1 #include <linux/mm.h> 2 #include <linux/hugetlb.h> 3 #include <linux/mount.h> 4 #include <linux/seq_file.h> 5 #include <linux/highmem.h> 6 #include <linux/ptrace.h> 7 #include <linux/pagemap.h> 8 #include <linux/mempolicy.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 12 #include <asm/elf.h> 13 #include <asm/uaccess.h> 14 #include <asm/tlbflush.h> 15 #include "internal.h" 16 17 void task_mem(struct seq_file *m, struct mm_struct *mm) 18 { 19 unsigned long data, text, lib; 20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 21 22 /* 23 * Note: to minimize their overhead, mm maintains hiwater_vm and 24 * hiwater_rss only when about to *lower* total_vm or rss. Any 25 * collector of these hiwater stats must therefore get total_vm 26 * and rss too, which will usually be the higher. Barriers? not 27 * worth the effort, such snapshots can always be inconsistent. 28 */ 29 hiwater_vm = total_vm = mm->total_vm; 30 if (hiwater_vm < mm->hiwater_vm) 31 hiwater_vm = mm->hiwater_vm; 32 hiwater_rss = total_rss = get_mm_rss(mm); 33 if (hiwater_rss < mm->hiwater_rss) 34 hiwater_rss = mm->hiwater_rss; 35 36 data = mm->total_vm - mm->shared_vm - mm->stack_vm; 37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 39 seq_printf(m, 40 "VmPeak:\t%8lu kB\n" 41 "VmSize:\t%8lu kB\n" 42 "VmLck:\t%8lu kB\n" 43 "VmHWM:\t%8lu kB\n" 44 "VmRSS:\t%8lu kB\n" 45 "VmData:\t%8lu kB\n" 46 "VmStk:\t%8lu kB\n" 47 "VmExe:\t%8lu kB\n" 48 "VmLib:\t%8lu kB\n" 49 "VmPTE:\t%8lu kB\n", 50 hiwater_vm << (PAGE_SHIFT-10), 51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), 52 mm->locked_vm << (PAGE_SHIFT-10), 53 hiwater_rss << (PAGE_SHIFT-10), 54 total_rss << (PAGE_SHIFT-10), 55 data << (PAGE_SHIFT-10), 56 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10); 58 } 59 60 unsigned long task_vsize(struct mm_struct *mm) 61 { 62 return PAGE_SIZE * mm->total_vm; 63 } 64 65 int task_statm(struct mm_struct *mm, int *shared, int *text, 66 int *data, int *resident) 67 { 68 *shared = get_mm_counter(mm, file_rss); 69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 70 >> PAGE_SHIFT; 71 *data = mm->total_vm - mm->shared_vm; 72 *resident = *shared + get_mm_counter(mm, anon_rss); 73 return mm->total_vm; 74 } 75 76 static void pad_len_spaces(struct seq_file *m, int len) 77 { 78 len = 25 + sizeof(void*) * 6 - len; 79 if (len < 1) 80 len = 1; 81 seq_printf(m, "%*c", len, ' '); 82 } 83 84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) 85 { 86 if (vma && vma != priv->tail_vma) { 87 struct mm_struct *mm = vma->vm_mm; 88 up_read(&mm->mmap_sem); 89 mmput(mm); 90 } 91 } 92 93 static void *m_start(struct seq_file *m, loff_t *pos) 94 { 95 struct proc_maps_private *priv = m->private; 96 unsigned long last_addr = m->version; 97 struct mm_struct *mm; 98 struct vm_area_struct *vma, *tail_vma = NULL; 99 loff_t l = *pos; 100 101 /* Clear the per syscall fields in priv */ 102 priv->task = NULL; 103 priv->tail_vma = NULL; 104 105 /* 106 * We remember last_addr rather than next_addr to hit with 107 * mmap_cache most of the time. We have zero last_addr at 108 * the beginning and also after lseek. We will have -1 last_addr 109 * after the end of the vmas. 110 */ 111 112 if (last_addr == -1UL) 113 return NULL; 114 115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID); 116 if (!priv->task) 117 return NULL; 118 119 mm = mm_for_maps(priv->task); 120 if (!mm) 121 return NULL; 122 123 tail_vma = get_gate_vma(priv->task); 124 priv->tail_vma = tail_vma; 125 126 /* Start with last addr hint */ 127 vma = find_vma(mm, last_addr); 128 if (last_addr && vma) { 129 vma = vma->vm_next; 130 goto out; 131 } 132 133 /* 134 * Check the vma index is within the range and do 135 * sequential scan until m_index. 136 */ 137 vma = NULL; 138 if ((unsigned long)l < mm->map_count) { 139 vma = mm->mmap; 140 while (l-- && vma) 141 vma = vma->vm_next; 142 goto out; 143 } 144 145 if (l != mm->map_count) 146 tail_vma = NULL; /* After gate vma */ 147 148 out: 149 if (vma) 150 return vma; 151 152 /* End of vmas has been reached */ 153 m->version = (tail_vma != NULL)? 0: -1UL; 154 up_read(&mm->mmap_sem); 155 mmput(mm); 156 return tail_vma; 157 } 158 159 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 160 { 161 struct proc_maps_private *priv = m->private; 162 struct vm_area_struct *vma = v; 163 struct vm_area_struct *tail_vma = priv->tail_vma; 164 165 (*pos)++; 166 if (vma && (vma != tail_vma) && vma->vm_next) 167 return vma->vm_next; 168 vma_stop(priv, vma); 169 return (vma != tail_vma)? tail_vma: NULL; 170 } 171 172 static void m_stop(struct seq_file *m, void *v) 173 { 174 struct proc_maps_private *priv = m->private; 175 struct vm_area_struct *vma = v; 176 177 vma_stop(priv, vma); 178 if (priv->task) 179 put_task_struct(priv->task); 180 } 181 182 static int do_maps_open(struct inode *inode, struct file *file, 183 const struct seq_operations *ops) 184 { 185 struct proc_maps_private *priv; 186 int ret = -ENOMEM; 187 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 188 if (priv) { 189 priv->pid = proc_pid(inode); 190 ret = seq_open(file, ops); 191 if (!ret) { 192 struct seq_file *m = file->private_data; 193 m->private = priv; 194 } else { 195 kfree(priv); 196 } 197 } 198 return ret; 199 } 200 201 static int show_map(struct seq_file *m, void *v) 202 { 203 struct proc_maps_private *priv = m->private; 204 struct task_struct *task = priv->task; 205 struct vm_area_struct *vma = v; 206 struct mm_struct *mm = vma->vm_mm; 207 struct file *file = vma->vm_file; 208 int flags = vma->vm_flags; 209 unsigned long ino = 0; 210 dev_t dev = 0; 211 int len; 212 213 if (maps_protect && !ptrace_may_attach(task)) 214 return -EACCES; 215 216 if (file) { 217 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 218 dev = inode->i_sb->s_dev; 219 ino = inode->i_ino; 220 } 221 222 seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n", 223 vma->vm_start, 224 vma->vm_end, 225 flags & VM_READ ? 'r' : '-', 226 flags & VM_WRITE ? 'w' : '-', 227 flags & VM_EXEC ? 'x' : '-', 228 flags & VM_MAYSHARE ? 's' : 'p', 229 vma->vm_pgoff << PAGE_SHIFT, 230 MAJOR(dev), MINOR(dev), ino, &len); 231 232 /* 233 * Print the dentry name for named mappings, and a 234 * special [heap] marker for the heap: 235 */ 236 if (file) { 237 pad_len_spaces(m, len); 238 seq_path(m, &file->f_path, "\n"); 239 } else { 240 const char *name = arch_vma_name(vma); 241 if (!name) { 242 if (mm) { 243 if (vma->vm_start <= mm->start_brk && 244 vma->vm_end >= mm->brk) { 245 name = "[heap]"; 246 } else if (vma->vm_start <= mm->start_stack && 247 vma->vm_end >= mm->start_stack) { 248 name = "[stack]"; 249 } 250 } else { 251 name = "[vdso]"; 252 } 253 } 254 if (name) { 255 pad_len_spaces(m, len); 256 seq_puts(m, name); 257 } 258 } 259 seq_putc(m, '\n'); 260 261 if (m->count < m->size) /* vma is copied successfully */ 262 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; 263 return 0; 264 } 265 266 static const struct seq_operations proc_pid_maps_op = { 267 .start = m_start, 268 .next = m_next, 269 .stop = m_stop, 270 .show = show_map 271 }; 272 273 static int maps_open(struct inode *inode, struct file *file) 274 { 275 return do_maps_open(inode, file, &proc_pid_maps_op); 276 } 277 278 const struct file_operations proc_maps_operations = { 279 .open = maps_open, 280 .read = seq_read, 281 .llseek = seq_lseek, 282 .release = seq_release_private, 283 }; 284 285 /* 286 * Proportional Set Size(PSS): my share of RSS. 287 * 288 * PSS of a process is the count of pages it has in memory, where each 289 * page is divided by the number of processes sharing it. So if a 290 * process has 1000 pages all to itself, and 1000 shared with one other 291 * process, its PSS will be 1500. 292 * 293 * To keep (accumulated) division errors low, we adopt a 64bit 294 * fixed-point pss counter to minimize division errors. So (pss >> 295 * PSS_SHIFT) would be the real byte count. 296 * 297 * A shift of 12 before division means (assuming 4K page size): 298 * - 1M 3-user-pages add up to 8KB errors; 299 * - supports mapcount up to 2^24, or 16M; 300 * - supports PSS up to 2^52 bytes, or 4PB. 301 */ 302 #define PSS_SHIFT 12 303 304 #ifdef CONFIG_PROC_PAGE_MONITOR 305 struct mem_size_stats { 306 struct vm_area_struct *vma; 307 unsigned long resident; 308 unsigned long shared_clean; 309 unsigned long shared_dirty; 310 unsigned long private_clean; 311 unsigned long private_dirty; 312 unsigned long referenced; 313 unsigned long swap; 314 u64 pss; 315 }; 316 317 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 318 void *private) 319 { 320 struct mem_size_stats *mss = private; 321 struct vm_area_struct *vma = mss->vma; 322 pte_t *pte, ptent; 323 spinlock_t *ptl; 324 struct page *page; 325 int mapcount; 326 327 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 328 for (; addr != end; pte++, addr += PAGE_SIZE) { 329 ptent = *pte; 330 331 if (is_swap_pte(ptent)) { 332 mss->swap += PAGE_SIZE; 333 continue; 334 } 335 336 if (!pte_present(ptent)) 337 continue; 338 339 mss->resident += PAGE_SIZE; 340 341 page = vm_normal_page(vma, addr, ptent); 342 if (!page) 343 continue; 344 345 /* Accumulate the size in pages that have been accessed. */ 346 if (pte_young(ptent) || PageReferenced(page)) 347 mss->referenced += PAGE_SIZE; 348 mapcount = page_mapcount(page); 349 if (mapcount >= 2) { 350 if (pte_dirty(ptent)) 351 mss->shared_dirty += PAGE_SIZE; 352 else 353 mss->shared_clean += PAGE_SIZE; 354 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 355 } else { 356 if (pte_dirty(ptent)) 357 mss->private_dirty += PAGE_SIZE; 358 else 359 mss->private_clean += PAGE_SIZE; 360 mss->pss += (PAGE_SIZE << PSS_SHIFT); 361 } 362 } 363 pte_unmap_unlock(pte - 1, ptl); 364 cond_resched(); 365 return 0; 366 } 367 368 static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range }; 369 370 static int show_smap(struct seq_file *m, void *v) 371 { 372 struct vm_area_struct *vma = v; 373 struct mem_size_stats mss; 374 int ret; 375 376 memset(&mss, 0, sizeof mss); 377 mss.vma = vma; 378 if (vma->vm_mm && !is_vm_hugetlb_page(vma)) 379 walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end, 380 &smaps_walk, &mss); 381 382 ret = show_map(m, v); 383 if (ret) 384 return ret; 385 386 seq_printf(m, 387 "Size: %8lu kB\n" 388 "Rss: %8lu kB\n" 389 "Pss: %8lu kB\n" 390 "Shared_Clean: %8lu kB\n" 391 "Shared_Dirty: %8lu kB\n" 392 "Private_Clean: %8lu kB\n" 393 "Private_Dirty: %8lu kB\n" 394 "Referenced: %8lu kB\n" 395 "Swap: %8lu kB\n", 396 (vma->vm_end - vma->vm_start) >> 10, 397 mss.resident >> 10, 398 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 399 mss.shared_clean >> 10, 400 mss.shared_dirty >> 10, 401 mss.private_clean >> 10, 402 mss.private_dirty >> 10, 403 mss.referenced >> 10, 404 mss.swap >> 10); 405 406 return ret; 407 } 408 409 static const struct seq_operations proc_pid_smaps_op = { 410 .start = m_start, 411 .next = m_next, 412 .stop = m_stop, 413 .show = show_smap 414 }; 415 416 static int smaps_open(struct inode *inode, struct file *file) 417 { 418 return do_maps_open(inode, file, &proc_pid_smaps_op); 419 } 420 421 const struct file_operations proc_smaps_operations = { 422 .open = smaps_open, 423 .read = seq_read, 424 .llseek = seq_lseek, 425 .release = seq_release_private, 426 }; 427 428 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 429 unsigned long end, void *private) 430 { 431 struct vm_area_struct *vma = private; 432 pte_t *pte, ptent; 433 spinlock_t *ptl; 434 struct page *page; 435 436 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 437 for (; addr != end; pte++, addr += PAGE_SIZE) { 438 ptent = *pte; 439 if (!pte_present(ptent)) 440 continue; 441 442 page = vm_normal_page(vma, addr, ptent); 443 if (!page) 444 continue; 445 446 /* Clear accessed and referenced bits. */ 447 ptep_test_and_clear_young(vma, addr, pte); 448 ClearPageReferenced(page); 449 } 450 pte_unmap_unlock(pte - 1, ptl); 451 cond_resched(); 452 return 0; 453 } 454 455 static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range }; 456 457 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 458 size_t count, loff_t *ppos) 459 { 460 struct task_struct *task; 461 char buffer[PROC_NUMBUF], *end; 462 struct mm_struct *mm; 463 struct vm_area_struct *vma; 464 465 memset(buffer, 0, sizeof(buffer)); 466 if (count > sizeof(buffer) - 1) 467 count = sizeof(buffer) - 1; 468 if (copy_from_user(buffer, buf, count)) 469 return -EFAULT; 470 if (!simple_strtol(buffer, &end, 0)) 471 return -EINVAL; 472 if (*end == '\n') 473 end++; 474 task = get_proc_task(file->f_path.dentry->d_inode); 475 if (!task) 476 return -ESRCH; 477 mm = get_task_mm(task); 478 if (mm) { 479 down_read(&mm->mmap_sem); 480 for (vma = mm->mmap; vma; vma = vma->vm_next) 481 if (!is_vm_hugetlb_page(vma)) 482 walk_page_range(mm, vma->vm_start, vma->vm_end, 483 &clear_refs_walk, vma); 484 flush_tlb_mm(mm); 485 up_read(&mm->mmap_sem); 486 mmput(mm); 487 } 488 put_task_struct(task); 489 if (end - buffer == 0) 490 return -EIO; 491 return end - buffer; 492 } 493 494 const struct file_operations proc_clear_refs_operations = { 495 .write = clear_refs_write, 496 }; 497 498 struct pagemapread { 499 u64 __user *out, *end; 500 }; 501 502 #define PM_ENTRY_BYTES sizeof(u64) 503 #define PM_STATUS_BITS 3 504 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) 505 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) 506 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) 507 #define PM_PSHIFT_BITS 6 508 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) 509 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) 510 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) 511 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) 512 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) 513 514 #define PM_PRESENT PM_STATUS(4LL) 515 #define PM_SWAP PM_STATUS(2LL) 516 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) 517 #define PM_END_OF_BUFFER 1 518 519 static int add_to_pagemap(unsigned long addr, u64 pfn, 520 struct pagemapread *pm) 521 { 522 if (put_user(pfn, pm->out)) 523 return -EFAULT; 524 pm->out++; 525 if (pm->out >= pm->end) 526 return PM_END_OF_BUFFER; 527 return 0; 528 } 529 530 static int pagemap_pte_hole(unsigned long start, unsigned long end, 531 void *private) 532 { 533 struct pagemapread *pm = private; 534 unsigned long addr; 535 int err = 0; 536 for (addr = start; addr < end; addr += PAGE_SIZE) { 537 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); 538 if (err) 539 break; 540 } 541 return err; 542 } 543 544 static u64 swap_pte_to_pagemap_entry(pte_t pte) 545 { 546 swp_entry_t e = pte_to_swp_entry(pte); 547 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); 548 } 549 550 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 551 void *private) 552 { 553 struct pagemapread *pm = private; 554 pte_t *pte; 555 int err = 0; 556 557 for (; addr != end; addr += PAGE_SIZE) { 558 u64 pfn = PM_NOT_PRESENT; 559 pte = pte_offset_map(pmd, addr); 560 if (is_swap_pte(*pte)) 561 pfn = PM_PFRAME(swap_pte_to_pagemap_entry(*pte)) 562 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; 563 else if (pte_present(*pte)) 564 pfn = PM_PFRAME(pte_pfn(*pte)) 565 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; 566 /* unmap so we're not in atomic when we copy to userspace */ 567 pte_unmap(pte); 568 err = add_to_pagemap(addr, pfn, pm); 569 if (err) 570 return err; 571 } 572 573 cond_resched(); 574 575 return err; 576 } 577 578 static struct mm_walk pagemap_walk = { 579 .pmd_entry = pagemap_pte_range, 580 .pte_hole = pagemap_pte_hole 581 }; 582 583 /* 584 * /proc/pid/pagemap - an array mapping virtual pages to pfns 585 * 586 * For each page in the address space, this file contains one 64-bit entry 587 * consisting of the following: 588 * 589 * Bits 0-55 page frame number (PFN) if present 590 * Bits 0-4 swap type if swapped 591 * Bits 5-55 swap offset if swapped 592 * Bits 55-60 page shift (page size = 1<<page shift) 593 * Bit 61 reserved for future use 594 * Bit 62 page swapped 595 * Bit 63 page present 596 * 597 * If the page is not present but in swap, then the PFN contains an 598 * encoding of the swap file number and the page's offset into the 599 * swap. Unmapped pages return a null PFN. This allows determining 600 * precisely which pages are mapped (or in swap) and comparing mapped 601 * pages between processes. 602 * 603 * Efficient users of this interface will use /proc/pid/maps to 604 * determine which areas of memory are actually mapped and llseek to 605 * skip over unmapped regions. 606 */ 607 static ssize_t pagemap_read(struct file *file, char __user *buf, 608 size_t count, loff_t *ppos) 609 { 610 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 611 struct page **pages, *page; 612 unsigned long uaddr, uend; 613 struct mm_struct *mm; 614 struct pagemapread pm; 615 int pagecount; 616 int ret = -ESRCH; 617 618 if (!task) 619 goto out; 620 621 ret = -EACCES; 622 if (!ptrace_may_attach(task)) 623 goto out_task; 624 625 ret = -EINVAL; 626 /* file position must be aligned */ 627 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 628 goto out_task; 629 630 ret = 0; 631 mm = get_task_mm(task); 632 if (!mm) 633 goto out_task; 634 635 ret = -ENOMEM; 636 uaddr = (unsigned long)buf & PAGE_MASK; 637 uend = (unsigned long)(buf + count); 638 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE; 639 pages = kmalloc(pagecount * sizeof(struct page *), GFP_KERNEL); 640 if (!pages) 641 goto out_mm; 642 643 down_read(¤t->mm->mmap_sem); 644 ret = get_user_pages(current, current->mm, uaddr, pagecount, 645 1, 0, pages, NULL); 646 up_read(¤t->mm->mmap_sem); 647 648 if (ret < 0) 649 goto out_free; 650 651 if (ret != pagecount) { 652 pagecount = ret; 653 ret = -EFAULT; 654 goto out_pages; 655 } 656 657 pm.out = (u64 *)buf; 658 pm.end = (u64 *)(buf + count); 659 660 if (!ptrace_may_attach(task)) { 661 ret = -EIO; 662 } else { 663 unsigned long src = *ppos; 664 unsigned long svpfn = src / PM_ENTRY_BYTES; 665 unsigned long start_vaddr = svpfn << PAGE_SHIFT; 666 unsigned long end_vaddr = TASK_SIZE_OF(task); 667 668 /* watch out for wraparound */ 669 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) 670 start_vaddr = end_vaddr; 671 672 /* 673 * The odds are that this will stop walking way 674 * before end_vaddr, because the length of the 675 * user buffer is tracked in "pm", and the walk 676 * will stop when we hit the end of the buffer. 677 */ 678 ret = walk_page_range(mm, start_vaddr, end_vaddr, 679 &pagemap_walk, &pm); 680 if (ret == PM_END_OF_BUFFER) 681 ret = 0; 682 /* don't need mmap_sem for these, but this looks cleaner */ 683 *ppos += (char *)pm.out - buf; 684 if (!ret) 685 ret = (char *)pm.out - buf; 686 } 687 688 out_pages: 689 for (; pagecount; pagecount--) { 690 page = pages[pagecount-1]; 691 if (!PageReserved(page)) 692 SetPageDirty(page); 693 page_cache_release(page); 694 } 695 out_free: 696 kfree(pages); 697 out_mm: 698 mmput(mm); 699 out_task: 700 put_task_struct(task); 701 out: 702 return ret; 703 } 704 705 const struct file_operations proc_pagemap_operations = { 706 .llseek = mem_lseek, /* borrow this */ 707 .read = pagemap_read, 708 }; 709 #endif /* CONFIG_PROC_PAGE_MONITOR */ 710 711 #ifdef CONFIG_NUMA 712 extern int show_numa_map(struct seq_file *m, void *v); 713 714 static int show_numa_map_checked(struct seq_file *m, void *v) 715 { 716 struct proc_maps_private *priv = m->private; 717 struct task_struct *task = priv->task; 718 719 if (maps_protect && !ptrace_may_attach(task)) 720 return -EACCES; 721 722 return show_numa_map(m, v); 723 } 724 725 static const struct seq_operations proc_pid_numa_maps_op = { 726 .start = m_start, 727 .next = m_next, 728 .stop = m_stop, 729 .show = show_numa_map_checked 730 }; 731 732 static int numa_maps_open(struct inode *inode, struct file *file) 733 { 734 return do_maps_open(inode, file, &proc_pid_numa_maps_op); 735 } 736 737 const struct file_operations proc_numa_maps_operations = { 738 .open = numa_maps_open, 739 .read = seq_read, 740 .llseek = seq_lseek, 741 .release = seq_release_private, 742 }; 743 #endif 744