss);
69 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
70 								>> PAGE_SHIFT;
71 	*data = mm->total_vm - mm->shared_vm;
72 	*resident = *shared + get_mm_counter(mm, anon_rss);
73 	return mm->total_vm;
74 }
75 
76 static void pad_len_spaces(struct seq_file *m, int len)
77 {
78 	len = 25 + sizeof(void*) * 6 - len;
79 	if (len < 1)
80 		len = 1;
81 	seq_printf(m, "%*c", len, ' ');
82 }
83 
84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
85 {
86 	if (vma && vma != priv->tail_vma) {
87 		struct mm_struct *mm = vma->vm_mm;
88 		up_read(&mm->mmap_sem);
89 		mmput(mm);
90 	}
91 }
92 
93 static void *m_start(struct seq_file *m, loff_t *pos)
94 {
95 	struct proc_maps_private *priv = m->private;
96 	unsigned long last_addr = m->version;
97 	struct mm_struct *mm;
98 	struct vm_area_struct *vma, *tail_vma = NULL;
99 	loff_t l = *pos;
100 
101 	/* Clear the per syscall fields in priv */
102 	priv->task = NULL;
103 	priv->tail_vma = NULL;
104 
105 	/*
106 	 * We remember last_addr rather than next_addr to hit with
107 	 * mmap_cache most of the time. We have zero last_addr at
108 	 * the beginning and also after lseek. We will have -1 last_addr
109 	 * after the end of the vmas.
110 	 */
111 
112 	if (last_addr == -1UL)
113 		return NULL;
114 
115 	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
116 	if (!priv->task)
117 		return NULL;
118 
119 	mm = mm_for_maps(priv->task);
120 	if (!mm)
121 		return NULL;
122 
123 	tail_vma = get_gate_vma(priv->task);
124 	priv->tail_vma = tail_vma;
125 
126 	/* Start with last addr hint */
127 	vma = find_vma(mm, last_addr);
128 	if (last_addr && vma) {
129 		vma = vma->vm_next;
130 		goto out;
131 	}
132 
133 	/*
134 	 * Check the vma index is within the range and do
135 	 * sequential scan until m_index.
136 	 */
137 	vma = NULL;
138 	if ((unsigned long)l < mm->map_count) {
139 		vma = mm->mmap;
140 		while (l-- && vma)
141 			vma = vma->vm_next;
142 		goto out;
143 	}
144 
145 	if (l != mm->map_count)
146 		tail_vma = NULL; /* After gate vma */
147 
148 out:
149 	if (vma)
150 		return vma;
151 
152 	/* End of vmas has been reached */
153 	m->version = (tail_vma != NULL)? 0: -1UL;
154 	up_read(&mm->mmap_sem);
155 	mmput(mm);
156 	return tail_vma;
157 }
158 
159 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
160 {
161 	struct proc_maps_private *priv = m->private;
162 	struct vm_area_struct *vma = v;
163 	struct vm_area_struct *tail_vma = priv->tail_vma;
164 
165 	(*pos)++;
166 	if (vma && (vma != tail_vma) && vma->vm_next)
167 		return vma->vm_next;
168 	vma_stop(priv, vma);
169 	return (vma != tail_vma)? tail_vma: NULL;
170 }
171 
172 static void m_stop(struct seq_file *m, void *v)
173 {
174 	struct proc_maps_private *priv = m->private;
175 	struct vm_area_struct *vma = v;
176 
177 	vma_stop(priv, vma);
178 	if (priv->task)
179 		put_task_struct(priv->task);
180 }
181 
182 static int do_maps_open(struct inode *inode, struct file *file,
183 			const struct seq_operations *ops)
184 {
185 	struct proc_maps_private *priv;
186 	int ret = -ENOMEM;
187 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
188 	if (priv) {
189 		priv->pid = proc_pid(inode);
190 		ret = seq_open(file, ops);
191 		if (!ret) {
192 			struct seq_file *m = file->private_data;
193 			m->private = priv;
194 		} else {
195 			kfree(priv);
196 		}
197 	}
198 	return ret;
199 }
200 
201 static int show_map(struct seq_file *m, void *v)
202 {
203 	struct proc_maps_private *priv = m->private;
204 	struct task_struct *task = priv->task;
205 	struct vm_area_struct *vma = v;
206 	struct mm_struct *mm = vma->vm_mm;
207 	struct file *file = vma->vm_file;
208 	int flags = vma->vm_flags;
209 	unsigned long ino = 0;
210 	dev_t dev = 0;
211 	int len;
212 
213 	if (maps_protect && !ptrace_may_attach(task))
214 		return -EACCES;
215 
216 	if (file) {
217 		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
218 		dev = inode->i_sb->s_dev;
219 		ino = inode->i_ino;
220 	}
221 
222 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
223 			vma->vm_start,
224 			vma->vm_end,
225 			flags & VM_READ ? 'r' : '-',
226 			flags & VM_WRITE ? 'w' : '-',
227 			flags & VM_EXEC ? 'x' : '-',
228 			flags & VM_MAYSHARE ? 's' : 'p',
229 			vma->vm_pgoff << PAGE_SHIFT,
230 			MAJOR(dev), MINOR(dev), ino, &len);
231 
232 	/*
233 	 * Print the dentry name for named mappings, and a
234 	 * special [heap] marker for the heap:
235 	 */
236 	if (file) {
237 		pad_len_spaces(m, len);
238 		seq_path(m, &file->f_path, "\n");
239 	} else {
240 		const char *name = arch_vma_name(vma);
241 		if (!name) {
242 			if (mm) {
243 				if (vma->vm_start <= mm->start_brk &&
244 						vma->vm_end >= mm->brk) {
245 					name = "[heap]";
246 				} else if (vma->vm_start <= mm->start_stack &&
247 					   vma->vm_end >= mm->start_stack) {
248 					name = "[stack]";
249 				}
250 			} else {
251 				name = "[vdso]";
252 			}
253 		}
254 		if (name) {
255 			pad_len_spaces(m, len);
256 			seq_puts(m, name);
257 		}
258 	}
259 	seq_putc(m, '\n');
260 
261 	if (m->count < m->size)  /* vma is copied successfully */
262 		m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
263 	return 0;
264 }
265 
266 static const struct seq_operations proc_pid_maps_op = {
267 	.start	= m_start,
268 	.next	= m_next,
269 	.stop	= m_stop,
270 	.show	= show_map
271 };
272 
273 static int maps_open(struct inode *inode, struct file *file)
274 {
275 	return do_maps_open(inode, file, &proc_pid_maps_op);
276 }
277 
278 const struct file_operations proc_maps_operations = {
279 	.open		= maps_open,
280 	.read		= seq_read,
281 	.llseek		= seq_lseek,
282 	.release	= seq_release_private,
283 };
284 
285 /*
286  * Proportional Set Size(PSS): my share of RSS.
287  *
288  * PSS of a process is the count of pages it has in memory, where each
289  * page is divided by the number of processes sharing it.  So if a
290  * process has 1000 pages all to itself, and 1000 shared with one other
291  * process, its PSS will be 1500.
292  *
293  * To keep (accumulated) division errors low, we adopt a 64bit
294  * fixed-point pss counter to minimize division errors. So (pss >>
295  * PSS_SHIFT) would be the real byte count.
296  *
297  * A shift of 12 before division means (assuming 4K page size):
298  * 	- 1M 3-user-pages add up to 8KB errors;
299  * 	- supports mapcount up to 2^24, or 16M;
300  * 	- supports PSS up to 2^52 bytes, or 4PB.
301  */
302 #define PSS_SHIFT 12
303 
304 #ifdef CONFIG_PROC_PAGE_MONITOR
305 struct mem_size_stats {
306 	struct vm_area_struct *vma;
307 	unsigned long resident;
308 	unsigned long shared_clean;
309 	unsigned long shared_dirty;
310 	unsigned long private_clean;
311 	unsigned long private_dirty;
312 	unsigned long referenced;
313 	unsigned long swap;
314 	u64 pss;
315 };
316 
317 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
318 			   void *private)
319 {
320 	struct mem_size_stats *mss = private;
321 	struct vm_area_struct *vma = mss->vma;
322 	pte_t *pte, ptent;
323 	spinlock_t *ptl;
324 	struct page *page;
325 	int mapcount;
326 
327 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
328 	for (; addr != end; pte++, addr += PAGE_SIZE) {
329 		ptent = *pte;
330 
331 		if (is_swap_pte(ptent)) {
332 			mss->swap += PAGE_SIZE;
333 			continue;
334 		}
335 
336 		if (!pte_present(ptent))
337 			continue;
338 
339 		mss->resident += PAGE_SIZE;
340 
341 		page = vm_normal_page(vma, addr, ptent);
342 		if (!page)
343 			continue;
344 
345 		/* Accumulate the size in pages that have been accessed. */
346 		if (pte_young(ptent) || PageReferenced(page))
347 			mss->referenced += PAGE_SIZE;
348 		mapcount = page_mapcount(page);
349 		if (mapcount >= 2) {
350 			if (pte_dirty(ptent))
351 				mss->shared_dirty += PAGE_SIZE;
352 			else
353 				mss->shared_clean += PAGE_SIZE;
354 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
355 		} else {
356 			if (pte_dirty(ptent))
357 				mss->private_dirty += PAGE_SIZE;
358 			else
359 				mss->private_clean += PAGE_SIZE;
360 			mss->pss += (PAGE_SIZE << PSS_SHIFT);
361 		}
362 	}
363 	pte_unmap_unlock(pte - 1, ptl);
364 	cond_resched();
365 	return 0;
366 }
367 
368 static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range };
369 
370 static int show_smap(struct seq_file *m, void *v)
371 {
372 	struct vm_area_struct *vma = v;
373 	struct mem_size_stats mss;
374 	int ret;
375 
376 	memset(&mss, 0, sizeof mss);
377 	mss.vma = vma;
378 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
379 		walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end,
380 				&smaps_walk, &mss);
381 
382 	ret = show_map(m, v);
383 	if (ret)
384 		return ret;
385 
386 	seq_printf(m,
387 		   "Size:           %8lu kB\n"
388 		   "Rss:            %8lu kB\n"
389 		   "Pss:            %8lu kB\n"
390 		   "Shared_Clean:   %8lu kB\n"
391 		   "Shared_Dirty:   %8lu kB\n"
392 		   "Private_Clean:  %8lu kB\n"
393 		   "Private_Dirty:  %8lu kB\n"
394 		   "Referenced:     %8lu kB\n"
395 		   "Swap:           %8lu kB\n",
396 		   (vma->vm_end - vma->vm_start) >> 10,
397 		   mss.resident >> 10,
398 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
399 		   mss.shared_clean  >> 10,
400 		   mss.shared_dirty  >> 10,
401 		   mss.private_clean >> 10,
402 		   mss.private_dirty >> 10,
403 		   mss.referenced >> 10,
404 		   mss.swap >> 10);
405 
406 	return ret;
407 }
408 
409 static const struct seq_operations proc_pid_smaps_op = {
410 	.start	= m_start,
411 	.next	= m_next,
412 	.stop	= m_stop,
413 	.show	= show_smap
414 };
415 
416 static int smaps_open(struct inode *inode, struct file *file)
417 {
418 	return do_maps_open(inode, file, &proc_pid_smaps_op);
419 }
420 
421 const struct file_operations proc_smaps_operations = {
422 	.open		= smaps_open,
423 	.read		= seq_read,
424 	.llseek		= seq_lseek,
425 	.release	= seq_release_private,
426 };
427 
428 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
429 				unsigned long end, void *private)
430 {
431 	struct vm_area_struct *vma = private;
432 	pte_t *pte, ptent;
433 	spinlock_t *ptl;
434 	struct page *page;
435 
436 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
437 	for (; addr != end; pte++, addr += PAGE_SIZE) {
438 		ptent = *pte;
439 		if (!pte_present(ptent))
440 			continue;
441 
442 		page = vm_normal_page(vma, addr, ptent);
443 		if (!page)
444 			continue;
445 
446 		/* Clear accessed and referenced bits. */
447 		ptep_test_and_clear_young(vma, addr, pte);
448 		ClearPageReferenced(page);
449 	}
450 	pte_unmap_unlock(pte - 1, ptl);
451 	cond_resched();
452 	return 0;
453 }
454 
455 static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range };
456 
457 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
458 				size_t count, loff_t *ppos)
459 {
460 	struct task_struct *task;
461 	char buffer[PROC_NUMBUF], *end;
462 	struct mm_struct *mm;
463 	struct vm_area_struct *vma;
464 
465 	memset(buffer, 0, sizeof(buffer));
466 	if (count > sizeof(buffer) - 1)
467 		count = sizeof(buffer) - 1;
468 	if (copy_from_user(buffer, buf, count))
469 		return -EFAULT;
470 	if (!simple_strtol(buffer, &end, 0))
471 		return -EINVAL;
472 	if (*end == '\n')
473 		end++;
474 	task = get_proc_task(file->f_path.dentry->d_inode);
475 	if (!task)
476 		return -ESRCH;
477 	mm = get_task_mm(task);
478 	if (mm) {
479 		down_read(&mm->mmap_sem);
480 		for (vma = mm->mmap; vma; vma = vma->vm_next)
481 			if (!is_vm_hugetlb_page(vma))
482 				walk_page_range(mm, vma->vm_start, vma->vm_end,
483 						&clear_refs_walk, vma);
484 		flush_tlb_mm(mm);
485 		up_read(&mm->mmap_sem);
486 		mmput(mm);
487 	}
488 	put_task_struct(task);
489 	if (end - buffer == 0)
490 		return -EIO;
491 	return end - buffer;
492 }
493 
494 const struct file_operations proc_clear_refs_operations = {
495 	.write		= clear_refs_write,
496 };
497 
498 struct pagemapread {
499 	u64 __user *out, *end;
500 };
501 
502 #define PM_ENTRY_BYTES      sizeof(u64)
503 #define PM_STATUS_BITS      3
504 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
505 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
506 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
507 #define PM_PSHIFT_BITS      6
508 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
509 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
510 #define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
511 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
512 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
513 
514 #define PM_PRESENT          PM_STATUS(4LL)
515 #define PM_SWAP             PM_STATUS(2LL)
516 #define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
517 #define PM_END_OF_BUFFER    1
518 
519 static int add_to_pagemap(unsigned long addr, u64 pfn,
520 			  struct pagemapread *pm)
521 {
522 	if (put_user(pfn, pm->out))
523 		return -EFAULT;
524 	pm->out++;
525 	if (pm->out >= pm->end)
526 		return PM_END_OF_BUFFER;
527 	return 0;
528 }
529 
530 static int pagemap_pte_hole(unsigned long start, unsigned long end,
531 				void *private)
532 {
533 	struct pagemapread *pm = private;
534 	unsigned long addr;
535 	int err = 0;
536 	for (addr = start; addr < end; addr += PAGE_SIZE) {
537 		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
538 		if (err)
539 			break;
540 	}
541 	return err;
542 }
543 
544 static u64 swap_pte_to_pagemap_entry(pte_t pte)
545 {
546 	swp_entry_t e = pte_to_swp_entry(pte);
547 	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
548 }
549 
550 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
551 			     void *private)
552 {
553 	struct pagemapread *pm = private;
554 	pte_t *pte;
555 	int err = 0;
556 
557 	for (; addr != end; addr += PAGE_SIZE) {
558 		u64 pfn = PM_NOT_PRESENT;
559 		pte = pte_offset_map(pmd, addr);
560 		if (is_swap_pte(*pte))
561 			pfn = PM_PFRAME(swap_pte_to_pagemap_entry(*pte))
562 				| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
563 		else if (pte_present(*pte))
564 			pfn = PM_PFRAME(pte_pfn(*pte))
565 				| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
566 		/* unmap so we're not in atomic when we copy to userspace */
567 		pte_unmap(pte);
568 		err = add_to_pagemap(addr, pfn, pm);
569 		if (err)
570 			return err;
571 	}
572 
573 	cond_resched();
574 
575 	return err;
576 }
577 
578 static struct mm_walk pagemap_walk = {
579 	.pmd_entry = pagemap_pte_range,
580 	.pte_hole = pagemap_pte_hole
581 };
582 
583 /*
584  * /proc/pid/pagemap - an array mapping virtual pages to pfns
585  *
586  * For each page in the address space, this file contains one 64-bit entry
587  * consisting of the following:
588  *
589  * Bits 0-55  page frame number (PFN) if present
590  * Bits 0-4   swap type if swapped
591  * Bits 5-55  swap offset if swapped
592  * Bits 55-60 page shift (page size = 1<<page shift)
593  * Bit  61    reserved for future use
594  * Bit  62    page swapped
595  * Bit  63    page present
596  *
597  * If the page is not present but in swap, then the PFN contains an
598  * encoding of the swap file number and the page's offset into the
599  * swap. Unmapped pages return a null PFN. This allows determining
600  * precisely which pages are mapped (or in swap) and comparing mapped
601  * pages between processes.
602  *
603  * Efficient users of this interface will use /proc/pid/maps to
604  * determine which areas of memory are actually mapped and llseek to
605  * skip over unmapped regions.
606  */
607 static ssize_t pagemap_read(struct file *file, char __user *buf,
608 			    size_t count, loff_t *ppos)
609 {
610 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
611 	struct page **pages, *page;
612 	unsigned long uaddr, uend;
613 	struct mm_struct *mm;
614 	struct pagemapread pm;
615 	int pagecount;
616 	int ret = -ESRCH;
617 
618 	if (!task)
619 		goto out;
620 
621 	ret = -EACCES;
622 	if (!ptrace_may_attach(task))
623 		goto out_task;
624 
625 	ret = -EINVAL;
626 	/* file position must be aligned */
627 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
628 		goto out_task;
629 
630 	ret = 0;
631 	mm = get_task_mm(task);
632 	if (!mm)
633 		goto out_task;
634 
635 	ret = -ENOMEM;
636 	uaddr = (unsigned long)buf & PAGE_MASK;
637 	uend = (unsigned long)(buf + count);
638 	pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
639 	pages = kmalloc(pagecount * sizeof(struct page *), GFP_KERNEL);
640 	if (!pages)
641 		goto out_mm;
642 
643 	down_read(&current->mm->mmap_sem);
644 	ret = get_user_pages(current, current->mm, uaddr, pagecount,
645 			     1, 0, pages, NULL);
646 	up_read(&current->mm->mmap_sem);
647 
648 	if (ret < 0)
649 		goto out_free;
650 
651 	if (ret != pagecount) {
652 		pagecount = ret;
653 		ret = -EFAULT;
654 		goto out_pages;
655 	}
656 
657 	pm.out = (u64 *)buf;
658 	pm.end = (u64 *)(buf + count);
659 
660 	if (!ptrace_may_attach(task)) {
661 		ret = -EIO;
662 	} else {
663 		unsigned long src = *ppos;
664 		unsigned long svpfn = src / PM_ENTRY_BYTES;
665 		unsigned long start_vaddr = svpfn << PAGE_SHIFT;
666 		unsigned long end_vaddr = TASK_SIZE_OF(task);
667 
668 		/* watch out for wraparound */
669 		if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
670 			start_vaddr = end_vaddr;
671 
672 		/*
673 		 * The odds are that this will stop walking way
674 		 * before end_vaddr, because the length of the
675 		 * user buffer is tracked in "pm", and the walk
676 		 * will stop when we hit the end of the buffer.
677 		 */
678 		ret = walk_page_range(mm, start_vaddr, end_vaddr,
679 					&pagemap_walk, &pm);
680 		if (ret == PM_END_OF_BUFFER)
681 			ret = 0;
682 		/* don't need mmap_sem for these, but this looks cleaner */
683 		*ppos += (char *)pm.out - buf;
684 		if (!ret)
685 			ret = (char *)pm.out - buf;
686 	}
687 
688 out_pages:
689 	for (; pagecount; pagecount--) {
690 		page = pages[pagecount-1];
691 		if (!PageReserved(page))
692 			SetPageDirty(page);
693 		page_cache_release(page);
694 	}
695 out_free:
696 	kfree(pages);
697 out_mm:
698 	mmput(mm);
699 out_task:
700 	put_task_struct(task);
701 out:
702 	return ret;
703 }
704 
705 const struct file_operations proc_pagemap_operations = {
706 	.llseek		= mem_lseek, /* borrow this */
707 	.read		= pagemap_read,
708 };
709 #endif /* CONFIG_PROC_PAGE_MONITOR */
710 
711 #ifdef CONFIG_NUMA
712 extern int show_numa_map(struct seq_file *m, void *v);
713 
714 static int show_numa_map_checked(struct seq_file *m, void *v)
715 {
716 	struct proc_maps_private *priv = m->private;
717 	struct task_struct *task = priv->task;
718 
719 	if (maps_protect && !ptrace_may_attach(task))
720 		return -EACCES;
721 
722 	return show_numa_map(m, v);
723 }
724 
725 static const struct seq_operations proc_pid_numa_maps_op = {
726         .start  = m_start,
727         .next   = m_next,
728         .stop   = m_stop,
729         .show   = show_numa_map_checked
730 };
731 
732 static int numa_maps_open(struct inode *inode, struct file *file)
733 {
734 	return do_maps_open(inode, file, &proc_pid_numa_maps_op);
735 }
736 
737 const struct file_operations proc_numa_maps_operations = {
738 	.open		= numa_maps_open,
739 	.read		= seq_read,
740 	.llseek		= seq_lseek,
741 	.release	= seq_release_private,
742 };
743 #endif
744